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Abstract

We study the cryptographic complexity of two-party differentially-private protocols for a
large natural class of boolean functionalities. Information theoretically, McGregor et al. [FOCS
2010] and Goyal et al. [Crypto 2013] demonstrated several functionalities for which the maximal
possible accuracy in the distributed setting is significantly lower than that in the client-server
setting. Goyal et al. [Crypto 2013] further showed that “highly accurate” protocols in the dis-
tributed setting for any non-trivial functionality in fact imply the existence of one-way functions.
However, it has remained an open problem to characterize the exact cryptographic complexity
of this class. In particular, we know that semi-honest oblivious transfer helps obtain optimally
accurate distributed differential privacy. But we do not know whether the reverse is true.

We study the following question: Does the existence of optimally accurate distributed differ-
entially private protocols for any class of functionalities imply the existence of oblivious transfer?
We resolve this question in the affirmative for the class of boolean functionalities that contain
an XOR embedded on adjacent inputs.

◦ We construct a protocol implementing oblivious transfer from any optimally accurate, dis-
tributed differentially private protocol for any functionality with a boolean XOR embedded
on adjacent inputs.

◦ While the previous result holds for optimally accurate protocols for any privacy parameter
ε > 0, we also give a reduction from oblivious transfer to distributed differentially private
protocols computing XOR, for a constant small range of non-optimal accuracies and a
constant small range of values of privacy parameter ε.

At the heart of our techniques is an interesting connection between optimally-accurate two-
party protocols for the XOR functionality and noisy channels, which were shown by Crépeau
and Kilian [FOCS 1988] to be sufficient for oblivious transfer.
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1 Introduction

Differential privacy [Dwo06, DMNS06, DN04, DN03] has become one of the most well-studied
and popular privacy notions in recent years1. It provides powerful input privacy guarantees to
participants of a statistical query database. Informally a randomized function computed on a
database is said to be differentially private, if the output distribution induced by the presence of a
particular record is statistically close to the distributed induced when the record is absent. While
maintaining privacy of participants, any differentially private algorithm must also guarantee some
meaningful accuracy.

Consider a confidential dataset owned by a trusted server. The server must release the outcome
of some statistic evaluated on the dataset, to an untrusted client. Even in this setting, where privacy
is a concern only at the server’s end, there is an evident tradeoff between privacy and accuracy. In
fact, for any given privacy parameter ε, there is a maximum possible accuracy (which we call the
optimal accuracy) such that any algorithm with better than optimal accuracy will fail to remain
differentially private. Privacy-accuracy tradeoffs are reasonably well-understood in the client-server
setting [DN03, DMT07, DY08, KRSU10]. There has also been a huge body of work in designing
algorithms that achieve close to optimal accuracies for various functionalities and data mining tasks
in the client-server setting.

The focus of this work is the distributed setting, where the database is jointly hosted by multiple
mutually distrusting servers. This setting was first studied by Dwork et al. [DKM+06]. As an
illustrative example, consider two hospitals which together wish to compute the correlation between
the occurrence of smoking and lung cancer by taking into account their combined patient records.
In this setting, we require the servers to engage in a protocol, at the end of which the privacy of
each record of both the servers is guaranteed without a significant loss in accuracy. Note that the
privacy requirements must be met for both servers, given their entire view of the protocol transcript,
not just the computed output; possibly necessitating an additional loss in accuracy (over and above
the loss in the client-server setting).

The intuition that the distributed setting would necessitate a greater accuracy loss than the
client-server setting has been proved to be correct in the information theoretic world for different
classes of functions in various works. Beimel, Nissim and Omri [BNO08] showed accuracy limits for
distributed differentially-private protocols for n parties each holding their own inputs. McGregor,
Mironov, Pitassi, Reingold, Talwar and Vadhan [MMP+10] showed large accuracy gaps in the two-
party setting for several natural functionalities with n-bit inputs. Goyal, Mironov, Pandey and
Sahai [GMPS13] demonstrated a constant gap between the maximal achievable accuracies in the
client-server and distributed settings for any non-trivial boolean functionality.

In the computational setting this gap vanishes, if a semi-honest protocol for oblivious transfer
exists. In this case, both servers can use secure multi-party computation [GMW87] to simulate the
client-server differentially private function evaluation, thereby achieving optimally accurate output
evaluated on the union of their databases. Although this assumption is sufficient, it is not clear
whether this assumption is necessary as well.

Indeed, there has been a separate line of work, starting with Haitner, Omri and Zarosim [HOZ13]
demonstrating black-box separations between one-way functions and distributed differentially pri-
vate algorithms with optimal accuracies, for two-party n-bit functionalities. Khurana, Maji and
Sahai [KMS14] showed a black-box separation between public-key encryption and distributed dif-
ferentially private algorithms with optimal accuracies for two-party boolean functionalities. In fact,
these separations also extend to a range of non-optimal accuracies that are information theoretically

1See [Dwo11] for a survey of results.
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impossible to achieve in the distributed setting. These results provide evidence that some “strong”
cryptographic assumption is likely to be necessary for optimally accurate distributed differentially
private function evaluation.

Despite the above research, the following question has remained elusive:

“Does there exist any class of functionalities whose distributed differentially private evaluation
with optimal accuracy, necessitates the existence of oblivious transfer?”

We prove that any protocol to compute the boolean XOR functionality in a distributed differ-
entially private manner with optimal accuracy and overwhelming probability of agreement (on the
output) between both parties, implies the existence of oblivious transfer. Our result also directly
lends itself to any boolean functionality that contains an embedded XOR on two adjacent inputs.
Roughly, a function f is said to contain an embedded XOR if and only if the ideal functionality
for f can be used to compute the boolean XOR functionality in the semi-honest setting. We give a
formal definition of what it means for a function to contain an embedded XOR, later in the paper.

Interestingly, in the setting of secure computation, the ideal XOR functionality is known to be
trivial. This is because the output of the functionality combined with the input of any individual
party reveals completely, the input of the other party. Thus, parties can simply send each other their
inputs – this corresponds to a secure evaluation of the XOR functionality. However, an optimally
accurate distributed differentially private (noisy) protocol for XOR is not trivial, in fact we show
that it gives oblivious transfer. Furthermore, our proof of security crucially relies on the fact that
an ideal (non-noisy) XOR is fully informative about the input of the other party.

Relationship between Differential Privacy and MPC. It is interesting to observe the “philo-
sophical” differences between the requirements of differential privacy and secure computation:

◦ In (computationally) differentially-private protocols, “privacy comes first.” We would like
to first ensure privacy of each individual input and then with this constraint, would like to
compute an output which is as accurate as possible.

◦ In secure computation, “accuracy comes first.” We would like to release an accurate output to
the function we are computing first and then with this constraint, would like to ensure privacy
of the inputs to the extent possible. This leads to the notion of simulation: the transcript
leaks no information about the inputs beyond what can be deduced from the output itself.

Nevertheless, as already mentioned, general secure computation methods immediately give a
way to achieve the same (optimal) level of accuracy in distributed differentially-private protocols as
the best achievable accuracy in the client-server setting. By relying completely on oblivious transfer
for secure computation [Kil88], our results show that the reverse is true as well (at least for the
differentially private evaluation of any two-party functionality with an embedded XOR).

1.1 Our Contribution

Before elaborating upon our results, we briefly summarize what is known so far about accuracy gaps
in the distributed differentially private computation of boolean functionalities.

Alice and Bob with inputs x and y, respectively, wish to compute f(x, y) in a differentially
private manner in the distributed setting. An ε-differentially private protocol for some functionality
f ensures that the probability of Alice’s views conditioned on y and y′ are λ := eε multiplicatively-
close to each other, where y and y′ represented as bit-strings differ only in one coordinate (i.e. they
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are adjacent inputs). A protocol between them is α-accurate if for any x and y, the output of the
protocol agrees with f(x, y), with probability at least α.

For boolean functionalities, the optimal accuracy (in the client-server model) is α∗ε := λ
λ+1 , where

λ = eε. Goyal et al. [GMPS13] showed that in the information theoretic setting, f = AND can only
be computed ε-differentially privately up to accuracy α(AND)

ε := λ(λ2+λ+2)

(λ+1)3
. Similarly, for f = XOR

the maximal achievable accuracy in the information theoretic setting is α(XOR)
ε := λ2+1

(λ+1)2
. Note that

α
(XOR)
ε < α

(AND)
ε < α∗ε , for any finite ε > 0.

We say that a function f contains an embedded XOR if there exist two inputs x0, x1, y0, y1
and outputs z0, z1 such that f(x1, yb) = zXOR(a,b) for all a, b ∈ {0, 1}. Similarly, we can define
an embedded AND (equivalently, an embedded OR). By observing that any boolean function f
which is sensitive to both parties’ inputs either contains an embedded XOR or ANDon adjacent
inputs [CK89], the maximal achievable accuracy becomes

α(f)
ε :=

{
α
(XOR)
ε , if f contains an embedded XOR on adjacent inputs
α
(AND)
ε , otherwise.

(1)

Given a semi-honest secure protocol for oblivious transfer, the optimal accuracy αε is achiev-
able for any boolean f . With respect to the necessity of cryptographic assumptions, Goyal et
al. [GMPS13] showed that achieving any accuracy between αε and α

(f)
ε for any function f in the

distributed setting implies the existence of one-way functions. We strengthen their result to show
that any two-party differentially private protocol that computes the XOR functionality in a differen-
tially private manner with accuracy close to αε implies the existence of semi-honest secure oblivious
transfer. Our result also extends to a weaker variant of differential privacy, namely computational
differential privacy [MPRV09]. All our results hold for two-party functionalities where both parties
obtain the same output with overwhelming probability. Our results can be summarized as follows.

Informal Theorem 1. Semi-honest oblivious transfer reduces to any two-party ε-DP protocol with
accuracy ρ(> 1/2) such that ρ ≥ αε = eε

1+eε .

Informal Theorem 2. Semi-honest oblivious transfer reduces to any two-party εk-IND-CDP pro-
tocol with accuracy ρk(> 1/2) such that ρk ≥ αεk = eεk

1+eεk .

Informal Theorem 3. (ρk,
λk
mk
−1, λ

mk
−1) Weak noisy channels [DKS99, Wul09] reduce to any two-

party εk-IND-CDP protocol with accuracy ρk(> 1/2) where ρk ≥ αεk = eεk
1+eεk andmk = ρk/(1−ρk).

We prove the first two theorems via a reduction from (standard) noisy channels, which are known
to imply semi-honest OT [CK88]. The first two can also be viewed as special cases of the third.

Furthermore, for a range of non-optimal accuracies we also show a reduction to weak noisy
channels [DKS99, Wul09]. Invoking known reductions of oblivious transfer to weak binary symmetric
channels, we obtain that for a small range of values of εk, α

(f)
εk > ρk >> α∗εk , there exist constants

c1,
{
c2 <

ec1
1+ec1

}
such that for all εk > c1 and ρk > c2, any two-party εk-private ρk-accurate IND-

CDP protocol implies the existence of oblivious transfer.

1.2 Related Work

Accuracy-privacy Tradeoffs in Differential Privacy The tradeoff between privacy and ac-
curacy is quite central in designing differentially private algorithms. As mentioned before, in the
client-server setting (where a single trusted server owns the entire database), the work of Dinur and
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Nissim [DN03] first showed limitations for a wide class of private algorithms. These limitations were
further explored in [DMT07, DY08, KRSU10].

The work of Dwork et al. [Dwo06, DMNS06] proposed generic techniques for differentially private
function evaluation, based on adding noise as a function of the sensitivity of database queries. The
optimality of such techniques was studied in various settings in [DNR+09, HT10, UV11]. Variants
of these techniques were shown to be optimal for certain classes of queries by [GRS09, GS10], and
were shown to be non-optimal for other classes by Brenner and Nissim [BN10].

As mentioned before, there has also been a significant amount of work characterizing the ac-
curacy of two-party differentially-private protocols. McGregor et al. [MMP+10] first showed that
information theoretically, a large accuracy loss is inherent to the distributed differentially private
computation of functionalities such as the inner product and hamming distance over n-bit inputs.
This was followed by the work of Goyal et al. [GMPS13] who showed large gaps in the client-server
and two-party accuracies for the differentially-private computation of boolean functionalities. Fi-
nally, the works of Haitner et al. [HOZ13] and Khurana et al. [KMS14] showed that it is impossible
to use one-way functions or even key-agreement in a black-box way to bridge any of these accuracy
gaps. Our work subsumes these results for the case of XOR.

Cryptographic Completeness of Finite Two-Party Ideal Functionalities There has been
a bulk of work on the complexity of two-party functionalities in the information theoretic setting
[Kil88, CK89, Kus89, Kil91, Kil00, KKMO00, KMQR09, MPR09]. Chor and Kushilevitz [CK91]
established that all Boolean functions either reduce to SFE or can be trivially simulated. In the
computationally bounded setting, Maji et al. [MPR10] give a complete characterization of deter-
ministic two-party finite functionalities while a series of works [MPR12, KMPS14, KKM+15] give
an information-theoretic characterization of (randomized, fixed-role) two-party functionalities.

Note that all constant communication protocols for Boolean functionalities can be viewed as
two-party ideal finite functionalities, and therefore characterized according to [MPR12, KMPS14,
KKM+15]. Yet, our characterization extends to any polynomial-round protocols for differentially
private computation with optimal accuracy, of certain classes of Boolean functionalities. This
requires extra techniques to account for the entire transcript of protocol execution, which may
leak information over and above the output of the ideal functionality.

1.3 Technical Overview

We consider the simple setting of distributed differentially private evaluation of boolean functions.
Alice and Bob, with inputs x and y respectively, execute a protocol to compute a Boolean function
f(x, y). The protocol must preserve privacy (according to the differential privacy guarantee) of the
input of each party. We know that any non-trivial Boolean function must embed an AND or an XOR
minor on adjacent inputs. we focus on the XOR functionality; and our proof directly extends to any
functionality with an embedded XOR on adjacent inputs. We also consider protocols with perfect
agreement, that is, where Alice and Bob always get the same output at the end of the protocol
(which is equivalent to saying that the output is part of the transcript). However, our proof also
extends to protocols where parties agree on the output with overwhelming probability.2

Our main idea will be to use any protocol that implements the XOR functionality to construct
an ideal noisy channel. An ideal noisy channel with flip probability p < 1/2 is a functionality that
takes input a bit X from the sender, samples an independent bernoulli random variable (the ‘error’)
E, where E ∼ Ber(p), computes X̃ = (X ⊕ E) and outputs it to the receiver.

2Note that if we relax the requirement of output agreement, then in fact there is a simple information theoretically
secure protocol which would achieve optimal accuracy.
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Consider an optimally accurate differentially private evaluation of the boolean XOR functionality,
where both parties agree on the output with overwhelming probability. In this case, the output of
the differentially private functionality can be interpreted as a “noisy” version of the correct output.
In the optimally accurate setting, the probability that the output is correct is exactly αε = eε

1+eε .
In other words, let Z denote the output of the protocol, then for all inputs X,Y ; the output
Z = (X ⊕ Y )⊕ E, where E is a bernoulli random variable E ∼ Ber( 1

1+eε ).
Our protocol to realize a noisy channel is simple: the sender (Alice) and receiver (Bob) sample

independent random (private) input bits X $←{0, 1} and Y $←{0, 1}. They invoke the differentially
private protocol for XOR with inputs (X,Y ) and obtain output Z, where Z = (X ⊕ Y ) ⊕ E, and
E is the error as defined above. The sender outputs X and the receiver outputs Z ⊕ Y (= X ⊕E).
It is easy to see that this protocol correctly implements a noisy channel with noise E ∼ Ber( 1

1+eε ).
However observe that the underlying differentially private protocol for XOR may not be an ideal
secure computation protocol for the noisy XOR functionality. In particular, the protocol transcript
may leak information which is in addition to the official output. The only privacy guarantee we
may rely upon comes from the differential privacy condition. Thus, it remains to prove that the
above noisy channel is an “ideal” noisy channel.

In the computational setting, the ideal noisy channel functionality can be realized by a protocol
with the following security properties [CK88]. Roughly, no efficient distinguisher on the sender’s
end, or on the receiver’s end respectively, should be able to distinguish the cases when the error
E was 0 from when E was 1. More formally, let DR denote a distinguisher that obtains the entire
view of the receiver, and DS denote a distinguisher that obtains the entire view of the sender at
the end of the protocol. Then, for any non-uniform PPT distinguisher DR, the following security
guarantee must hold: Pr[DR = 1|E = 0] − Pr[DR = 1|E = 1] = negl(k) over the randomness
of the protocol. Symmetrically, at the sender’s end, for any non-uniform PPT distinguisher DS ,
Pr[DS = 1|E = 0]− Pr[DS = 1|E = 1] = negl(k) over the randomness of the protocol. Here negl(·)
denotes some function that is asymptotically smaller than the inverse of any polynomial function,
and k denotes the security parameter.

The challenge now is to prove that no efficient distinguisher on the sender side, or on the receiver
side, can distinguish the case when E = 0 from the case when E = 1. Here, we use the following
properties of the optimally accurate differentially private XOR functionality.

◦ Because of optimal accuracy, the protocol output is correct with probability exactly eε

1+eε .

◦ The (ideal, non-noisy) XOR functionality is fully informative: its output along with any of the
parties’ inputs, can be used to correctly compute the input of the other party.

Since the protocol is optimally accurate, the protocol output is the same as the correct XOR of
both parties’ inputs (that is, Z = X ⊕ Y ) with probability exactly αε = eε

1+eε . Moreover, by the
full-informative property of XOR, the correct output, together with the input of any party can be
used to compute correctly the other party’s input. In other words, for all X,Y , the noisy output Z
of the differentially private protocol, together with the input Y , helps compute a guess for the other
party’s input that is correct with probability at least αε (Z ⊕ Y equals X with probability αε).

Note that if a party could guess the other party’s input with probability any better than αε, this
would directly violate differential privacy. Therefore, the output already allows computing the best
possible guess (upto differential privacy limits) for the other party’s input. Informally, this means
that any extra information about the error (say, leaked from the transcript) could be used to obtain
a better guess of the other party’s input and directly violate differential privacy. To prove security
of our noisy channel, we must formalize these arguments. This is done in Section 3 and forms the
core of our proof of security.
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2 Preliminaries

Notation. Let π := 〈A,B〉 be a two-party protocol. Let viewPπ (x, y) be the random variable which,
in a random execution of π with inputs x, y for P ∈ {A,B} respectively, consists of (x,RP , trans),
where RP is the randomness used by party P and trans is the sequence of messages exchanged
between the parties in the sampled execution.

Let outP be the function applied by party P on viewPπ (x, y) to obtain the output for P ,
outP (viewPπ (x, y)). We say that the protocol is symmetric if both parties receive the same out-
put, i.e., for every x, y: outA(viewAπ (x, y)) = outB(viewBπ (x, y)). This is called the official output
of the protocol, denoted by outπ(x, y). For the rest of this paper, we consider only symmetric pro-
tocols, however we note that our results can be easily extended to protocols in which both parties
agree on the output with overwhelming probability.

In this paper, we work in the computational setting, and consider the family of protocols {πk}k∈N,
where k is the security parameter. Then, the view of party P ∈ {A,B} is denoted by viewPπ (k, x, y).

2.1 Noisy Channels.

Informally, a noisy channel takes as input a bit b and outputs a bit b′ = b ⊕ e where error bit
e ∼ Ber(1− ρ) is sampled independently, and ⊕ is the bitwise exclusive-or operation. The security
requirement, roughly speaking, is that the error bit e remains “semantically secure” from all parties
using the noisy channel. Somewhat counterintuitively, the flip probability of a ρ-noisy channel is
(1− ρ). This is done deliberately to match DP protocols.

For succinctness, we will directly define a (ρ, α, β)-Weak Binary Symmetric Channel. A noisy
channel is a (ρ, 0, 0)-Weak Binary Symmetric Channel; it is defined again in Appendix A.

Definition 1 (Passive (ρ, α, β)-Weak Binary Symmetric Channel [DKS99, Wul09]). A protocol
family {πk := 〈S,R〉(1k)}k∈N implements a (ρ, α, β) Passive Weak Binary Symmetric Channel for
ρ > 1/2 if S and R are PPT algorithms and the following holds.

The input of party S, called the sender is a bit b ← {0, 1} and the input of the receiver R is
nothing. At the end of the protocol, the receiver R obtains output bit b′ ∈ {0, 1}, while the output
of the sender S is nothing — denoted by ⊥. A dishonest sender or dishonest receiver may receive
additional information. Then, the following conditions must be satisfied:
Correctness: For all k ∈ N, |Pr[b = b′|b]− ρ| ≤ negl(k). The bit flip probability is (1− ρ).
Sender Security: Informally, the receiver R can distinguish the case when error e := b′ ⊕ b is
0 from when it is 1 with probability not more than q. Formally, there exists a negligible function
negl : N→ R such that for every non-uniform PPT algorithm (“distinguisher”) DR, every polynomial
p(·), every sufficiently large k ∈ N, every advice string zk of size at most p(k), all b′ ∈ {0, 1} and
uniformly chosen b

$← {0, 1}, we have:

AdvRπ (k) :=
∣∣(Pr[DR(zk, view

R
π (k, b)) = 1|e = 0] − Pr[DR(zk, view

R
π (k, b)) = 1|e = 1]

)∣∣ ≤ β + negl(k),

where e = b′ ⊕ b; b′ = out(viewRπ (k, b)) and the probability is over the randomness of b, π and DR.
Receiver Security: This is defined symmetrically. Formally, there exists a negligible function
negl : N→ R such that for every non-uniform PPT algorithm (“distinguisher”) DS , every polynomial
p(·), every sufficiently large k ∈ N, every advice string zk of size at most p(k), and uniformly chosen
b

$← {0, 1} we have:

AdvSπ(k) :=
∣∣(Pr[DS(zk, view

S
π(k, b)) = 1|e = 0] − Pr[DS(zk, view

S
π(k, b)) = 1|e = 1]

)∣∣ ≤ α+ negl(k),

where e was defined above, and the probability is over the randomness of b, π and DS .
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A protocol implementing the noisy channel defined here, is sufficient to implement the semi-
honest OT functionality defined above. A reduction between these two primitives was first given
by Crépeau and Kilian [CK88], and a sketch of their reduction can be found in Appendix A.

Furthermore, a protocol implementing the weak binary symmetric channel defined above is
sufficient to implement the OT functionality. This reduction is from [Wul09], but the possibility
results for obtaining OT from weak BSC hold over only a small range of values of these parameters.
More specifically, we use the following corollary:

Corollary 1. [Wul09] Let ρ, α, β be constants, and let ε̄ = (1−ρ)2

(1−ρ)2+ρ2 . If at least one of the conditions

2α+ β + ε̄ ≤ 0.12, or β + ε̄ < (1−α)4
44 , or 88α+ 44ε̄ < (1− β)2, or 196α+ 98β + 49

2 < (1− 2ε̄)2

holds, then there exists a protocol that uses (ρ, α, β)-passive Weak BSC and efficiently implements
OT secure in the semi-honest model.

2.2 Differential Privacy

First, we present the formal definition of differential privacy [Dwo06] and its computational variant
that we will use [MPRV09].

Definition 2 (ε-Differential Privacy). We say that a randomized function M : {0, 1}n 7→ R, with
a finite range R, is an ε-differentially-private (ε-DP) mechanism for ε ≥ 0 if for every (x, x′) ∈
{0, 1}n×{0, 1}n satisfying |x− x′|h = 1 and every subset S ⊂ R we have that over the randomness
of M :

Pr[M(x) ∈ S] ≤ eε × Pr[M(x′) ∈ S].

Definition 3 (ε-Indistinguishable-Computational Differential Privacy). We say that an ensemble
{Mk}k∈N of randomized functions Mk : {0, 1}n 7→ Rk with finite range Rk, provides εk-IND-
CDP if there exists a negligible function negl : N 7→ R such that for every non-uniform PPT
algorithm (“distinguisher”) D, every polynomial p(·), every sufficiently large k ∈ N, every (x, x′) ∈
{0, 1}n × {0, 1}n satisfying |x − x′|h = 1, and every advice string zk of size at most p(k) it holds
that:

Pr[Dk(Mk(x)) = 1] ≤ eεk × Pr[Dk(Mk(x
′)) = 1] + negl(k),

where we writeDk(y) forD(1k, zk, y) and the probability is taken over the randomness of mechanism
Mk and distinguisher Dk.

Note that assuming dense sets, this is a strictly weaker definition than other (simulation-
based) definitions of CDP [MPRV09]. Therefore, our reductions will automatically extend to other
simulation-based definitions.

Next, we define what it means for a protocol to be differentially private over a subset of tran-
scripts, and we recall the definitions of two-party differential privacy and accuracy of two-party DP
protocols, from [MPRV09, GMPS13].

Definition 4 (Differential Privacy over a subset of transcripts). We say that an ensemble {Mk}k∈N
of randomized functions Mk : {0, 1}n 7→ Rk with finite range Rk, provides εk-IND-CDP over some
subset of executions S if there exists a negligible function negl : N 7→ R such that for every non-
uniform PPT algorithm (“distinguisher”) D, every polynomial p(·), every sufficiently large k ∈ N,
every adjacent pair (x, x′) ∈ {0, 1}n × {0, 1}n, and every advice string zk of size ≤ p(k):

Pr[Dk(Mk(x)) = 1 ∧ (Mk(x) ∈ Sk)] ≤ eεk × Pr[Dk(Mk(x
′)) = 1 ∧ (Mk(x

′) ∈ Sk)] + negl(k)

where we writeDk(y) forD(1k, zk, y) and the probability is taken over the randomness of mechanism
Mk and distinguisher Dk.
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Definition 5 (Two-Party Differential Privacy). Let π : 〈A,B〉 be a protocol where the inputs of
A and B are in {0, 1}n. We say that π provides ε-DP if: (1) for every x ∈ {0, 1}n the mechanism
represented by the function viewAπ (x, ·) over the inputs y ∈ {0, 1}n is ε-DP, and (2) for every
y ∈ {0, 1}n the mechanism represented by viewBπ (·, y) over the inputs x ∈ {0, 1}n is ε-DP.

In the two-party computational setting, εk-IND-CDP is defined analogously. Formally, let
{πk := 〈A,B〉(1k)}k∈N be an ensemble of interactive functions where the inputs of A and B are
in {0, 1}n. We say that {πk}k∈N provides εk-IND-CDP if: (1) for every x ∈ {0, 1}n the ensemble
{viewAπ (k, x, ·)}k provides εk-IND-CDP over the inputs y ∈ {0, 1}n, and (2) for every y ∈ {0, 1}n
the ensemble {viewAπ (k, ·, y)}k provides εk-IND-CDP over the inputs x ∈ {0, 1}n.

Definition 6 (Accuracy in Differential Privacy [GMPS13]). The accuracy of a randomized Boolean
mechanism M : {0, 1}n 7→ {0, 1} with respect to a Boolean function f : {0, 1}n 7→ {0, 1} is defined
as: Accf (M) = minx{Pr[M(x) = f(x)]}, where the probability is taken over the randomness of M .

The accuracy of a symmetric two-party protocol π := 〈A,B〉 w.r.t. f : {0, 1}n×{0, 1}n 7→ {0, 1}
is defined as the accuracy of the (Boolean) mechanism outπ : {0, 1}n×{0, 1}n 7→ {0, 1}; where outπ
returns the official output. Accuracy in the computational setting is defined analogously.

Optimal accuracy for Boolean functions. We list the following facts about the accuracy of
DP mechanisms that compute a Boolean function:

1. For every Boolean mechanism M : {0, 1}n 7→ {0, 1} and every Boolean function f : {0, 1}n 7→
{0, 1}, if M is ε-DP then: Accf (M) ≤ λ

1+λ where λ = eε.3 We call the bound ρ = λ
1+λ , the

optimal accuracy, which is achieved by setting M(x) = f(x)⊕ e such that Pr[e = 0] = λ
1+λ .

2. If M only satisfies ε-IND-CDP, then there exists a negligible function negl(·) such that
Accf (M) ≤ λ

1+λ + negl(k).

3. If a symmetric protocol ensemble {πk}k∈N provides ε-IND-CDP for a constant ε > 0, then
the accuracy of this ensemble w.r.t. the XOR function is at most λ+negl(k)

1+λ = ρ + negl′(k) for
constant ε. The accuracy ρ can be achieved using secure two-party computation [MPRV09].

3 Noisy Channels Reduce to Optimal Two-Party IND-CDP

Theorem 1. If there exists a two-party εk-IND-CDP protocol with accuracy ρk(> 1/2) such that
ρk ≥

eεk
1+eεk with respect to the exclusive-or function for a constant εk > 0, then there exists a protocol

implementing the ρk-noisy-channel functionality.

Proof. Let {πk}k where πk = 〈A,B〉(1k) be an ensemble of εk-IND-CDP protocols for computing
the XOR function with accuracy ρk ≥ λ

1+λ where λ = eεk , and εk > 0 is a constant. Note that
since the protocol is εk-IND-CDP and εk > 0, we have that ρk ≤ λ

1+λ + negl(k) for some negligible
function negl(k). We abuse notation for the rest of the proof and denote εk by ε, and ρk by ρ.

The following protocol ensemble {πk := 〈S,R〉(1k)}k implements a ρ-noisy-channel:

1. S receives bit x as input, and R has no input. R samples a random bit y and the parties execute
the ε-IND-CDP protocol 〈A(x), B(y)〉(1k) and obtain the (same) bit z as official output of
this protocol.

3Informally, if this is not the case, then there exists a distinguisher such that the ratio between the probability
that it guesses the input correctly versus incorrectly is greater than eε, thereby violating ε-DP.
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2. R outputs x̃ = z ⊕ y and S outputs ⊥.

The correctness of this protocol follows directly from the accuracy of the ε-IND-CDP protocol. We
now show that it satisfies sender-security.

Sender security. Assume to the contrary, that the protocol does not satisfy sender-security. That
is, there exists a non-uniform PPT distinguisher DR, a fixed polynomial q(·), and infinitely many
values k for which (there exists a polynomial-sized advice string zk such that) AdvRπ (k) ≥ 1/q(k).
Fix one such k from now on and let:

pk = Pr[DR(zk, view
R
πk

) = 1|e = 0]− Pr[DR(viewRπk) = 1|e = 1]. (2)

Note that AdvRπ (k) = |pk|. Without loss of generality, let pk > 0 for this k, and therefore
by assumption pk ≥ 1/q(k). We abuse notation and write DR = 1 to denote the event that
DR(1k, zk, view

R
π′k

) = 1.4 Since pk 6= 0 we must have that 0 < Pr[DR = 1] < 1.
Let e be the random variable denoting the error bit for the ε-IND-CDP protocol. That is, for the

ε-IND-CDP protocol, e = x̃⊕x. Since we are in the computational setting, the accuracy of the proto-
col may be different for each input, denoted by: ρ00, ρ01, ρ10, ρ11. However, they must all be within a
negligible distance from each other and therefore lie within the interval [ρ1 − negl(k), ρ1 + negl(k)].
Since a correct output is equivalent to e = 0, and each input is selected with equal probability,
Pr[e = 0] (which is equivalent to “average” accuracy) also lies in the same interval. We show that if
pk is noticeable then differential privacy is violated on the set of transcripts where DR outputs 1.

Claim 1. Pr[e = 0 ∧ DR = 1] > eε × Pr[e = 1 ∧ DR = 1] + pk
2 .

Proof. Let Pr[e = 0] = ρ∗, and µ(k) be a negligible function so that ρ∗ = λ
1+λ + µ(k) > 1/2.

In addition, Pr[e = 0]/Pr[e = 1] is equal to ρ∗/(1− ρ∗) = λ+ µ′(k) for some negligible function µ′.
Now, since Pr[DR = 1] 6= 0, we can write (using Bayes’ rule):

Pr[e = 0 ∧ DR = 1]

= Pr[DR = 1|e = 0]× Pr[e = 0]

=
(
pk + Pr[DR = 1|e = 1]

)
× Pr[e = 0] (By equation 2)

=

(
pk +

Pr[e = 1|DR = 1]× Pr[DR = 1]

Pr[e = 1]

)
× Pr[e = 0] (Bayes’ rule)

= pk · Pr[e = 0] + Pr[e = 1 ∧ DR = 1]× Pr[e = 0]

Pr[e = 1]

Note that: pk · Pr[e = 0] = pρ∗ > pk/2, and Pr[e=0]
Pr[e=1] = ρ∗

1−ρ∗ = λ + µ′(k) > λ. Therefore,
Pr[e = 0∧DR = 1] > pk

2 +λ ·Pr[e = 1∧DR = 1]. �

Claim 2. If Pr[e = 0 ∧ DR = 1] > eε × Pr[e = 1 ∧ DR = 1] + pk
2 is such that pk

2 is non-negligible
over the randomness of uniformly chosen sender input x = b, then the protocol ensemble {πk}k does
not preserve ε-IND-CDP on the PPT-checkable subset of transcripts satisfying DR = 1.

4Note that the input of the sender in sampling view viewRπ′
k
is uniformly chosen by definition of sender-security;

and further, since k has been fixed, letting DR := DR(1k, zk, viewRπ′
k
) is unambiguous and well defined. Note that

now, pk = Pr[DR = 1|e = 0]− Pr[DR = 1|e = 1].
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Proof. From Pr[e = 0 ∧ DR = 1] > eε Pr[e = 1 ∧ DR = 1] + pk
2 it follows that Pr[x̃ = x ∧ DR =

1] > eε Pr[x̃ 6= x ∧ DR = 1] + pk
2 , over the randomness of x where x̃ denotes the output of the

receiver. Since x is uniformly chosen in {0, 1},

Pr[x̃ = 1 ∧ DR = 1|x = 1] + Pr[x̃ = 0 ∧ DR = 1|x = 0]

> eε (Pr[x̃ = 0 ∧ DR = 1|x = 1]) + eε (Pr[x̃ = 1 ∧ DR = 1|x = 0]) +
pk
2

Now, it is easy to observe that either of the following statements hold.

1. Pr[x̃ = 1 ∧ DR = 1|x = 1] > eε × Pr[x̃ = 1 ∧ DR = 1|x = 0] + pk
4 OR,

2. Pr[x̃ = 0 ∧ DR = 1|x = 0] > eε × Pr[x̃ = 0 ∧ DR = 1|x = 1] + pk
4

In either case, it is possible to claim the existence of a distinguisher. If pk is noticeable and
statement 1 holds, then there exists a distinguisher D1

k
′ with output equal to receiver output x̃,

which violates IND-CDP over the PPT checkable subset corresponding to DR = 1. On the other
hand, if pk is noticeable and statement 2 is true, then there exists a distinguisher D2

k
′ with output

equal to 1− x̃, which violates IND-CDP over the PPT checkable subset corresponding to DR = 1.
It follows from this claim that if pk is noticeable, then the protocol ensemble {πk}k does not pre-

serve ε-IND-CDP on the PPT-checkable subset of transcripts on which DR = 1, because there exists
distinguisher D′k ∈ {D1

k
′
, D2

k
′} and a corresponding pair of inputs (x∗, x∗′) ∈ ({0, 1} × {0, 1}) such

that Pr[D′k = 1 ∧ DR = 1|x = x∗] > eε × Pr[D′k = 0 ∧ DR = 1|x = x∗′] + pk
4 . In other words, there

exists a non-uniform distinguisher that violates ε-IND-CDP on this subset. This proves the claim. �

Lemma 1. A two-party protocol ensemble that provides ε-IND-CDP over all executions also provides
ε-IND-CDP over any PPT-checkable subset of executions.

Proof. Assume to the contrary that there exists a two-party ε-IND-CDP protocol for which there
is a non-uniform PPT distinguisher D′k that violates ε-IND-CDP over some PPT-checkable subset
of executions (denoted by Sk). Let Sk denote the code of a PPT-checking algorithm that returns 1
if some execution Mk(x) ∈ Sk, and 0 otherwise.

Then, we construct a non-uniform PPT distinguisherDk (Figure 1) that accepts Sk, D′k as advice
zk, and violates ε-IND-CDP for the protocol.

Figure 1: Algorithm for ε-IND-CDP Distinguisher Dk

1. Obtain inputs Mk(x), Sk, D′k

2. If Sk(Mk(x)) = 1, Dk(Mk(x)) = D′k(Mk(x))

3. If Sk(Mk(x)) 6= 1, Dk(Mk(x)) = 0

We know that for some polynomial p(·), some sufficiently large k ∈ N, some (x∗, x∗′) ∈ {0, 1} ×
{0, 1}, some advice string z′k of size at most p(k) and all functions negl : N 7→ R, it holds that:

Pr[D′k(Mk(x
∗)) = 1 ∧ (Mk(x

∗) ∈ Sk)] > eεk Pr[D′k(Mk(x
∗′)) = 1 ∧ (Mk(x

∗′) ∈ Sk)] + negl(k)
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where the probability is taken over the randomness of mechanism Mk and distinguisher D′k, and
D′k(y) represents D′(1k, zk, y). Then, by a simple manipulation we have:

Pr[Dk(Mk(x
∗)) = 1] = Pr[Dk(Mk(x

∗)) = 1 ∧ (Mk(x
∗) ∈ Sk)]

> eε Pr[D′k(Mk(x
∗′)) = 1 ∧ (Mk(x

∗′) ∈ Sk)] + negl(k)

= eε Pr[Dk(Mk(x
∗′)) = 1 ∧ (Mk(x

∗′) ∈ Sk)]
+ eε Pr[Dk(Mk(x

∗′)) = 1 ∧ (Mk(x
∗′) 6∈ Sk)] + negl(k)

= eε Pr[Dk(Mk(x
∗′)) = 1] + negl(k)

Therefore, we have a non-uniform PPT distinguisher Dk such that for some polynomial p(·),
some sufficiently large k ∈ N, for the same (x∗, x∗′) ∈ ({0, 1}× {0, 1}), some advice string zk of size
at most p(k) and all functions negl : N 7→ R it holds that:

Pr[D′k(Mk(x
∗)) = 1] > eεk × Pr[D′k(Mk(x

∗′)) = 1] + negl(k)

This completes the proof of the lemma. �

Combining the claims above, we observe that if pk is noticeable, then the protocol ensemble
{πk}k does not preserve ε-IND-CDP. This is a contradiction, therefore pk = negl(k), and the noisy
channel is sender-secure.

Receiver security. The output z of the ε-IND-CDP-protocol, obtained by both parties, is symmetric
with respect to the input of each party. Moreover, since the inputs of both parties are chosen
uniformly at random, the security of the receiver follows in a manner similar to sender security.
This completes the proof of the theorem.
The following is corollary of Theorem 1 and Crépeau-Kilian’s reduction [CK88] of OT to noisy
channels (See section A):

Corollary 2. If there exists a two-party εk-IND-CDP protocol with accuracy ρk such that ρk ≥ eεk
1+eεk

with respect to the exclusive-or function for a constant εk > 0, then there exists an ensemble of
protocols implementing the semi-honest oblivious-transfer functionality in the computational setting.

4 Noisy Channels Reduce to Non-Optimal Two-Party IND-CDP

Theorem 2. If there exists a two-party εk-IND-CDP protocol with non-optimal accuracy ρ1 ≤
eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then there exists a protocol
implementing the (ρ1,

λ
m − 1, λm − 1)-passive weak binary symmetric channel functionality where

ρ1 > 1/2, λ = eεk and m = ρ1
1−ρ1 .

Proof: Let {πk}k where πk = 〈A,B〉(1k) be an ε-IND-CDP protocol for computing the XOR
function with accuracy ρ ≤ λ

1+λ where λ = eε, and ε > 0 is a constant. Again we shall abbreviate
εk by ε. Note again that since the protocol is ε-IND-CDP and ε > 0 is a constant, we have that
ρ1 ≤ λ

1+λ + negl(k) for some negligible function negl(k).
The following protocol ensemble {πk := 〈S,R〉(1k)}k implements a (ρ1,

λ
m − 1, λm − 1)-passive

weak binary symmetric channel:

1. S receives a bit x as input, and R has no input. R samples a bit y uniformly at random
in {0, 1} and the parties execute the ε-IND-CDP protocol 〈A(x), B(y)〉(1k) and obtain the
(same) bit z as official output this protocol.
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2. R outputs x̃ = z ⊕ y and S outputs ⊥.

The correctness of this protocol follows directly from the accuracy of the ε-IND-CDP protocol. We
now show that it satisfies the sender-security requirement.

Sender security. Assume to the contrary, that the protocol does not satisfy sender-security. That is,
there exists a non-uniform PPT distinguisher DR, a fixed polynomial q(·), and infinitely many values
k for which (there exists a polynomial-sized advice string zk such that) AdvRπ

′(k) ≥
(
λ
m − 1

)
+

1/q(k). Fix one such k from now on and let:

pk =
∣∣∣Pr[DR(zk, view

R
π′k

) = 1|e = 0]− Pr[DR(viewRπ′k
) = 1|e = 1]

∣∣∣− ( λ
m
− 1

)
(3)

W.l.o.g., let pk > 0 for this k, and therefore by assumption pk ≥ 1/q(k). We also assume w.l.o.g. that(
Pr[DR(zk, view

R
π′k

) = 1|e = 0]− Pr[DR(viewRπ′k
) = 1|e = 1]

)
> 0, else we can use the distinguisher

with output 0 to achieve the same effect. We abuse notation and use DR = 1 to denote the event
that DR(zk, view

R
π′k

) = 1.5 Note that since pk 6= 0 we must have that 0 < Pr[DR = 1] ≤ 1.
Let e be a random variable defining the error bit for the ε-IND-CDP protocol. That is, for

the IND-CDP protocol, e = x̃ ⊕ x. Before going ahead, we make a few remarks. It holds like in
the optimal XOR case, the accuracy of the protocol, possibly different for each input, lies within
a negligible distance from λ

1+λ . Since a correct output is equivalent to e = 0, and each input is
selected with equal probability, Pr[e = 0] (which is equivalent to “average” accuracy) also lies in the
same interval. We show that if pk is not negligible then differential privacy is violated on the set of
transcripts where DR outputs 1. That is,

Claim 3. Pr[e = 0 ∧ DR = 1] > eε × Pr[e = 1 ∧ DR = 1] + pk
2 .

Proof. Let Pr[e = 0] = ρ∗, and µ(k) be a negligible function so that ρ∗ = ρ1 + µ(k) > 1/2. In
addition, Pr[e = 0]/Pr[e = 1] is equal to ρ∗/(1 − ρ∗) = m + µ′(k) for m = ρ1/(1 − ρ1) and some
negligible function µ′.

Now, since Pr[DR = 1] 6= 0, we can write (using Bayes’ rule):

Pr[e = 0 ∧ DR = 1]

= Pr[DR = 1|e = 0]× Pr[e = 0]

=
(
pk +

λ−m
m

+ Pr[DR = 1|e = 1]
)
× Pr[e = 0] (By equation 3)

=

(
pk +

λ−m
m

+
Pr[e = 1|DR = 1]× Pr[DR = 1]

Pr[e = 1]

)
× Pr[e = 0] (Bayes’ rule)

= pk · Pr[e = 0] +
λ−m
m

× Pr[e = 0] + Pr[e = 1 ∧ DR = 1]× Pr[e = 0]

Pr[e = 1]

= pk · Pr[e = 0] + Pr[e = 1 ∧ DR = 1]× Pr[e = 0]

Pr[e = 1]
×
(
λ−m
m

· 1

Pr[DR = 1|e = 1]
+ 1

)
Note: pk · Pr[e = 0] = pρ∗ > pk/2, Pr[DR = 1|e = 1] ≤ 1 and Pr[e=0]

Pr[e=1] = ρ∗

1−ρ∗ = m+ µ′(k) > m.
Therefore,

Pr[e = 0 ∧ DR = 1] >
pk
2

+ λ · Pr[e = 1 ∧ DR = 1]

5Note that the input of the sender in sampling view viewRπ′
k
is uniformly chosen by definition of sender-security;

and further, since k has been fixed, letting DR := DR(zk, viewRπ′
k
) is unambiguous and well defined. Alternatively,

one can keep an indicator variable. Note that in this notation, pk = Pr[DR = 1|e = 0]−Pr[DR = 1|e = 1]− ( λ
m
− 1).
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It follows from this claim, along with Claim 2 and Lemma 1 that if pk is noticeable, then the
protocol {πk}k does not preserve ε-IND-CDP. This is a contradiction, therefore our noisy channel
construction is sender-secure.

Receiver security. The output z of the ε-IND-CDP-protocol, obtained by both parties, is symmetric
with respect to the input of each party. Moreover, since the inputs of both parties are chosen
uniformly at random, receiver security follows in a manner similar to sender security.

While our reduction to weak noisy channels holds for all parameters ε > 0 and accuracies ρ, the
range of parameters for which such channels give OT is small. The following corollary follows from
Theorem 2, and Corollary 1 taken from [Wul09].

Corollary 3. If there exists a two-party ε-IND-CDP protocol with non-optimal accuracy ρ1k ≤
eεk

1+eεk with respect to the exclusive-or function for a constant ε > 0, then there exist constants

c1,
{
c2 <

ec1
1+ec1

}
, such that for all εk > c1 and ρ1k > c2, there is a protocol implementing the semi-

honest oblivious transfer functionality.

5 Conclusion and Open Problems

5.1 Extension to Functionalities with an Embedded XOR

Recall that we say that a function f contains an embedded XOR on adjacent inputs if there exist
adjacent inputs x0, x1, y0, y1 and outputs z0, z1 such that f(x1, yb) = zXOR(a,b) for all a, b ∈ {0, 1}.
It is easy to observe that any finite functionality f with an embedded XOR, which can be computed
with optimal accuracy restricted to its embedded XOR on adjacent inputs, can be used to obtain
a differentially private optimally accurate XOR functionality over boolean inputs. Accuracy of
XOR follows from the accuracy of the original functionality f , and privacy of XOR follows because
differential privacy is a worst-case guarantee which must be maintained even when restricted to a
single bit of the adjacent inputs. The resulting differentially private optimally accurate XOR protocol
can then be used to obtain a secure noisy channel and therefore, perform oblivious transfer.

5.2 Conclusion

We give a partial characterization of differentially private protocols for functionalities, with optimal
accuracies for any privacy parameter ε (and also close to optimal accuracies for a small range of
privacy parameters). As our main result, we show that the differentially private evaluation, with
optimal accuracy, of any functionality that contains an embedded XOR on adjacent inputs – can be
used to obtain a semi-honest secure protocol for oblivious transfer. This result also extends to a
small fraction of non-optimal accuracies for a small fraction of differential privacy parameters ε.

5.3 Open Problems

Characterizing All Functionalities. It remains an intriguing open problem to obtain a com-
plete characterization of functionalities whose differentially private evaluation with optimal accu-
racy in a distributed setting, is cryptographically complete. It is interesting to obtain a complete
characterization even for boolean functionalities, since the differentially private evaluation of any
non-trivial functionality with optimal accuracy (such as the inner product and hamming distance
functionalities considered by McGregor et al. [MMP+10]) implies the differentially private evaluation
of a non-trivial boolean functionality with optimal accuracy.
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Consider, the case of boolean AND. This functionality is interesting, because any non-trivial
boolean functionality must contain embedded AND or XOR on adjacent inputs [CK89]. Therefore,
for instance, showing that any (possibly polynomial round6) protocol that gives a differentially
private protocol for the boolean AND functionality with optimal accuracy, is cryptographically
complete – would imply the completeness of an optimally accurate distributed differentially private
protocol for any non-trivial boolean functionality. However, unlike XOR, the AND functionality is
not completely informative about the other party’s input. In case the input of a party is 0, even a
non-noisy output of the ideal AND functionality conveys absolutely no information about the input
of the other party. In case the input is 1, the output allows to exactly compute the other party’s
input. Therefore, if a party has input 0, the differentially-private output would be completely useless
for this party, while there could be additional leakage from the transcript (allowed by differential
privacy) that we do not know how to use. Such functionalities seem to have interesting connections
to weak versions of oblivious transfer, for which it is so far not known how to obtain oblivious
transfer.

Characterizing non-optimal accuracies. From the works of McGregor et al. [MMP+10] and
Goyal et al. [GMPS13] in the information theoretic setting, it is clear that for any privacy parameter
ε, there is a constant gap in the maximal achievable accuracies of any ε differentially private protocol
in the client-server and distributed settings.

Goyal et al. [GMPS13] additionally showed that any hope of bridging this gap would imply the
existence of one-way functions. The black box separation results of [HOZ13, KMS14] also hold for
differentially private protocols with any accuracy in this range. Yet, it is unclear whether protocols
with accuracies in this range must imply the existence of oblivious transfer. We show that our
techniques when extended to non-optimal accuracies give rise to weak noisy channels and weak
versions of oblivious transfer, which for some constant range of ε and constant fraction of the gap,
do imply full-fledged oblivious transfer. Yet, there is a large gap between the upper and lower
bounds for weak oblivious transfer amplification, and since our reductions go via noisy channels –
this gap lends itself to our setting.

It may be possible to close this gap via other techniques; however we also believe that this novel
connection between noisy channels and distributed differentially private protocols for functionalities
gives reason to revive (and continue) research on the characterization of weak noisy channels.
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A Preliminaries

Here, we complete the definitions for all primitives that we use - in particular, oblivious transfer
and noisy channels. We consider only two-party protocols in the semi-honest setting where each
party follows instructions honestly throughout execution, but may be curious to learn any additional
information without deviating from the protocol.

A.1 Oblivious Transfer and Noisy Channels

There are several definitions of both noisy channels as well as oblivious transfer in literature (see,
e.g., [Wul09]). We specify here the variants we will use.

Oblivious Transfer.

Definition 7. A protocol family {πk := 〈S,R〉(1k)}k∈N is said to implement the
(
2
1

)
-oblivious

transfer functionality, or simply oblivious transfer (OT), if S and R are PPT algorithms and the
following holds. The input of party S, called the sender, is a pair of bits (m0,m1) and the input
of party R, called the receiver, is a single bit σ. At the end of the protocol, the output of R is mσ

and that of S is nothing—denoted by the special symbol ⊥. Moreover, the following conditions hold.

Sender security: For σ ∈ {0, 1}, and k ∈ N:{
m1−σ, view

R
π (k, (m0,m1), σ) : (m0,m1)

$← {0, 1}2
}
σ,k

≈c
{
u, viewRπ (k, (m0,m1), σ) : (u,m0,m1)

$← {0, 1}3
}
σ,k

Receiver security: For (m0,m1) ∈ {0, 1}2 and k ∈ N:{
σ, viewSπ(k, (m0,m1), σ) : σ

$← {0, 1}
}
(m0,m1),k

≈c{
u, viewSπ(k, (m0,m1), σ) : (u, σ)

$← {0, 1}2
}
(m0,m1),k

This is the definition of semi-honest OT presented in [Hai08], with a proof that such a (semi-
honest) OT protocol suffices to obtain full-fledged, i.e., malicious OT in a black-box manner.

ρ-Noisy-Channel. Now, we directly define what it means for a protocol to implement a ρ-noisy-
channel.

Definition 8. A protocol family {πk := 〈S,R〉(1k)}k∈N implements the ρ-noisy-channel function-
ality for ρ > 1/2, if for PPT algorithms S and R, the following holds. The input of party S, called
the sender, is a bit b and the input of party R, called the receiver, is nothing. At the end of the
protocol, the output of R is a bit, denoted by b′ and that of S is nothing – denoted by ⊥. Then,
the following conditions must hold:

Correctness: For all k ∈ N, we have that |Pr[b′ = b|b]− ρ| ≤ negl(k).

Sender security: Informally, the receiver R cannot distinguish the case when error e := b′ ⊕ b is
0 from the case when it is 1. Formally, there exists a negligible function negl : N → R such that
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for every non-uniform PPT algorithm (“distinguisher”) DR, every polynomial p(·), every sufficiently
large k ∈ N, every advice string zk of size at most p(k), and uniformly chosen b

$← {0, 1} we have:

AdvRπ (k) :=
∣∣Pr[DR(zk, view

R
π (k, b)) = 1|e = 0] − Pr[DR(zk, view

R
π (k, b)) = 1|e = 1]

∣∣ ≤ negl(k)

where e := b′ ⊕ b; b′ = out(viewRπ (k, b)) and the probability is over the randomness of b, π and DR.

Receiver security: This is defined symmetrically. Formally, there exists a negligible function negl :
N→ R such that for every non-uniform PPT algorithm (“distinguisher”) DS , every polynomial p(·),
every sufficiently large k ∈ N, every advice string zk of size at most p(k), and uniformly chosen
b

$← {0, 1} we have:

AdvSπ(k) :=
∣∣Pr[DS(zk, view

S
π(k, b)) = 1|e = 0] − Pr[DS(zk, view

S
π(k, b)) = 1|e = 1]

∣∣ ≤ negl(k)

where e was defined above and the probability is over the randomness of b, π and DS .

Noisy channels are sufficient for OT. We remark that a protocol implementing the noisy
channel defined above, is sufficient to implement the semi-honest OT functionality defined above.
A reduction between these two primitives was first given by Crépeau and Kilian [CK88], and we
provide a brief outline of their semi-honest protocol in the computational setting (with security
parameter k).

◦ The sender sends multiple poly(k) uniformly chosen random bits to the receiver, by transmit-
ting each bit twice over the noisy channel. The receiver classifies received bits in the following
manner - if the same value is received in both transmissions, the bit is called a “good” bit. If
a different bit is received each time, the bit is “bad”.

◦ The receiver picks set Is of k indices corresponding to “good” bits, and a set I1−s of k indices
corresponding to “bad” bits, respectively. He sends I0, I1 to the sender over a clear channel.

◦ For all m ∈ {0, 1}, the sender sends the XOR of the bit bm with each of the bits at indices
specified by Im. The receiver only considers bits received corresponding to indices in Is and
computes her guess for bs as the majority of the XOR of these bits with the good bits.
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