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Abstract. In this paper, we consider three very important issues namely detection,
identification and robustness of k-out-of-n secret sharing schemes against rushing cheaters
who are allowed to submit (possibly forged) shares after observing shares of the hon-
est users in the reconstruction phase. Towards this we present five different schemes.
Among these, first we present two k-out-of-n secret sharing schemes, the first one being
capable of detecting (k− 1)/3 cheaters such that |Vi| = |S|/ε3 and the second one being
capable of detecting n − 1 cheaters such that |Vi| = |S|/εk+1, where S denotes the set
of all possible secrets, ε denotes the successful cheating probability of cheaters and Vi
denotes set all possible shares. Next we present two k-out-of-n secret sharing schemes,
the first one being capable of identifying (k − 1)/3 rushing cheaters with share size |Vi|
that satisfies |Vi| = |S|/εk. This is the first scheme whose size of shares does not grow
linearly with n but only with k, where n is the number of participants. For the second
one, in the setting of public cheater identification, we present an efficient optimal cheater
resilient k-out-of-n secret sharing scheme against rushing cheaters having the share size
|Vi| = (n − t)n+2t|S|/εn+2t. The proposed scheme achieves flexibility in the sense that
the security level (i.e. the cheater(s) success probability) is independent of the secret
size. Finally, we design an efficient (k, δ) robust secret sharing secure against rushing
adversary with optimal cheater resiliency. Each of the five proposed schemes has the
smallest share size having the mentioned properties among the existing schemes in the
respective fields.

Keywords: Secret Sharing, Cheating Detection, Cheater Identification, Robustness,
Rushing Cheaters, Universal Hash, Reed-Solomon Code.

1 Introduction

In the basic form of secret sharing scheme, it is assumed that everyone involved in the
protocol is honest or semi honest. But in the real life scenario, this assumption may
not hold good. It may happen that some participants behave maliciously during the
execution of the protocol. Malicious participants may submit incorrect shares resulting
in incorrect secret. This observation leads to some interesting protocols viz. cheating



detectable secret sharing scheme (CDSS), cheater identifiable secret sharing scheme
(CISS), robust secret sharing scheme (RSS), verifiable secret sharing scheme (VSS).

However, most schemes known so far implicitly assume existence of fully simultane-
ous network, and they do not deal with cheating by rushing cheaters who submit their
shares after observing shares of honest users. Constructing a secret sharing scheme se-
cure against rushing cheaters is important in many real life applications. For example,
consider the following scenario where there is no trusted party to reconstruct a secret
and to detect/identify cheaters, and each user independently reconstructs the secret by
receiving shares of the other users sent through the network which is not fully simul-
taneous. Since the network is not fully simultaneous, rushing cheaters can determine
how to forge their shares after receiving shares of honest users. Rushing cheaters are
so powerful that it is difficult to construct a scheme with small share size. In fact,
most of efficient schemes whose bit lengths of shares do not grow linearly with n (i.e.,
the number of participants) (e.g., [20, 7, 29, 26, 2, 1, 25]) are vulnerable to cheating by
rushing cheaters.

In this paper we study k-out-of-n secret sharing schemes secure against rushing
cheaters with the following properties:

– secret reconstruction algorithm is allowed to perform multiple rounds of interaction
with shareholders,

– t or less (computationally unlimited) rushing cheaters who submit their shares after
observing shares of honest users are detected/identified with probability 1− ε even
when k shares are submitted in secret reconstruction,

– secret will be reconstructed with probability 1− ε even when k − 1 or less rushing
cheaters manipulate their shares at the time of submission when all the honest
participants participate in secret reconstruction,

– probability distribution of a secret does not affect the successful cheating probabil-
ity ε of rushing cheaters.

1.1 State of the Art and Our Results

Tompa and Woll [37] first presented a cheating detectable secret sharing scheme
(CDSS). That work is followed by several other works (for example, [2, 1, 12, 7, 26,
29]). However, all these schemes can only detect cheating, without revealing the exact
identity of the cheaters, who submitted incorrect shares.

McElice and Sarwate [22] pointed out cheater identification in secret sharing schemes
by observing the connection between Shamir threshold scheme and Reed-Solomon er-
ror correcting codes. However, such approach requires more than k participants in the
reconstruction phase of a (k, n) threshold secret sharing scheme to identify cheaters.
The question is whether cheater identification is possible or not with the minimum
number of shares (namely k), which are required to reconstruct the secret. Cheater
Identifiable Secret Sharing (CISS) is the answer to this question. There are two types
of cheater identification in secret sharing: private as e.g. in [31, 8, 28] and public as e.g.
in [20, 25, 10, 40]. A reconstruction algorithm of CISS with public cheater identification
can be run by an external entity. This is an essential advantage of CISS with public
cheater identification over those with private one. However, CISS with public cheater
identification is only possible for the case of honest majority [20, 25], while for the case
of CISS with private cheater identification honest majority is not required [17]. Many



CISS schemes with different features appear in the literature. The schemes differ on
the number of tolerable cheaters, type of the adversary (rushing or not), reconstruction
efficiency, and flexibility (security level is flexible or not). We call the scheme flexible,
when the security level (i.e. success probability of the cheater(s)) can be set indepen-
dently, i.e., independent of the secret size. Flexibility provides the power of partial
customization of length of random strings, according to the requirement.

To have a comparison among the schemes present in the literature, let us first fix
the notations. Here, we denote the number of malicious or cheating participants by t
in a (k, n) CISS, where k − 1 denotes the number of semi-honest participants and n
denotes the total number of participants. It has been proved in [20] and [25] that a
CISS scheme, with public cheater identification, capable of identifying up to t cheaters,
is possible if and only if t < k/2. So any publicly cheater identifiable CISS scheme with
k = 2t+ 1 is said to be an optimal cheater resilient. The lower bound [20] on the share

size |Vi| of such schemes is |Vi| ≥ |S|−1
ε + 1, where |S| is the size of the secret and ε

is cheater’s success probability. In [25], two publicly cheater identifiable CISS schemes
with optimal cheater resilience were proposed. However, both of them were inefficient.
Choudhury [10] came up with an efficient solution, but the scheme in [10] deals with
multiple secrets. In the case of a single secret, the scheme of [10] is not an optimal
one. One improvement came from Xu et al. [40] but they did not achieve the optimal
share size. Moreover, their scheme is not an optimal cheater resilient as it tolerates
t < k/3 cheaters. In [34], Roy et al. provided a CISS scheme with better share size
than [10] with optimal cheater resilience. Xu et. al. [41] further proposed an optimal
cheater resilient CISS with improved share size.

Though, cheating detectable and identifiable schemes make it apparent that cheat-
ing has occurred, they do not necessarily permit honest participants to recover the
correct secret. This observation led to another important primitive in the literature
of secret sharing known as robust secret sharing schemes [31]. Informally, robust se-
cret sharing schemes allow the correct secret to be recovered even when some of the
shares presented during an attempted reconstruction are incorrect. Informally, the
main goal of RSS is to ensure successful reconstruction of a correct secret (possibly
from more than a threshold of k shares), while disregarding identities of the cheaters.
RSS provides the guarantee of correct secret reconstruction even in presence of ma-
licious participants. In case of up to k cheaters among n (≥ 3k − 2) participants, it
was observed by McEliece and Sarwate [22] that Shamir’s secret sharing scheme [35]
is by itself robust via its connection to the Reed-Solomon codes. However, for the case
when n = 2k − 1, the above observation does not work. One solution to this problem
considered, e.g., by Rabin and Ben-Or [31] is for the dealer to authenticate shares using
some message authentication code [38], resulting a large overhead which is defined as
the total share size minus the size of the secret. In other words, the overhead can be
seen as the number of bits added to the share in order to achieve security against ma-
licious adversary. Therefore, the main point in optimization of robust secret sharing is
to reduce the overhead needed for ensuring robustness while efficiently reconstructing
the secret. If efficient reconstruction is not required and n ≥ 2k then one may use the
ideal (i.e. without any overhead) scheme by Jhanwar and Safavi-Naini [18]. The case
n ≥ 2k − 1 can also be handled by the scheme of Cramer et al. [12] which features
a constant overhead. Finally, a (quasi-)linear overhead in the number of players and
the security parameter with efficient reconstruction was achieved by Cevallos et al. [9].



Roy et al. [33] further reduced the overhead of Cevallos et al. scheme [9] by applying
an authentication tag compression technique of Carpentieri [8]. Very recently, Cramer
et al. [11] presented a robust secret sharing scheme with constant share size. But unlike
our work, this scheme only works for non-rushing cheaters.

Our Contribution: The contributions of the paper are to present five efficient k-out-
of-n secret sharing schemes.

1. We present two CDSS which are all the first scheme in each model such that the
bit length of shares does not grow linearly with n. We compare the properties of the
existing CDSS schemes in Table 1.

Table 1. Comparison of Proposed CDSS with Existing CDSS

Scheme #Cheaters Share Size Rushing

[7] t < k |Vi| = |S|/ε2 No

[27] t < n |S|( k−1
ε

)2 No

Proposed t < k/3 |Vi| = |S|/ε3 Yes

Proposed t < n |Vi| = |S|/εk+1 Yes

2. We also present two public CISS schemes against rushing cheaters. We compare
the properties of existing CISS schemes with public cheater identification in Table 2.

Table 2. Comparison of Proposed CISS with Existing CISS

Scheme #Cheaters Share Size Efficiency Rushing Flexibility

[20] t < k/3 |Vi| = |S|/εt+2 Yes No Yes

[25] t < k/3 |Vi| = |S|/ε Yes No Yes

[40] t < k/3 |Vi| = |S|/εn−t+1 Yes Yes No

Proposed t < k/3 |Vi| = |S|/εk Yes Yes No

[25] t < k/2 |Vi| ≈ (n.(t+ 1).23t−1|S|)/ε No No No

[25] t < k/2 |Vi| ≈ ((n.(t+ 1).23t)2|S|)/ε No No No

[10]∗ t < k/2 |Vi| = (t+ 1)3n|S|/ε3n Yes Yes No

[34] t < k/2 |Vi| = (t+ 1)2n+k−3|S|/ε2n+k−3 Yes Yes No

[41]∗∗ t < k/2 |Vi| = (n− t)n+t+2|S|/εn+t+2 Yes Yes No

Proposed t < k/2 |Vi| = (n− t)n+2t|S|/εn+2t Yes Yes Yes

∗ Share size with respect to a single secret.
∗∗ With an additional assumption that the adversary can only corrupt k participants who take

part in the reconstruction phase, Xu et al. get even smaller share size, however we list their
share size in the general case for a fair comparison.

From Table 2 we can see that our share size is smaller than all the other schemes
within the same category except for that of Xu et. al. [41]. But, in case of t = 1, share
size of proposed CISS is smaller than [41] and same in case of t = 2. However our
scheme provides flexibility in the security level which is not a feature of the scheme



[41]. We achieve flexibility by adapting authentication technique from [39]. Recently,
Xu et. al. presented a scheme capable of identifying up to (k − 1)/3 rushing cheaters
[40]. The size of shares |Vi| of the scheme is |Vi| = |S|/εn−t+1 and the bit size of shares
still grows linear in n. We proposed a scheme capable of identifying (k − 1)/3 rushing
cheaters which achieves the smallest size of shares when k < 3

4n+ 1 and the bit size of
shares does not grow linear in n.

3. Our last scheme is a RSS scheme secure against rushing cheaters. We compare
the share sizes of the existing efficient RSS schemes in Table 3. In this paper, we
further reduce the overhead of construction proposed in [33] by adapting authentication
technique from [39]. Since the schemes [9] and [33] are nearly-optimal, we achieve a
constant factor (2/3) improvement in the overhead.

Table 3. Comparison of Proposed RSS with Existing Efficient RSS

Scheme Overhead (bits)

Rabin and Ben-Or [31] 3(n− 1)(2log(k) + µ)

Cevallos et al. [9] 3(n− 1)(log(k) + log(m) + 2
k

(µ+ log(e)))

Roy et al. [33] (2n+ k − 3)(log(k) + log(N) + 2
k

(µ+ log(e)))

Proposed (n+ k − 1)(log(k) + log(N) + 2
k

(µ+ log(e)))

Here, m is the bit length of the secret and m is an integer multiple of N , k − 1 is the number of
cheaters, n = 2k − 1 is the number of total participants, e = exp(1), and µ is the security parameter
s.t. the scheme fails to reconstruct the authentic secret with probability at most 2−µ.

2 Preliminaries

2.1 Secret Sharing Schemes

In the model of secret sharing schemes, there are n users P = {P1, . . . , Pn} and a
dealer D. The set of users who are allowed to reconstruct the secret is characterized
by an access structure Γ ⊆ 2P ; that is, users Pi1 , . . . , Pik are allowed to reconstruct
the secret if and only if {Pi1 , . . . , Pik} ∈ Γ . The model consists of two algorithms: a
share generation algorithm ShareGen and a secret reconstruction algorithm Reconst.
The share generation algorithm ShareGen takes a secret s ∈ S as input and outputs
a list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a user Pi. In a
usual setting, ShareGen is invoked by the dealer. The secret reconstruction algorithm
Reconst takes a list of shares and outputs a secret s ∈ S.

A secret sharing scheme SS = (ShareGen,Reconst) is called perfect if the follow-
ing two conditions are satisfied for the output (v1, . . . , vn) of ShareGen(ŝ) where the
probabilities are taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik} ∈ Γ then Pr[Reconst(vi1 , . . . , vik) = ŝ] = 1,

2. if {Pi1 , . . . , Pik} 6∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik = vik ] = Pr[S = s] for any
s ∈ S.

We note that only perfect secret sharing schemes are dealt with in this paper.



2.2 Cheating Detectable Secret Sharing against Rushing Cheaters

Tompa and Woll [37] considered the scenario in which cheaters who do not belong to the
access structure submit forged shares in the secret reconstruction phase. Such cheaters
will succeed if the other users participating in the reconstruction accept an incorrect
secret. In this paper, we consider very powerful cheaters called rushing cheaters who
submit forged shares after observing shares of honest users.

As in the ordinary secret sharing schemes, the model of cheating detectable secret
sharing scheme against rushing cheaters consists of two algorithms. A share generation
algorithm ShareGen is the same as that in the ordinary secret sharing schemes. A secret
reconstruction algorithm Reconst is slightly changed: the reconstruction algorithm is
modeled as an interactive Turing machine which interacts with users multiple times,
and users release a part of their shares to Reconst in each round. Therefore, Reconst

takes round identifier rid, user identifier Pi, and part of share v
(rid)
i and state informa-

tion stateR as input and outputs updated state information. When interactions with
users are finished, Reconst outputs either the secret or the special symbol ⊥ (⊥ 6∈ S.)
Reconst outputs ⊥ if and only if cheating has been detected.

Figure 1 below models the interaction between users and the reconstruction al-
gorithm Reconst. Here, a pair of Turing machine A = (A1,A2) representing rushing
cheaters Pi1 , . . . , Pit who try to cheat honest users Pit+1 , . . . , Pim . In the GameRushing(SS,

GameRushing(SS,A)

s← S (according to the probability distribution over S)
(v1, . . . , vn)← ShareGen(s)
((i1, . . . , it), (it+1, . . . , im), stateC)← A1()
stateR ← ∅
for rid = 1 to RidMax do

for ` = t+ 1 to m do

stateR ← Reconst(rid, Pi` , v
(rid)
i`

, stateR)

done

((v
′(rid)
i1

, . . . , v
′(rid)
it

), stateC)← A2(rid, (v
(rid)
it+1

, . . . , v
(rid)
im

), (vi1 , . . . , vit), stateC)

for ` = 1 to t do

stateR ← Reconst(rid, Pi` , v
′(rid)
i`

, stateR)

done
done
output← Reconst(·, ·, stateR)

Fig. 1. Game between Reconst and rushing cheaters for CDSS and CISS

A), A1 first chooses rushing cheater Pi1 , . . . , Pit to cheat users Pit+1 , . . . , Pim . Next, in

each round, A2 determines forged share (v
′(rid)
i1

, . . . , v
′(rid)
i1

) to be submitted by rushing

cheaters. Note that A2 takes shares (v
(rid)
it+1

, . . . , v
(rid)
im

) as input in determining forged
shares, which captures the rushing capability of cheaters.

The successful cheating probability ε(SS,A) of the cheatersA against SS = (ShareGen,
Reconst) is defined by

ε(SS,A) = Pr[s′ ← Reconst(·, ·, stateR) : s′ ∈ S ∧ s′ 6= s] ,



where the probability is taken over the distribution of S, and the random tapes of
ShareGen and A. The security of cheating detectable secret sharing schemes against t
rushing cheaters are defined as follows:

Definition 1. A k-out-of-n secret sharing SS = (ShareGen,Reconst) is called (t, ε)
cheating detectable against rushing cheaters if ε(SS,A) ≤ ε for any adversary A.

2.3 Cheater Identifiable Secret Sharing against Rushing Cheaters

The model of cheater identifiable secret sharing also consists of a share generation
algorithm ShareGen and a secret reconstruction algorithm Reconst. As in the model of
(t, ε) cheating detectable secret sharing, ShareGen takes a secret as input and outputs
a list of shares (v1, . . . , vn) and Reconst is also modeled as interactive Turing machine
which interacts with users multiple times. The input of Reconst is the same as cheat-
ing detectable secret sharing, but final output is slightly different: Reconst in cheater
identifiable secret sharing outputs (ŝ, ∅) if no cheating is detected. On the other hand,
if Reconst detects cheating, it outputs (⊥, L) where ⊥ is a special symbol indicating
detection of cheating and L is a list of cheaters.

The security of cheater identifiable secret sharing is formalized through the same
game defined in Figure 1. The cheater Pij , submitting an invalid share, succeeds in
cheating if Reconst fails to identify Pij as a cheater. The successful cheating proba-
bility of Pij against SS = (ShareGen,Reconst) is denoted as ε(SS,A, Pij ) where the
probability ε(SS,A, Pij ) is defined by

ε(SS,A, Pij ) = Pr[(s′, L)← Reconst(·, ·, stateR) : ij 6∈ L].

Based on the above definition, we define the security of secret sharing schemes
capable of identifying cheaters who submit forged shares as follows:

Definition 2. A k-out-of-n threshold secret sharing scheme SS = (ShareGen,Reconst)
is called a (t, ε) cheater identifiable secret sharing scheme if (1) ε(SS,A, Pj) ≤ ε for
any A representing set of t or less cheaters L, and for any cheater Pj ∈ L who submits
forged share v′j 6= vj. (2) Pi 6∈ L for any user Pi who does not forge its share.

2.4 Robust Secret Sharing against Rushing Cheaters

McEliece and Sarwate [22] considered the scenario in which cheaters submit forged
shares in the secret reconstruction phase. Such cheaters will succeed if the other users
participating in the reconstruction accept an incorrect secret. In this paper, we consider
rushing cheaters.

As in the ordinary (k, n) secret sharing schemes, the model of robust secret sharing
scheme against rushing cheaters consists of two algorithms. A share generation algo-
rithm ShareGen is the same as that in the ordinary secret sharing schemes. A secret
reconstruction algorithm Reconst is changed: the reconstruction algorithm is modeled
as an interactive Turing machine which interacts with users multiple times, and users
release a part of their shares to Reconst in each round. Therefore, Reconst takes round

identifier rid, user identifier Pi, and part of share v
(rid)
i and state information stateR

as input and outputs updated state information. When interactions with users are
finished, Reconst outputs the secret.



Figure 2 below models the interaction between users and the reconstruction al-
gorithm Reconst. Here, a pair of Turing machine A = (A1,A2) representing rushing
cheaters Pi1 , . . . , Pik−1

who try to cheat honest users Pik , . . . , Pin . In the GameRushing(SS,

GameRushing(SS,A)

s← S (according to the probability distribution over S)
(v1, . . . , vn)← ShareGen(s)
((i1, . . . , ik−1), (ik, . . . , in), stateC)← A1()
stateR ← ∅
for rid = 1 to RidMax do

for ` = k to n do

stateR ← Reconst(rid, Pi` , v
(rid)
i`

, stateR)

done

((v
′(rid)
i1

, . . . , v
′(rid)
ik−1

), stateC)← A2(rid, (v
(rid)
ik

, . . . , v
(rid)
in

), (vi1 , . . . , vik−1), stateC)

for ` = 1 to k − 1 do

stateR ← Reconst(rid, Pi` , v
′(rid)
i`

, stateR)

done
done
output← Reconst(·, ·, stateR)

Fig. 2. Game between Reconst and rushing cheaters for RSS

A), A1 first chooses rushing cheater Pi1 , . . . , Pik−1
and users Pik , . . . , Pin to cheat. Next,

in each round, A2 determines forged share (v
′(rid)
i1

, . . . , v
′(rid)
ik−1

) to be submitted by rush-

ing cheaters. Note thatA2 takes shares (v
(rid)
ik

, . . . , v
(rid)
in

) as input in determining forged
shares, which captures the rushing capability of cheaters.

The successful cheating probability ε(SS,A) of the cheatersA against SS = (ShareGen,
Reconst) is defined by

ε(SS,A) = Pr[s′ ← Reconst(·, ·, stateR) : s′ ∈ S ∧ s′ 6= s] ,

where the probability is taken over the distribution of S, and the random tapes of
ShareGen and A. The security of robust secret sharing schemes against k − 1 rushing
cheaters are defined as follows:

Definition 3. A k-out-of-n secret sharing SS = (ShareGen,Reconst) is called ε robust
against rushing cheaters if ε(SS,A) ≤ ε for any adversary A.

2.5 Building Blocks of Proposed Schemes

In this subsection we briefly review building blocks of proposed schemes: Reed-Solomon
code, almost strongly universal family of hash function, and k-wise independent ran-
dom variables.

Strongly Universal Family of Hash Function: Here, we will review the definitions
and constructions of strongly universal families of hash function.

Definition 4. A family of hash function H : A → B is called ε almost strongly uni-
versal family of hash function (ε-ASU2 for short) if it satisfies following two conditions:



1. |{h | h ∈ H, h(a) = b}| = |H|/|B| holds for any a ∈ A and for any b ∈ B.
2. For any distinct a, a′ ∈ A and for any b, b′ ∈ B, the following equality holds:

|{h | h ∈ H, h(a) = b, h(a′) = b′}|
|{h | h ∈ H, h(a) = b}|

≤ ε

H is called strongly universal family of hash function (SU2 for short) if ε = 1/|B|.

We define a key e of ASU2 to specify an element of a hash family H and use a notation
he to denote an element of the H specified by the key e. It is obvious that the size of
keys of hash family is identical to the size of hash family |H|.

The subscripts 2 of ASU2 denotes the strength of hash families, and we can define
the notion of strongly universal hash family SUt of strength t for t ≥ 2 as follows:

Definition 5. A family of hash function H : A → B is called strongly universal
family of hash function of strength t (SUt for short) if |{h | h ∈ H, h(ai) = bi(i =
1, . . . , j)}| = |H|/|B|j hold for any distinct a1, a2, . . . , aj ∈ A, for any (not necessarily
distinct) b1, b2, . . . , bj ∈ B and for any j ≤ t.

Here, we will review some known constructions of (almost) strongly hash families
which we will use in the proposed schemes. In [15], the following efficient ASU2 based
on polynomials over a finite field is proposed.

Proposition 1. Let e0, e1 ∈ Fp and s = (s1, . . . , sN ) ∈ FpN , then the hash family

H1,N : FpN → Fp defined by H1,N = {h1,N,(e0,e1) | he0,e1(s) = e0+s1e1+s2e
2
1+· · · sNeN1 }

is N/p-ASU2. Furthermore, the hash family H1,1 : Fp → Fp is SU2.

It is well known that strongly universal hash families with higher strength are also
constructed based on polynomials over a finite field as follows:

Proposition 2. Let e0, e1, . . . , et−1 ∈ Fp and s ∈ Fp, then the hash family H2,t :
Fp → Fp defined by H2,t = {h2,t,(e0,e1,...,et−1) | h2,t,(e0,e1...,et−1)(s) = e0 + e1s + e2s

2 +
· · · et−1st−1} is SUt.

Proposition 3. Let e0, e1 ∈ Fp and si = (si,1, . . . , si,N ) ∈ FpN , then the hash family

H3,N : FpN → Fp defined by H3,N = {h3,N,(e0,e1,1,e1,2,...,e1,n) | he0,e1,i(si) = ΣN
l=1e

l
0.si,l +

e1,i} is N/p-ASU2. Furthermore, h3,N,(e0,e1,1,e1,2,...,e1,n) an be used to authenticate n
messages.

This proposition is an adaption of the universal hash family by Wegman and Carter
[39].

Proof. Denote by ai = he0,e1,i(si), we calculate the probability that the forged message
and authentication tag are accepted by the authentication key. We assume the oppo-
nent tries her forge after seeing n pairs of message and tag pairs {s1, a1, . . . , sn, an}
and substitutes all the n messages and tags by {s′1, a′1, . . . , s′n, a′n}. The substitution
probability is

Pr[at least one forged message-tag pairs in {s′1, a′1, . . . , s′n, a′n} is accepted

| {s1, a1, . . . , sn, an} are accepted ]



Denote by E1 the event that “at least one forged message-tag pairs in {s′1, a′1, . . . , s′n, a′n}
is accepted”, and by E2 the event that “{s1, a1, . . . , sn, an} are accepted ”.

We first count how many keys satisfy event E2. This is given by the following
system of equations.

ΣN
l=1e

l
0.s1,l + e1,i = a1 (1)

ΣN
l=1e

l
0.s2,l + e1,i = a2 (2)

· · · = · · · (3)

ΣN
l=1e

l
0.sn,l + e1,i = an (4)

Taking e0, e1,1, e1,2, . . . , e1,n as unknowns, for any fixed value of e0, there exists one
and only one solution for this system of equations. Thus, there are in total p solutions
to the following equation system. More importantly, each possible key appears with
equal probability.

Next we count how many keys satisfy both events E1 and E2. The keys which
satisfy both events must in addition satisfy at least one of the following n equations.
In the following equations, we assume that s′i,j 6= si,j for all j ∈ [N ]. This is quite a
natural assumption since the opponent wants to forge the messages she would choose
a different message other than what is sent by the transmitter. The reason that we
assume all the forged messages are different from the authentic ones is simply because
this case maximizes the successful probability of a substitution attack by the opponent.

ΣN
l=1e

l
0.s
′
1,l + e1,i = a′1 (5)

ΣN
l=1e

l
0.s
′
2,l + e1,i = a′2 (6)

· · · = · · · (7)

ΣN
l=1e

l
0.s
′
n,l + e1,i = a′n (8)

If we subtract Eq.(9) by Eq.(13), we get ΣN
l=1e

k
0.(s1,l−s′1,l) = a1−a′1. We rephrase it as

f(e0) = ΣN
l=1e

k
0.(s1,l−s′1,l)− (a1−a′1) = 0. The function f(e0) represents a polynomial

of degree at most N in the variable e0. Since s1 6= s′1, for any (s′1, a
′
1) of the opponent’s

choice, f(e0) 6= 0. Thus there exist at most N values of e0 satisfying Eqs.(9) and
Eq.(13). We record these values e∗0,1,1, . . . , e

∗
0,1,N . This means, the forged message-tag

pair s′1, a
′
1 would not be accepted as authentic if and only e0 ∈ F \ {e∗0,1,1, . . . , e∗0,1,N}.

The same arguments hold for message-tag pairs s′i, a
′
i, that is s′i, a

′
i will not be accepted

as authentic if and only if e0 ∈ F \ {e∗0,i,1, . . . , e∗0,i,N}, for any i ∈ [n]. So for any value
of {s′1, a′1, . . . , s′n, a′n}, there are at most p − (p − N · n) = N · n keys satisfying the
first equation system and at least one equation from the second equation system. In a
nutshell, there are in total at most N · n keys satisfying both event E2 and event E1.
Pr[E1|E2] ≤ N ·n/p. It is easy to show that for any particular (s′i, a

′
i) with s′i 6= si, the

probability that it is accepted as authentic is N/p = N/|F|. Hence, the proposition. ut

k-wise Independent Random Variables: k-wise independent random variables is
used to construct schemes presented in Sections 4 and 6.

Definition 6. Random variables X1, . . . , Xn over a finite set S is called k-wise inde-
pendent if Pr[Xi1 = αi1 , . . . , Xik = αik ] = 1/pk holds for any k indices i1, . . . , ik ∈
{1, . . . , n} and for any αi1 , . . . , αik ∈ S where p is a cardinality of finite set S.



It is well known that a polynomials of degree k − 1 over a finite field form a k-wise
independent random variables.

Proposition 4. Let a polynomial r(x) = r0+r1x+· · ·+rk−1xk−1 be a randomly chosen
polynomial over Fp. Then X1 = r(1), X2 = r(2), . . . , Xn = r(n) is k-wise independent
random variables over Fp.

We note that the size of memory to store the above k-wise independent variables
X1, . . . , Xn is pk since it suffice to store all the coefficients of r(x).

Reed-Solomon Error Correcting Code: Let C(x) ∈ Fp be a polynomial of degree
at most t, and let i1, . . . , ik are distinct elements of Fp then it is well known that
(C(i1), C(i2), . . . , C(ik)) constitutes a codeword of Reed-Solomon code with minimum
hamming distance k−t. Therefore, when k ≤ 3t+1 (i.e., t < k/3) holds, Reed-Solomon
code corrects up to t errors with probability 1. Since the capability of Reed-Solomon
code to identify cheaters in secret sharing schemes was first pointed out by McEliece
and Sarwate [22], Reed-Solomon code has played the central role in secret sharing
scheme capable of preventing cheating by (k− 1)/3 cheaters. In fact, it has been used
to identify up to (k − 1)/3 cheaters in various schemes [20, 25, 40].

3 A Scheme Capable of Detecting (k − 1)/3 Rushing Cheaters

In this section, we present a scheme capable of detecting cheating by (k−1)/3 rushing
cheaters. The scheme is constructed based on the schemes presented in [7, 26] which
are capable of identifying k − 1 non-rushing cheater.

The basic idea of the proposed scheme is as follows. The share generation algorithm
ShareGen generates shares (vs,1, . . . , vs,n) of a secret s using Shamir’s (k, n) threshold
scheme. The share generation algorithm also generate shares (ve,1, . . . , ve,n) for a key e
of almost strongly universal hash family H : S → H using Shamir’s (t+1, n) threshold
scheme. Furthermore, ShareGen generates shares (va,1, . . . , va,n) for hash value a =
he(s) using Shamir’s (k, n) threshold scheme. The share vi of user Pi is of the form
vi = (vs,i, ve,i, va,i).

Since vs,i and va,i are shared using (k, n) threshold scheme, k − 1 users do not
obtain any information about the secret even if they know the value of the key e.
To guarantee security against t rushing cheaters, The secret reconstruction algorithm
Reconst receives part of share (vs,i, va,i) from Pi (i = 1, 2, . . . , k) in the first round, and
then receives ve from Pi in the second round. Since the key e of hash family is shared
using (t + 1, n) threshold scheme, t rushing cheaters do not obtain any information
about e even at the end of the first round. Therefore, the cheater cannot guess correct
hash value a′ for a forged secret s′ in the first round. Further, from the error correcting
capability of (t+1, n) threshold scheme, rushing cheaters cannot alter the value of e no
matter what shares they submit in the second round. The above discussion, together
with the properties of ASU2, directly derives the security of the scheme against rushing
cheaters. The complete description of the scheme is given as follows.

Share Generation: On input a secret s ∈ FpN , the share generation algorithm outputs
a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ FpN [X] of degree k−1 such that fs(0) = s.



2. Generate random polynomials Ce0(x), Ce1(x) ∈ Fp[X] of degree t. We will use
(e0, e1) = (Ce0(0), Ce1(0)) as a key of H1,N .

3. Generate a random polynomial a(x) ∈ Fp of degree k − 1 such that a(0) =
h1,N,(e0,e1)(s).

4. Output a list of share (v1, . . . , vn) where vi = (fs(i), Ce0(i), Ce1(i), a(i)).

Secret Reconstruction: On input m shares (vi1 , . . . , vim) (where m ≥ k and vi =
(vs,i, ve0,i, ve1,i, va,i) for 1 ≤ i ≤ n), the secret reconstruction algorithm outputs s or ⊥
according to the following procedure:

1. [Round 1] Receive (vs,i1 , va,i1), . . . , (vs,im , va,im) from Pi1 , . . . , Pim , respectively.
2. [Round 2] Receive (ve0,i1 , ve1,i1), . . . , (ve0,im , ve1,im) from Pi1 , . . . , Pim , respectively.
3. Reconstruct Ce0(x) and Ce1 from ve0,i1 , . . . , ve0,im and ve1,i1 , . . . , ve1,im , respectively,

using a decoding algorithm of generalized Reed-Solomon Code (e.g., Berlekamp-
Welch algorithm), and compute e0 = Ce0(0) and e1 = Ce1(0).

4. Output ⊥ if error is detected.
5. Reconstruct ŝ = fŝ(0) and â = fâ(0) from vs,i1 , . . . , vs,im and va,i1 , . . . , va,im , re-

spectively.
6. Output ŝ if h1,N,(e0,e1)(ŝ) = â holds. Otherwise, output ⊥.

Theorem 1. If t < k/3 holds then the above scheme is (t, ε) cheating detectable k-
out-of-n secret sharing scheme against rushing cheaters such that |S| = pN , ε = N/p,

and |Vi| = pN+3 ≈ |S|( log |S|
ε log(1/ε))

3. In particular, |Vi| = |S|/ε3 holds when N = 1.

Proof. First, we will prove the scheme is perfect. Suppose that users Pi1 , . . . , Pik−1

try to compute any partial information about the secret s. Since vs,i1 , . . . , vs,ik−1
is

generated using Shamir’s (k, n) threshold scheme, they do not obtain any information
about the secret from vs,i1 , . . . , vs,ik−1

. Therefore, the scheme is proven to be perfect if
the equations h1,N,(e0,e1)(s) = a does not reveal any information about the secret. Since
shares ve0,i and ve1,i are generated using Shamir’s (t, n) threshold scheme, Pi1 , . . . , Pik−1

obtain values of e0 and e1 from their shares. However, since a share va,i is generated
using Shamir’s (k, n) threshold scheme, Pi1 , . . . , Pik−1

obtain no information about the
value h1,N,(e0,e1)(s). Therefore, they do not obtain any information about the secret s
even if they know e0 and e1, which shows that the scheme is perfect.

Next, we prove that if t < k/3 the scheme is (t, ε) cheating detectable. Here,
we consider the worst case where just k users P1, . . . , Pk take part in secret recon-
struction. Without loss of generality, we can assume P1, . . . , Pt are cheater who try
to fool Pt+1, . . . , Pk by submitting (v′1, . . . , v

′
t) to the secret reconstruction algorithm.

Since cheaters are rushing, cheaters know all values of s (a value secret reconstructed
from (vs,1, vs,2, . . . , vs,k)), s

′ (a value reconstructed from (v′s,1, . . . , v
′
s,t, vs,t+1 . . . , vs,k)),

a (a value reconstructed from (va,1, va,2, . . . , va,k)) and a′ (a value reconstructed from
(v′a,1, . . . , v

′
a,t, va,t+1 . . . , va,k)) after observing part of shares (vs,i, va,i) submitted by

honest users Pt+1, . . . , Pk in the first round. However, at this stage, cheaters do not
obtain any information about the values of e0 and e1 since they are shared among users
using Shamir’s (t, n) threshold scheme. Moreover, even rushing cheaters cannot forge
part of their shares (ve0,i, ve1,i) in order to alter the values of e0 and e1 reconstructed.
In fact, if cheater Pi forge (ve0,i, ve1,i) into (v′e0,i, v

′
e1,i

) in the second round, then Pi
is identified as a cheater with probability 1 by t-error correction capability of Reed-
Solomon codes. Therefore, the best strategy for cheater Pi is to submit (ve0,i, ve1,i) as



is, which ensure that e0 and e1 are reconstructed without being forged. Now we com-
pute the successful cheating probability ε of rushing cheaters. The cheaters succeed in
cheating if h1,N,(e0,e1)(s

′) = a′ holds. Since rushing cheater Pi must submit (v′s,i, v
′
a,i)

in the first round without knowing the values of e0 and e1, The successful cheating
probability of cheaters are computed by Pr[h1,N,(e0,e1)(s

′) = a′ | h1,N,(e0,e1)(s) = a]
where the probability is taken only over e0 and e1 since s, s′, a and a′ are known to
cheaters when they submit (v′s,i, v

′
a,i). Since H1,N is N/p-ASU2 and (e0, e1) are chosen

uniformly and randomly from the set of keys satisfying h1,N,(e0,e1)(s) = a, it is easy to
see that Pr[h1,N,(e0,e1)(s

′) = a′ | h1,N,(e0,e1)(s) = a] = N/p holds, which directly implies
that the successful cheating probability of cheaters P1, . . . , Pt is upper bounded by
N/p. ut

4 A Scheme Capable of Detecting n − 1 Rushing Cheaters

In this section, we present a scheme capable of detecting cheating by n − 1 rushing
cheaters. The idea of the scheme is similar to the scheme presented in the previous
section in the sense that the share generation algorithm generates a key e of ASU2 and
a = he(s) to check the correctness of a secret reconstructed. However, since t = n− 1
holds, we cannot use error correcting code to ensure correct reconstruction of e. In
the proposed scheme, instead of sharing a single key e, the share generation algorithm
generates a key ei and a hash value ai for each user Pi who verifies hei(s) = ai to check
the correctness of the secret s. However, unfortunately, the above naive scheme cannot
be perfect since user Pi can compute (possibly partial) information about the secret
from information held by Pi: hei(s) = ai, ei and ai. For example, consider the case
where we use H1,1 defined in Proposition 1 for underlying hash family. In this case,
any single user Pi can compute s from e0,i, e1,i and ai = e0,i+e1,i·s by s = (ai−e0,i)·e−11,i .

We introduce an additional trick to overcome this problem. Namely, we make the
hash values ai shared among users so that unauthorized set of users cannot obtain
any information about the hash values and therefore any information about the secret.
However, sharing completely independent and random hash values a1, . . . , an causes
the size of shares grow linearly with n. To reduce the size of share, we make hash
values a1, . . . , an derived from (k − 1)-wise independent random variables, and share
the seed a of the random values a1, . . . , an instead of sharing a1, . . . , an themselves. By
replacing completely random a1, . . . , an with (k−1)-wise independent random variables
does not affect the perfectness of the resulting scheme since k − 1 users do not obtain
any relation among hash values due to (k − 1)-wise randomness of hash values. The
complete description of the scheme is given as follows.

Share Generation: The share generation algorithm ShareGen takes a secret s = (s0, s1, ...,
sN−1) ∈ FpN as input and outputs a list of shares (v1, . . . , vn) according to the following
procedure:

1. Generate a random polynomial fs(x) ∈ FpN [X] of degree k−1 such that s = fs(0).
2. Generate a random polynomial fa(x) ∈ Fpk−1 [X] of degree k − 1. We will use
fa(0) = (a0, a1, . . . , ak−2) as coefficients of a polynomial a(x) (i.e., a(x) = a0 +
a1x+ · · · ak−2xk−2) used to derive hash values in (k−1)-wise independent manner.

3. Compute keys (ei,0, ei,1) (1 ≤ i ≤ n) of almost strongly universal family H1,N

independently and randomly satisfying h1,N,(ei,0,ei,1)(s) = a(i).



4. Output (v1, . . . , vn) where the share vi of the user Pi is defined by vi = (fs(i), fa(i),
ei,0, ei,1).

Secret Reconstruction:

1. [Round 1] Receive (vs,i1 , va,i1), . . . , (vs,im , va,im) from Pi1 , . . . , Pim , respectively.

2. [Round 2] Receive (ei1,0, ei1,1) from (eim,0, eim,1) from Pi1 , . . . , Pim , respectively.

3. Reconstruct s and a(x) from (vs,i1 , . . . , vs,im) and (va,i1 , . . . , va,im), respectively.

4. Check if h1,N,(eij ,0,eij ,1)(s) = a(ij) holds for all ij (1 ≤ j ≤ m).

5. Output s if the above equation holds for all ij , otherwise output ⊥.

The following theorem gives the security properties of the proposed scheme.

Theorem 2. If t ≤ n − 1 holds then the above scheme is (t, ε) cheating detectable k-
out-of-n secret sharing scheme against rushing cheaters such that |S| = pN , ε = N

p , and

|Vi| = pN+k+1 ≈ |S| · ( log |S|
ε log(1/ε))

k+1. In particular, |Vi| = |S|/εk+1 holds when N = 1.

Proof. First, we will prove the scheme is perfect. Suppose that users Pi1 , . . . , Pik−1

try to compute any partial information about the secret s. Since vs,i1 , . . . , vs,ik−1
are

generated using Shamir’s (k, n) threshold scheme, they do not obtain any information
about the secret from vs,i1 , . . . , vs,ik−1

. Therefore, the scheme is proven to be perfect if
the equations h1,N,(eij ,0,eij ,1)(s) = a(ij) (1 ≤ j ≤ k−1) does not reveal any information

about the secret. Since shares va,i1 , . . . , va,ik−1
(i.e., shares for a = (a0, . . . , ak−2)) is

also generated by Shamir’s (k, n) threshold scheme Pi1 , . . . , Pik−1
obtain no information

about the hash value a(ij). Therefore, the participants cannot obtain any information
from the knowledge h1,N,(eij ,0,eij ,1)(s) = a(ij), which shows that the scheme is perfect.

Next, we prove that the scheme is (n − 1, ε) cheating detectable. Without loss
of generality, we can assume P2, . . . , Pn are cheaters who try to fool P1 by submit-
ting (v′2, . . . , v

′
k) to the secret reconstruction algorithm. Since cheaters are rushing,

cheaters know all values of s (a value secret reconstructed from (vs,1, vs,2, . . . , vs,k)), s
′

(a value reconstructed from (vs,1, v
′
s,2, . . . , v

′
s,k)), a(x) (a polynomial reconstructed from

(va,1, va,2, . . . , va,k)) and a′(x) (a polynomial reconstructed from (va,1, v
′
a,2, . . . , v

′
a,k))

after observing (vs,1, va,1) submitted by P1 even when k = n. The cheaters succeed
in cheating P1 if h1,N,(e1,0,e1,1)(s

′) = a′(1) holds. We will show the success cheat-
ing probability is upper bounded by N/p. Since cheaters know he1(s) = a(1) the
successful cheating probability can be computed by Pr[h1,N,(e1,0,e1,1)(s

′) = a′(1) |
h1,N,(e1,0,e1,1)(s) = a(1)]. From the second property of the almost strongly universal
hash family and the fact e1 is chosen uniformly and randomly from the set of keys
such that h1,N,(e1,0,e1,1)(s) = a(1), the following equation holds:

Pr[h1,N,(e1,0,e1,1)(s
′) = a′(1) | h1,N,(e1,0,e1,1)(s) = a(1)]

=
|{(e1,0, e1,1) | h1,N,(e1,0,e1,1)(s) = a(1), h1,N,(e1,0,e1,1)(s

′) = a′(1)}|
|{(e1,0, e1,1) | h1,N,(e1,0,e1,1)(s) = a(1)|

≤ ε ,

which directly implies that the successful cheating probability of cheaters P2, . . . , Pn
is upper bounded by N/p. ut



5 A Scheme Capable of Identifying (k − 1)/3 Rushing Cheaters

In this section, we present a scheme capable of identifying (k − 1)/3 rushing cheaters.
The scheme is constructed based on the scheme presented in [25] which is capable of
identifying (k − 1)/3 non-rushing cheater.

Roughly speaking, the share vi of the scheme in [25] consists of (1) a share vs,i of
Shamir’s (k, n) threshold scheme for a secret s, and (2) a hash value vCi = h2,t+1(vs,i)
where h2,t+1 ∈ H2,t+1 is a strongly universal hash function of strength t+1 (see Propo-
sition 2 for the complete description). Unfortunately, the scheme in [25] is vulnerable
to cheating by a single rushing cheater no matter what order partial shares are sent
to the reconstruction algorithm. This is because rushing cheaters obtain complete in-
formation about the hash function h2,t+1 before they send v′Ci to the reconstruction
algorithm.

To make rushing cheaters impossible to obtain complete information about the
hash function, we modify the scheme in a way that hash function h is chosen from
H2,k+t instead of H2,t+1. This modification makes rushing cheater difficult to cheat the
scheme since at least k + t shares are required to obtain complete information about
the hash function h. Furthermore, to prevent rushing cheaters from modifying the hash
function h, we introduce an additional share vE,i in the proposed scheme. Here, vE,i
is a share of (n, t + 1) threshold scheme for a secret (et+1, . . . , et+k−1) ∈ Fpk−1 where
et+1, . . . , et+k−1 represent higher-degree coefficients of h ∈ H2,k+t. With the help of

vE,i, we can convert hash values h(ψi1), . . . , h(ψik) into hash values ĥ(ψi1), . . . , ĥ(ψik)

in such a way that ĥ ∈ H2,t+1 and that ĥ(ψ) is a correct hash value of ψ if and only

if h(ψ) is a correct hash value of ψ. Since converted hash function ĥ is a element of
H2,t+1, we can identify even rushing cheaters, as in the cheater identification procedure
presented in [25]. The complete description of the proposed scheme is as follows:

Share Generation: On input a secret the share generation algorithm outputs a list of
shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ Fp[X] of degree k − 1 such that fs(0) = s.

2. Generate a random polynomial C(x) =
∑k+t−1

i=0 eix
i ∈ Fq[X] of degree k + t − 1

where q is a prime power satisfying q ≥ n · p.
3. Generate a random polynomial CE(x) ∈ Fqk−1 [X] of degree t such that CE(0) =

(et+1, et+2, . . . , et+k−2, et+k−1) ∈ Fqk−1 (i.e., CE(0) represents higher degree coeffi-
cients of C(x).)

4. Output a list of share (v1, . . . , vn) where vi = (fs(i), C(ψ(i, fs(i)), CE(i)) and ψ :
[1, n]× Fp → Fq is an arbitrary 1-to-1 function.

Secret Reconstruction: On input m shares (vj1 , . . . , vjm) (where m ≥ k and vi =
(vs,i, vC,i, vE,i) for 1 ≤ i ≤ n), the secret reconstruction algorithm outputs (s, ∅) or
(⊥, L) according to the following procedure:

1. Choose k users i1, . . . , ik arbitrarily.
2. [Round 1] Force Pi1 , . . . , Pik submit (vs,i1 , vC,i1), . . . , (vs,ik , vC,ik), respectively.
3. [Round 2] Force Pi1 , . . . , Pik submit vE,i1 , . . . , vE,ik , respectively.
4. Reconstruct CE(x) using a decoding algorithm of generalized Reed-Solomon Code.
5. Compute a list L′ by L′ = {ij | vE,ij 6= CE(ij)} .



6. Compute (et+1, . . . , et+k−1) = CE(0).
7. Compute v̂C,ij = vC,ij −

∑t+k−1
`=t+1 e` · ψ(ij , vs,ij )

`.

8. Reconstruct Ĉ(x) =
∑t

`=0 e`x
` from v̂C,i1 , . . . , v̂C,ik using a decoding algorithm of

generalized Reed-Solomon Code again.
9. Compute a list L by L = L′ ∪ {ij | v̂C,ij 6= Ĉ(ψ(ij , vs,ij ))} .

10. Reconstruct fs(x) from vs,i1 , . . . , vs,ik and output (⊥, L) if L 6= ∅. Otherwise, output
(fs(0), ∅).

Theorem 3. If t < k/3 holds then the above scheme is a (t, ε) cheater identifiable k-
out-of-n secret sharing scheme against rushing adversaries such that |S| = p, ε = 1/q,
and |Vi| = p · qk = |S|/εk.

Proof. First, we show that the scheme is perfect. It is well known that vs,i1 , . . . , vs,ik−1

do not reveal any information about the secret since each vs,i is a share of Shamir’s
k-out-of-n secret sharing scheme. Further, it is easy to see that the knowledge about
vC,i and vE,i do not reveal any information about the secret since the polynomials
C(x) and CE(x) are completely independent of the secret s.

Next we show that the scheme is (t, ε) cheater identifiable against rushing cheaters.
The following two facts are important to prove (t, ε) cheater identifiability of the
scheme:

1. A family of functions {C(x) | C(x) ∈ Fq[X], deg(C(x)) ≤ t + k − 1} is a strong
family of universal hash functions Fq → Fq with strength t + k. Therefore, even
rushing cheaters who observed t shares of cheaters as well as k − 1 honest users
cannot send a correct value of C(ψ′) for unknown ψ′ with probability better than
1/q in the first round.

2. (CE(x1), CE(x2), . . . , CE(xk)) and (Ĉ(x1), Ĉ(x2), . . . , Ĉ(xk)) are codewords of the
Reed-Solomon Code with minimum distance k−t. Therefore, if t < k/3 holds, then
CE(x) and Ĉ(x) can be reconstructed correctly even when t points are forged.

Without loss of generality, we can assume Pk, . . . , Pt+k−1 are cheaters who coopera-
tively cheat users P1, . . . , Pk−1 by forging (part of) their shares. We consider the worst
case where honest users P1, . . . , Pk−1 and the rushing cheater Pk are chosen to submit
their shares to Reconst (this is the worst case since rushing cheater can observe the
most number of shares in cheating).

Since only Pk is a cheater, Pk submits forged v′s,k in the first round. In this case,
Pk is not identified as a cheater only if he submits correct v′C,k such that v′C,k =

C(ψ(v′s,k, k)) since Reconst can recover correct Ĉ(x) whatever v′E,k he submits, and

v̂C,k = Ĉ(ψ(v′s,k, k)) holds if and only if v′C,k = C(ψ(v′s,k, k)). It is easy to see that
Pk cannot guess correct v′C,k with probability better than 1/q since C(x) belongs to a
strongly universal family of hash functions with strength t+ k. where the probability
is taken over the random choice of C(x). ut

Note: Successful cheating probability ε can be made chosen flexibly in the above scheme
by using techniques introduced in [25].

6 A Scheme Capable of Identifying (k − 1)/2 Rushing Cheaters

In this section, we present a scheme capable of identifying (k − 1)/2 rushing cheaters.
The scheme is based on a standard construction first presented in [31] such that the



share vi consists of (1) share vs,i of Shamir’s (k, n) threshold scheme for a secret, (2)
keys of ASU2 (unconditionally secure MAC) to check the correctness of vs,j (j 6= i),
and (3) hash values to prove the correctness of vs,i. Unfortunately, the bit length of the
resulting scheme still grows linearly with n. Though, with the help of tag compression
technique by Carpentieri [8], the proposed scheme reduces the number of keys of ASU2,
which results in smaller size of shares compared to the schemes by Roy et.al. [34] and
by Choudhury [10]. The complete description of the proposed scheme is as follows:

Share Generation: On input a secret s ∈ FpN , the share generation algorithm ShareGen
outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) of degree at most (k − 1) in x from FpN [X]
such that fs(0) = s and compute fs(i) = vs,i in FpN , where i = 1, . . . , n.

2. Generate a random e0,i ∈R Fp and a random polynomial of degree at most k − 1
with free coefficient 0, ai(x) = ai,1x+ ai,2x

2 + · · ·+ ai,k−1x
k−1, from Fp[X].

3. Compute ai,j = ai(j) and e1,i,j = aj(i)−ΣN
l=1e

l
0,i · vs,j,l for i ∈ [n] \ j.

4. Compute vi = (vs,i, ai(x), e0,i, e1,i,1, . . . , e1,i,i−1, e1,i,i+1, . . . , e1,i,n).

Secret Reconstruction: Denote the set of m (≥ k) participants taking part in the
reconstruction as core. On input a list of m shares, the secret reconstruction algorithm
Reconst output a secret and a list of identities of cheaters or ⊥ and a list of identities
of cheaters as follows.

1. [Round 1] Receive v′s,i, a
′
i,1, . . . , a

′
i,k−1 from each Pi ∈ core.

2. [Round 1] Receive e′0,i, e
′
1,i,1, . . . , e

′
1,i,n from each Pi ∈ core.

3. Computation: For each Pi ∈ core, computes supporti = {Pj : ΣN
l=1e

′l
0,j · v′s,i,l +

e′1,j,i = a′i,1j + a′i,2j
2 + · · ·+ a′i,k−1j

k−1} ∪ {Pi}.
If |supporti| < t+ 1, then put Pi in L, where L is the list of the cheaters.

4. – If m − |L| ≥ k : Using v′s,i for all Pi ∈ core \ L, interpolate a poly f ′s(x). If
degree of f ′s(x) is less or equal to k, output (f ′s(0), L) otherwise output (⊥, L).

– If m− |L| < k : Output (⊥, L).

Lemma 1. The above scheme provides perfect secrecy. That is, any adversary A con-
trolling any (k− 1) parties during the sharing phase, will get no information about the
secret s.

Proof. Without loss of generality, we may assume that the first (k − 1) participants,
i.e., P1, . . . , Pk−1, are under the control of the adversary A. The listening adversary
has the following information.

vs,1 a1,1 a1,2 · · · a1,k−1 e0,1 ⊥ e1,1,2 · · · e1,1,n
vs,2 a2,1 a2,2 · · · a2,k−1 e0,2 e1,2,1 ⊥ · · · e1,2,n
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
vs,k−1 ak−1,1 ak−1,2 · · · ak−1,k−1 e0,k−1 e1,k−1,1 e1,k−1,2 · · · e1,k−1,n


Now, according to Lagrange’s interpolation, k Shamir shares vs,i fully define a

degree-(k−1) polynomial. On the other hand, k−1 such values provide no information
on s, according to the perfect privacy property of Shamir scheme. Thus, the adversary
needs to choose one more vs,i, where i ∈ {1, 2, . . . , n} \ I and I = {1, 2, . . . , k − 1}.



Without loss of generality, we may assume that the adversary tries to learn vs,k with the
information at hand. Note that each player Pi (i ∈ I) has the information (e0,i, e1,i,k)
regarding vs,i. Now,

ΣN
l=1e

l
0,1vs,k,l + e1,1,k = ak,11 + ak,21

2 + · · ·+ ak,k−11
k−1

ΣN
l=1e

l
0,2vs,k,l + e1,2,k = ak,12 + ak,22

2 + · · ·+ ak,k−12
k−1

· · · = · · ·
ΣN
l=1e

l
0,k−1ss,k,l + e1,k−1,k = ak,1(k − 1) + ak,2(k − 1)2 + · · ·+ ak,k−1(k − 1)k−1

Suppose, the adversary A tries to find out vs,k,1. Now, as the matrix
1 12 . . . 1k−1

2 22 . . . 2k−1

. . . . . . . . . . . .
k − 1 (k − 1)2 . . . (k − 1)k−1


is non-singular, the above system of linear equations is consistent for all possible values
of vs,k,1. Similarly, for other vs,k,l. So, the best probability forA to guess vs,k is (1/p)N =
1/pN .

Note also that the adversary can construct such system of linear equations for every
Pj for j ∈ {k, . . . , n}. However, all these systems of equations are consistent. In other
words, for any fixed value of vs,k, there exists one and only one solution satisfying all
equations available to the adversary. This essentially means that all possible values
of vs,k are consistent with the view of the adversary. So that the adversary has no
information regarding the secret s. Hence, the theorem. ut

Lemma 2. The proposed scheme satisfies correctness condition. That is, during the
reconstruction phase, if any Pi ∈ core is under the control of rushing A and produces
v′s,i 6= vs,i, then except with error probability ε = m−t

|Fp| , Pi will be identified as a cheater

and will be included in the list L.

Proof. Without loss of generality, let core be formed by the first m parties, namely
P1, . . . , Pm, where m ≥ k. Moreover, let P1, . . . , Pt be under the control of A. Now
suppose that P1 submits v′s,1 6= vs,1 and P1 is not identified as a cheater. This implies
that |support1| ≥ t + 1. In the worst case, P1, . . . , Pt may be present in support1, as
all of them are under the control of A. But |support1| ≥ t+ 1 implies that there exists
at least one honest party in core, say Pj , such that Pj ∈ support1. This is possible
only if ΣN

l=1e
l
0,jv
′
s,1,l + e1,j,1 = ja′1,1 + j2a′1,2 + . . . + jk−1a′1,k−1. Now in Round 1 of

reconstruction phase each player Pi broadcasts vs,i, ai,1, . . . , ai,k−1 and in Round 2 of
reconstruction phase Pi broadcasts e0,i, e1,i,1, . . . , e1,i,i−1, e1,i,i+1, . . . , e1,i,n.

After round 1 of the reconstruction phase, the cheating adversary can see the
Shamir share and authentication tags of each player. And A also knows the authenti-
cation keys of player P1, P2, . . . , Pt. But he does not know the authentication keys of
players Pt+1, . . . , Pm.

Now we evaluate the probability that P1 succeeds in deceiving at least one honest
player to accept her fake share and fake tag. This probability is described by the



following formula.

Pr[at least one player in [Pt+1, . . . Pm] accepts (v′s,1, a
′
1(x))

| [Pt+1, . . . Pm] accept (vs,1, a1(x), . . . , vs,n, an(x))]

Denote by E1 the event that
“at least one player in [Pt+1, . . . , Pn] accepts (v′s,1, a

′
1(x))”, and by E2 the event that

“[Pt+1, . . . , Pn] accept vs,1, a1(x), . . . , vs,n, an(x))”.

Now, using the same argument as in Proposition 3, we can conclude that
Pr[E1|E2] < (m− t)/p.

So we get ε-correctness for ε = (m− t)/p. Hence, the theorem. ut

Theorem 4. If t < k/2 holds then the above scheme is a (t, ε) cheater identifiable
k-out-of-n secret sharing scheme against rushing adversaries such that |S| = pN , ε =
m−t
p , and |Vi| = |S| (m−t)

n+2t

εn+2t .

Remark 1. During the sharing phase, each party gets 1 element from the field FpN and

n+ k− 1 elements from the field Fp. So, |Vi| = pN · pn+k−1 = (m− t)n+2t|S|/εn+2t. So,
share size will be at most (n− t)n+2t|S|/εn+2t, when all the participants participate in
the reconstruction phase and share size will be at least (k− t)n+2t|S|/εn+2t, when only
k number of participants participate in the reconstruction phase. Moreover, if t = 1, 2,
the proposed CISS scheme is the best one, with respect to the share size, among all
the existing efficient CISS schemes secure against rushing adversary when we consider
the worst case scenario.

Remark 2. In the proposed CISS, error probability does not depend on the size of
the secret space. We can independently choose the error probability according to the
security parameter. Hence, our proposed scheme has flexibility property. So, within the
natural restrictions, the parameters can be set flexibly.

7 Robust Secret Sharing Capable of Tolerating (n − 1)/2 Rushing
Cheaters

In our proposal, we use the new share authentication method and adapt it to the
reconstruction technique of [9]. The complete description of the proposed scheme is as
follows:

Share Generation: On input a secret s ∈ F2m , the share generation algorithm ShareGen
outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) of degree at most (k − 1) in x from F2m [X]
such that fs(0) = s and compute fs(i) = vs,i in F2m , where i = 1, . . . , n.

2. Generate a random e0,i ∈R F2q and a random polynomial of degree at most k − 1
with free coefficient 0, ai(x) = ai,1x+ ai,2x

2 + · · ·+ ai,k−1x
k−1 from F2q [X], where

m = Nq.

3. Compute ai,j = ai(j) and e1,i,j = aj(i)−ΣN
l=1e

l
0,i · vs,j,l for i ∈ [n] \ j.

4. Compute vi = (vs,i, ai(x), e0,i, e1,i,1, . . . , e1,i,i−1, e1,i,i+1, . . . , e1,i,n).



Secret Reconstruction: On input a list of n shares, the secret reconstruction algorithm
Reconst output a secret or ⊥ as follows.

1. [Round 1] Receive v′s,i, a
′
i,1, . . . , a

′
i,k−1 from each Pi.

2. [Round 1] Receive e′0,i, e
′
1,i,1, . . . , e

′
1,i,n from each Pi.

3. Local Computation:
– Set zij , i, j ∈ {1, 2, . . . , n}, to be 1 if Pi’s authentication tag is accepted by Pj ,

i.e., if ΣN
l=1e

′l
0,j · v′s,i,l + e′1,j,i = a′i,1j + a′i,2j

2 + · · ·+ a′i,k−1j
k−1

otherwise set zij to 0.
– computes the largest set I ⊆ {1, 2, . . . , n} with the property that

∀i ∈ I : |{j ∈ I|zij = 1}| = Σj∈Izij ≥ k.

Clearly, I contains all honest participants. Let c = |I| − k be the maximum
number of corrupted participants in I.

4. Using the error correction algorithm for Reed-Solomon code, each participant com-
putes a polynomial fs(x) ∈ F2m [X] of degree at most k − 1 such that fs(i) = v′s,i
for at least k + c

2 participants i in I.
If no such polynomial exists then output ⊥,
otherwise, output s = fs(0).

Remark 3. In the proposed scheme, a tradeoff between cheating probability and share
size can be arranged. So, within the natural restrictions, the parameters can be set
flexibly. Hence, q can be smaller or larger than m.

Lemma 3. Any corrupted participant Pi who submits v′s,i 6= vs,i in Round 1 of the
reconstruction phase will be accepted by an honest participant with probability at most
ε = N

2q .

Proof. Without loss of generality, we assume that the corrupted participant is P1 who
submits v′s,1 6= vs,1 in Round 1 of the reconstruction phase. P1 will be accepted by

honest Pj if ΣN
l=1e

′l
0,j · v′s,1,l + e′1,j,1 = a′1,1j + a′1,2j

2 + · · ·+ a′1,k−1j
k−1. Now using the

argument of proof of Proposition 3, we can conclude that ε = N
2q . ut

Theorem 5. For any positive integer k such that n = 2k−1, the proposed construction
forms (k, δ)-robust secret sharing scheme for n participants with the space of secrets
F2m and

δ ≤ e.(kε)k/2

where e = exp(1) and ε = N
2q .

Proof. Privacy: Follows from Lemma 1.
Reconstructability: From Lemma 3, we have found that Pr(zij = 1) ≤ ε. The rest
of the proof is the same as in [9, Theorem 3.1]. ut

Discussion:

Let us compute the share size. During the sharing phase, each party gets one element
from F2m and n+k−1 elements from F2q . Therefore, the share size of each participant
is m+ (n+ k − 1)q bits.



Consider the following instantiation. By Theorem 5, the resulting secret sharing
scheme is a δ-robust for δ ≤ e.(kε)k/2. Therefore, for a given security parameter µ,
setting q = dlog k + logN + 2

k (µ+ log(e))e, we obtain δ ≤ 2−µ.

Every perfectly secure secret sharing scheme must have the share size at least that
of the secret. The first term in the sum is responsible for this, while the second term
characterizes an overhead required for the share authentication. In Table 3, we compare
the overhead of our scheme with those of the schemes by Rabin and Ben-Or [31], and
Cevallos et al [9]. We see that, our scheme reduces the overhead by the constant factor
as compared to that of Cevallos et al.

8 Concluding Remarks

In this paper, we have presented five k-out-of-n secret sharing schemes secure against
rushing adversaries with the following properties:

– capable of detecting up to (k − 1)/3 rushing cheaters such that |Vi| = |S|/ε3,
– capable of detecting up to n− 1 rushing cheaters such that |Vi| = |S|/εk+1,

– capable of identifying up to (k − 1)/3 rushing cheaters such that |Vi| = |S|/εk,
– capable of identifying up to (k−1)/2 rushing cheaters such that |Vi| = |S|( (n−t)

n+2t

εn+2t ),

– robust secret sharing tolerate up to (n − 1)/2 rushing cheaters such that |Vi| =
m+ (n+ k − 1)q bit.

The first three schemes are all the first scheme in each model such that the bit length
of shares does not grow linearly with n. The last two schemes are all the first scheme
in each model with lowest share size compared to existing schemes.

To derive a lower bound of sizes of share for various models of secret sharing schemes
secure against rushing cheaters will be our future work.
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