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ABSTRACT
Recent techniques reduce ORAM communication complexity down
to constant in the number of blocks N . However, they induce ex-
pensive homomorphic encryption on both the server and the client.
In this paper, we present an alternative approach CHf -ORAM. This
ORAM features constant communication complexity without ho-
momorphic encryption, in exchange for expanding the traditional
ORAM setting from single-server to multiple non-colluding servers.
We show that adding as few as 4 servers allows for substantially
reduced client and server computation compared to existing single-
server alternatives. Our approach uses techniques from information-
theoretically secure Private Information Retrieval to replace homo-
morphic encryption with simple XOR operations. Besides O(1)
communication complexity, our construction also features O(1)
client memory and a block size of only Ω(log3N). This leads to an
ORAM which is extremely lightweight and suitable for deployment
even on memory and compute constrained devices. Finally, CHf -
ORAM features a circuit size which is constant in the blocksize
making it especially attractive for secure RAM computations.

1. INTRODUCTION
The classic measure of ORAM efficiency is its communication

overhead. Research has recently achieved optimal O(1) communi-
cation complexity in the number of blocks stored in the ORAM [11,
28]. Unfortunately, these schemes achieve theoretically optimal
communication complexity by leveraging substantial server com-
putation that can become prohibitively expensive in practice. In
current schemes [28], additively homomorphic encryption like Pail-
lier [31] is used on the server to perform oblivious shuffling. The
resulting server computation exceeds several minutes for every client
access which (in terms of time) often outweighs savings in commu-
nication complexity. Other recent research results [9, 38] demon-
strate how to leverage multiple servers to decrease communication
complexity to O(1) between client and servers. Yet, this comes
at the additional cost of either (1) additional communication over-
head between servers, (2) a weaker security model trusting servers
or (3) additional client memory overhead rendering it impractical
on resource-constrained devices.
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Our contribution: Towards a practical, lightweight, and low la-
tency ORAM, our goal is an ORAM having constant communi-
cation complexity without homomorphic encryption. We follow a
setup similar to Stefanov and Shi [38] where we relax the single
server assumption for ORAMs and allow a small number (as few
as 4) of non-colluding servers. This allows us to replace expen-
sive encryption by a very efficient XOR approach. Based on this,
we build a new ORAM with optimal O(1) communication com-
plexity and efficient client and server computations on the order of
milliseconds instead of minutes. Additionally, our ORAM uses the
traditional client-server model and does not need extra communi-
cation between servers. As a result, we enable ORAM applications
with lightweight clients that might not even be able to encrypt, but
only to communicate and perform a few XOR operations.

Generally, it is straightforward to adapt recent tree-based ORAMs
and remove encryption by leveraging multiple servers. Encryption
can be replaced by, e.g., secret sharing. However, this comes with
no reduction in client-server communication complexity or client
storage complexity — a contribution of this paper. Also, in con-
trast to Stefanov and Shi [38], we show how to take advantage of
a multi-server setting to decrease communication complexity of re-
cent efficient tree-based ORAMs.

To summarize, we present a new multi-server ORAM (CHf -
ORAM) with the following technical highlights:

• constant communication complexity without expensive ad-
ditively homomorphic encryption. Computation is ca. 30×
faster than C-ORAM [28] and ca. 300× faster than Onion
ORAM [11] in a setting with N=220 blocks.

• a block size in Ω(log3N), which is smaller by a factor of
logN than C-ORAM’s [28] and log2N smaller than Onion
ORAM’s [11].

• an eviction circuit size constant in block size B, for B ∈
Ω̃(log3N).

• in contrast to Stefanov and Shi [38], there is no inter-server
communication required.

By not requiring inter-server communication, we avoid situations
where extra cost due to this inter-server communication might out-
weigh savings from constant client-server communication.

We stress that security of our construction relies only on a non-
collusion assumption, but no computational assumption.

Table 1 compares CHf -ORAM to related work.

1.1 Motivation
Expensive Homomorphic Encryption: To access one block obliv-
iously in C-ORAM [28], only a constant (in N ) number of blocks
are retrieved from the server. This is possible due to computational



Table 1: Comparison of recent ORAMs, block size B in function of the number of blocks N , client memory in blocks, and communication
complexity in blocks.

Scheme Block Size Client Communication # homomorphic scalar # Servers Inter server
B Memory multiplications communication

Ring ORAM [35] Ω(log2N) O(logN) O(logN) − 1 −
Onion ORAM-AHE [11] Ω(log5N) O(1) O(1) Θ(BλlogN) 1 −

C-ORAM [28] Ω(log4N) O(1) O(1) Θ(Bλ) 1 −
SS [38] Ω(log2N) O(

√
N) O(1) − 2 O(logN)

LO [28] Ω(logN) O(1) O(logN) − 2 −
CHf -ORAM Ω(log3N) O(1) O(1) − 4 −

power leveraged on the server. However, the number of homomor-
phic and additive multiplications on the server side adds non-trivial
delay to the communication. Thus, even if the communication at-
tains its lower bound, the computation might annihilate advantages
in communication.

As an example, we take results from C-ORAM’s evaluation [28].
Using Pailler as their additive homomorphic encryption, for N =
220, the computation in C-ORAM takes around 10 minutes for one
ORAM operation. This does not even take the time into account
that is required to generate CPIR queries – these are again based on
a homomorphic encryption of a logarithmic number of vectors. We
conjecture that the overall delay per operation exceeds the above
10 minutes by far, motivating the need for a lightweight ORAM.

Secure RAM Computations: Using ORAM for secure RAM com-
putation was introduced by Ostrovsky and Shoup [30]. Circuit-
based secure multi-party computation inherently depends on the
size of the inputs, making it inefficient for large inputs. Also, trans-
forming RAM programs to circuits turns out to be expensive. If
O(T ) is the running time of a program, transforming it first to a
Turing machine leads to aO(T 3) running time Turing machine [8].
Then, transforming the Turing machine to a circuit will lead to a
O(T 3 · logT ) circuit size [33]. Using an ORAM for secure RAM
computation, Gordon et al. [21] show how a compilation can be
performed in a two-party computation based on Shi et al. [37]’s
ORAM. A binary search program has then been made affordable
in a poly-log time complexity rather than linear time as required by
circuit based solutions. Similar to the setting of Lu and Ostrovsky
[25] that have shown how to leverage a two-servers ORAM for se-
cure party computation, we propose CHf -ORAM as a much more
suitable construction for secure RAM computation. In fact, with
a constant communication complexity in blocks B, secure RAM
computation becomes much cheaper, with the only additional re-
quirement of having four parties instead of two and having blocks
larger than a specific threshold—It generalizes to 2k parties for any
k≥ 2. We give more details about secure RAM computation over
CHf -ORAM in Section 6.

Non-colluding Servers: By non-colluding servers we mean that
all servers are fully malicious, but the are not allowed to share their
state or coordinate in an attack. With four servers, we envision four
different adversaries, each controlling one server.

At first it may seem like a significant disadvantage that our scheme
requires multiple servers and they must be trusted not to collude.
However, consider that one of the most promising scenarios for
ORAM is adding access pattern privacy to cloud services. In this
scenario it is quite easy and reasonable to find non-colluding servers.
There are many different cloud providers competing with each other
in this sector (Amazon, Microsoft, Google, Apple, Dropbox, etc.)
and they are economically motivated not to share information with
each other. Additionally, the threat of outside hackers or insider

threats compromising multiple cloud providers simultaneously, each
with their own independent infrastructure, is likely very low.

2. BACKGROUND
We briefly present a high-level overview of tree-based ORAMs,

focusing on the constant communication ORAM by Moataz et al.
[28]. We also give an overview of the IT-PIR by Chor et al. [5].

2.1 Tree-based ORAM
An ORAM allows two operations on outsourced memory. Read(a)

reads from and Write(a,data) writes to a block of data given the
memory address a and the new data to be written. A tree-based
ORAM stores N blocks of data in a binary tree with N leaves.
Each node in the tree is a “trivial” ORAM bucket1, typically ac-
cessed as a whole. Each bucket contains λ ∈ O(logN) blocks,
giving a failure (overflow) probability of 2−λ during later eviction.
Each leaf is associated to a leaf tag tag ∈ {0,1}logN . To access
an element, the user keeps a position map that maps an ORAM ad-
dress to its leaf tag. The size of the position map is inO(N ·logN).
To allow client memory to be constant in N , the position map is
stored on the server as an ORAM, too. This results in a recursive
ORAM structure, where access to the position map requires access-
ing O(logN) ORAMs of increasing size. After resolving leaf tag
tag for an address, the desired block resides on the path P(tag) be-
tween the root of the tree and leaf tag. A Read and Write in an tree-
based ORAM with constant client memory are often realized as a
ReadAndRemove operation which additionally removes the block
from the tree. This is then followed by an Add operation. Finally,
to prevent the root bucket from overflowing, an eviction process is
necessary to percolate real blocks towards their tagged leaves.

C-ORAM [28]: C-ORAM is a tree-based ORAM with the follow-
ing specifics. First, blocks are encrypted with an additive homo-
morphic encryption. Every bucket is prepended by IND-CPA en-
crypted “headers” containing information about the bucket’s con-
tents such as block addresses, block tags as well as which slots in
the bucket are empty. The ReadAndRemove, Add, and Evict op-
erations are implemented as follows:

• ReadAndRemove(a): Given address a, the client fetches
leaf tag tag from the position map. Given tag, the client
downloads all headers in the path P(tag) that starts from the
root and ends with leaf tag. The client decrypts the headers
in P(tag), then sends a computational private information
retrieval (C-PIR) query to privately retrieve the block a. The
header is updated to indicate that the slot a was found in is
now empty. Finally, the client re-encrypts all buckets’ head-
ers and uploads them to the path P(tag). This downloading,
re-encrypting, and uploading a path is performed on a block-
by-block basis to keep client memory constant.

1We use bucket and node interchangeably in this paper.



• Add(a,data): The client randomly samples a new leaf tag t
from {0,1}logN , updates the position map, and encrypts the
block with the new data. The client then adds the block to
the root with a C-PIR write operation.

• Evict(ν): The client downloads all encrypted headers from
path P(ν), where ν is chosen based on a reverse lexico-
graphic ordering of the leaves. It then generates a set of L
permutations using an oblivious merge algorithm (see below)
that will merge every parent-child pair on the path. The client
also copies the contents of each bucket in the path to its sib-
ling and updates the headers for all buckets appropriately.

Oblivious Merge: Given two C-ORAM buckets, each containing a
number of “empty”, “real”, and “noisy” blocks, an oblivious merge
algorithm [28, 29] outputs a permutation that merges both buckets
into one. Noisy blocks are real blocks that are either percolated to
the “wrong” path as a result of an eviction or previously leftover
from a read operation. The permutation arranges blocks of the first
bucket such that no real blocks in the first bucket are at the same po-
sition as real blocks in the second bucket. The server can then use
the additively homomorphic feature of the encryption and add the
blocks at the same position in the two buckets. This results in a sin-
gle combined bucket, where no real blocks are lost. The important
property of this merge is that, for the adversary, the permutation
is computationally indistinguishable from a randomly chosen per-
mutation on buckets. Informally, the adversary does not learn any
information about bucket contents. The communication cost of a
permutation is low for scenarios such as path eviction in [28].

The permutation is generated such that real blocks in one of
the buckets are only ever lined up with empty blocks in the other
bucket. Empty blocks are initialized as encryptions of 0, so a real
block with data x homomorphically added to an empty block re-
sults in a ciphertext that encrypts x + 0 = x. Therefore, if the
server permutes the blocks in the parent bucket according to the
client’s instruction, the resulting combined bucket will have all the
real blocks from both buckets. Noisy blocks can be safely lined up
with other noisy blocks since their values are not important. Addi-
tively homorphic encryption is crucial for this step because it allows
the server to merge buckets without the client processing the con-
tents of those buckets. This is the property that allows the reduction
from O(logN) communication complexity to O(1).

Complexity Analysis: ORAMs have constant communication com-
plexity if the total amount of data exchanged between client and
server is asymptotically constant in the number of blocks exchanged.
Informally, per read from or write to a block in an ORAM, there is
only a constant number of blocks exchanged between client and
server. That is, all headers and permutations transmitted during op-
erations or evictions are in O(B). Moataz et al. [28] show that the
total size of headers and permutation is in O(log4N), so this is
achieved when choosing B∈Ω(log4N).

2.2 IT-Secure Private Information Retrieval
Information-theoretically secure Private information retrieval (IT-

PIR) is a cryptographic primitive introduced by Chor et al. [5]. In
contrast to ORAM, IT-PIR does not require the outsourced database
to be encrypted to hide access patterns. However, only read oper-
ation are possible in IT-PIR. To additionally achieve information-
theoretic security, some form of database redundancy is required.
For example, the database needs to be replicated to k servers, and
these servers must not collude with each other. There exists a large
body of work improving communication complexity of the initial
construction, e.g., see [2, 3, 22] and many derivatives. For com-

pleteness sake, we also mention that there exists work preserv-
ing information theoretic security against up to t < k colluding
servers [12].

In this paper, we are particularly interested in retrieving blocks
of data, not a single bit. This makes our choice of PIR scheme
easier because the size of the blocks are actually relatively large in
relation to the number of choices for each PIR selection (O(logN)
blocks per bucket). It turns out that the basic construction by Chor
et al. [5] is sufficient for the needs of our CHf -ORAM construction.

Chor et al. [5] overview: The client wants to retrieve block data
stored at position pos out of a sequence of N blocks. Therefore,
the client starts by generating a random bit vector vect1 of length
N bit and sends it to Server 1. A second vector vect2 is the same as
vect1, only the bit at position pos is flipped; vect2 is sent to Server
2. Each server XORs all blocks where the corresponding bit in the
vector is set to 1. The final result is sent back to the client. The
client can restore data by XORing each server’s output. Note that
the communication complexity of this information-theoretically se-
cure PIR is linear in N . The construction is shown in Algorithm 1.

Input: Position pos∈{1,...,N}
Output: Block data stored at pos
// Client, generate PIR vectors

1 Set adr[pos]=1 and ∀i 6=pos :adr[i]=0;

2 vect1
$←−{0,1}N ;

3 vect2 :=Vect1⊕adr;
4 Send vect1 to Server 1 and vect2 to Server 2;
5 rsl1 = rsl2 =0N ;
6 for i from 0 to N do

// Server 1
7 if vect1[i]=1 then set rsl1 = rsl1⊕Bi ;

// Server 2
8 if vect2[i]=1 then set rsl2 = rsl2⊕Bi ;
9 end

10 Send rsl1 and rsl2 to client;
// Client

11 data := rsl1⊕rsl2;
Algorithm 1: Linear IT-PIR for two servers

Private Block Retrieval: Several improved IT-PIR constructions
exist with better communication overhead. For example, Beimel

et al. [3] offer O(N
loglogk
k·logk ). However, most of IT-PIR construc-

tions (with linear property) can be transformed into an information-
theoretic private block retrieval that can recover a block ofB bits in
O(B). Formally, let IT-PIR(1,N,k) be an IT-PIR that reads one bit
using k servers with N bit stored in each. Let IT-PIR(B,N,k) be
an IT-PIR that reads a block ofB bit using k servers withN blocks
stored in each. That is, each server stores N ·B bit in total.We
capture this claim in the following corollary:

COROLLARY 2.1. (Corollary 12 of [5]) There exists an IT-PIR(B,
N,k) construction with B times the complexity of IT-PIR(1,N

B
+1,

k).
Consequently, if the block sizeB is larger enough, we can achieve

optimal constant communication complexity. This is captured by
the following result:

THEOREM 1. (Corollaries 13 and 14 of [5]) For any constant
k ≥ 2 and for any B ≥ k · N , there exists an IT-PIR(B,N, k)
construction with communication complexity O(B) bit.

Clearly, if the number of blocksN is replaced by a poly-logarithmic
number of blocks, then the block size can be therefore also poly-
logarithmic in N to provide a constant IT-PIR block retrieval.

2.3 Secret Sharing



For CHf -ORAM, we also need secret sharing. Informally, se-
cret sharing enables a dealer to share a secret among a number of
parties such that no one alone can recover the secret. The parties
can recover the secret only by joining their shares. There are many
schemes with different properties and approaches, e.g., [4, 36], but
again we will only focus on a basic form of secret sharing. Given
a secret S, the dealer generates a random string S1 and a string
S2 such that S = S1⊕S2. S1 and S2 represent the shares to be
distributed to two parties.

3. CHf-ORAM
With CHf -ORAM, we combine C-ORAM with IT-PIR. CHf -

ORAM inherits C-ORAM’s major properties such as its eviction
technique, bucket size, tree structure, and main aspects of the obliv-
ious merge technique.
Technical Challenge: Replacing homomorphic encryption is
challenging. While IT-PIR reads can easily be used and replace
(homomorphic encryption) PIR reads, changes to the ORAM, i.e.,
writes and eviction require more attention. First, the oblivious
merge must be adopted to our “no-encryption” idea. In C-ORAM,
the oblivious merge makes use of additively homomorphic encryp-
tion which we have to find a suitable secure equivalent without en-
cryption for.

Second, in C-ORAM, adding a new block to the root is simple,
i.e., the client uses a PIR read followed by a PIR write to overwrite
a stale block in the root. In CHf -ORAM, we propose a new batch
insertion which replaces the PIR write operation.

Overview: Consider a version of the C-ORAM tree where buck-
ets and headers are unencrypted. Let this unencrypted ORAM tree
be Tree. We create two shares from Tree, Tree1 and Tree2, such
that Tree = Tree1⊕Tree2, bucket by bucket, block by block, and
header by header. We store the two shares at two non-colluding
servers s1 and s2.

Trivially, the above splitting gives security: without collusion, a
server cannot learn anything from its share. As we will be using
IT-PIR on each share separately, we need to introduce two more
non-colluding servers, s′1 and s′2, that replicate the shares. In con-
clusion, share Tree1 is stored at servers s1, s′1, respectively, and
Tree2 is stored at servers s2,s′2, respectively.is a lower

Towards even more practicality, we also reduce the block size.
Our idea is to leverage a new hybrid model: we fetch the position
map separately using Path ORAM [41] adapted to the multi-server
setting. This reduces the block size by a factor of logN while keep-
ing constant communication complexity in total.

3.1 Details
CHf -ORAM is a tree-based ORAM of height L. Each bucket

contains 3 headers header1, header2, and header3, and λ blocks of
sizeB bit. The first two headers are λ byL two dimensional arrays.
Each row i in header1 contains the address of block i in that bucket.
Each row i in header2 contains the leaf tag of block i in that bucket.
header3 is a λ by 2 bit matrix that captures the state of every block
in the bucket. Each block can be either empty, real or noisy. For
details about the meaning of empty, real or noisy, refer to Section 2.

Note that the height L is slightly smaller than logN , the bucket
size λ is inO(logN), and the noisy blocks are a consequence of us-
ing the oblivious merge technique [28]. We will give more details
about the choice of these parameters in the analysis, cf. Section 4.
For each bucket and header, we compute 2 shares. A block data

in a bucket is equal to data = data1 ⊕ data2, with data1
$← {0,

1}B . We store data1 on two servers s1,s′1, respectively, and data2
on servers s2, s′2, respectively. For ease of exposition, whenever

we mention downloading or uploading a header/bucket, this im-
plicitly refers to retrieving the corresponding shares using IT-PIR
construction, cf. Algorithm 1. For ease of exposition, assume that
the position map is stored on the client side. We show later that
recursively outsourcing the position map in smaller Path ORAM
trees [41] (instead of CHf -ORAM trees) would save a logarithmic
factor to the block size.

To access (read or write) a block at address adr, the client first
fetches leaf tag tag from the position map. Second, the client in-
structs servers to download all bucket headers on the path P(tag).
For each header, the client receives back 4 different bit strings b1,
b2,b3,b4 and reassembles the header by computing b1⊕b2⊕b3⊕b4.
Using the header, the client knows the exact position of the block at
address adr on pathP(tag). That is, the client knows which bucket
and which block in that bucket.

Now, the client generates a random λ·L bit IT-PIR query vector

vect1
$←{0,1}λ·L. The client also creates a second λ ·L bit vec-

tor vec2 that is equal to vect1 besides that the bit at position adr is
flipped: vect2[pos]=1⊕vect1[adr]. The client sends vector vect1
to servers s1,s′1 and vect2 to servers s2,s′2.

Each server performs the conditional XOR operation described
in the IT-PIR computation of Algorithm 1 and sends the resulting
bit string back to the client. To recover the block at address adr,
the client computes an XOR over all 4 strings received. Finally, the
client modifies the corresponding header of the block and marks it
as noisy.

The client adds the (changed in case of a write) block back to the
root. For this, the client first downloads all headers, generates new
shares while updating both the header of the root and the header
of the block that has been accessed. Also, as with C-ORAM, one
block from the leaf of path P(tag) has to be refreshed in case it
contains a noisy block. This is performed in a deterministic man-
ner. For the same leaf, a block is never accessed twice before ac-
cessing all other blocks.

The challenge is now not to let the root bucket overflow, i.e., we
need to evict. Remember that in C-ORAM, the client could use
PIR writes to obliviously place a block in any position within the
root. Together with oblivious permutations, the whole eviction then
becomes oblivious, too. Without a PIR write (requiring expensive
operations), however, the servers would be able to observe all client
modifications to the root and tracing new real blocks added.

A first idea for eviction would be that the client waits χ opera-
tions and then evicts real blocks from the root bucket as follows.
The client downloads the entire root bucket, shuffles the position
of real elements and adds a number of empty blocks. The client
then uploads the shuffled root bucket to the servers. Finally, the
client downloads headers, computes the oblivious merge algorithm,
and outputs L oblivious merge permutations for the servers. The
servers will use these permutations to merge every two adjacent
(parent-child) buckets from the root down to the leaf. The order of
the eviction follows a reverse deterministic lexicographic order.

As this eviction is performed after every χ read operations, we
achieve amortized constant communication complexity: given a
bucket size λ and χ ∈ O(λ), too. The challenge is now to de-
amortize the eviction such that also worst-case communication com-
plexity is in O(1).

That implicitly requires inserting the real block after every ac-
cess while introducing some randomness, as the root bucket will
not be entirely shuffled.

Batch insertion: To de-amortize the above eviction, we introduce
the concept of batch insertions that works as follows. First, note
that after every evict, the root bucket is empty. Now, instead of



1st insertion 2nd insertion 3rd insertion

Figure 1: Batch insertion in the root bucket for φ=3 and χ=3.

inserting the real block after an access operation and shuffling the
entire root bucket on the client side, we upload a total of φ blocks
after every access. That is, we upload the real block together with
φ−1 empty blocks that will be used to handle noisy blocks in lower
levels of the tree.

Throughout the batch insertion, the root load will increase by φ
blocks after every access. After χ accesses, the bucket size equals
χ ·φ. At this point, we obtain a root bucket which contains χ real
blocks and χ ·(φ−1) empty blocks. As long as φ is constant, the
cost of inserting a block in the root is constant in B, see Figure 1
for an illustration of the batch insertion.

Once the root bucket’s size equals χ ·φ, the client needs to in-
struct the server to evict the root bucket following a reverse lexico-
graphic order. The eviction cost, in this case, is evenly distributed
over χ accesses. The communication complexity of the eviction
is now reduced by 1

χ
multiplicative factor, and is now equal to a

single access operation. We give more details about the eviction
communication complexity in Section 3.3. From a security per-
spective, the way how the real and empty blocks are inserted in the
root bucket gives some additional information to the server, such as
no two real blocks exist on the same φ inserted blocks. In prior C-
ORAM [28], the PIR write does not give this public information to
the server. These additional information disclosed by our batch in-
sertion technique have a considerable impact on the security of the
permutations generated by the client, and will lead to a different
and quite more sophisticated proof that we will detail in Section 4.

We present pseudo-code about access operation and eviction in
Algorithms 2 and 3.

3.2 Correctness
We now discuss “correctness” of CHf -ORAM. That is, we ex-

plain why the read operation (Algorithm 2) will really output the
block in question data. Second, we show how merging buckets in
Algorithm 3 preserves the values of real blocks. As writes are only
adding data to the root bucket, they are trivially correct.

3.2.1 Read Operation
In Algorithm 2, lines 17-20, the server performs XOR operations

over blocks for which the IT-PIR vector contains a 1. We know that
CHf -ORAM’s tree is stored over four servers. Two servers are stor-
ing two shares, while the other two store exact duplicates of each
share. To retrieve a block, the client retrieves shares from all four
servers.

Specifically, the first server stores for each block datai a random
value ri such that the second server stores datai ⊕ ri. The third
and forth server store, respectively, duplicates of ri and datai⊕ri.
Now for each read operation, path P(pos) has to be accessed in
order to retrieve the desired block, see Algorithm 2 lines 1-2. To
identify the bucket that contains the wanted block and the position
of the block in this bucket, the client first downloads all headers
(lines 3-11). Given the position, the client generates four IT-PIR

Input: Operation op, address adr, data block, counter ctr, state st
Output: Block B associated to address addr
// Fetch tag value from position map

1 tag=posMap(adr);

2 posMap(adr)
$← [N ];

3 for i from 0 to L do
4 download header1i and header3i ;
5 for j from 1 to λ do

// Search if adr exists in header1

6 if header1i [j]=adr then
7 set pos := i·λ+j;

// Update headers
8 set headers1i [j]=0 and headers3i [j]=noisy;
9 end

10 end
11 end

// Generate the PIR vectors
12 for i from 0 to L·λ do

// δi,j is the Dirac function
equal to 1 if i=j and 0 otherwise

13 ptr[i] :=δi,pos;
14 end

15 vect1
$←−{0,1}L·λ;

16 vect2 :=Vect1⊕ptr;
// Computation on servers s1 and s′1

17 for i from 0 to L·λ do
18 if vect1[i]=1 then set rsl1,1 := rsl1,1⊕P(tag,i) ;
19 if vect2[i]=1 then set rsl2,1 := rsl2,1⊕P(tag,i) ;
20 end

// Computation on client side.
rsl1,2 and rsl2,2 are the output of similar
computation, as above, by servers s2 and s′2

21 data := rsl1,1⊕rsl2,1⊕rsl1,2⊕rsl2,2;
22 if op=write then set data=block ;

// Batch insertion
23 upload new shares

of data, and φ−1 empty blocks to the root bucket in a random order;
// Refresh headers

24 upload new shares for all headers;
25 if ctr=0 mod (χ) then Evict(st) ;
26 set ctr :=ctr+1;

Algorithm 2: Access(op, adr, block, ctr, st): CHf -ORAM
access operation

Input: Eviction state st
1 for i from 0 to L−1 do
2 download headers Hi ={header1i ,header

2
i ,header

3
i }

and Hi+1 of bucket P(st,i) and P(st,i+1);
// generate oblivious merge permutation

3 set π←GenPerm(Hi,Hi+1);
// Merge the parent and destination bucket

4 P(st,i+1):=π(P(st,i))⊕P(st,i+1);
5 if i<L−1 then

// Copy
the parent bucket into its sibling

6 Ps(st,i) :=P(st,i);
7 else

// Merge
the last bucket with the sibling leaf

8 download headers Hs
i+1 from the sibling leaf;

9 π←GenPerm(Hi,H
s
i+1);

10 P(st,i+1):=π(P(st,i))⊕P(st,i+1);
11 end
12 update and upload new shares of headers Hi and Hi+1;
13 set P(st,i) :=0λ·B ;
14 end

Algorithm 3: Evict(st): CHf -ORAM evict operation



vectors (lines 15-16) and sends to the corresponding servers. For
two servers among the four (note they are selected at random for
every IT-PIR query), the block position, pos, in the IT-PIR vector is
set to one. For the the other two servers, the IT-PIR vector is exactly
the same except for the block position pos which is now equal to 0.
For a path P(tag), we denote blocks starting from the root to the
leaf by {P1(tag), ... ,Pλ·L(tag)}. The client retrieves from each
server rsli,j for i,j∈{1,2} (or i,j∈ [2] for simplicity), such that

⊕
i,j∈[2]

rsli,j =
⊕

k∈[λ·L]
vect1[k]=1

(
P1,k(tag)⊕P2,k(tag)

)
⊕

m∈[λ·L]
vect2[m]=1

(
P3,m(tag)⊕P4,m(tag)

)

=
⊕

k∈[λ·L]\{pos}
vect1[k]=1

(
P1,k(tag)⊕P2,k(tag)

)
⊕P1,pos(tag)

⊕
m∈[λ·L]\{pos}

vect2[m]=1

(
P3,m(tag)⊕P4,m(tag)

)
⊕P2,pos(tag)

=
⊕

k∈[λ·L]\{pos}
vect1[k]=1

(
P1,k(tag)⊕P2,k(tag)⊕P1,k(tag)⊕

P2,k(tag)

)
⊕P1,pos(tag)⊕P2,pos(tag)

= 0⊕P1,pos(tag)⊕P2,pos(tag)

= P1,pos(tag)⊕P2,pos(tag)=r⊕r⊕data=data

3.2.2 Merge
We show that the oblivious merge permutation, when applied to

buckets in a specific path, preserves real blocks. First, from the C-
ORAM correctness proof, we know that there is sufficient space in
a child bucket to merge the parent’s real elements.

So, the difficult part is to show that XORing blocks will not
change the value of real and empty blocks. More formally, let
Pj(tag, i) =

(
rji,1, ... , r

j
i,λ

)
, j ∈ [2] be a share of the ith bucket

on path P (tag) containing λ blocks (shares). Consider two buck-
ets stored in two servers containing the two shares Pj(tag,i) and
Pj(tag,i+1), j∈ [2]. Given an oblivious merge permutation π, we
obtain

Pj(tag,i)⊕π
(
Pj(tag,i+1)

)
=
(
rji,1⊕r

j
i+1,π(1)

,...,rji,λ⊕r
j
i+1,π(λ)

)
.

There are four different cases of XOR that can occur: an empty
block with a real block, two empty blocks, two noisy blocks, and
an empty block with a noisy block. We focus here on the first case,
as the other three cases’ correctness proof is similar. Given that a
block data exists in the (i+1)th bucket at the kth position, we need
to show that

⊕
j∈[2]r

j
i,k⊕r

j
i+1,π(k) = data. Without loss of gen-

erality, assume that, before merging the buckets, the parent’s block
was the real block and the child’s block was the empty block. Thus,

⊕
j∈[2]

(rji,k⊕r
j
i+1,π(k)) = r1i,k⊕r2i,k⊕r1i+1,π(k)⊕r2i+1,π(k)

= r1i,k⊕r1i,k⊕data⊕r1i+1,π(k)⊕r1i+1,π(k)

= data.

Note that this holds as r2i,k=r1i,k⊕data. This is the result of our
secret sharing technique.

3.2.3 Position Map: IT-Secure Path ORAM
To obliviously resolve a tag, the standard approach is to store

the position map in a sequence of logN ORAMs of decreasing
size [37]. As a result, either communication complexity of ORAM
access is multiplied by a factor of logN , or the minimum block size
is increased by a factor of logN .

It turns out that we can modify and then use Path ORAM [41] for
the specific case of storing and accessing the position map in our
setting. Path ORAM is a one-server construction that we transform
to our multi-server no-encryption setting. Every tree in the recur-
sive position map can be first replicated, and every block instead
of being encrypted is secret shared in two other servers instead. To
sum up, we have a structure similar to CHf -ORAM in the sense
that we store four versions of the position map on four servers.

3.3 CHf-ORAM bandwidth analysis
In this section, we analyze CHf -ORAM’s communication com-

plexity. For constant communication ORAM, we need to determine
the lower bound of the block size that CHf -ORAM can handle. In
the following, the number of servers is constant, and therefore will
be hidden in the big-O notation. Also, these results assume that
the expansion factor φ is constant in the security parameter λ, the
heightL inO(logN) and λ∈O(logN). We will discuss the choice
of parameters’ values later in the security analysis, cf. Section 4.

ReadAndRemove: Assume that the client already knows the tag
for the block they are looking for. With the 4 server setup, to read
a block (Algorithm 2), the client: (1) downloads the three head-
ers (size O(L2 ·λ) bit as header1 and header2 have size equal to
λ · L per bucket, and header1 has a size equal to λ per bucket),
(2) sends the IT-PIR query (size O(λ ·L) bit as it consists of a se-
quence of bits equal to the number of blocks in a path), and (3)
downloads the XORed output (size O(B) bit as the client down-
load one block from each server). This computes to a total of
O(L2 ·λ+λ·L+B)=O(log3N+B).

Add: The clients uploads φ blocks (sizeO(B) bit) back to the root
bucket. That is, the communication complexity is in O(φ ·B). As
φ is constant, the add communication complexity equals to O(B)

Evict: To evict a path, the client needs to download all headers,
generate permutations for any two adjacent buckets based on obliv-
ious merge algorithm. The number of required bit for the eviction
is: (1)O(λ·L2) bits required for the headers, (2)O(L·λ·logλ) bits
required for the permutation as one permutation has a size equal to
λ·logλ bits. That is, the overall communication complexity equals
O(λ · L2 + L · λ · logλ) = O(log3N). The eviction is a pro-
cess that occurs after χ = O(logN) read operations. That is, the
amortized number of bit transferred between the client and servers
equals O(log2N).

Position Map: The position map access consists of accessing re-
cursively a logarithmic number of Path ORAM trees. Recall that to
access one Path ORAM tree in the position map,O(log2N) bits are
required as the block size equals to logN and the bucket size has a
constant number of blocks equal to 5 (or 4 empirically). The overall
position map communication complexity then equals O(log3N).

Overall communication complexity: The entire communication
complexity required to fetch a block while taking into considera-
tion the position map communication complexity, is equal to

O( log3N+B+log2N︸ ︷︷ ︸
ReadAndRemove, Add and eviction

+logN ·(log2N)︸ ︷︷ ︸
Position map access

).



To achieve O(1) communication complexity, we set block size
B ∈ Ω(log3N). That is, CHf -ORAM enjoys a block size that is
smaller than related work by a factor of logN .

Client Storage: Path ORAM position maps requires a stash for ev-
ery tree. The stash’s size is inO(logN ·Bp), whereBp=O(logN)
is the block size in the position map. That is, Path ORAM position
map requires a client memory in O(log3N), taking into account
the logN recursive trees. Fortunately, choosing a block size in
Ω(log3N), makes the entire client storage for the stash equal to
one block of CHf -ORAM. That is, we do not loose the constant
client storage property of CHf -ORAM.

3.4 Integrity
Ren et al. [34] show that a malicious server can violate an ORAM’s

security by sending back specific sequences of wrong data in re-
sponse to a client’s request. As a consequence, ORAMs need an
integrity protection mechanism that detects whether a server tam-
pered with returned data. While for Path ORAM a simple Merkle
tree-based approach is sufficient, recent PIR-ORAM hybrids re-
quire more sophisticated solutions for integrity. For example, see
the coding based approach in Onion ORAM [11].

While one could adopt Onion ORAM’s mechanisms, integrity
for CHf -ORAM turns out to be straightforward thanks to using
XOR-based IT-PIR. So, we only outline the main concepts below.

So far, a block in CHf -ORAM is a simple bit string containing
data. For integrity protection, instead of only storing data, we now
store in a block the concatenation data||HMACK(data) with a key
K only known to the client. As before, each server computes an
XOR over all blocks (each containing a hash now) and sends the
resulting bit string back to the client. The client then XORs all re-
ceived bit strings and verifies whether the HMAC of this final bit
string (the last λ bit) matches the data part (the first B bit). If they
do not match, the client has detected malicious behavior and stops.

Security follows, as servers do not collude: they do neither know
the other servers’ state nor can they coordinate in what to return to
the client. Each bit that a server changes in the reply will break
HMAC verification.

4. SECURITY ANALYSIS
Security definition: Our security definition captures the standard
ORAM security intuition that, as long as there are no overflows in
the ORAM tree (or in the position map Path ORAM stashes), two
access patterns are computationally indistinguishable.

DEFINITION 4.1. Let λ be the security parameter. Let −→a =
{(op1,d1,a1),(op2,d2,a2),...,(opM ,dM ,aM )} be a sequence ac-
cesses (opi,di,ai), where opi denotes a ReadAndRemove or an
Add operation, ai the address of the block, and di the data to be
written if opi= Add, or di=⊥ when opi= ReadAndRemove. Let
Overf be the event that a bucket overflows during an access.

Let A(−→a ,x) be all communications sent between the client and
server x in executing the access pattern −→a .

We say that CHf -ORAM is secure iff for all probabilistic poly-
nomial-time (in λ) adversaries D there exists a negligible function
negl such that for sufficiently large λ

1. the probability of overflow Pr(Overf)≤negl(λ) and

2. for all values of x and all sequences−→a and
−→
b , where |−→a |=

|
−→
b |∈poly(λ)

|Pr[D(A(−→a ,x))=1]−Pr[D(A(
−→
b ,x))=1]|≤negl(λ).

4.1 Overflow Analysis
Our eviction is similar to various previous works [11, 28, 35].

First, the eviction path is selected following a reverse lexicographic
order. After every read operation, the element that was read is put
back in the root. After χ read operations an eviction occurs. To
achieve the same overflow probability as previous work, the size of
the bucket can be set to those of previous works. Along the same
lines, eviction rate and the tree height are as before. Consequently,
we only repeat the main results and refer the reader to Devadas
et al. [11] for details and proofs.

THEOREM 2. For eviction rate χ and tree height L, with λ≥χ
and N ≤χ ·2L−1, the probability that a bucket overflows is upper

bounded by e
−(2λ−χ)2

6·χ .
For an overflow probability negligible in the security parameter

λ, it is sufficient to choose L ∈Θ(logN), χ ∈Θ(λ). In practice,
we can choose λ∈O(logN).

Additionally, in CHf -ORAM, the number of empty blocks in all
buckets have to be sufficient to handle noisy blocks. Noisy blocks
are inherent to the oblivious merge technique. Since our eviction
and oblivious merge process are similar to those in C-ORAM, we
borrow their theorem result and refer the reader to [28] for proof
details.

THEOREM 3. If φ∈Θ(1), a real block gets overwritten with a
probability in O(λ−λ).

If bucket size λ ∈O(logN), L ∈Θ(logN), and φ ∈Θ(1), the
probability that a real block gets overwritten is in O(N−loglogN ).
Experiments [28] show that empirically φ≈2.2 is sufficient.
φ is an expansion factor that needs to be adapted to our batch

eviction trick. In C-ORAM, the eviction was performed after ev-
ery access. This made the bucket size smaller for reasonable over-
flow probability, and in particular, the eviction rate was not neces-
sary. Now, with batch eviction, we evict less often with more real
blocks in the root bucket. Based on results of [28], the probability
that a real block gets overwritten at the ith level and jth eviction,
Pr[Ri,j ], equals Pr[Ri,j ] ≤Mei+ln(i·χ)+4φ·χ−ln(φ·χ)·φ·χ, where
M is a constant. We can upper-bound the above quantity for all
i∈ [L] and for all j∈N such that

Pr[R]≤MeL+ln(L·χ)+4φ·χ−ln(φ·χ)·φ·χ.

Let eλ be the number of operations that we want to perform on
CHf -ORAM before an overflow occurs. That is, with a simple
union bound we have

Pr[
⋃
i∈[L]

j∈[eλ]

R] ≤
∑
i∈[L]

j∈[eλ]

Pr[R]

≤ Mez+lnL+L+ln(L·χ)+4φ·χ−ln(φ·χ)·φ·χ,

For example, the bucket size should be equal to χ ·φ = 140 to
have an overflow of ≈2−20, for an L=30.

4.2 Oblivious merge with batch insertion
Batch insertion consists of adding, after every access, φ blocks

to the root. Among these φ blocks, φ−1 are empty and one block
is real. These φ blocks are randomly shuffled before being inserted
to the root. That is, after χ accesses, the bucket can be seen as
being composed of χ sub-buckets that each contains φ blocks. We
formally define a sub-bucket below.

DEFINITION 4.2. For all tag ∈ {0,1}L, i≤ L, given a bucket
P(tag,i) composed of λ blocks such that λ = φ ·χ, the jth sub-
bucket of P(tag,i) consists of the sequence of φ blocks at position



{(j−1)·φ+1,···,φ·j}, for all 1≤ j≤χ. We denote by Pj(tag,i)
the jth sub-bucket of P(tag,i).

Public leakage of batch insertion: First notice that the server
learns that, at the root bucket, real blocks are distributed in the χ
sub-buckets of the root. In other words, the server knows that ev-
ery sub-bucket of Pj(0,0), for all j≤χ, exactly contains one real
block. On the other hand, the batch insertion does not only have
an impact on the distribution of blocks in the root bucket, but also
on other buckets of the tree. As an instance, the sibling of the root
is an exact copy of the root, based on our eviction process. That
is, the root sibling has the same distribution as the root bucket. In
general, batch insertion impacts all buckets of the ORAM tree in
such a way that all buckets will preserve the root initial distribution
at some differences that we detail below.

All real blocks that were inserted in the root can eventually turn
to noisy blocks in lower levels of the tree. That is, the batch inser-
tion will imply that for every sub-bucketPj(tag,i), for all tag∈{0,
1}L, i≤ L and j ≤ χ, there is at least one real or noisy block in
every sub-bucket.

A valid question to ask is if such distribution would give more
chance to the server to determine the permutation generated by the
oblivious merge algorithm. Recall that in C-ORAM, the bucket dis-
tribution is unknown to the server and the permutation outputted by
the oblivious merge algorithm is indistinguishable from a random
permutation.

Having a public knowledge of blocks’ distribution would im-
ply ultimately that the client cannot generate all permutations from
{{1,···,λ}→{1,···,λ}}. The server also knows that the client can-
not generate all possible permutations. Thus, the server is not any-
more distinguishing against a randomly permutation π generated
from {{1,···,λ} → {1,···,λ}}, but against a new ideal restrained
permutation that takes into account the new a-priori public knowl-
edge of the server. We call this new permutation batch permutation
that we are going to define formally below. Note that this is a public
knowledge that the adversary will use in order to eliminate many
possible permutations. Before defining batch permutation, we first
define the batch insertion event.

DEFINITION 4.3. For all φ, χ > 0, a batch insertion event,
AI(φ,χ), is the event of inserting at random χ real or noisy blocks
each in the jth sub-bucket Pj(tag,i), for all tag ∈ {0,1}L, i≤L
and j≤χ.

LEMMA 4.1. A batch permutation is a random permutation con-
strained to the event AIφ,χ such that for all φ,χ>0 s.t. λ=φ·χ

Pr[π←{{1,···,λ}→{1,···,λ}} | AIφ,χ]=
1(

φ
1

)χ ·χ!·(λ−χ)!

We denote APφ,χ the set of all possible permutations for φ,χ>
0. Note that it is clear that |APermφ,χ| ≤ |Perm|, where Perm =
{{1,···,λ}→{1,···,λ}}, for λ=φ ·χ. It is important to show that
the oblivious merge algorithm, given the batch insertion, outputs
permutations that are indistinguishable from batch permutations
for computationally unbounded adversaries. That is, given a batch
permutation, the adversary does not get any additional information
about the load of the bucket. In particular, quantifying the bucket’s
load and the permutation output are two independent events.

Adversarial model: Let GenPerm be the (probabilistic) oblivious
merge algorithm. Our adversarial model is the following: an adver-
sary can chose any pair of two adjacent buckets’ headers, and can
only get one permutation output by GenPerm for it. The header
follows the batch insertion bucket distribution from an adversarial
view, described above. This operation can be performed an un-

bounded number of times under the condition that buckets headers
have to be updated following an oblivious merge operation, or dif-
ferent from any previous adversarial request.

Batch insertion main Theorem: Let Load
(
(i,nA),(j,nB)

)
be the

event that the number of real and noisy blocks in A and B are re-
spectively i, j, and nA and nB . k represents the size of the buckets
such that λ=φ·χ, for all φ,χ>0 .

THEOREM 4. Let HA and HB be the respective headers of two
bucketsA andB such that for all permutations π′ from APermφ,χ,

Pr[π←GenPerm(HA,HB)=π′ | APφ,χ]=
1(

φ
1

)χ ·χ!·(λ−χ)!
.

PROOF. We prove the theorem for any two adjacent buckets A
and B. For the case of A being the root, it would be sufficient to
set nA to 0 in the proof. Throughout the proof, a combination of
a bucket refers to the distribution of real, empty and noisy blocks.
From a fixed combination, we can generate all possible permuta-
tions by taking into consideration the blocks’ positions.

Let Π be the random variable that captures which permutation
has been outputted by GenPerm. For every possible combination
of real, empty, and noisy blocks in B, there are only few possible
combinations for B that can be selected, for correctness reasons.
These combinations are called valid combinations of B, and their
set is denoted by VC. Let CB be the random variable that cap-
tures the combination that bucket B has before being merged with
A. Given that bucket B has j real blocks and nB noisy blocks, the
overall number of possible combinations while taking into account

the event AIφ,χ equals

(
φ

1

)
···

(
φ

1

)
︸ ︷︷ ︸

χ times

·
(

λ−χ
nB+j−χ

)
·
(
nB+j−χ
j−χ

)
. To

understand the counting process behind this formula, first note that
χ blocks have to be in each of the χ-subsets of the bucket based
on AIφ,χ event so the φχ term, then the remaining real and noisy
blocks have to be selected so the

(
λ−χ

nB+j−χ

)
term and finally as the

real and noisy block are two different entities we need also to count
possible cominations among the prior selected. That is, for any
fixed possible combinations δB of bucket B

Let Π be the random variable that captures which permutation
has been outputted by GenPerm. For every possible combination
of real, empty, and noisy blocks in B, there are only few possible
combinations for B that can be selected, for correctness reasons.
These combinations are called valid combinations of B, and their
set is denoted by VC. Let CB be the random variable that cap-
tures the combination that bucket B has before being merged with
A. Given that bucket B has j real blocks and nB noisy blocks, the
overall number of possible combinations while taking into account

the event AIφ,χ equals

(
φ

1

)
···

(
φ

1

)
︸ ︷︷ ︸

χtimes

·
(

λ−χ
nB+j−χ

)
·
(
nB+j−χ
j−χ

)
. To

understand the counting process behind this formula, first note that
χ blocks have to be in each of the χ-subsets of the bucket based
on AIφ,χ event so the φχ term, then the remaining real and noisy
blocks have to be selected so the

(
λ−χ

nB+j−χ

)
term and finally as the

real and noisy block are two different entities we need also to count
possible combinations among the prior selected. That is, for any
fixed possible combinations δB of bucket B

Pr[CB=δB ]=
1

φχ ·
(

λ−χ
nB+j−χ

)
·
(
nB+j−χ
j−χ

) .



Besides, the probability that random variable Π is equal to a spe-
cific permutation π′, conditionally to the event AIφ,χ, computes to

Pr[Π=π′|AIφ,χ] =
∑
i,j∈[λ]

Pr[Π=π′ ∧ Load
(
(i,nA),(j,nB)

)
|AIφ,χ]

=
∑
i,j∈[λ]

Pr[Π=π′ | Load
(
(i,nA),(j,nB)

)
∧AIφ,χ]·

Pr[Load
(
(i,nA),(j,nB)

)
]

=
∑
i,j∈[λ]

∑
δB∈VC

Pr[Load
(
(i,nA),(j,nB)

)
]·

Pr[Π=π′|Load
(
(i,nA),(j,nB)

)
∧AIφ,χ∧ CB=δB ]·

Pr[CB=δB ]

Now, we need to quantify the probability of the event E = {Π =
π′|Load

(
(i,nA),(j,nB)

)
,AIφ,χ, C=δB} as well as the cardinality

of the set of valid combinations VC. We present these two results
in the following two lemmas.

LEMMA 4.2. For all χ, φ > 0, for all permutations π from
APermφ,χ, for all nA, nB , i, j ∈ [λ] such that nA + i < λ and
nB+j<λ

Pr[E]=
1

nA!χ!·(i−χ)!·(λ−nA−i)!·φχ
(
λ−j−nB
i+nA−χ

)
·
(
i+nA−χ
i−χ

) .
PROOF. First, note that the event E captures the following: the

probability that a permutation is generated for a fixed combination
of B and load of A and B. That is, we proceed by counting all
possible such permutations. Given a valid combination δB for a
fixed load of A and B, we need to calculate the number of valid
combinations of A for this a-priori fixed combination of B, δB .
This quantity equals φχ

(
λ−j−nB
i+nA−χ

)
·
(
i+nA−χ
i−χ

)
. The first term of

this quantity computes the number of combinations to insert χ real
blocks into the χ-subsets of the bucket, the second term underlines
the following: in order to merge correctly the buckets A and B, the
real and noisy elements needs to be added to empty blocks. That
is we have to insert i+nA−χ into λ− j−nB empty blocks in
B. The last term is only to quantify the number of combinations
in i+nA−χ as the noisy and real blocks are distinct. Given the
number of combinations, we can easily find the valid number of
permutations that can be applied over A. We need to permute four
different entities among each others: (1) the χ inserted real (or all
noisy) blocks, (2) the (i−χ) remaining real blocks, (3) nA noisy
blocks, and (4) λ−nA−i remaining empty blocks such that: nA!·
i!·(λ−nA−i)!·

(
λ−j−nB

i

)
·
(
λ−j−i
nA

)
. Thus the lemma result.

An important remark at this stage would be to notice that the
probability of event E and the probability to select a combination
in B, Pr[CB = δB ], are both independent of the combination δB .
This implies that

∑
δB∈VC

Pr[E]·Pr[C=δB ]= |VC|·Pr[E]·Pr[C=δB ]

Now, given a fixed combination over bucket A, we need to find
out the number of valid combinations of B, |VC|. We present it
under the form of a lemma:

LEMMA 4.3. For all χ,φ>0, for all nA,nB ,i,j∈ [k]

|VC|=φχ
(

λ−χ
nB+j−χ

)
·

(
nb+j−χ
j−χ

)
.

PROOF. This is a counting problem that can be solved as fol-
lows: note first that a combination over A is valid iff all real ele-
ments in both buckets A and B were not overwritten by any noisy
block. That is, for a fixed combination over A, we need to enumer-

ate the number of combinations over B that satisfy this statement.
A valid combination of B is therefore the one for which real ele-
ments in B have empty blocks in the combination of A. This com-
putes to φχ ·

(
λ−i−nA
nB+j−χ

)
·
(
nB+j−χ
j−χ

)
. The first term, similar to the

previous counting argument, captures the event AIφ,χ. The second
term illustrates the possible combinations of remaining blocks. The
last term determines the number of combinations of noisy and real
blocks per possible combination.

Putting all together, we can verify that

|VC|·Pr[E]·Pr[C=δB ]=
1

φχ ·χ!·(λ−χ)!
.

Therefore,

Pr[Π=π′ | APφ,χ] =
∑
i,j∈[λ]

|VC|·Pr[E]·Pr[C=δB ]

·Pr[Load
(
(i,nA),(j,nB)

)
]

=
∑
i,j∈[λ]

1

φχ ·χ!·(λ−χ)!
·Pr[Load

(
(i,nA),(j,nB)

)
=

1

φχ ·χ!·(λ−χ)!

5. EVALUATION
In order to compare CHf -ORAM to related work, we have to

derive concrete values for some of the parameters which were only
expressed asymptotically above. In particular, although λ isO(logN)
and χ=Θ(λ), exact values are needed for an implementation.

For our schemes to have good communication complexity, χ
should be as large as possible. However, the larger χ is the higher
the probability of a bucket overflow during eviction. The ratio be-
tween χ and λ is φ and represents the communication cost for a
query. Every query must write φ blocks to the root node. Fig-
ure 2 shows χ versus the number of operations that an instance of
CHf -ORAM is able to support before an overflow, as determined
experimentally (note the log scale). As χ increases, the number
of operations before an overflow drops off dramatically. For our
experiments, we chose χ=λ/10

For determining λ, we created multiple instances of CHf -ORAM
with N = 215 and various settings of λ, and then executed ac-
cesses on them until an overflow occurred. Taking the average over
20 runs for each value of λ, we obtained Figure 3. Extrapolat-
ing, we can see that for 50 bits of security, CHf -ORAM requires
λ to be approximately 900. This is substantially larger than re-
lated constant-communication schemes like C-ORAM [28]. How-
ever, the bucket size has very little impact on the cost of CHf -
ORAM. The only communication that is performed over buckets is
the headers, which amount to only a few thousand bits even with
large λ.

The more important consideration with λ being so large is how
it impacts server computation time, since the servers must compute
over all buckets in a path to perform PIR and eviction. Figure 4
shows overall query execution time, including network transfer and
server computation for CHf -ORAM and the current state of the art
scheme Ring ORAM [35] with various values ofN and a block size
of 1 MB. We assume a network speed of 20 Mbps. Furthermore,
we assume that each server is equally powerful and can calculate
the XOR of two 1 MB blocks in 1 ms (the amount of time it took on
our test machine, a 2012 Macbook Pro with 2.4 Ghz Intel i7 pro-
cessor). Note that our evaluation focuses on communication and
computation overhead as being the main metrics on which ORAM
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constructions are compared to. As stated earlier, we did not modify
Ring ORAM [35] single-server setting. Increasing the number of
servers while preserving a non-communicating servers setting does
not have any trivial positive impact on Ring ORAM construction
communication overhead.

The results show that CHf -ORAM beats Ring ORAM, starting
from N ∼ 220. The cost of CHf -ORAM is dominated by the φ
blocks that must be uploaded for every access. To 4 servers, with
χ=λ/10, this amounts to 40 MB. Beyond that, the server compu-
tation is almost negligible which is why CHf -ORAM scales much
better for largerN . Note that CHf -ORAM offers constant memory
complexity on the client, while Ring ORAM requires O(logN).
Compared to schemes with homomorphic encryption, like Onion
or C-ORAM, a query in our ORAM can be performed in less than
a second rather than several minutes. A significant advantages es-
pecially for resource-constrained devices. On the other hand note
that the online communication cost of CHf -ORAM is below 5 sec-
onds for N ∼ 220, which shows that our construction is extremely
suitable for fast read operations—recall that online cost captures
the time required to access the block while not taking into consid-
eration eviction process.

Also interesting is the increased efficiency on the client side for
CHf -ORAM. The client performs no encryption operations, only
XOR on four blocks and generating φ blocks of random data. In
contrast, Ring ORAM clients perform decryption and reencryption
on ∼2.5logN blocks. This encryption time is not accounted for in

Figure 4 because it highly depends on the power of the client, but
could easily double the overall execution time on a low powered de-
vice. This makes CHf -ORAM uniquely attractive to devices with
low computational ability.

6. SECURE RAM COMPUTATION
ORAM has been recently extensively used for secure RAM com-

putation [21, 24, 25, 42]. In the following, we give a high level de-
scription on how CHf -ORAM can be utilized as a component for
secure RAM computation. For further details, we refer the reader
to [21, 30]. We picture the four servers of CHf -ORAM as four
parties that desire to compute a RAM program on specific data.
This data can be composed of parties input or, as demonstrated by
Gordon et al. [21], be a-priori stored in a secure multi-party com-
putation fashion. The secure RAM computation requires that the
client’s state, as well the memory, be secret shared between the par-
ties. Besides the T−time RAM program, there is also a sequence of
T instructions that are evaluated via secure computation that takes
as inputs the secret shares of the ORAM memory, the client and
the program state. As defined in previous works, both the pro-
gram logic and memory operations are implemented based on se-
cure computation. It has been pointed out in SCORAM [43] that if
a tree-based ORAM is the underlying ORAM, the eviction process
when modeled as a circuit can add a non-negligible overhead.

One of the interesting features of CHf -ORAM is that its eviction
is independent of the block size. This stems from the fact that CHf -
ORAM’s eviction only requires transferring the buckets’ headers
on a specific path, plus the oblivious merge permutations, which
are both independent of the block size.

An additional feature that is important for an ORAM to work
well in a secure RAM setting is that its client state be small. As
shown by Lu and Ostrovsky [25], the state must be exchanged
between the clients during every step of the computation. There-
fore, reducing the size of the state is extremely important for secure
RAM computation as it will reduce the circuit size. CHf -ORAM
has O(1) client memory, inducing the lowest possible overhead
on the secure RAM construction. In contrast with existing work,
all sublinear ORAM inducing O(

√
N) or O(logN) client storage

such as [40, 44, 45] would be very inefficient in this secure RAM
setting.

From table 2, it is clear that CHf -ORAM offers a constant size
circuit if B ∈ Ω̃(λ · log2N), where λ is the security parameter. As
far as we know, this is best asymptotic size so far in literature for



Table 2: Circuit size of eviction process for recent ORAM con-
structions. λ, N , CPRF and B respectively denote the security
parameter, the number of blocks, the circuit size of a PRF, and the
block size. Õ hide a log(λ) factor.

Scheme Circuit Size (Asymptotics)
Shi et al. [37] O

(
(log3N+B ·logN)·λ

)
Chung et al. [7] O

(
(log3N+B ·logN)·λ

)
Path SC ORAM [43] Õ

(
(log2N+B)·λ

)
LO [25] O

(
(CPRF +B)·logN

)
Circuit ORAM [42] O

(
(log2N+B)·λ

)
CHf -ORAM O(logλ·λ·log2N+B)

the eviction process as it is independent of the block size. It even
beats the well-known lower bound of Goldreich and Ostrovsky as it
applies to the circuit size metric [42]. This is possible because the
lower bound only captures settings where the server does no per-
form computation. Since we have the server do XOR operations
to simplify eviction from the client side, it circumvents that lower
bound and allows us to achieve O(1) complexity.

Previously, Circuit ORAM [42] was the construction that pro-
vided the best circuit size asymptotics, as it approaches the Goldre-
ich and Ostrovsky [17] lower bound for block sizes in Ω(log2N).
Wang et al. [43] presented SCORAM an adapted tree-based ORAM
for secure RAM computation. Authors did not provide asymptotics
about their circuit size, as it is based only on heuristics. As noted
in [43], asymptotics might hide larger constants as it is the case for
Path SC ORAM, the adaptation of Path ORAM for secure com-
putation, where the logarithmic client state is stored in the main
memory and oblivious sorting is used instead in order to decrease
the state size (from O(logN)·ω(1) to O(1)). As oblivious sorting
hides larger constants, in Path SC ORAM, the asymptotics do not
reflect the practical behavior.

Finally, having constant circuit size in B leads to the follow-
ing general result: if a RAM program Π has a running time equal
to O(T ) and under the existence of a constant round multy-party
computation, then every instruction will require O(1) communica-
tion overhead, and the RAM program can be securely computed in
O(T )—Note that the big-O is in the block size that we assume is
in Ω̃(λ·log3N).

7. RELATED WORK
Oblivious RAM goes back to the seminal paper by Goldreich

and Ostrovsky [17]. There have been several attempts to improve
different aspects of ORAM, such as its communication complexity,
number of interactions between the server and the client, memory
complexity on the client side, and storage and computation over-
head on the server [6, 10, 15–20, 23, 26–30, 32, 35, 37, 41, 44, 45].
We briefly review three ORAM categorizations. The first discusses
recent advances of schemes with constant client memory complex-
ity, the second targets schemes with sublinear client memory, and
the third presents recent works in multiple-servers ORAM.

Constant client memory: Constant client memory is very appeal-
ing for resource-constrained devices with limited memory, e.g.,
embedded devices, small sensors, and devices in the Internet of
Things. Moreover, constant client memory is very useful in trusted
proxy settings when used by one or more clients, so there is no
need to transfer a large state. Goodrich and Mitzenmacher [18]
and Pinkas and Reinman [32] introduced amortize communication
complexity in O(log2N), but with linear worst-case communica-
tion complexity. Shi et al. [37] introduce tree-based structures pro-
viding a worst-case poly-logarithmic communication complexity

in O(log3N) blocks. Many subsequent papers build on top of this
one to further decrease communication or storage complexity stor-
age [15, 26, 27, 29]. Recently, there have been many attempts to
decrease the communication overhead to be constant in the number
of blocks. That is, obliviously reading or writing a block with only
a constant number of transferred blocks as overhead. Using servers
with computational capabilities instead of storage-only servers, De-
vadas et al. [11] showed how to construct a constant communica-
tion ORAM for blocks in Ω(log5N). Fletcher et al. [13] show how
to decrease the number of interactions of Onion ORAM from logN
to 1. Moataz et al. [28] demonstrate how to preserve constant com-
munication for smaller block size in Ω(log4N), while performing
eviction with fewer number of homomorphic multiplications. Al-
though low asymptotic bounds have been reached for communica-
tion complexity, high computational latency on server side makes
constant client memory not yet ready for deployment [28].

Poly-log client memory: Earlier schemes have memory complex-
ity on the client side in O(

√
N), yet inducing a linear worst-case

communication complexity [44, 45]. Stefanov et al. [40] show how
to get a worst-case memory complexity in O(

√
N) with a a com-

munication complexity in O(log2N). Stefanov et al. [41] present
how to provide a O(logN) communication complexity with only
a logarithmic memory complexity on the client size. This scheme
has been improved by multiplicative constant in [27, 35]. Recently,
Garg et al. [14] improves the number of interactions of Path ORAM
to be constant while inducing a multiplicative security overhead
factor.

Distributed setting: Many ORAMs leverage multiple servers to
decrease overhead. For example, ObliviStore [39] decreases over-
head using an oblivious load balancing technique relying on trusted
internal nodes to distribute accesses. Stefanov and Shi [38] ac-
cesses blocks in O(1) in a two-servers setting (extendable to k
servers) withO(logN) communication complexity between servers
and O(

√
N) client storage complexity. Lu and Ostrovsky [25]

show how to achieve Goldreich and Ostrovsky’s lower boundO(logN)
with two non-communicating servers and with O(1) client storage
complexity. Dachman-Soled et al. [9] introduce the notion of obliv-
ious network RAM that can be also fit to a distributed setting and
decreases access complexity to O(1). However this comes at the
cost of a weaker security model where the adversary is only allowed
to observe communication between servers and client. Servers them-
selves are trusted to not reveal details about queries.

In conclusion, all distributed ORAM’s today fail to offer con-
stant communication overhead with no concession, either by weak-
ening the threat model or by leveraging communication between
the servers.

Moreover, due to the use of encryption, the security of related
work is based on a computational hardness assumption. In con-
trast, Damgård et al. [10] and Ajtai [1] propose ORAMs without
computational hardness assumptions. Tree-based ORAMs with a
storage-only server can easily get rid of encryption, leveraging two
non-communicating servers, and be converted to an information-
theoretic ORAM. This paper tackles information-theoretic security
in a storage-computing server. Information-theoretic security is es-
pecially interesting in situations where encryption would overbur-
den devices’ computational capabilities, e.g., wireless sensors.

8. CONCLUSION
CHf -ORAM is a new constant communication complexity, con-

stant client memory complexity ORAM that avoids expensive ho-
momorphic encryption. This makes it especially attractive in sce-
narios with resource-constrained client devices. Our evaluation



demonstrates that CHf -ORAM is up to two orders of magnitudes
faster than related work such as C ORAM. Towards practicality,
another advantage is a block size smaller by a multiplicative factor
of logN compared to other homomorphic encryption-based solu-
tions. CHf -ORAM’s novel eviction circuit has size constant in the
ORAM’s block size. This makes it attractive to apply within re-
cently introduced Secure RAM Computations.
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