
1

NEON PQCryto: Fast and Parallel Ring-LWE Encryption on ARM
NEON Architecture

Reza Azarderakhsh, Zhe Liu, Hwajeong Seo, and Howon Kim

Recently, ARM NEON architecture has occupied a significant
share of tablet and smartphone markets due to its low cost
and high performance. This paper studies efficient techniques of
lattice-based cryptography on ARM processor and presents the
first implementation of ring-LWE encryption on ARM NEON
architecture. In particular, we propose a vectorized version of
Iterative Number Theoretic Transform (NTT) for high-speed
computation. We present a 32-bit variant of SAMS2 technique,
original proposed in CHES’15, for fast reduction. A combination
of proposed and previous optimizations results in a very efficient
implementation. For 128-bit security level, our ring-LWE im-
plementation requires only 145, 200 clock cycles for encryption
and 32, 800 cycles for decryption. These result are more than
17.6 times faster than the fastest ECC implementation on ARM
NEON with same security level.

Index Terms—Lightweight Implementation, Lattice-based
Cryptography, ARM NEON Architecture

I. INTRODUCTION

The 32-bit ARM processor [1] is the most widely used em-
bedded processor in almost all application markets, especially
mobile devices, e.g., tablets and smartphones, thanks to its low
cost and high performance. ARMv6 [2] architecture introduces
a small set of SIMD instructions, operating on multiple 16-bit
or 8-bit values packed into standard 32-bit general purpose
registers. This permits certain operations to execute twice or
four times as quickly, without implementing additional com-
putation units. From ARMv7 architecture [3], ARM introduces
the Advanced SIMD extension, called “NEON”. It extends the
SIMD concept by defining groups of instructions operating on
vectors stored in 64-bit D, doubleword, registers and 128-bit
Q, quadword, vector registers.

A typical ARM processor, such as the Cortex v7 [3],
features 13 general-purpose 32-bit registers (R0-R12), and an
additional three 32-bit registers which have special names and
usage models, R13(SP) for stack pointer, R14(LR) for link
register as well as R15(PC) for program counter. ARMv7-
M supports a large number of 32-bit instructions that were
introduced as Thumb-2 technology into the Thumb instruction
set. For example, both of the ADD and UMULL instructions cost
one clock cycle. The NEON register bank consists of 32 64-bit
registers, it can be seen as sixteen 128-bit quadword registers,
Q0-Q15 or thirty-two 64-bit doubleword registers, D0-D31
[4]. The NEON instructions provide data processing and

R. Azarderakhsh is with Rochester Institute of Technology, United States.
E-mail: {rxaeec}@rit.edu

Z. Liu is with University of Luxembourg and University of Waterloo.
E-mail: {zhe.liu}@uni.lu

H. Seo and H. Kim are with Pusan National University, South Korea.
E-mail: {hwajeong,howon}@pusan.ac.kr

load/store operations only, and are integrated into the ARM
and Thumb instruction sets. The number of elements operated
on is indicated by the specified register size. For example,
VADD.I16 q0, q1, q2 indicates an addition operation on
16-bit integer elements stored in 128-bit Q registers. This
means that the addition operation is on eight 16-bit lanes in
parallel. Some instructions can have different size input and
output registers. For example, VMULL.S16 Q0, D2, D3
multiplies four 16-bit lanes in parallel, producing four 32-bit
products in a 128-bit destination vector.

The ARM platform occupies a significant share of the
worldwide smartphone and tablets market and other security-
critical segments of the embedded systems industry. This
has made ARM the most common target platform for re-
search projects in the area of efficient implementation of
cryptographic primitives for embedded devices. The literature
contains papers dealing with RSA [5], Elliptic Curve Cryptog-
raphy (ECC) [6], pairing-based cryptography [21], AES [7] as
well as lattice-based cryptography [8]. Despite recent research
progress, efficient implementation of cryptographic algorithm
on 32-bit ARM, in particular ARM NEON, is still an inter-
esting and challenge topic.

A. Related Work

The first evaluation of cryptographic algorithm on ARM
NEON architecture belonged to Bernstein and Schwabe in
CHES’12 [6]. The authors showed that NEON supports high-
security elliptic curve cryptography at surprised high speeds.
They also summarized the useful instructions set for high-
speed cryptography and presented the experimental results
of NaCl library on Cortex A8 core. In 2013, Câmaraand et
al. employed the VMULL.P8 instruction to describe a novel
software multiplier for performing a polynomial multiplication
of two 64-bit binary polynomials and obtained a fast software
multiplication in the binary field F2m [9]. Their results em-
phasized the advantage of NEON for high-speed binary ECC.
In SAC’13, Bos et al. in [10] presented a parallel approach
to compute interleaved Montgomery multiplication, which is
suitable to be computed on 2-way single instruction, multiple
data platforms, e.g., ARM NEON. Seo et al. revisited the work
in [10], and introduced the Cascade Operand Scanning (COS)
method for multi-precision multiplication with the goal of
reducing Read-After-Write (RAW) dependencies in the prop-
agation of carries and the number of pipeline stalls [11]. As a
follow up work, Seo et al. proposed a novel Double Operand
Scanning (DOS) method to speed-up multi-precision squaring
with non-redundant representations on SIMD architecture and
investigated RSA-1024 and RSA-2048 on ARM Cortex A9

2

and A15 cores [5]. Besides public-key algorithm, crypto-
graphic engineers also evaluated the impact of performance
for symmetric ciphers on ARM NEON architecture. In [12],
Seo et al. evaluated and proposed a parallel implementation of
block cipher LEA on ARM-NEON and achieved a speed up
of roughly 50% compared to previous fastest implementation
on ARM without NEON. In 2014, Saarinenand et al. pre-
sented the results of authenticated encryption algorithms, e.g.,
WHIRLBOB and STRIBOB on NEON platform [13]. In CT-
RSA’15, Gouvêa and López used NEON instructions vmull
to multiply two 64-bit binary polynomials and presented an
optimized yet timing-resistant implementation of GCM over
AES-128 on ARMv8 [14]. Similarly, Wang et al. chose the
ARM-NEON platform and presented a high order masked
AES implementation in [7].

Another interesting research line is to evaluate lattice-based
cryptography (e.g., Ring-LWE) on different platforms. The
first practical evaluations of LWE and ring-LWE based encryp-
tion schemes were presented by Göttert et al. in CHES’12 [15].
The authors concluded that the ring-LWE based encryption
scheme is faster by at least a factor of four and requires less
memory in comparison to the encryption scheme based on
the standard LWE problem. Oder et al. in [8] presented the
first efficient implementation of Bimodal Lattice Signature
Schemes (BLISS) on a 32-bit ARM processor. The most
optimal variant of their implementation cost 6M cycles for
signing, 1M cycles for verification and 368M cycles for
key generation, respectively, at a medium-term security level.
In DATE’15, De Clercq et al. in [16] implemented ring-
LWE encryption scheme on the identical ARM processors,
their implementation required 121K cycles per encryption and
43.3K cycles per decryption at medium-term security level
while 261K cycles per encryption and roughly 96.5K cycles
per decryption for long-term security level. The first time
when a lattice-based cryptographic scheme was implemented
on an 8-bit processor belonged to Boorghany et al. in [17],
[18]. The authors evaluated four lattice-based authentication
protocols on both 8-bit AVR and 32-bit ARM processors. Very
recently, Pöppelmann et al. [19] and Liu et al. [20] studied
and compared implementations of Ring-LWE encryption and
the Bimodal Lattice Signature Scheme (BLISS) on an 8-bit
platform and presents efficient ring- LWE results, respectively.

However, we were surprised to find there exists no previous
work about evaluating Ring-LWE encryption or signature
scheme on ARM-NEON architecture, which was reported, in
2014, to be present in 95 % of tablets and smartphones [14].
This raises one interesting question that how well this “cryp-
tosystems of the future” are suited for today’s most widely
used mobile devoices and one aspect of this question is
the performance and memory consumption of lattice-based
cryptosystems on 32-bit ARM NEON platform. In this paper,
we are going to fill the implementation gap and give our
answer for this open problem.

B. NEON PQCryto

This paper studies efficient techniques of lattice-based cryp-
tography and presents an efficient ring-LWE implementation

on ARM NEON architecture, called “NEON PQCrypto”.
NEON PQCrypto includes support for core ring-LWE func-
tions necessary to implement most popular ring-LWE based
schemes, i.e. encryption and signature. In particular, NEON
PQCrypto supports the computation of two most important
operations:
• We propose parallel Number Theoretic Transform (NTT)

to reduce the execution time for coefficient multiplication.
• We introduce the 32-bit wise Shifting-Addition-

Multiplication-Subtraction-Subtraction (SAMS2)
approach for reduction operation. The approach
replaced the expensive division operation into shifting,
addition and multiplication operations.

• We exploit the incomplete arithmetic for representing the
coefficients and perform the reduction operation in a lazy
fashion. This technique avoids one time of subtraction in
each reduction stage.

NEON PQCrypto achieves high performance without compro-
mising security. By a combination of proposed and previous
optimizations (e.g., Incomplete arithmetic), we present high
speed implementations of ring-LWE encryption for 128-bit
security level on ARM NEON. For 128-bit security level, it
only requires 145, 200 and 32, 800 clock cycles for encryption
and decryption. The results outperform the previous ARM
implementation (without NEON) by a factor of 2.07. When
compared with ECC implementation with same security level,
our ring-LWE is 17.6 faster on identical platform.

The rest of this paper is organized as follows. In the
next section, we review the background of Ring-LWE. In
Section III, we introduce the optimization techniques for Ring-
LWE on ARM-NEON processors. In particular, we propose
several optimization techniques to reduce the execution time
in SIMD architecture. In Section IV, we report the imple-
mentation results and compare with the state-of-the-art NTT
implementations.

II. BACKGROUND

In this section, we briefly recap the ring-LWE encryption
scheme, polynomial multiplication and discrete Gaussian dis-
tribution used in our implementation.

A. The Ring-LWE Encryption Scheme

The encryption schemes we use in this paper are based
on the ring version of the learning with errors (ring-LWE)
problem. The more general form of the problem, i.e. the LWE
problem is parameterized by a dimension n ≥ 1, a modulus
q, and an error distribution. The error distribution is generally
taken as a discrete Gaussian distribution Xσ with standard
deviation σ and mean 0 to achieve best entropy/standard
deviation ratio [26]. In the literature the LWE problem is
defined as following:

Two polynomials a and s are chosen uniformly from Znq .
The first polynomial is a global polynomial, whereas the
second polynomial is kept as a secret. The LWE distribution
As,X is defined over Znq × Zq and comprises of the elements
(a, t) where t = 〈a, s〉 + e mod q ∈ Zq for some error
polynomial e sampled from the error distribution Xσ . In the

3

search version of the LWE problem, an attacker is provided
a polynomial number of (a, t) pairs sampled from As,X and
he (she) tries to find the secret polynomial s. Similarly in
the decision version of the LWE problem, an attacker tries
to distinguish between a polynomial number of samples from
As,X and the same number of samples from Znq × Zq .

In 2010, Lyubashevshy et al. proposed an encryption scheme
based on a more practical algebraic variant of the LWE
problem defined over polynomial rings Rq = Zq[x]/〈f〉 with
an irreducible polynomial f(x) and a modulus q. In the ring-
LWE problem, the elements a, s and t are polynomials in
the ring Rq . The ring-LWE encryption scheme proposed by
Lyubashevshy et al. was later optimized in [25] by Roy et
al.. Their variant aims at reducing the cost of polynomial
arithmetic. In particular, the polynomial arithmetic during a de-
cryption operation requires only one Number Theoretic Trans-
form (NTT) operation. Beside this computational optimization,
the scheme performs sampling from the discrete Gaussian
distribution using a Knuth-Yao sampler. In the next subsection
we will first present the mathematical concepts of the NTT
operation and then we will describe the steps used in the Roy
et al’s version of the encryption scheme. For efficiency, our
implementation adopts the Knuth-Yao (KY) for sampling from
a discrete Gaussian distribution and the Number Theoretic
Transform (NTT) for polynomial multiplication. We denote the
NTT of a polynomial a by ã. Roy et al’s ring-LWE encryption
scheme is computed as follows:

B. The Encryption Scheme

In this section we describe the steps used in the encryption
scheme proposed by Roy et al. [25]. We denote the NTT of a
polynomial a by ã.

• The key generation stage Gen(ã): Two error polynomials
r1, r2 ∈ Rq are sampled from the discrete Gaussian
distribution Xσ by applying the Knuth-Yao sampler twice.

r̃1 = NTT (r1), r̃2 = NTT (r2)

and then an operation p̃ = r̃1− ã · r̃2 ∈ Rq is performed.
The public key is polynomial pair (ã, p̃) and the private
key is polynomial r̃2.

• The encryption stage Enc(ã, p̃, M): The input message
M ∈ {0, 1}n is a binary vector of n bits. This message
is first encoded into a polynomial in the ring Rq by
multiplying the bits of message by q/2. Three error
polynomials e1, e2, e3 ∈ Rq are sampled from Xσ . The
ciphertext is computed as a set of two polynomials
(C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 +NTT (e3 +M ′))

• The decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT
is performed to recover M ′:

M ′ = INTT (r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message
M from M ′.

Algorithm 1 Iterative Number Theoretic Transform
Require: A polynomial a(x) ∈ Zq[x] of degree n − 1 and

n-th primitive ω ∈ Zq of unity
Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]

1: a = BitReverse(a)
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U = a[k + j]
7: V = ω · a[k + j + i/2]
8: a[k + j] = U + V
9: a[k + j + i/2] = U − V

10: end for
11: ω = ω · ωi
12: end for
13: end for
14: return a

C. Number Theoretic Transform

Our implementation adopts the Number Theoretic Trans-
form (NTT) for performing the polynomial multiplication. An
NTT can be seen as a variant of Fast Fourier Transform (FFT)
but performs in a finite ring Zq . Instead of using the complex
roots of unity, NTT evaluates a polynomial multiplication

a(x) =
n−1∑
i=0

aix
i ∈ Zq in the n-th roots of unity ωin for

i = 0, . . . , n − 1, where ωn denotes a primitive n-th root
of unity. Algorithm 1 shows the iterative version of NTT
algorithm, which is originally from Cormen et al. in [23]. As
shown in Algorithm 1, the iterative NTT algorithm consists of
three nested loops. The outermost loop (i-loop, line 2 ∼ 11)
starts from i = 2 and increases by doubling i, and the loop
stops when i = n, thus it has only log2n iterations. In each
iteration, the value of twiddle factor ωi are computed by
executing a power operation ωi = ω

n/i
n , and the value of

ω is initialized by 1. Compared to i-loop, the j-loop (line
4 ∼ 10) executes more iterations, the number of iteration can
be seen as a sum of a geometric progression for 2i where i
starts from 0 and has a maximum value of log2(n− 1), thus,
the j-loop has n − 1 iterations. In each iteration of j-loop,
the twiddle factor ω is updated by performing a coefficient
modular multiplication in line 10. Apparently, the innermost
loop (k-loop, line 5 ∼ 9) occupies most part of the execution
time of NTT algorithm since it is executed roughly n

2 log2n
times. In each iteration of the innermost loop (line 6 ∼ 9),
two coefficients a[i + j] and a[i + j + i/2] are loaded from
memory into registers, and then a[i+ j + i/2] are multiplied
by the twiddle factor ω, after that, the value of a[k + j] and
a[k + j + i/2] are updated and stored in the memory.

In NTT computations, the majority of the processor’s clock
cycles are spent on modular operations. The straight-forward
method of evaluating modular arithmetic is to perform an
integer division. However, constrained devices often do not
have any dedicated hardware to divide the variables which
generates a bulk of code containing loops, multiplications

4

and additions. For this reason, the optimal modular imple-
mentation is the important consideration for high-speed NTT
implementations. In [17], [18], Boorghany et al. introduces the
technique that calculates the approximation of ba/qc and then
executes the q = a− q × ba/qc. The results show acceptable
approximation of modular operation. The following works
by [19], [20] applied the approximation techniques to 8-bit
AVR processor in assembly level. The technique optimizes the
number of addition and shift operations by taking advantages
of 8-bit word and instruction sets. Furthermore, it only utilizes
the temporal registers without saving which avoids push/pop
operations before/after function call. In [16], De Clercq et al.
presented memory efficient polynomial multiplication. When
storing single 13-bit coefficient variable into single 32-bit word
in ARM processor, it is possible to utilize the remaining 19-
bit. The authors store two coefficients into single word, which
reduces the number of memory load and store instructions by
50%.

III. OPTIMIZATION TECHNIQUES FOR RING-LWE

In this section, we describe several optimization techniques
to reduce the execution time of Ring-LWE on ARM-NEON
architectures. We choose the parameter sets (n, q, σ) with
(256, 7681, 11.31/

√
2π) for security level of 128-bit. These

parameter sets were also used in most of the previous hardware
implementations, e.g., [15], [25] and software implementa-
tions, e.g., [17], [18], [16], [19], [20]. This also helps us to
compare our work with previous works.

A. Vectorized Iterative Number Theoretic Transform

Previous implementations on RISC processors, e.g., [16],
[19], [20], executed the NTT computation (Algorithm 1) in
a sequential fashion. Namely, the coefficient multiplication is
performed in sequence in each iteration. In the following, we
propose a vectorized variant of iterative NTT algorithm, which
significantly speeds up the execution time of NTT operations
on ARM NEON. The core idea is to take the advantages of
SIMD instruction set and implement NTT computation in a
hybrid fashion. In particular, when the number of consecutive
coefficient multiplication satisfies the width of SIMD, we
compute the SIMD based vectored computations. Otherwise,
when the number of consecutive coefficient multiplication is
smaller than width of SIMD, we simply adopt the sequential
fashion.

The vectorized variant of NTT computation is given in
Algorithm 2. As shown in steps 3 to 12, in the innermost k
loop, the index value of consecutive coefficient multiplication
between two coefficients (a[k + j], a[k + j + i/2]) are only
1 and 2 for i = 2 and i = 4 cases, respectively. Thus, we
conduct these coefficient multiplication in a sequential way.
On the other hand, the cases i > 4 have at least four consec-
utive coefficient multiplication operations, we perform these
coefficient multiplications in a parallel fashion. Specifically,
we first conduct the whole twiddle factors (ω) in consecutive
array form (steps 15 ∼ 18). Observing that the twiddle factors
are fixed variables, we simply compute these values off-line
and store them into a look-up table. Thereafter, in steps

19 ∼ 28, the coefficient variables are loaded into registers
in consecutive array form such as Uarray , Varray and ωarray.
We conduct the four different modular multiplications with
ωarray[p : p+3] · a[k+ j + i/2 : k+ j +3+ i/2]. After then,
the pointer address of p increases by 4 (i.e. the SIMD width).
Finally, the multiple number of coefficient variables are added
and subtracted each other.

B. Parallel Coefficient Multiplication

The coefficient multiplication is one of the most expensive
operations of NTT computation, since each NTT computation
requires n

2 log2n coefficient multiplications. In our implemen-
tation, the coefficient is at most 13-bit long, which can be kept
in one 32-bit register. As mentioned before, it is possible to
store two coefficients into one register as De Clercq did in
[16]. However, we decide to store only one coefficient in a
register since the product of a coefficient multiplication can
be (at most) 26-bit long. In this case, storing 26-bit in a
register will result in some extra cost to extract the 13-bit
operand out of 26-bit before performing the next step. For
ARM NEON, the 128-bit Q register is able to store four 32-
bit wise variables. We load four different aligned consecutive
variables and then conduct the four different multiplications
with one single vectorized vmull instruction.

C. Fast Reduction

In NTT computation, the majority of the execution time is
spent on computing reduction operation since it is performed
in the innermost k-loop (three times nested). Thus, fast reduc-
tion operation is an essential for high-speed implementation of
NTT algorithm. Our implementation chooses the prime mod-
ulus q = 7681 (i.e. 0x1e01 in hexadecimal representation).

One of the efficient method for reduction belongs to SAMS2
method, which was originally proposed in an 8-bit AVR imple-
mentation [20]. This method has optimized the register usages
and computation complexity. Since it replaces expensive op-
eration (e.g., division) with relatively cheaper instructions
(e.g., addition, shifting, multiplication), the ex-
ecution time is significatnly improved. However, compared
to RISC architecture, ARM NEON has more distinguished
features. First, the length of a word is bigger, i.e. 32-bit
per word. This feature allows us to readily compute the 13-
bit wise multiplication in single instruction and up-to 31-
bit shifting can be performed in single cycle. Second, ARM
NEON supplies SIMD instructions, which perform multiple
operations in parallel using one single instruction. Therefore,
we have craftily design an enhanced variant of SAMS2 method
on ARM-NEON architecture.

We propose an optimized 32-bit wise SAMS2 reduc-
tion technique for performing the mod7681 operation. The
SAMS2 method is introduced in [20] and the method is
highly optimized in 8-bit AVR processors in terms of register
utilization and the number of operations. However, ARM-
NEON processor has two distinguished features over 8-bit
AVR. First the processor provide 32-bit word size. We can
readily compute the 13-bit wise multiplication in single in-
struction and up-to 31-bit shift is available within single

5

Algorithm 2 Vectorized Iterative Number Theoretic Transform
Require: A polynomial a(x) ∈ Zq[x] of degree n− 1 and n-th primitive ω ∈ Zq of unity
Ensure: Polynomial a(x) = NTT (a) ∈ Zq[x]

1: a = BitReverse(a) {BitReverse computation}
2: for i from 2 by i = 2i to n do
3: ωi = ω

n/i
n , ω = 1 {Setting twiddle factors}

4: if i = 2 or i = 4 then
5: for j from 0 by 1 to i/2− 1 do
6: for k from 0 by i to n− 1 do
7: U = a[k + j] {sequential computations}
8: V = ω · a[k + j + i/2] {single multiplication}
9: a[k + j] = U + V {single addition}

10: a[k + j + i/2] = U − V {single subtraction}
11: end for
12: ω = ω · ωi {computation of single twiddle factors}
13: end for
14: else
15: ωarray[0] = ω
16: for p from 1 by 1 to i/2− 1 do
17: ω = ω · ωi, ωarray[p] = ω {computations of multiple twiddle factors}
18: end for
19: for j from 0 by i to n− 1 do
20: p = 0
21: for k from 0 by 4 to i/2− 1 do
22: Uarray = a[k + j : k + j + 3] {parallel computations}
23: Varray = ωarray[p : p+ 3] · a[k + j + i/2 : k + j + 3 + i/2] {multiple multiplications}
24: p = p+ 4 {index increment}
25: a[k + j : k + j + 3] = Uarray + Varray {multiple additions}
26: a[k + j + i/2 : k + j + 3 + i/2] = Uarray − Varray {multiple subtractions}
27: end for
28: end for
29: end if
30: end for
31: return a

cycle. Second multiple number of operations are conducted
at once by exploiting SIMD instructions. With these features
in mind, we redesign the original SAMS2 for ARM-NEON
architecture.

This main idea of SMAS2 is to first estimate the quotient
of t = a

q , and then perform the subtraction a − t · q where
the value of t is (a � 13) + (a � 17) + (a � 21). The
reduction process consists of four different basic operations,
namely, 32-bit wise Shifting→ Addition→ Multiplication→
Subtraction → Subtraction (SAMS2). As shown in Figure 1,
we keep the product in 32-bit long register (r0, a quarter of
NEON register). The colorful parts mean that the storage has
been occupied while the white part is not. The reduction with
7681 using SAMS2 approach can be performed as follows:

1) Shifting. We right shift r0 by 13-bit, 17-bit and 21-bit.
This outputs results t0, t1 and t2.

2) Addition. We then perform the addition of t0+ t1+ t2.
3) Multiplication and Subtraction. The third step is to

multiply the constant 0x1e01 by (t0+t1+t2), which is
a 16×13-bit multiplicatio and then subtract the product
from r0.

4) Multiplication and Subtraction. However, the result we

get in step 3 may still be larger than p = 7681, thus,
we do the correction by subtracting the modulus p
multiplied by intermeidate result larger than 13-bit.

In Algorithm 3, pseudo codes for vectorized NTT compu-
tation with constant time reduction is described. Firstly four
coefficients (q3) and four twiddle factors (q1) are multiplied
in Step 1. From Steps 2 ∼ 6, the intermediate results are hifted
to right by 13, 17 and 21-bit and accumulated. In Step 7, we
conduct multiplication with modulo (d0[0]) and intermediate
result (q4). This process is readily available by using vmls
instruction, which conducts four different multiplication and
then subtract operations from the destination (q3). From Steps
8 ∼ 9, results over 13-bit are shifted and then reduced once
again. In case of coefficient addition, two operands (q2 and
q3) are added and then one time of reduction is follows
in Steps 10 ∼ 12. For subtraction, we firstly calculate the
value (4×modulus) in Step 13. After then the value is added
to operand (q2). Since the operand (q3) is placed within
[0, 2dlog2pe], the subtraction in Step 15 does not introduce
negative values. Conveniently we can conduct one time of
reduction that is same with addition case.

6

r0r1r2r3

1
2

3

(s1, s0)

(t1, t0)

u0

(s1, s0) + (t1, t0) + u0

0x1e01

0x1e01 × [(s1, s0) + (t1, t0) + u0]

r0r1r2r3

(r3,r2,r1) » 1

(s1,s0,sx) » 4

4

(r3,r2,r1,r0) - 0x1e01 × [(s1, s0) + (t1, t0) + u0] (w1, w0)

(w1,w0) » 13 q0

0x1e01

0x1e01 × q0 5

(w1,w0) - 0x1e01 × q0

(r3,r2)

(s1,s0,sx) « 2

(s1, s0)

(t0)

1

(u1, u0)

(o0)

(u1,u0) « 2 (k0)

(b0,bx) « 2 (h1, h0)

2

3
(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)

0x3001

0x3001 × [(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)]4

(r3,r2,r1,r0) - 0x3001 × [(s1, s0) + t0 + (u1, u0) + o0 + k0 + (h1, h0)] (w1, w0)

(w1,w0) » 14 q0

0x3001

0x3001 × q0 5

(w1,w0) - 0x3001 × q0

2

t0

t0 + t1 + t2

0x1e01

0x1e01 × [t0 + t1 + t2]

r0

r0 » 13

w0

w0 » 13 q0

0x1e01 4

w0 -- 0x1e01 × q0

r0 » 17

r0 » 21

t1

t2

r0 -- 0x1e01 × [t0 + t1 + t2]

3

1

Fig. 1. Fast reduction operation with 32-bit wise SAMS2 method for q = 7681. 1©: shifting; 2©: addition; 3©: multiplication & subtraction; 4©: multiplication
and subtraction.

D. Coefficient Addition and Subtraction
We employ the incomplete arithmetic to represent the inter-

mediate result of coefficient. Our implementation of coefficient
addition works as follows. We first perform a normal coeffi-
cient addition, after that, we conduct the 13-bit shift to the right
and perform the modular reduction by multiplying the modulus
with the shifted results. Similarly, for incomplete coefficient
subtraction, we first perform a normal coefficient subtraction,
after that, we add 4 × p and then conduct the 13-bit shift to
the right and perform the modular reduction by multiplying
the modulus with the shifted results. This approach replaces
the subtraction into addition which avoids the negative cases.

E. Look-Up Table for the Twiddle Factors
In each iteration of the i-loop, a new twiddle factor ω

(line 3 of Algorithm 1) is computed by performing a modular
multiplication. The total number of times a new ω is computed
in an NTT operation is n. In each iteration of the j-loop, the
twiddle factor ω is computed as shown in line 10 of Algorithm
1. A straightforward computation of ω = ω·ωi on-the-fly needs
to perform n− 1 times of coefficient modular multiplications.
Both of the computations of the power of ωn in i-loop and
twiddle factor ω = ω ·ωi in j-loop can be considered as fixed
costs. We can pre-compute the all twiddle factors ω into RAM
which is similar to the technique used in [20]. Fortunately,
ARM-NEON process provides huge RAM size (1 ∼ 4GB) and
the storing all the intermediate twiddle factors ω into RAM
is very cheap approach. We only need to transfer the twiddle
factor that is required for the current iteration. For vectorized
operation, whole twiddle factors are stored in aligned vector
form which ensures efficient memory access pattern and vector
operations as well.

F. Pseudo-Random Number Generation
Gaussian sampler needs random sequences. Our implemen-

tation adopts the PRNG algorithm, which runs the block

cipher in counter mode, i.e. it encrypts successive values
of an incrementing counter. For block cipher, we exploit
parallel implementation of LEA block cipher introduced by
[12]. The implementation results achieved 10.06 cycle/byte for
encryption by computing four different encryptions at once.

IV. PERFORMANCE EVALUATION AND COMPARISON

A. Experimental Platform

The ARM Cortex-A9 is full implementations of the ARMv7
architecture including NEON engine. Register sizes are 64-bit
and 128-bit for double(d) and quadruple(q) word registers,
respectively. Each register provides short bit size computa-
tions such as 8-bit, 16-bit, 32-bit and 64-bit. This feature
provides more precise operation and benefits to various word
size computations. In particular, the main structure of NTT
and interface are written in C while the modular operations
are implemented in Assembly Language. We complied our
implementation with speed optimization option -O3. In order
to obtain accurate timings, we ran each operation at least 1000
times and calculated the average cycle count for one operation.

TABLE I
PERFORMANCE COMPARISON OF SOFTWARE IMPLEMENTATION OF
NUMBER THEORETIC TRANSFORM ON DIFFERENT PROCESSORS.

Implementations NTT/FFT

8-bit AVR processors, e.g., ATxmega64, ATxmega128:
Boorghany et al. [18] 1,216,000
Boorghany et al. [17] 754,668

Pöppelmann et al. [19] 334,646
Liu et al. [20] 193,731

32-bit ARM processors, e.g., Cortex-M4F, ARM7TDMI:
Boorghany et al. [17] 109,306
DeClercq et al. [16] 31,583

32-bit ARM-NEON processors, e.g., Cortex-A9:
This work 25,574

7

Algorithm 3 Pseudo codes of vectorized NTT computation for innermost loop
Require: Eight 32-bit coefficients A[0 : 3](q2), B[0 : 3](q3), ω(q1), modulo(q0).
Ensure: Eight 32-bit results C(q5,q10).

1: vmul.i32 q3, q3, q1 {Four 32-bit wise parallel multiplications}
2: vshr.u32 q4, q3, #13 {SAMS2 1©:shifting}
3: vshr.u32 q5, q3, #17 {SAMS2 1©:shifting}
4: vshr.u32 q6, q3, #21 {SAMS2 1©:shifting}
5: vadd.i32 q4, q4, q5 {SAMS2 2©:addition}
6: vadd.i32 q4, q4, q6 {SAMS2 2©:addition}
7: vmls.i32 q3, q4, d0[0] {SAMS2 3©:multiplication & subtraction}
8: vshr.u32 q4, q3, #13 {SAMS2 4©:shifting}
9: vmls.i32 q3, q4, d0[0] {SAMS2 4©:multiplication & subtraction}

10: vadd.i32 q5, q2, q3 {coefficient addition 1©: addition}
11: vshr.u32 q4, q5, #13 {coefficient addition 2©: shifting}
12: vmls.i32 q5, q4, d0[0] {coefficient addition 3©: multiplication & subtraction}
13: vshl.i32 q1, q0, #2 {coefficient subtraction 1©: 4×modulo}
14: vadd.i32 q2, q2, q1 {coefficient subtraction 2©: 4×modulo addition}
15: vsub.i32 q10, q2, q3 {coefficient subtraction 3©: subtraction}
16: vshr.u32 q14, q10, #13 {coefficient subtraction 4©: shifting}
17: vmls.i32 q10, q14, d0[0] {coefficient subtraction 5©: multiplication & subtraction}

TABLE II
PERFORMANCE COMPARISON OF SOFTWARE IMPLEMENTATION OF

LATTICE-BASED CRYPTOSYSTEMS ON DIFFERENT PROCESSORS (CLOCK
CYCLE 103).

Implementations NTT/FFT Sampling Gen Enc Dec

Implementations on 8-bit AVR processors, e.g., ATxmega64, ATxmega128:
Boorghany et al. [18] 1,216.0 N/A N/A 5,024.0 2,464.0
Boorghany et al. [17] 754.7 N/A 2,770.6 3,042.7 1,369.0

Pöppelmann et al. [19] 334.6 N/A N/A 1,315.0 381.3
Liu et al. [20] 193.7 26.8 589.9 671.6 275.6

Implementations on 32-bit ARM processors:
DeClercq et al. [16] 31.6 7.3 117.0 121.2 43.3

Implementations on 32-bit ARM-NEON processors, e.g., Cortex-A9:
This work 25.5 18.8 123.2 145.2 32.8

B. Experimental Results

Table II summarizes the execution times of Number The-
oretic Transform, Gaussian sampling, key generation, en-
cryption and decryption of the proposed implementation for
medium-term security level. Our parallel NTT operations only
require 25, 574 clock cycles for 128-bit security level. We
also compare software implementations of Number Theoretic
Transform on different processors. For the 8-bit AVR and 32-
bit platforms, the previous works [17], [18], [19], [16], [8]
and our implementations adopt the same parameter sets. The
most suitable comparison is 32-bit ARM implementations,
since the target processor shares similar ARM instructions
of ARMv7. A comparison of our implementation (parallel)
with De Clercq’s implementation (sequential) clearly show the
advantage of NEON engine, roughly 19 % enhancements can
be achieved for NTT computation. For Gaussian sampling,
our current implementation is slower than the work in [16].
This can be explained that the authors in [16] adopted build-in
true random number generator (in hardware) and our imple-
mentation simply adopts the pseudo random number generator

using software implementation. For 128-bit security level, our
ring-LWE implementation requires only 145, 200 clock cycles
for encryption and 32, 800 cycles for decryption. Comparing
with the implementation on ARM Cortex M4 in [16], the
key generation and encryption are slightly slower while the
decryption is faster.

TABLE III
COMPARISON OF RING-LWE ENCRYPTION SCHEMES WITH RSA AND

ECC ON ARM NEON PROCESSORS (ENC AND DEC IN CLOCK CYCLES)

Implementation Scheme Enc Dec
Seo et al. [5] RSA-2048 535,020 20,977,660
Bernstein et al. [6] ECC-255 1,157,952 578,976
This work LWE-256 145,200 32,800

Table III compares the results of our ring-LWE encryption
scheme with some classical public-key encryption algorithms,
in particular recent RSA and ECC implementations for ARM
NEON platform. The to-date fastest RSA software for an ARM
NEON processor was reported in [5]; it achieves an execution
time of approximately 20.9 M clock cycles for RSA-2048
decryption at the 96-bit security level. For comparison, our
LWE-256 implementation requires only 32.8 k cycles for de-
cryption, which is more than 639 times faster despite a much
higher (i.e. 128-bit) security level. The fastest implementation
ECC software implementations on NEON belongs to Bernstein
et al.[6]. For comparison, our implementation of ring-LWE is
roughly 8 times faster for encryption and 17.6 for decryption.

V. FUTURE WORK

The paper presents the first round result of our ring-LWE
implementation on ARM NEON. For future, we plan to
optimize the current implementation and propose a constant-
time version.

8

REFERENCES

[1] ARM achitectures. http://www.arm.com/products/processors/index.php.
[2] ARM Limited, Cortex-V6 technical reference manual. Available

in http://ecee.colorado.edu/ecen3000/labs/lab3/files/DDI0419C arm
architecture v6m reference manual.pdf

[3] ARM Limited, Cortex-V7 technical reference manual. Availabe in
https://web.eecs.umich.edu/∼prabal/teaching/eecs373-f10/readings/
ARMv7-M ARM.pdf.

[4] Introducing NEON Development Article. Available in https://software.
intel.com/sites/default/files/m/b/4/c/DHT0002A introducing neon.pdf

[5] H. Seo, Z. Liu, J. Großschädl and H. Kim Efficient Arithmetic on
ARM-NEON and Its Application for High-Speed RSA Implementation.
Available in IACR ePrint http://eprint.iacr.org/2015/465.pdf, 2015.

[6] D.J. Bernstein and P. Schwabe. NEON crypto. Cryptographic Hardware
and Embedded Systems –CHES 2012, pages 320–339, Springer Berlin
Heidelberg, 2012.

[7] J. Wang, P.K. Vadnala, J. Großschädl and Q. Xu. Higher-Order Masking
in Practice: A Vector Implementation of Masked AES for ARM NEON.
Topics in Cryptology – CT-RSA 2015, pages 181–198, Springer, 2015.

[8] T. Oder, T. Pöppelmann, and T. Güneysu. Beyond ECDSA and RSA:
Lattice-based Digital Signatures on Constrained Devices. 51st Annual
Design Automation Conference – DAC 2014, 2014.

[9] D. Câmaraand, C.PL Gouvêa, J. López and R. Dahab. Fast Software
Polynomial Multiplication on ARM Processors using the NEON En-
gine, Security Engineering and Intelligence Informatics, pages 137–154,
Springer, 2013.

[10] J.W. Bos, P.L. Montgomery, D. Shumow, and G. M. Zaverucha.
Montgomery multiplication using vector instructions. Selected Areas in
Cryptography – SAC 2013, pages 471-489, Springer Berlin Heidelberg,
2013.

[11] H. Seo, Z. Liu, J. Großschädl, J. Choi and H. Kim Montgomery
Modular Multiplication on ARM-NEON revisited. Information Security
and Cryptology – ICISC 2014, pages 328–342, Springer, 2014.

[12] H. Seo, Z. Liu, T. Park, H. Kim, Y. Lee, J. Choi and H. Kim. Parallel
Implementations of LEA. Information Security and Cryptology – ICISC
2013, pages 256-274, Springer International Publishing, 2014.

[13] M.J.O Saarinenand and B.B. Brumley Lighter, Faster, and Constant-
Time: WhirlBob, the Whirlpool variant of StriBob. IACR ePrint https:
//eprint.iacr.org/2014/501.pdf, 2014.

[14] C.PL Gouvêa and J. López Implementing GCM on ARMv8. Topics in
Cryptology – CT-RSA 2015, pages 167–180, Springer, 2015.

[15] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On
the Design of Hardware Building Blocks for Modern Lattice-Based
Encryption Schemes. Cryptographic Hardware and Embedded Systems–
CHES 2012, 7428:512–529, 2012.

[16] R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Effi-
cient Software Implementation of Ring-LWE Encryption. 18th Design,
Automation & Test in Europe Conference & Exhibition – DATE 2015,
2015.

[17] S. B. S. Ahmad Boorghany and R. Jalili. On constrained implementation
of lattice-based cryptographic primitives and schemes on smart cards.
Cryptology ePrint Archive, Report 2014/514, 2014. https://eprint.iacr.
org/2014/514.pdf.

[18] A. Boorghany and R. Jalili. Implementation and Comparison of Lattice-
based Identification Protocols on Smart Cards and Microcontrollers.
Cryptology ePrint Archive, Report 2014/078, 2014. https://eprint.iacr.
org/2014/078.pdf.

[19] T. Pöppelmann, Tobias Oder, and T. Güneysu. Speed Records for Ideal
Lattice-Based Cryptography on AVR. In http://eprint.iacr.org/2015/382.
pdf.

[20] Z. Liu , H. Seo, S. S. Roy, J. Großschädl, H. Kim and I.Verbauwhede
Efficient Ring-LWE Encryption on 8-Bit AVR Processors. Cryptographic
Hardware and Embedded Systems – CHES 2015, 9293:663–682, 2015.

[21] G. Grewal, R. Azarderakhsh, H. Lee, D. Jao, P. Longa Efficient
Pairings on ARM Processors. Selected Areas in Cryptography – SAC
2012, 7707:149–165, 2012.

[22] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In Cryptography
and Coding - 14th IMA International Conference, IMACC 2013, Oxford,
UK, December 17-19, 2013. Proceedings, pages 45–64, 2013.

[23] T. Cormen, C. Leiserson, and R. Rivest. Introduction To Algorithms.
http://staff.ustc.edu.cn/\simcsli/graduate/algorithms/book6/toc.htm.

[24] T. Yanık, E. Savaş, and Ç. K. Koç. Incomplete reduction in modular
arithmetic. IEE Proceedings – Computers and Digital Techniques,
149(2):46–52, Mar. 2002.

[25] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede.
Compact Ring-LWE Cryptoprocessor. In Cryptographic Hardware and
Embedded Systems - CHES 2014, volume 8731, pages 371–391. 2014.

[26] L. Ducas. Lattice based signatures: Attacks, analysis and optimization.
Ph.D Thesis, 2013. http://cseweb.ucsd.edu∼lducas/Thesis/index.html.

