
Efficient and Low-complexity Hardware Architecture of Gaussian Normal

Basis Multiplication over GF(2m) for Elliptic Curve Cryptosystems

Bahram Rashidi1, Sayed Masoud Sayedi2, Reza Rezaeian Farashahi3
1,2Dept. of Elec. & Comp. Eng., Isfahan University of Technology, Isfahan 84156-83111, Iran

3Dept. of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
1b.rashidi@ec.iut.ac.ir, 2m_sayedi@cc.iut.ac.ir, 3farashahi@cc.iut.ac.ir

Abstract—In this paper an efficient high-speed architecture of Gaussian normal basis multiplier over binary finite

field GF(2m) is presented. The structure is constructed by using regular modules for computation of exponentiation

by powers of 2 and low-cost blocks for multiplication by normal elements of the binary field. Since the exponents are

powers of 2, the modules are implemented by some simple cyclic shifts in the normal basis representation. As a result,

the multiplier has a simple structure with a low critical path delay. The efficiency of the proposed structure is studied

in terms of area and time complexity by using its implementation on Vertix-4 FPGA family and also its ASIC design

in 180nm CMOS technology. Comparison results with other structures of the Gaussian normal basis multiplier verify

that the proposed architecture has better performance in terms of speed and hardware utilization.

Keywords: Finite Fields, Elliptic Curve Cryptosystems, Multiplication, Gaussian normal basis, FPGA, ASIC.

1. Introduction

Finite fields are applied in a variety of applications such as cryptography. The efficient implementations of

finite fields are important in public key cryptosystems such as elliptic curve cryptosystem (ECC). In such

cryptosystems, the multiplier is a key operator in group law and point multiplication [1]. Furthermore, the time

and hardware complexity of multiplication are important factors in evaluating the efficiency of the related

cryptosystems. The binary finite fields of order 2𝑚, denoted by GF(2𝑚), are attractive fields for implementation

of ECC. In these fields, the addition operation is implemented by a simple bit-wise XOR. Moreover, the basis of

a binary field is a critical factor in the hardware implementation. There are two popular and applicable basis

called polynomial basis (PB) and normal basis (NB). In the normal basis representation, the squaring operation

and every exponentiation by powers of 2 are implemented only by cyclic shift operations. This feature can be

useful in the design of the field operations such as multiplier. Therefore, hardware implementation by normal

basis representation is a notable issue in the cryptographic applications.

There are several presented architectures of the normal basis and Gaussian normal basis (GNB) multiplication

in recent years [2]-[24]. For example, in [4] a novel scalable multiplication algorithm is presented for a Gaussian

normal basis using Hankel Matrix-Vector representation. In [5] a modified digit-level GNB multiplier over

GF(2𝑚) is proposed. Also for GNB of types greater than 2, a complexity reduction algorithm is proposed to

reduce the number of XOR gates without increasing the gate delay of the digit-level multiplier. In [7] three

structures for GNB multiplier are presented. The first structure is a low-complexity digit-level serial input

parallel output (SIPO) GNB multiplier. Second structure is an improved digit-level parallel input serial output

(PISO) multiplier architecture. And the third structure is a new hybrid architecture by connecting the output of

the digit-level PISO multiplier to the input of the digit-level SIPO multiplier. In [8] a new normal basis

multiplication algorithm based on divide-and-conquer and uniform shift method is used to implement an

efficient multiplexer-based architecture. A bit-parallel GNB multiplier using one pipelined XOR tree is also

designed in [15]. A novel algorithm for GNB binary finite field multiplication using Toeplitz matrix-vector

representation is proposed in [19]. It is also shown that the GNB multiplication can be realized through block

Toeplitz matrix-vector-products. The multipliers with systolic and semi-systolic architecture are presented in

[3], [12], [14], [16], [17], [18] and [20]. A main problem in the systolic structure is its very high hardware

consumption and high number of clock cycles; see for example [20] where the number of clock cycles is

reduced. In [24] Dickson polynomial representation is proposed as an alternative way to represent the GNB of

characteristic 2. A novel recursive Dickson–Karatsuba decomposition to achieve a subquadratic space-

complexity parallel GNB multiplier is presented.

The aim of the present paper is to design a high-speed and efficient hardware architecture of the digit-serial

Gaussian normal basis multiplier for binary finite fields. To that end, by reviewing the multiplication operation

in the normal basis, we present a highly regular structure with low critical path delay and low hardware

resources. The digit-serial multiplier is a suitable structure for area and speed trade-off in cryptographic

application such as ECC. In addition, we present an efficient digit-serial multiplier based on exponentiation by

powers of 2 and multiplication by a normal element of the binary finite field. Moreover, the proposed

architecture is very regular and simple, and is well suited to hardware implementations. The FPGA and ASIC

implementation results show that the proposed structure has acceptable area and time consumption.

mailto:1b.rashidi@ec.iut.ac.ir
mailto:2m_sayedi@cc.iut.ac.ir

The rest of this paper is organized as follows. In section 2, we briefly recall the notion of Gaussian normal basis

for binary finite fields and propose the structure of digit-serial GNB multiplier. In section 3, we provide a

comparison between this work and other previously related works. Finally, we conclude the paper in section 4.

2. Proposed structure of the Digit-serial Gaussian normal basis multiplier over GF(2m)

A binary finite field of order 2𝑚 denoted by GF(2m) is isomorphic a vector space of dimension 𝑚 over GF(2).

So, the elements of GF(2m) can be represented by a basis. Two important types of this representation in the finite

field arithmetic are polynomial basis (PB) and normal basis (NB). For an efficient hardware implementation, the

normal basis representation is a suitable choice. The element 𝛽 in GF(2m) is called a normal element if the set

𝑩 = {𝛽20
, 𝛽21

, 𝛽22
, … , 𝛽2𝑚−2

, 𝛽2𝑚−1
} is a basis for GF(2m) over GF(2). For every binary finite field such a

normal element exists and the corresponding set 𝑩 is called a normal basis. Then, every element 𝐴 of GF(2m) is

written by

𝐴 = ∑ 𝑎𝑖𝛽
2𝑖𝑚−1

𝑖=0 = (𝑎0𝛽
20

+ 𝑎1𝛽
21

+ 𝑎2𝛽
22

+ ⋯+ 𝑎𝑚−2𝛽
2𝑚−2

+ 𝑎𝑚−1𝛽
2𝑚−1

),

where 𝑎𝑖 ∈ GF(2). For simplicity, the element 𝐴 is represented by the 𝑚-bit number [𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎2, 𝑎1, 𝑎0].
The addition of elements 𝐴, 𝐵 given by 𝐴 = [𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎2, 𝑎1, 𝑎0] and 𝐵 = [𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏2, 𝑏1, 𝑏0] is

𝐶 = 𝐴 + 𝐵 = [𝑎𝑚−1 + 𝑏𝑚−1, 𝑎𝑚−2 + 𝑏𝑚−2, … , 𝑎2 + 𝑏2, 𝑎1 + 𝑏1, 𝑎0 + 𝑏0].

So, the addition of the elements of GF(2m) is performed using bit-wise XOR logic gates. The squaring of the

element 𝐴 is

𝐴2 = (∑ 𝑎𝑖𝛽
2𝑖

𝑚−1

𝑖=0

)

2

= ∑ 𝑎𝑖
2 (𝛽2𝑖

)
2

𝑚−1

𝑖=0

= ∑ 𝑎𝑖𝛽
2𝑖+1

𝑚−1

𝑖=0

= 𝑎𝑚−1𝛽 + ∑ 𝑎𝑖−1𝛽
2𝑖

𝑚−1

𝑖=1

,

This means 𝐴2 is represented by [𝑎𝑚−2, 𝑎𝑚−3, … , 𝑎2, 𝑎1, 𝑎0, 𝑎𝑚−1]. So, one important property of using normal

basis representation is performing the squaring operation very efficiently by a simple one-bit rotation to the left.

Also, this operation is performed recursively for exponentiation of a power of two. Thus, for the positive

integer 𝑛, the computation of 𝐴2𝑛
 is performed via 𝑛-bit cyclic shift to left, i.e.,

𝐴2𝑛
= [𝑎𝑚−𝑛−1, 𝑎𝑚−𝑛−2, … , 𝑎1, 𝑎0, 𝑎𝑚−1, … , 𝑎𝑚−𝑛+1, 𝑎𝑚−𝑛].

And similarly 𝐴2−𝑛
 is computed by 𝑛-bit cyclic shift to right, as we have

𝐴2−𝑛
= [𝑎𝑛−1, 𝑎𝑛−2, … , 𝑎1, 𝑎0, 𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎𝑛+1, 𝑎𝑛].

The multiplication of elements 𝐴, 𝐵 in GF(2m) is written by

𝐶 = 𝐴𝐵 = ∑ 𝑎𝑖𝛽
2𝑖

𝑚−1

𝑖=0

∑ 𝑏𝑗𝛽
2𝑗

= ∑ ∑ 𝑎𝑖𝑏𝑗𝛽
2𝑖+2𝑗

𝑚−1

𝑗=0

𝑚−1

𝑖=0

𝑚−1

𝑗=0

The element 𝛽2𝑖+2𝑗
 is represented by

𝛽2𝑖+2𝑗
= ∑ 𝜆𝑖𝑗

(𝑘)
𝛽2𝑘

𝑚−1

𝑘=0

, 𝜆𝑖𝑗
(𝑘)

∈ GF(2).

Thus,

𝐶 = ∑ ∑ 𝑎𝑖𝑏𝑗 ∑ 𝜆𝑖𝑗
(𝑘)

𝛽2𝑘

𝑚−1

𝑘=0

𝑚−1

𝑗=0

= ∑ 𝑐𝑘𝛽
2𝑘

𝑚−1

𝑘=0

𝑚−1

𝑖=0

, 𝑐𝑘 = ∑ ∑ 𝑎𝑖𝑏𝑗𝜆𝑖𝑗
(𝑘)

𝑚−1

𝑗−0

𝑚−1

𝑖=0

.

Here 𝜆(𝑘) is an 𝑚 by 𝑚 symmetric matrix with entries 𝜆𝑖𝑗
(𝑘)

 in GF(2). The 𝜆(𝑘) matrices can be computed by a k-

cyclic diagonal shift to 𝜆(0) matrix; i.e., for the indices 𝑖, 𝑗, 𝑘 = 0,… ,𝑚 − 1, computed modulo 𝑚, we have

𝜆𝑖+1 𝑗+1
(𝑘+1)

= 𝜆𝑖𝑗
(𝑘)

. The matrix 𝜆(0) is called the multiplication matrix and we recall it by 𝑀.

The complexity of the hardware implementation of a normal basis multiplication is related to the number of

nonzero entries of the matrices 𝑀 that is a crucial parameter for the speed of the system.

The Gaussian normal basis, GNB for short, is a special class of normal basis that by which the multiplication is

simpler and more efficient [25] and [26]. The complexity of the multiplication of a GNB is measured by its type

that is a positive integer related to the number of nonzero entries of the multiplication matrix. The time and area

complexity of the multiplication operation over GF(2m) is depend on the type of the normal basis with respect to

that basis. Therefore, a more efficient multiplier has a smaller type. The optimal normal basis (ONB) is a GNB

of type 1 or 2 providing the most efficient multiplication algorithm among all normal bases. The GNB is

considered in several standards such as IEEE P1363 [26] and NIST [27]. For example even types 𝑇={4,2,6,4,

and 10} corresponded to fields {GF(2163), GF(2233), GF(2283), GF(2409) and GF(2571)}, are recommended by

these two standards.

For each binary finite field GF(2m), where 𝑚 is not divisible by 8, a GNB exists of some type, also for each

positive integer 𝑇 at most one GNB of type 𝑇 exists. More precisely, for given positive integers 𝑚 and 𝑇, let

𝑝 = 𝑚𝑇 + 1 be a prime number such that gcd(𝑚𝑇/𝑘,𝑚) = 1, where 𝑘 is the multiplicative order of 2 module

𝑝. Then a GNB over GF(2m) of type 𝑇 exists. In this work, we consider the GNBs with odd values of 𝑚 which

are applicable for cryptography applications and implies that 𝑇 is an even number.

The GNB multiplication can also be computed via the following approach; see e.g. [26]. Let GF(2m) has a

Gaussian normal basis 𝑩 of type 𝑇, where 𝑝 = 𝑚𝑇 + 1 is a prime number. Let 𝑢 be an integer of order 𝑇 mod

𝑝. Then, the set

𝑍 = {𝑧𝑖,𝑗 ∶ 𝑧𝑖,𝑗 = 2𝑖𝑢𝑗 | 𝑖 ∈ {0,1, … ,𝑚 − 1}, 𝑗 ∈ {0,1, … , 𝑇 − 1}}

is a reduced residue system modulo 𝑝, i.e., each positive integer 𝑥 less than 𝑝 can be uniquely represented as

𝑥 = 𝑧𝑖,𝑗 mod 𝑝. Let 𝐹 be a function given by

𝐹 ∶ {1,2, … , 𝑝 − 1} → {0,1, … ,𝑚 − 1}

𝐹(𝑥) = 𝑖, 𝑥 = 𝑧𝑖,𝑗 mod 𝑝
 (1)

For even type 𝑇 the first coordinate 𝑐0 of 𝐶, the multiplication 𝐴 and 𝐵, is computed by

𝑐0 = ∑ 𝑎𝐹(𝑘+1)𝑏𝐹(𝑝−𝑘)

𝑝−2

𝑘=1

. (2)

Also, other coordinates 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑚 − 1, are computed similarly by one bit right cyclic shift of inputs.

A bit serial implementation of normal basis multiplication of two elements 𝐴 and 𝐵 is performed in [21] as

follows.

𝐶 = 𝐴𝐵 = 𝐴(𝑏𝑚−1𝛽
2𝑚−1

+ 𝑏𝑚−2𝛽
2𝑚−2

+ ⋯+ 𝑏0𝛽)

= 𝑏𝑚−1(𝐴𝛽2𝑚−1
) + 𝑏𝑚−2(𝐴𝛽2𝑚−2

) + ⋯+ 𝑏0(𝐴𝛽)

= 𝑏𝑚−1 (𝐴2−(𝑚−1)
𝛽)

2𝑚−1

+ 𝑏𝑚−2 (𝐴2−(𝑚−2)
𝛽)

2𝑚−2

+ ⋯+ 𝑏0(𝐴𝛽)

= (… ((𝑏𝑚−1𝐴
2−(𝑚−1)

𝛽)
2

+ 𝑏𝑚−2𝐴
2−(𝑚−2)

𝛽)
2

…)

2

+ 𝑏0(𝐴𝛽).

Also the digit-serial GNB multiplication is implemented as below, where 𝐵 is divided into 𝑑 words of 𝑤 bits

with 𝑑 = ⌈
𝑚

𝑤
⌉.

 𝐶 = (…((𝑏𝑚−1𝐴
2−(𝑤−1)

𝛽2𝑚−𝑤
)

2

+ 𝑏𝑚−2𝐴
2−(𝑤−2)

𝛽2𝑚−𝑤
)

2

+ ⋯)

2

+ 𝑏𝑚−𝑤𝐴𝛽2𝑚−𝑤

+ (…((𝑏𝑚−𝑤−1𝐴
2−(𝑤−1)

𝛽2𝑚−2𝑤
)

2

+ 𝑏𝑚−𝑤−2𝐴
2−(𝑤−2)

𝛽2𝑚−2𝑤
)

2

+ ⋯)

2

+ 𝑏𝑚−2𝑤𝐴𝛽2𝑚−2𝑤

+ ⋯

+ (…((𝑏𝑚−(𝑑−1)𝑤−1𝐴
2−(𝑤−1)

𝛽2𝑚−𝑑𝑤
)

2

+ 𝑏𝑚−(𝑑−1)𝑤−2𝐴
2−(𝑤−2)

𝛽2𝑚−𝑑𝑤
)

2

+ ⋯)

2

+ 𝑏0𝐴𝛽.

In this method multiplications by some powers of 𝛽 are required which cause complex and irregular structure in

hardware implementation [21]. To have a low-complexity and regular architecture of multiplication by

𝛽2(𝑚−𝑖𝑤)
for some integer 𝑖 , the computation 𝑦 = 𝑥𝛽2(𝑚−𝑖𝑤)

 can be performed in three steps; first the

exponentiation of the input 𝑥 by 2−(𝑚−𝑖𝑤) is done, then multiplication by 𝛽 is performed, and finally the

exponentiation of the result by 2(𝑚−𝑖𝑤) is completed. These operations result in:

𝑦 = 𝑥𝛽2(𝑚−𝑖𝑤)
= ((𝑥2−(𝑚−𝑖𝑤)

)𝛽)
2(𝑚−𝑖𝑤)

.

Fig. 1 shows the proposed method for multiplication by 𝛽2(𝑚−𝑖𝑤)
.

β
x y x y

Fig. 1: Proposed implementation for multiplication by 𝛽2(𝑚−𝑖𝑤)

In the proposed method two steps of exponentiation by 2−(𝑚−𝑖𝑤) and 2(𝑚−𝑖𝑤) are free hardware implemented

only by cyclic shift; therefore, only multiplication by 𝛽 is the main part to be implemented.

Here, we explain the structure of the proposed digit-serial multiplier. Let 𝐴, 𝐵 be two elements in GF(2m) and let

𝐵 = [𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏2, 𝑏1, 𝑏0]. We consider 𝐵 as the following 𝑤 × 𝑑 array and divide it into its columns.

(

𝑏𝑚−1

𝑏𝑚−𝑤−1

𝑏𝑚−2

𝑏𝑚−𝑤−2
⋯

𝑏𝑚−𝑤

𝑏𝑚−2𝑤

⋮ ⋱ ⋮
𝑏𝑚−(𝑑−1)𝑤−1 𝑏𝑚−(𝑑−1)𝑤−2 ⋯ 𝑏𝑚−𝑑𝑤

)

We let 𝑏𝑖 = 0 if 𝑖 ≤ 0. More precisely,

𝐵 = 𝐵1 + 𝐵2 + 𝐵3 + ⋯+ 𝐵𝑤 ,
where, for 𝑖 = 1,… , 𝑤,

𝐵𝑖 = ∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 𝛽
2𝑚−(𝑘−1)𝑤−𝑖

𝑑

𝑘=1

.

The multiplication of elements 𝐴, 𝐵 in GF(2m) is written by

 𝐶 = 𝐴𝐵 = 𝐴∑ 𝐵𝑖

𝑤

𝑖=1

= 𝐴 ∑ ∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 𝛽
2𝑚−(𝑘−1)𝑤−𝑖

𝑑

𝑘=1

𝑤

𝑖=1

= ∑ ∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 𝐴𝛽2𝑚−(𝑘−1)𝑤−𝑖

𝑑

𝑘=1

𝑤

𝑖=1

= ∑(∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 𝐴
2−(𝑤−𝑖)

𝛽2𝑚−𝑘𝑤

𝑑

𝑘=1

)

2𝑤−𝑖
𝑤

𝑖=1

.

In other words, we have

𝐶 = ∑𝐶𝑖
2𝑤−𝑖

=

𝑤

𝑖=1

((…((𝐶1
2 + 𝐶2)

2
+ 𝐶3)

2

+ ⋯)
2

+ 𝐶𝑤),

where for 𝑖 = 1,… , 𝑤,

𝐶𝑖 = ∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 𝐴
2−(𝑤−𝑖)

𝛽2𝑚−𝑘𝑤

𝑑

𝑘=1

= ∑ 𝑏𝑚−(𝑘−1)𝑤−𝑖 (((𝐴2−(𝑤−1)
)

2(𝑖−1)

)

2−(𝑚−𝑘𝑤)

𝛽)

2𝑚−𝑘𝑤

.

𝑑

𝑘=1

To calculate exponentiation by 2−(𝑚−𝑘𝑤) before multiplication by 𝛽 block in regular form, we write

((𝐴2−(𝑤−1)
)

2(𝑖−1)

)

2−(𝑚−𝑘𝑤)

= (…(((𝐴2−(𝑤−1)
)

2(𝑖−1)

)

2−(𝑚−𝑤)

)

2𝑤

…)

2𝑤

.

So, first exponentiation by 2−(𝑚−𝑤) is computed, and then for 𝑘 = 2,3, … , 𝑑, exponentiation by 2−(𝑚−𝑘𝑤) are

generated by a sequence of exponentiation by 2𝑤 with length 𝑑-1. Fig.2 shows the proposed structure for the

digit-serial GNB multiplier over GF(2m).

1

0

Load β β β β β

bi

i[m-1:0]

i[m-1:0]

bm-1bm-w . . . bm-w-1bm-2w
. . . bm-2w-1bm-3w . . . bm-3w-1bm-4w . . . bm-(d-1)w-1

XOR Tree

b0. . .

C[m:0]

. . .

. . .

. . .

. . .

A[m:0]

bi

Fig. 2: Proposed structure for the digit-serial GNB multiplier over GF(2m)

As seen in the Fig. 2, a regular architecture for hardware implementation is provided. In proposed structure

different exponentiation by power of 2 blocks are implemented by wired cyclic shift in the normal basis. This

property is an important factor for improvement of efficiency in the structure.

For implementation of multiplication by 𝛽 in GF(2m) of type 𝑇, a method presented in [6] is employed. In this

method, the entries of the multiplication matrix 𝑀 are encoded to an (𝑚 − 1) × 𝑇 matrix 𝑅 with entries 𝑟𝑖,𝑗 ∈

{0, 1, 2, … ,𝑚 − 1}, where 𝑖 = 0,1, … ,𝑚 − 2 and 𝑗 = 0,1, … , 𝑇 − 1. Notice that the multiplication matrix 𝑀 is

symmetric and for GNB of even type 𝑇, we have 𝜆𝑖,0
(𝑘)

= 𝜆𝑖,𝑘
(0)

, where 𝑖, 𝑘 are in {0, 1, 2, … ,𝑚 − 1} (see [6]). So,

𝛽2𝑖
𝛽 = ∑ 𝜆𝑖,0

(𝑘)
𝛽2𝑘

𝑚−1

𝑘=0

= ∑ 𝜆𝑖,𝑘
(0)

𝛽2𝑘

𝑚−1

𝑘=0

.

This means, the 𝑖th row of matrix 𝑀 is the 𝑚-bit number representation of 𝛽2𝑖
𝛽. Thus, the number of entries ‘1’

in the first row is one and in other rows is even and less or equal to 𝑇. Now, the entries of 𝑖th row of matrix 𝑅 are

identified based on the column numbers of entries 1 in (𝑖 + 1)th row of matrix 𝑀. If the number of ones in row

(𝑖 + 1) of 𝑀 matrix is 𝑇, then all entries of row 𝑖 of matrix 𝑅 are specified. If it is not the case, the remaining

entries of 𝑅 , whose number is even, is initialized with a constant value. There is also another method to

determine matrix 𝑅 which is based on the function 𝐹 in Eq.(1). In this method, for all 𝑘 = 1,2, … , 𝑝 − 2, where

𝑝 = 𝑚𝑇 + 1, the pairs (𝐹(𝑘 + 1), 𝐹(𝑝 − 𝑘)) are calculated, that for each calculated pair its second coordinate,

the value 𝐹(𝑝 − 𝑘), is an entry of matrix R in row 𝐹(𝑘 + 1) − 1 if 𝐹(𝑘 + 1) ≥ 1. Multiplication by 𝛽 based on

matrix 𝑅 is as follows

𝛽𝐵 = 𝛽 ∑ 𝑏𝑖𝛽
2𝑖

𝑚−1

𝑖=0

= ∑ 𝑏𝑖𝛽𝛽2𝑖
= ∑ 𝑏𝑖

𝑚−1

𝑖=0

𝑚−1

𝑖=0

∑ 𝜆𝑖,0
(𝑘)

𝛽2𝑘

𝑚−1

𝑘=0

= ∑ ∑ 𝑏𝑖𝜆𝑖,𝑘
(0)

𝛽2𝑘
=

𝑚−1

𝑘=0

𝑚−1

𝑖=0

∑ ∑ 𝑏𝑖

𝑚−1

𝑖=0

𝜆𝑖,𝑘
(0)

𝛽2𝑘

𝑚−1

𝑘=0

= ∑ (∑ 𝑏𝑖

𝑚−1

𝑖=0

𝜆𝑘,𝑖
(0)

)𝛽2𝑘
= ∑ ∑ 𝑏𝑟𝑘,𝑗

𝑇−1

𝑗=0

𝛽2𝑘
= ∑ 𝑠(𝑘, 𝐵)𝛽2𝑘

𝑚−1

𝑘=0

𝑚−1

𝑘=0

𝑚−1

𝑘=0

,

where, 𝑠(𝑘, 𝐵) = ∑ 𝑏𝑟𝑘,𝑗

𝑇−1
𝑗=0 , 0 ≤ 𝑘 ≤ 𝑚 − 2. Briefly, we have

𝛽𝐵 = [𝑠(𝑚 − 1, 𝐵), … , 𝑠(2, 𝐵), 𝑠(1, 𝐵), 𝑏1].

In the following an example of GF(27), with type 𝑇=4 GNB is presented. For the following multiplication

matrix 𝑀,

𝑀 =

[

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0
0
0
0
0

1
0
0
1
1

0
1
1
1
0

1
0
0
1
0

1
0
0
0
1

1 0
1 0
0 1
0 1
1 1]

,

by using the first method the matrix 𝑅 is calculated as follows:

𝑅 =

[

0 2 5 6
1 3 4 5
2
2
1
1

5
6
2
4

3
0
3
5

3
0
6
6]

.

Also based on the second method, first values of 𝐹(𝑘) are calculated, as shown in Table 2.

Table2: Sequence of 𝐹 for 𝑇=4 over GF(27)

𝑘 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝐹(𝑘) 0 1 5 2 1 6 5 3 3 2 4 0 4 6

𝑘 15 16 17 18 19 20 21 22 23 24 25 26 27 28

𝐹(𝑘) 6 4 0 4 2 3 3 5 6 1 2 5 1 0

Then the pairs of (𝐹(𝑘 + 1), 𝐹(𝑝 − 𝑘)) are listed as shown in Table 3, and based on that matrix 𝑅 can be

constructed.
Table3: Pairs of (𝐹(𝑘 + 1), 𝐹(𝑝 − 𝑘)) for 𝑇=4 over GF(27)

(1,0) (4,2) (3,2)

(5,1) (0,4) (3,3)

(2,5) (4,0) (5,3)

(1,2) (6,4) (6,5)

(6,1) (6,6) (1,6)

(5,6) (4,6) (2,1)

(3,5) (0,4) (5,2)

(3,3) (4,0) (1,5)

(2,3) (2,4) (0,1)

If we show output bits of multiplication 𝛽𝐵 by 𝑡𝑘 = 𝑠(𝑘, 𝐵) then for above matrix 𝑅 we have,

𝑡0 = 𝑏1
𝑡1 = 𝑠(1, 𝐵) = 𝑏0 ⊕ 𝑏2 ⊕ 𝑏6 ⊕ 𝑏5
𝑡2 = 𝑠(2, 𝐵) = 𝑏5 ⊕ 𝑏3 ⊕ 𝑏4 ⊕ 𝑏1
𝑡3 = 𝑠(3, 𝐵) = 𝑏5 ⊕ 𝑏3 ⊕ 𝑏2 ⊕ 𝑏3 = 𝑏5 ⊕ 𝑏2
𝑡4 = 𝑠(4, 𝐵) = 𝑏2 ⊕ 𝑏0 ⊕ 𝑏6 ⊕ 𝑏0 = 𝑏2 ⊕ 𝑏6
𝑡5 = 𝑠(5, 𝐵) = 𝑏1 ⊕ 𝑏6 ⊕ 𝑏3 ⊕ 𝑏2
𝑡6 = 𝑠(6, 𝐵) = 𝑏1 ⊕ 𝑏4 ⊕ 𝑏6 ⊕ 𝑏5

As it can be seen, there are some common XOR terms in 𝑡𝑘 expressions. For example 𝑡1 and 𝑡6 have a common

term 𝑏6 ⊕ 𝑏5 , and 𝑡4 and 𝑡5 have a common term 𝑏2 ⊕ 𝑏6 . Considering these common terms, hardware

implementation of the multiplication by 𝛽 over GF(27) is as shown in Fig. 3.

b1

t0 t1

b5 b3

t2

b2 b5

t3 t4

b2 b6 b1 b3

t5

b5 b6 b4 b1

t6

b2 b0

Fig. 3: Hardware implementation of the multiplication by 𝛽 over GF(27)

Fig.4 (a) and Fig.4 (b) show the hardware implementation of the multiplication by 𝛽 over two applicable fields

GF(2163) and GF(2233) respectively.

b
1

t0 t1

b
1

3
2

b
1

1
7

b
0

b
1

3

t2 t3

b
1

1
7

b
9
2

b
1

1
1

b
1

4
5

b
8

9

b
9

b
1

2
5

b
7

1

b
1
0
9

b
1
4
3

b
1
1
5

b
9
0

b
1
2

b
1

1
6

b
1

6
2

b
1
3
1

.

t80

b
7

3

b
7

6

b
9
3

b
4
5

b
1

5
9

b
1

5
6

t1

b
9

4

b
5

0

t81 t82 t83 t161 t162

b
1

b
0

b
2

1
7

t2

b
4
1

b
2
1
7

t3

b
1

4
8

b
2

0
1

t4

b
2

5

b
5

1

t100

b
1

7
7

b
1

9
6

t101

b
1

0

b
1
4
4

t102

b
2

2

b
2

0
6

b
2

1

b
4

7

b
1

4
5

b
1

9
8

b
3

9

b
2

1
5

b
2

1
6

b
2

3
2

t0 t229 t230 t231 t232

.

(a)

(b)
Fig.4: Hardware implementation of the multiplication by 𝛽 for fields GF(2163) (a) and GF(2233) (b).

Type of the Gaussian normal basis in the field GF(2163) is 𝑇=4. In this field, after resource sharing of the XOR

common terms 24% of XOR gates are reduced in the implementation.

In the following, the proposed structure of digit-serial GNB multiplier is presented for two cases of 𝑤=3, 𝑑 =

⌈
7

3
⌉=3 and 𝑤=4, 𝑑 = ⌈

7

4
⌉=2 over GF(27). For the first case, 𝐵 is represented by three words 𝐵1 to 𝐵3:

𝐵1 = 𝑏6𝛽
26

+ 𝑏5𝛽
25

+ 𝑏4𝛽
24

𝐵2 = 𝑏3𝛽
23

+ 𝑏2𝛽
22

+ 𝑏1𝛽
21

𝐵3 = 𝑏0𝛽

And for 𝑖 = 1,2,3, 𝐶𝑖 are:

𝐶1 = ((𝐴2−2
)
2−4

𝛽)
24

𝑏6 + (((𝐴2−2
)
2−4

)
23

𝛽)

2

𝑏3 + ((((𝐴2−2
)
2−4

)
23

)

23

𝛽)

2−2

𝑏0

𝐶2 = (((𝐴2−2
)
2
)

2−4

𝛽)

24

𝑏5 + ((((𝐴2−2
)
2
)

2−4

)

23

𝛽)

2

𝑏2 + (((((𝐴2−2
)
2
)

2−4

)

23

)

23

𝛽)

2−2

𝑏−1

𝐶3 = (((𝐴2−2
)
22

)
2−4

𝛽)

24

𝑏4 + ((((𝐴2−2
)
22

)
2−4

)

23

𝛽)

2

𝑏1 + (((((𝐴2−2
)
22

)
2−4

)

23

)

23

𝛽)

2−2

𝑏−2.

The bits 𝑏−1 and 𝑏−2 are set to zero, and product 𝐶 of the Gaussian normal basis multiplication based on 𝐶1, 𝐶2

and 𝐶3 is presented as follows:

𝐶 = ((𝐶1
2 + 𝐶2)

2
+ 𝐶3).

Table 3 shows required exponentiation operations in the proposed digit-serial GNB multiplier over GF(27) for

𝑤=3 and 𝑑=3, and Fig. 5 shows the proposed structure of the digit-serial GNB multiplier over GF(27) with 𝑇=4

for case 𝑤=3 and 𝑑=3.

Table 3: Exponentiation operations in the proposed digit-serial GNB multiplier over GF(27) for 𝑤=3 and 𝑑=3

Exponentiation operations 𝒘=3, 𝒅=3 Vector representation

()2−(𝑤−1)
 ()2−2

 (𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2)

()2−(𝑚−𝑤)
 ()2−4

 (𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4)

()2𝑤
 ()23

 (𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4)

()2(𝑚−𝑤)
 ()24

 (𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3)

()2(𝑚−2𝑤)
 ()21

 (𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝑎6)

()2(𝑚−3𝑤)
 ()2−2

 (𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2)

1
0 D

1
0

D

1
0 D

1
0 D

1
0

D

1
0

D

1
0

D b6 SICi1

i2

i3

LD

b5

b4

Load

b3 SICi1

i2

i3

LD

b2

b1

Load

b0 SICi1

i2

i3

LD

0
0

Load

DDDDDDD

Load

a6a5a4
a3
a2a1a0

c6c5c4c3c2c1c0

0
1

i2

i3 0
1

i1

D

Sequential Input Circuit (SIC)

LD

SICi1

i2

i3

LD

DD

Fig. 5: Proposed structure ofthe digit-serial GNB multiplier over GF(27) with 𝑤=3 and 𝑑=3

For the case of 𝑤=4 and 𝑑=2 the words representation of the 𝐵 is

𝐵1 = 𝑏6𝛽
26

+ 𝑏5𝛽
25

+ 𝑏4𝛽
24

+ 𝑏3𝛽
23

𝐵2 = 𝑏2𝛽
22

+ 𝑏1𝛽
21

+ 𝑏0𝛽

and multiplication result is 𝐶 = (((𝐶1
2 + 𝐶2)

2
+ 𝐶3)

2

+ 𝐶4) where 𝐶1 and 𝐶4 are:

𝐶1 = ((𝐴2−3
)
2−3

𝛽)
23

𝑏6 + (((𝐴2−3
)
2−3

)
24

𝛽)

2−1

𝑏2

𝐶2 = (((𝐴2−3
)
2
)

2−3

𝛽)

23

𝑏5 + ((((𝐴2−3
)
22

)
2−3

)

24

𝛽)

2−1

𝑏1

𝐶3 = (((𝐴2−3
)
22

)
2−3

𝛽)

23

𝑏4 + ((((𝐴2−3
)
22

)
2−3

)

24

𝛽)

2−1

𝑏0

𝐶4 = (((𝐴2−3
)
23

)
2−3

𝛽)

23

𝑏3 + ((((𝐴2−3
)
23

)
2−3

)

24

𝛽)

2−1

𝑏−1.

Required exponentiation operations in the proposed digit-serial GNB multiplier over GF(27) for 𝑤=4 and 𝑑=2

are shown in Table 4, and the proposed structure of the digit-serial GNB multiplier over GF(27) with 𝑤=4 and

𝑑=2 is shown Fig. 6.

Table 4: Exponentiation operations in proposed digit-serial GNB multiplier over GF(27) for 𝑤=4 and 𝑑=2
Exponentiation operations 𝒘=4, 𝒅=2 Vector representation

()2−(𝑤−1)
 ()2−3

 (𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3)

()2−(𝑚−𝑤)
 ()2−3

 (𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3)

()2𝑤
 ()24

 (𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3)

()2(𝑚−𝑤)
 ()23

 (𝑎3, 𝑎2, 𝑎1, 𝑎0, 𝑎6, 𝑎5, 𝑎4)

()2(𝑚−2𝑤)
 ()2−1

 (𝑎0, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1)

1
0 D

1
0

D

1
0 D

1
0 D

1
0

D

1
0

D

1
0

D b6

b5

b4

Load

b2

b1

b0

Load

DDDDDDD

Load

a6a5a4
a3
a2a1a0

c6c5c4c3c2c1c0

0
1

i3

i4 0
1

i2

D

Sequential Input Circuit (SIC)

LD

SICi1

i2

i3

LD

DD
0
1

i1

D

i4

SICi1

i2

i3

LD

i4
b3

SICi1

i2

i3

LD

i40

Fig. 6: Proposed structure of the digit-serial GNB multiplier over GF(27) with 𝑤=4 and 𝑑=2

The critical data path of the proposed structure of digit-serial GNB multiplier over GF(2m) with type 𝑇 is TA+

(⌈𝑙𝑜𝑔2
𝑇⌉+⌈𝑙𝑜𝑔2

(𝑑+1)
⌉)TX, where TA and TX denote the time delay of a 2-input AND gate and 2-input XOR gate

respectively. For above two examples the critical data path of structures in Fig.5 and Fig.6 are

TA +(⌈𝑙𝑜𝑔2
4⌉+⌈𝑙𝑜𝑔2

(3+1)
⌉)TX =TA+5TX and TA + (⌈𝑙𝑜𝑔2

4⌉+⌈𝑙𝑜𝑔2
(2+1)

⌉)TX =TA+4TX respectively. Also, the number

of clock cycles for the case (𝑤=3, 𝑑=3) is 4 and for case (𝑤=4, 𝑑=2) is 5. The proposed digit-serial GNB

multiplier requires 𝑑.𝑚 AND gates and ≤ 𝑑.𝑚+(𝑇-1)(𝑚-1) XOR gates. The number of XOR gates is lower than

those of other digit-serial structures. More details of the hardware and time complexity of this work and other

related works are presented in the next section.

3. Comparison Results

Comparison with other structures of the GNB and ONB multipliers based on different parameters like hardware

resources, critical path delay and number of clock cycles are presented here. The hardware implementation of

the proposed architecture is based on two fields of GF(2163) and GF(2233) recommended by NIST for ECC

applications. The proposed digit-serial GNB multiplier structure has been successfully verified and implemented

using Xilinx ISE 11onVirtex-4XC4VLX100-ff1148FPGA. In addition, the ASIC results are achieved by using

Synopsys Design Vision tool based on library of standard cells with 180nm CMOS technology. In Table 5,

hardware utilization including numbers of 2-input XOR gates, 2-input AND gates, D flip-flops and 2 to 1

multiplexers for proposed structure and also for previously related works are presented. Also critical path delay

and latency of multipliers are presented.

Table 5: Comparison of the proposed digit-serial GNB multiplier and other related works

Works \ Structures # 2-input XOR
2-input

AND
FF

2-to-1

Mux
Critical path delay

Latency

(cycle)

[2] Bit-Parallel ONB T=2 m2+2m-1 m ---
𝑚(𝑚 − 1)

2
 TM + [2 + 𝑙𝑜𝑔2

(𝑚−1)
]TX ---

[3] Bit-Parallel GNB m2+2mT +1 m2 2m2+mT+1 mT+1 TA+TX+TL m+(T+1)2–1

[4] Digit-serial GNB d2+d+mT+1 d2
3.5d2+5(mT+1)

+3nd
mT+1 TA+TX d+n(n+1)

[5] Digit-serial GNB ≤
𝑑(𝑚−1)

2
(T-1)+dm dm 3m --- TA + [⌈𝑙𝑜𝑔2

𝑇⌉ + ⌈𝑙𝑜𝑔2
(𝑑+1)

⌉]TX ⌈
𝑚

𝑑
⌉ + 1

[6] Digit-serial GNB

DLGMs
≤ d((m-

(𝑑+1)

2
)T+

(𝑑+1)

2
) dm 2m --- TA + [⌈𝑙𝑜𝑔2

𝑇⌉ + ⌈𝑙𝑜𝑔2
(𝑚)

⌉]TX ⌈
𝑚

𝑑
⌉ +1

[6] Digit-serial GNB
DLGMp

≤
𝑑

2
(Tm-T+m+1) dm 3m --- TA + [⌈𝑙𝑜𝑔2

𝑇⌉ + ⌈𝑙𝑜𝑔2
(𝑑+1)

⌉]TX ⌈
𝑚

𝑑
⌉ +1

[7] Digit-serial GNB
≤ (d(m-1)-

𝑑(𝑑−1)

2
)(T-

1)+dm
dm 2m 2m TA + [⌈𝑙𝑜𝑔2

𝑇⌉ + ⌈𝑙𝑜𝑔2
(𝑑+1)

⌉]TX ⌈
𝑚

𝑑
⌉ +1

[8] Bit-Parallel ONB T=2 (3m2-m+6)/4 --- --- m(m-1)/2 TM + [2 + 𝑙𝑜𝑔2
(𝑚−1)

]TX 1

[8] Bit-Parallel ONB T=1 (m2+3m-2)/2 --- --- m(m-1)/2 TM + [2 + 𝑙𝑜𝑔2
(𝑚−1)

]TX 1

[9] Bit-Parallel GNB m2T2 + 2mT (mT+ 1)2 --- --- TA + [⌈𝑙𝑜𝑔2
(𝑚𝑇+1)

⌉ TX] + TX 1

[22]

Bit-Parallel GNB
mT⌈𝑙𝑜𝑔2

𝑇⌉ + m2 m2 --- --- TA + [𝑚 + ⌈𝑙𝑜𝑔2
(𝑇)

⌉] TX 1

[10] Digit-serial ONB T=2
AEDS

w(3m-w-2)
w(m-

0.5w+0.5)
--- --- TA + [1 + ⌈𝑙𝑜𝑔2

(𝑚)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[10] Digit-serial ONB T=2

XEDS
w(2m-0.5w-1.5) w(2m-w) --- --- TA + [1 + ⌈𝑙𝑜𝑔2

(𝑚)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[10] Digit-serial ONB T=1
AEDS

(w+1)(1.5m-2)+1 w(m-1)+m/2 --- --- TA + [1 + ⌈𝑙𝑜𝑔2
(𝑚)

⌉] TX ⌈
𝑚

𝑑
⌉ +1

[10] Digit-serial ONB T=1

XEDS
(w+1)(m-1) w(m-1)+m --- --- TA + [1 + ⌈𝑙𝑜𝑔2

(𝑚)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[11] Bit-Parallel ONB T=2 3/2m(m-1) m2 --- --- TA + [1 + ⌈𝑙𝑜𝑔2
(𝑚)

⌉] TX ---

[12] Bit-serial ONB T=1 2m+1 m+1 4m+3 --- TA+TX+TL m(m+1)

[13] Digit-serial ONB T=2

w-SMPOI
w(2m-1) w(m/2+1)+m 3m --- ≤2TA + [3 + ⌈𝑙𝑜𝑔2

(𝑤−1)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[13] Digit-serial ONB T=2

w-SMPOII
w(m+m/2) wm+m 3m --- ≤2TA + [3 + ⌈𝑙𝑜𝑔2

(𝑤−1)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[13] Digit-serial ONB T=1

w-SMPOI
3wm/2+m+w+1

wm/2+m+w+

1
3m --- ≤2TA + [3 + ⌈𝑙𝑜𝑔2

(𝑤−1)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[13] Digit-serial ONB T=1

w-SMPOII
wm+w+m+1 wm+w+m+1 3m --- ≤2TA + [3 + ⌈𝑙𝑜𝑔2

(𝑤−1)
⌉] TX ⌈

𝑚

𝑑
⌉ +1

[14]Bit-Parallel GNB (mT)2 / 4 (mT)2 / 4
9(mT)2/8+9mT/

4
--- TA+TX+TL mT/2 + 1

[15]Bit-Parallel GNB mT mT 2mT --- TA + ⌈𝑙𝑜𝑔2
(𝑚𝑇)

⌉ (TX + TL)
⌈𝑙𝑜𝑔2

(𝑚𝑇+1)
⌉

+ 𝑚𝑇

[16] Bit-Parallel ONB T=2 m2(3-input XOR) 2m2 3m2 --- TA+T3X+TL m

[17] Bit-Parallel GNB (mT)2/2+5mT/2+1 (mT)2/2+mT/2
9(mT)2/8+5mT/

4+2
--- TA+TX+TL mT/2+1

[18] Bit-Parallel ONB T=2
2m2+2m (3-input

XOR)
2m2+m 5m2+2m−2 --- TA+T3X+TL m+1

[19] Digit-serial GNB kd2 kd2 k(2d+1) k TA + [1 + ⌈𝑙𝑜𝑔2
𝑑⌉]TX ⌈

𝑚𝑇+1

𝑑
⌉+k-1

[21] Digit-serial ONB T=2 d(2m-1) dm 3m --- TA + [1 + ⌈𝑙𝑜𝑔2
(𝑑+1)

⌉]TX ⌈
𝑚

𝑑
⌉ +1

[20] Digit-serial GNB
≤

⌈√
𝑚

𝑑
⌉𝑑(𝑚−1)

2
(𝑇 − 1) +

(1 + ⌈√
𝑚

𝑑
⌉ 𝑑)𝑚

⌈√
𝑚

𝑑
⌉𝑑𝑚 (1+3⌈√

𝑚

𝑑
⌉)𝑚 --- TA + [⌈𝑙𝑜𝑔2

𝑇⌉ + ⌈𝑙𝑜𝑔2
(𝑑+1)

⌉]TX ≤2 ⌈√
𝑚

𝑑
⌉

[23] Bit-Parallel GNB (⌈
𝑚𝑇

4
⌉+1)mT+⌈

𝑚𝑇

4
⌉–2

𝑚𝑇𝑓

2
⌈
𝑚𝑇

4
⌉

2mT(f+1)+
(𝑓 + 1)(𝑓 + 2)

2

𝑓 TA+TX+TL 𝑓+2

[24] Bit-Parallel GNB, b=2
T=4

36𝑚𝑙𝑜𝑔2
3
−28m+2 3𝑚𝑙𝑜𝑔2

3
 --- --- TA + [6 + 5⌈𝑙𝑜𝑔2

𝑚⌉]TX ---

[24] Bit-Parallel GNB, b=3

T=4
40.88𝑚𝑙𝑜𝑔3

6
−31m+2.8 3.1𝑚𝑙𝑜𝑔3

6
 --- --- TA + [6 + 8⌈𝑙𝑜𝑔3

𝑚⌉]TX ---

Proposed method

Digit-serial GNB
≤ (m-1)(T-1)+dm dm 3m 2m 𝐓𝐀 + [⌈𝒍𝒐𝒈𝟐

𝑻⌉ + ⌈𝒍𝒐𝒈𝟐
(𝒅+𝟏)

⌉]𝐓𝐗 ⌈
𝒎

𝒅
⌉ +1

Note: d: digit size; w=⌈
𝑚

𝑑
⌉: number of words; f=⌈

𝑚𝑇

4
⌉; 𝑛 = ⌈

𝑚𝑇+1

𝑑
⌉;TA, TX, TL, TM and T3X denote time delay of a 2-input AND gate, 2-

input XOR gate, one bit Latch, and 2 to 1 multiplexer and 3-input XOR gate respectively; q = dk is consecutive coordinate to satisfy the

corresponding normal basis representation, where q ≥ mT/2 if m is even, and q ≥ (mT−T+2)/2 if m is odd; b: m = bi (i>1).

As seen in the Table 5 hardware utilization in the proposed structures is comparable with other digit-serial GNB

multipliers. The proposed digit-serial GNB multiplier requires 𝑑𝑚 AND gates and ≤ 𝑑𝑚+(𝑇-1)(𝑚-1) XOR gates.

The number of XOR gates is the lowest compared to other digit-serial structures. Hardware resources in recent

work [20] are more than that of present design; however, the latency in [20] is better. Table 6 shows FPGA

implementation results of the proposed architecture and work [7] on Virtex-4 XC4VLX100-ff1148for GF(2233)

and GF(2163). In the table hardware utilization, maximum frequency and execution time for different digit sizes

are reported.

Table 6: FPGA implementation results of the proposed architectures for GF(2233) and GF(2163)on Virtex-4 XC4VLX100-

ff1148
Works and Fields Digit size Area Fmax(MHz) Time (ns)

[7] DL-SIPO
GF(2163)

41 7229 Slices (12783 LUTs, 326 FFs) 153.846 26

11 1691 Slices (3365 LUTs, 326 FFs) 208.33 72

[7] DL- PISO

GF(2163)

41 7385 Slices (13218 LUTs, 378 FFs) 144.927 27.6

11 1899 Slices (3912 LUTs, 444 FFs) 175.438 85.5

Proposed method

GF(2163)

82 12075 Slices (23370 LUTs, 490 FFs) 207.108 14.484

41 6331 Slices (12265 LUTs, 490 FFs) 241.061 20.74

21 3432 Slices (6640 LUTs, 494 FFs) 269.879 33.345

11 1960 Slices (3800 LUTs, 502 FFs) 316.051 53.788

6 1184 Slices (2287 LUTs, 518 FFs) 355.075 78.856

Proposed method

GF(2233)

117 16782 Slices (32866 LUTs, 699 FFs) 207.751 14.439

59 8536 Slices (16743 LUTs, 699 FFs) 262.504 19.045

30 4394 Slices (8593 LUTs, 699 FFs) 318.210 28.287

15 2407 Slices (4657 LUTs, 699 FFs) 329.545 51.578

8 1458 Slices (2811 LUTs, 699 FFs) 394.594 83.622

It should be noted that in [7] number of D flip flops for output register in DL-PISO structure and for serial input

(A input) in the DL-SIPO structure have not been considered in the implementation. According to the Table 6,

the proposed work has better timing results than [7] on similar FPGA family Virtex-4 XC4VLX100-ff1148. For

example in field GF(2163) execution times of the proposed structures are 20.74ns and 53.788ns for two digit

sizes 41 and 11, respectively, which are better than execution time in [7] for similar digit sizes. Table 7 shows

area, critical path delay, and execution time of the proposed structure in 180nm CMOS technology by Synopsys

Design Vision tool. Results show a suitable trade-off between area and execution time, applicable for elliptic

curve cryptography systems.
Table 7: ASIC results of the proposed structures

Field Digit size Technology Area (µm2) Critical path delay (ns) Time (ns)

Proposed method

GF(2163)

82 180nm 1364592 7.47 22.41

41 180nm 690407 5.15 25.75

21 180nm 370341 3.61 32.49

11 180nm 212556 3.3 52.8

6 180nm 133525 3.13 90.77

Proposed method

GF(2233)

117 180nm 1879851 6.78 20.34

59 180nm 981012 5.4 27

30 180nm 519713 4.56 41.04

15 180nm 284420 3.31 56.27

8 180nm 177167 2.47 81.51

4. Conclusions

This paper presents an FPGA and ASIC implementation of an efficient hardware structure of the digit-serial

Gaussian normal basis multiplier over GF(2m). In the proposed structure by reviewing the multiplication

equation in normal basis, a regular structure for Gaussian normal basis multiplier is presented. The structure of

multiplier is based on exponentiation by powers of 2 and multiplication by normal element of GF(2m).

Therefore, the proposed architecture has low hardware complexity and low critical path delay. It is suitable for

high-speed hardware implementation of the finite field multiplication and inversion operations over GF(2m) for

elliptic curve cryptography.

References

[1] D. Hankerson, A. Menezes, S. Vanstone, “Guide to Elliptic Curve Cryptography”, Springer-Verlag, New York, 1st edn., 2004.
[2] Jenn-Shyong Horng, I-Chang Jou and Chiou-Yng Lee, “On complexity of normal basis multiplier using modified Booth’s

algorithm”, Proc. of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August

24-26, 2007, pp.12-17.
[3] C.W. Chiou, H.W. Chang, W.-Y.Liang, C.-Y.Lee, J.-M.Lin, Y.-C.Yeh, “Low-complexity Gaussian normal basis

multiplieroverGF(2m)”, IET Inf. Secur., 6(4), 2012, pp. 310-317.

[4] Chiou-Yng Lee,CheWunChiou, “Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector
Representation”, J Sign Process Syst (69), 2012, pp. 197-211.

[5] Reza Azarderakhsh and Arash Reyhani-Masoleh, “A Modified Low Complexity Digit-Level Gaussian Normal Basis

Multiplier”,Proc. Third Int’l Workshop Arithmetic of Finite Fields (WAIFI), June 2010, pp. 25-40.

[6] A. Reyhani-Masoleh, “Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases”, IEEE Trans.

Computers, 55(1), Jan. 2006, pp. 34-47.
[7] R. Azarderakhsh and A. Reyhani-Masoleh, “Low-Complexity Multiplier Architectures for Single and Hybrid-Double

Multiplications in Gaussian Normal Bases”, IEEE Trans. Comput., 62(4), Apr. 2013, pp. 744-757.

[8] Jenn-Shyong HORNG, I-Chang JOU, Chiou-Yng LEE, “Low-complexity multiplexer-based normal basis multiplier over GF(2m)”, J
Zhejiang UnivSci A 2009 10(6), pp. 834-842.

[9] T.-P. Chuang, C. WunChiou, S.-S.Lin, C.-Y. Lee, “Fault-tolerant Gaussian normal basis multiplier over GF(2m)”, IET Inf. Secur.,

2012, 6(3), pp. 157-170.
[10] A. Reyhani-Masoleh and M.A. Hasan, “Efficient Digit-serial Normal Basis Multipliers over Binary Extension Fields”, ACM

Trans.Embedded Computing Systems, vol. 3, no. 3, pp. 575-592, Aug.2004.

[11] C¸. K. Koc¸ and B. Sunar, “An Efficient Optimal Normal Basis Type II Multiplier over GF(2m)” IEEE Trans. Computers, 50(1), Jan.
2001,pp. 83-87.

[12] CheWunChiou, Chiou-Yng Lee and Yun-Chi Yeh, “Sequential Type-I Optimal Normal Basis Multiplier and Multiplicative Inverse

in GF(2m)”, Tamkang Journal of Science and Engineering, 13(4), 2010,pp. 423-432.
[13] A. Reyhani-Masoleh and M.A. Hasan, “Low Complexity Word-Level Sequential Normal Basis Multipliers,” IEEE Trans. Comput.,

54(2), Feb. 2005, pp. 98-110.

[14] Zhen Wang, Xiaozhe Wang, and Shuqin Fan, “Concurrent Error Detection Architectures for Field Multiplication Using Gaussian
Normal Basis”, Proc. of Information Security, Practice and Experience (ISPEC), LNCS 6047, 2010, pp. 96-109.

[15] CheWunChiou, Jim-Min Lin, Yu-Ku Li, Chiou-Yng Lee, Tai-Pao Chuang, and Yun-Chi Yeh, “Pipeline Design of Bit-Parallel

Gaussian Normal Basis Multiplier over GF(2m)”, Advances in Intelligent Systems and Computing, Springer, 238, 2014, pp. 369-377.

[16] Bayat-Sarmadi, S., Hasan, M.A.: Concurrent Error Detection in Finite-Filed Arithmetic Operations Using Pipelined and Systolic

Architectures. IEEE Trans. Comput., 58, 2009, pp. 1553-1567.

[17] Chiou, C. W., Chang, C. C., Lee, C. Y., Lin, J. M., & Hou, T. W., “Concurrent error detection and correction in Gaussian normal
basis multiplier over GF(2m)”, IEEE Trans Comput., 58 (6), 2009, pp. 851-857.

[18] Kwon, S., “A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type

II”, Proc. of 16th IEEE Symp. Computer Arithmetic, June 2003, pp. 196-202.
[19] C. Lee and P. Chang, “Digit-Serial Gaussian Normal Basis Multiplier over GF(2m) Using Toeplitz Matrix-Approach”, Proc. Int’l

Conf. Computational Intelligence and Software Eng. (CiSE), 2009, pp. 1-4.
[20] Reza Azarderakhsh, Mehran Mozaffari Kermani, Siavash Bayat-Sarmadi, and Chiou-Yng Lee, “Systolic Gaussian Normal Basis

Multiplier Architectures Suitable for High-Performance Applications”, IEEE Trans on Very Large Scale Integration (VLSI)

Systems, (99), 2014, pp.1-4.
[21] Yong sukcho, Jae Yeon Choi, “A new Word-parallel bit-serial Normal basis multiplier over GF(2m)”, International Journal of control

and Automation, 6(3), June 2013, pp. 209-216.

[22] Chiou-Yng Lee, “Concurrent error detection architectures for Gaussian normal basis multiplication over GF(2m)”, Integration, the
VLSI journal, 43, 2010, pp. 113-123.

[23] Wang, Z., Fan, S., “Efficient montgomery-based semi-systolic multiplier for even-type GNB of GF(2m)”, IEEE Trans. Comput., 61(3),

2012, pp. 415-419.
[24] Jeng-Shyang Pan, Chiou-Yng Lee, Yao Li, “Subquadratic space complexity Gaussian normal basis multipliers over GF(2m) based on

Dickson–Karatsuba decomposition”, IET Circuits Devices Syst., 2015, 9(5), pp. 336–342.

[25] D.W. Ash, I.F. Blake, and S.A. Vanstone, “Low Complexity Normal Bases”, Discrete Applied Math., 25, 1989, pp. 191-210.

[26] IEEE P1363: Editorial Contribution to standard for Public Key Cryptography, 2003.
[27] Federal Information Processing Standards Publications (FIPS)186-2, U.S. Department of Commerce/NIST: Digital Signature

Standard (DSS), 2000.

