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Abstract—Recent techniques reduce ORAM communication
complexity down to constant in the number of blocks N . However,
they induce expensive additively homomorphic encryption on
both the server and the client. We present two new hybrid ORAM
constructions that combine ORAM with Private Information
Storage. We store and access individual ORAM buckets with PIS.
As a result, our first ORAM features Õ(logN) communication
complexity and a small block size of Ω(log3N) bit. The second
ORAM features optimal O(1) communication complexity and
Ω(log4N) bit block size. Both ORAMs have constant client-
side memory complexity. The highlight of our approach is that
neither client nor server are required to perform any encryption.
The above properties make our ORAMs extremely lightweight,
suitable for deployment even on resource-constrained devices. In
addition to a theoretical analysis, we also implement our ORAMs
to show their practicality and compare to related work.

I. INTRODUCTION

Oblivious RAM is a very powerful tool that has been the
subject of substantial research efforts over the last few years.
It allows a client to outsource data to an untrusted server
while hiding the pattern of accesses that the client performs on
this data. The classic measure of the efficiency of an ORAM
scheme is its communication overhead, how much extra data
must be transferred between the client and the server per
access in order to gain access pattern privacy.

Recently, research has achieved optimal O(1) communi-
cation complexity in the number of blocks stored in the
ORAM [7, 21]. Unfortunately, these schemes achieve good
communication complexity by leveraging server computation
which may be prohibitively expensive. In current schemes,
homomorphic ciphers like Paillier [24] are used on the server
to perform oblivious shuffling. This causes server computa-
tion exceeding several minutes for every client access which
(in terms of time) outweighs any savings in communication
complexity.

Our contribution: We show that homomorphic encryption
used in related work can be replaced by much faster op-
erations if the single server assumption is relaxed to allow
for a small number (as few as 4) of non-colluding servers.
This allows for ORAM with optimal O(1) communication
complexity and efficient server computations in the of order of
milliseconds instead of minutes. This makes ORAM possible
for low-powered clients that would not even be required to
compute encryptions. Additionally, we answer a longstanding
open question posed in [23] by showing that an ORAM

scheme can be made information-theoretically secure. Our
construction relies only on a non-collusion assumption, but
no computational assumption.

We combine recent advances in constant communication
ORAM with Private Information Storage (PIS) and present
two new ORAM constructions: NE-ORAM and CNE-ORAM.
Instead of naı̈vely storing the whole ORAM tree in PIS for
information-theoretic security, our idea is to store and access
buckets separately. This results in low (constant) communi-
cation complexity, memory complexity, and small block size.
Table I presents technical highlights of NE-ORAM and CNE-
ORAM compared to related work.

A. Motivating example

Considering the block size and the number of homomorphic
operations, C-ORAM [21] represents an efficient constant
communication ORAM in the semi-honest model. That is
in order to access one block obliviously, only one block is
retrieved from the server. This is made possible by allowing
the server to leverage some computations on the ORAM
structure. However, the number of homomorphic and additive
multiplications on the server side adds non-trivial delay to the
communication. Thus, even if the communication attains its
lower bound, the computation might annihilate all possible
gains in communication. For a clear view on this issue, we
take results from C-ORAM’s evaluation [21]. Using Pailler
as their additive homomorphic encryption, for N = 220, the
computation in C-ORAM takes around 10 minutes. This does
not even take into account the time to produce the CPIR
queries which are based on homomorphic encryption of a
logarithmic number of vectors. We expect that the overall
delay can exceed by far the 10 minutes needed for pure
computation on the server side. Lattice based schemes such
as NTRU might decrease computation on the server side to
be of the order of 5 to 10 seconds. While this appears to be
an interesting approach, it is still unclear how to fix NTRU
parameters to have both efficiency and well-defined security.

B. Construction Overview

We present a high level overview of our two new ORAM
constructions NE-ORAM and CNE-ORAM. Both improve the
state of the art on ORAMs with constant client memory which
makes them especially appealing for resource-constrained de-
vices. Our first construction, NE-ORAM has communication
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complexity that is logarithmic in the number of elements N
and requires small blocks of size log3N . Our second and
main ORAM construction CNE-ORAM extends NE-ORAM
and achieves constant communication complexity. However,
NE-ORAM requires slightly larger blocks of size log4N .
We describe both ORAMs, as they could target different
application settings, depending on real-world block size and
efficiency requirements.

1) NE-ORAM overview: Let Õ be asymptotic worst-case
behavior hiding a poly(log logN) factor. NE-ORAM (No En-
cryption ORAM) is an information-theoretic ORAM combin-
ing recent work in tree-based ORAMs with Private information
storage (PIS). NE-ORAM is a constant client memory ORAM
with communication complexity Õ(logN) for a block size in
Ω( log3N

(log logN)3 ). NE-ORAM builds on the tree-based ORAM
by Shi et al. [28] and a PIS construction by Ostrovsky and
Shoup [23].

To remove encryption and achieve information-theoretic
security, we employ multiple non-colluding servers to store
the ORAM. To make that efficient, the main idea behind NE-
ORAM is to exploit inherently leaked access information of
tree-based ORAMs. Reading an element in an ORAM tree
requires downloading a logarithmic number of buckets that
reside on a specific path. This path is known to the server.
Similarly, performing an eviction will access specific buckets
on every level of a path, and this pattern is also known to the
server.

Therefore, instead of the naı̈ve approach of replicating the
entire ORAM tree on multiple servers, our idea is to replicate
individual buckets. We then use PIS to obliviously access each
bucket. This allows NE-ORAM to improve communication
complexity. For block size B and a bucket size of (at least)
logN , accessing a single bucket in Shi et al. [28]’s ORAM
would be in O(logN ·B). Using PIS, accessing a single
bucket will only cost us Õ(B).

2) CNE-ORAM overview: CNE-ORAM (Constant-
Communication-Complexity No Encryption ORAM) integrates
recent work on constant communication complexity
ORAM [7, 21] to propose a new constant communication
ORAM without encryption. NE-ORAM offers O(1)
bandwidth overhead for a blocks size in Ω(log4N) and
constant client memory. Moreover, server computations are
simple XOR operations which are very cheap compared to
expensive homomorphic operations of related work [7, 21].
CNE-ORAM builds on top of NE-ORAM in the sense that
it also uses replication on multiple servers for information-
theoretic security. For CNE-ORAM, we adopt an oblivious
merge technique [21] to our setting with private information
storage.

II. BACKGROUND

We briefly present an overview about the main primitives
that we are going to base our work on. That is, the ORAM by
Shi et al. [28], IT-PIR by Chor et al. [4], PIS by Ostrovsky
and Shoup [23], and the oblivious merge technique by Moataz
et al. [21].

A. Tree-based ORAM

An ORAM allows two operations on an outsourced memory.
Read(a) reads from and Write(a, data) writes to a block of
data given the memory address a and the new value to be
written data. A tree-based ORAM stores N blocks of data in
a binary tree with N leaves. Each node in the tree is a “trivial”
ORAM bucket1, typically accessed as a whole. Each bucket
contains λ ∈ Ω(logN) blocks, giving a failure (overflow)
probability of 2−λ during later eviction. Each leaf is associated
to a leaf tag tag ∈ {0, 1}logN . To access an element, the user
keeps a position map that maps an ORAM address to its leaf
tag. The size of the position map is in O(N · logN). To allow
client memory to be constant in N , the position map is stored
on the server as an ORAM, too. This results in a recursive
ORAM structure, where access to the position map requires
accessing logN ORAMs of increasing size.

After resolving leaf tag tag for an address, the desired block
resides on the path P(tag) between the root of the tree and
leaf tag.

A Read and Write in an tree-based ORAM with constant
client memory are often formulated as a ReadAndRemove
operation, which additionally removed the block from the tree,
followed by an Add operation such as in [28].
• ReadAndRemove(a): Given address a, the client fetches

leaf tag tag from the position map. Given tag, the client
downloads path P(tag) that starts from the root and ends
with leaf tag. The client decrypts the path P(tag), and
retrieve the block searched for. The block is replaced by
a dummy block. Finally, the client re-encrypts all buckets
and uploads them to path P(tag). This downloading, re-
encrypting, and uploading a path is performed on a block-
by-block basis to keep client memory constant.

• Add(a, data): The client randomly samples a new leaf tag
t from {0, 1}logN , updates the position map, and encrypts
the block with the new data. The then client adds the
block to the root.

To prevent the root bucket from overflowing, an eviction
process is necessary to percolate real blocks towards their
tagged leaves. The eviction process, as defined in [28], ac-
cesses ν buckets per level. For each bucket, the client reads a
block and writes it to the bucket’s child that is closer to the
block’s leaf tag t. To preserve obliviousness, the client needs
to write a dummy block in child’s sibling as well.

Complexity Analysis: Blocks in the position map must have
size logN bit. To fetch a tag from the position map, a total of
O(log4N) bit are fetched: logN recursive trees with height
logN and buckets with logN blocks of size logN . To then
read the data block, O(log2N · B) bit are also transferred
to the client. Thus in total, O(log2N · B + log4N) bit, i.e.,
O(log3N) blocks are communicated between the server and
the client.

B. Information-Theoretic Private Information Retrieval

Information-theoretic Private information retrieval (IT-PIR)
is a cryptographic primitive introduced by Chor et al. [4]. In

1We use bucket and node interchangeably in this paper.
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TABLE I: Comparison of recent ORAMs, block size B in function of the number of blocks N , client memory in blocks,
communication complexity in blocks, Õ hides poly(log logN) factors

Scheme Block Size Client Memory Communication # homomorphic scalar Security # Servers
B multiplications

Path ORAM [30] Ω(log2N) O(logN) O(logN) − Computational 1
Onion ORAM [7] Ω(log6N) O(1) O(1) Θ(Bλ logN) Computational 1

C-ORAM [21] Ω(log4N) O(1) O(1) Θ(Bλ) Computational 1

NE-ORAM Ω( log3 N
(log logN)3

) O(1) Õ(logN) − Information-Theoretic 4

CNE-ORAM Ω(log4N) O(1) O(1) − Information-Theoretic 4

Input: Position pos ∈ {1, . . . , N}
Output: Block data stored at pos
// Client, generate PIR vectors

1 Set adr[pos] = 1 and ∀i 6= pos : adr[i] = 1;

2 vect1
$←− {0, 1}N ;

3 vect2 := Vect1 ⊕ adr;
4 Send vect1 to Server 1 and vect2 to Server 2;
5 rsl1 = rsl2 = 0N ;
6 for i from 0 to N do

// Server 1
7 if vect1[i] = 1 then set rsl1 = rsl1 ⊕Bi ;

// Server 2
8 if vect2[i] = 1 then set rsl2 = rsl2 ⊕Bi ;
9 end

10 Send rsl1 and rsl2 to client;
// Client

11 data := rsl1 ⊕ rsl2;
Algorithm 1: Linear IT-PIR for two servers

contrast to ORAM, IT-PIR does not require the outsourced
database to be encrypted to hide access pattern. However,
only read operation are possible in IT-PIR. To be able to
have information-theoretic security, some form of database
redundancy is required. For example, the database needs to
be replicated to k servers, and these servers must not collude
with each other. There exists a large body of work improving
communication complexity of the initial construction, e.g.,
see [1, 2, 17] and many derivatives. For completeness sake,
we also mention that there exists work preserving information
theoretic security against up to t < k colluding servers [8].

In this paper, we are particularly interested in retrieving
(large) blocks of data, not single bit. For this purpose, linear
constructions achieve constant communication overhead, yet
for different lower bounds on the block size. It turns out that
the basic construction by Chor et al. [4] is sufficient for the
needs of our second construction CNE-ORAM.

This construction is shown in Algorithm 1. The client wants
to retrieve block data stored at position pos out of a sequence
of N blocks. Therefore, the client starts by generating a
random bit vector vect1 of length N bit and sends it to Server
1. A second vector vect2 is the same as vect1, only the bit at
position pos is flipped; vect2 is sent to Server 2. Each server
XORs all blocks where the corresponding bit in the vector is
set to 1. The final result is sent back to the client. The client
can restore data by XORing each server’s output. Note that
the communication complexity of this information-theoretic
secure PIR is linear in N .

For our first ORAM construction NE-ORAM, however, we
need a slightly more involving IT-PIR mechanism. Due to

space limitations, we do not present details here, but only
repeat the main results from [4]. The first result states the
communication complexity to obliviously read a single bit,
the second shows how we can save communication complexity
when reading a block of B bit.

Theorem 1: (Corollary 2 of [4]) For k servers each holding
N bit of data, there exists a construction to retrieve a single
bit with communication complexity O(k · log k ·N

1
log k ).

Let IT-PIR(1, N, k) be an IT-PIR that reads one bit using
k servers with N bit stored in each. Let IT-PIR(B,N, k) be
an IT-PIR that reads a block of B bit using k servers with N
blocks stored in each. That is, each server stores N ·B bit in
total.

Theorem 2: (Corollary 12 of [4]) There exists an IT-PIR(B,
N, k) construction with B times the complexity of IT-PIR(1,
N
B + 1, k).

Consequently, if the block size B is larger enough, we can
achieve optimal constant communication complexity.

Theorem 3: (Corollaries 13 and 14 of [4]) For any constant
k ≥ 2 and for any B ≥ log k·N

1
log k , there exists an IT-PIR(B,

N, k) construction with communication complexity O(B) bit.

Remark: Many improved constructions exist for IT-PIR that
lower the block size bound. For example, B ≥ N

1
k instead

of B ≥ log k · N
1

log k , see [4]. However for NE-ORAM and
CNE-ORAM, the above two IT-PIR constructions for block
retrieval are sufficient. Note that we do not use the IT-PIR
scheme from Theorem 3 for our second ORAM, CNE-ORAM,
but the simple one from Algorithm 1. While this IT-PIR
offers better communication complexity, it cannot be applied
to our oblivious permutation – this will become clear later in
Section IV.

C. Private Information Storage

IT-PIR only supports reading. To support writing, Ostrovsky
and Shoup [23] introduce Private Information Storage (PIS)
transforming any read-only IT-PIR to also support writes. All
PIS have O(1) memory complexity on the client side.

Theorem 4: (Theorem 2 of [23]) For any k ≥ 2, if there
is a k-server IT-PIR scheme IT-PIR(B,N, k) on N blocks,
then there is a 2 · k-server private read/write scheme on N
blocks with communication complexity O(log3N) times the
communication complexity of IT-PIR(B,N, k).

Our final result is therefore Corollary 1.
Corollary 1: For any k ≥ 2 and B ≥ log k · N

1
log k , there

is a 2 · k-server private read/write scheme on N blocks with
communication complexity O(B · log3N).
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For such a PIS scheme, we denote by PIS(pos,DB, k,⊥) the
read operation and by PIS(pos,DB, k, B) the write operation
of a block at position pos from k servers on database DB.
A PIS protocol applied to a plaintext database DB refers
to the transformation applied on the plaintext database. This
transformation is a special kind of data encoding, we refer to
Ostrovsky and Shoup [23] paper for more details about the
construction. In the remaining of the paper, a PIS database
denotes the resulting encoded database.

D. Oblivious Merge

Given two ORAM buckets, each containing a number of
“empty”, “real”, and “noisy” blocks, an oblivious merge
algorithm [21, 22] outputs a permutation that will merge
both buckets into one. Noisy blocks were real blocks that
are either percolated to the wrong path as results of [21]
eviction, or previously the output of a read operation. This
permutation changes the transposition of blocks of the first
bucket such that no two real blocks will collide while merg-
ing. For the adversary, an oblivious merge permutation is
computationally indistinguishable from a randomly chosen
permutation on buckets. So, the adversary does not learn any
information about bucket contents. The communication cost
of a permutation is low for scenarios such as path eviction
in [21]. We present details about oblivious merge technique in
Algorithm 2. The client first gets the distribution of real, empty
and noisy blocks in buckets A and B. The client determines
the empty blocks in B, and randomly selects a number of
empty positions for the real blocks in A to be mapped to.
Analogically, the client does the same for the real blocks in B.
The client then determines the noisy blocks in B and randomly
selects the spots for the noisy blocks in A to be mapped to. If
there are more noisy blocks in A than B, they are then mapped
randomly to empty blocks in B. Finally, the lasting blocks are
mapped randomly together.

E. Secret Sharing

For our two protocols, we also need secret sharing. Infor-
mally, secret sharing enables a dealer to share a secret among
a number of parties such that no one alone can recover the
secret. The parties can recover the secret only by joining their
the shares. There are many schemes with different properties
and approaches, e.g., [3, 27], but again we will only focus
on a basic form of secret sharing. Given a secret S, the
dealer generates a random string S1 and a string S2 such that
S = S1⊕S2. S1 and S2 represent the shares to be distributed
to two parties.

III. NE-ORAM CONSTRUCTION

Similar to Shi et al. [28], NE-ORAM stores N blocks in
a tree with N leaves. However, in contrast to regular ORAM
that stores all buckets/nodes on one server, we store all buckets
on a total of 4 non-colluding servers (k = 2) using the PIS
of Corollary 1. Therefore, each bucket with its λ blocks is
represented as a PIS database.

For now, assume that the position map that maps each
address to its tag is available on the client. As mentioned

Input: Configuration of buckets A and B
Output: A permutation randomly lining up bucket B to bucket

A
// Slots in A and B start either empty,

full or noisy; mark slots in A as
assigned if block from B is assigned in
π

1 Let x1, x2 be the number of empty and noisy slots in A;
2 Let y1, y2 be the number of full and noisy slots in B;
3 d1 = x1 − y1;
4 d2 = x2 − y2;
5 for i from 1 to µ · z do
6 case B[i] is full z

$← all empty slots in A ;
7 case B[i] is noisy
8 if d2 > 0 then
9 z

$← all noisy slots in A;
10 d2 = d2 − 1;
11 else
12 z

$← all empty slots in A;
13 end
14 end
15 case B[i] is empty
16 if d1 > 0 then
17 z

$← all non-assigned slots in A;
18 d1 = d1 − 1;
19 else
20 z

$← all full slots in A;
21 end
22 end
23 π[i] = z;
24 A[z] = assigned;
25 end
26 return π;

Algorithm 2: GenPerm(A,B), oblivious permutation gener-
ation [21]

before, the position map will be stored recursively on the
server to have constant memory complexity on the client.

One of the main building blocks of our NE-ORAM con-
struction are headers. In addition to λ blocks, each bucket
also stores two types of headers. First, header1 is a λ by
logN bit two-dimensional array. Each row i stores the address
of block i in the bucket. Second, header2 is another λ by logN
two-dimensional array where row i represents the leaf tag of
block i. Both headers are accessed using PIS reads/writes on
k servers. That is, both headers are stored as a PIS database
over the 4 servers.

Given the address of a block at address adr, the client
first fetches leaf tag tag from the position map. The leaf tag
defines a path of nodes P(tag) = {P(0, tag), . . . ,P(logN,
tag)}. Starting from the root, the client uses PIS to retrieve
header1i from each bucket P(i, tag). With this header, the
clients checks whether the block at address adr exists in this
bucket. If adr exists in row j in header1i , the client uses PIS to
read block j from this bucket and writes a dummy block back
into the bucket as a replacement. Otherwise, if the address
does not exist, the client samples a random position j $← [λ],
uses PIS to retrieve block j, and writes it back. This procedure
is iteratively performed on all buckets P(i, tag) on the path to
tag. Once the block is retrieved, the client also adds it to the
root with a PIS write. Writing to a block is similar to reading:
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the old block is read and removed from the tree, and the
updated block is added to the root. We present details of our
read/write “access” operation in NE-ORAM in Algorithm 3.
Parameter op can be either a read or a write.

After every read or write, the client has to evict blocks
towards leaves. NE-ORAM evicts along the lines of Shi et al.
[28]. The difference is that, instead of downloading/uploading
an entire bucket, only the headers are downloaded, and PIS
read and write are performed on the bucket. At a higher
level, eviction works as follows: for each level, ν buckets are
randomly selected. For each bucket, a real element is evicted
towards the corresponding child. The selection of real elements
are based on the header information. In order to preserve
obliviousness, both children of any selected node among the
ν evicted has to be accessed. Based on the leaf tag tag, either
a dummy or a real block is written. This process is repeated
for all tree levels. We show details of NE-ORAM’s eviction
in Algorithm 4.

Remark: One might notice that applying PIS to access one
header using Ostrovsky and Shoup [23]’s construction is more
expensive than the naı̈ve construction (discussed later). From
an asymptotic point of view, using the naı̈ve construction will
improve over our scheme using PIS. Our choice is simply to
preserve clarity and the same PIS construction for both buckets
and headers. In practice, we argue that using naive PIS for
headers would be cheaper and easier to implement.

A. NE-ORAM Complexity Analysis

In this section, we analyze NE-ORAM’s communication
complexity. Our analysis is divided into two parts. First,
we analyze access operations (Algorithm 3), and second, we
analyze eviction (Algorithm 4).

Headers header1 and header2 are both two-dimensional
arrays of size λ·logN bit. To access a header, we retrieve it as
a whole upload it as a whole. Communication complexity for
the headers is in O(λ · logN) bit. Based on previous overflow
analysis [28], λ ∈ O(logN), so headers require O(log2N)
communication complexity.

The bucket contains λ ∈ O(logN) blocks, each of size
B bit. With k = 2, B ≥ logN , Corollary 1 yields a
communication complexity for a bucket of O(B·(log logN)3).

Since an access implies reading/writing a logarithmic num-
ber of buckets with headers, the access communication com-
plexity is in O(logN · (log2N +B · (log logN)3)).

For the eviction, we need to access ν buckets per level. For
each bucket, the children need to be accessed, too. So, 3 · ν
buckets in total are accessed for every level. Based on previous
analysis [22], ν is a constant and has to be equal to 4. In
conclusion, eviction has the same communication complexity
as block access.

The position map is recursively stored on the server, as a
sequence of trees of increasing (doubling) size. The number
of such trees is logarithmic in N . Asymptotically, summing
over the linearly increasing height is equivalent to assuming
all trees to have height logN . In each tree, blocks have size
equal logN bit (in practice, block sizes vary from one tree to

Input: Operation op, address adr, block block
Output: Block data associated to address addr
// Fetch tag value from position map

1 tag = posMap(adr);

2 posMap(adr)
$← [N ];

3 for i from 0 to logN do
// Download header1

4 header1i = PIS(1, header1i , k,⊥);
5 for j from 1 to λ do

// Search if adr exists in header1

6 if header1i [j] = adr then
7 set pos = j;

// Read the block searched for
8 data = PIS(pos,P(tag, i), k,⊥);

// Replace the real block with a
dummy and update the header

9 PIS(pos,P(tag, i), k, dummy);
10 update headers1i [j] = 0;
11 end
12 end

// If the block was not found in the
bucket

13 if pos = 0 then
14 set pos $← [λ];
15 data∗ = PIS(pos,P(tag, i), k,⊥);
16 PIS(pos,P(tag, i), k, data∗);
17 end
18 PIS(1, header1i , k, header

1
i );

19 end
20 if op = write then set data = block ;

// Add the real block to the root bucket
and update the header

21 PIS(pos,P(tag, 0), k, data);
22 PIS(1, header1i , k, header

1
i );

23 Evict(ν);
Algorithm 3: Access(op, adr, block): NE-ORAM access
operation

another). To retrieve a leaf tag, the client needs communication
in O(logN · (log3N + log2N · (log logN)3)).

In conclusion, communication complexity of NE-ORAM is

O(logN · (log3N + log2N · (log logN)3)︸ ︷︷ ︸
Position map access

+

logN · (log2N +B · (log logN)3)︸ ︷︷ ︸
Read/write access and eviction

).

If B ∈ Ω( log3N
(log logN)3 ), the above quantity is equivalent to

Õ(B · logN).

So far, we have implicitly considered the number of servers
required for PIS to be equal 4 without giving any further
explanations. Moreover, we have considered the number of
servers constant and therefore not considered it in our com-
plexity analysis above. As of Theorem 3, block size B must
be larger than log k · (B · λ)

1
log k to have an O(B) IT-PIR and

Corollary 1 to be valid. That is, in order for our bandwidth
analysis to be valid, the block size B ≥ log k · (λ)

1
log k . Fixing

k = 2, the block size B ≥ λ. On the other hand, we have
shown that in NE-ORAM, we require the block size to be
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Input: Eviction rate ν
1 for i from 0 to logN do
2 for j from 1 to ν do
3 set ind $← [2i];

// Download headers of bucket P(ind, i)
4 header1i = PIS(1, header1i , k,⊥);
5 header2i = PIS(1, header2i , k,⊥);

6 set pos $← Real block positions;
// Update headers

7 update header1i [pos] = 0 and header2i [pos] = 0;
// Retrieve the block to evict

8 data = PIS(pos,P(ind, i), k,⊥);
// Replace the evicted block with a

dummy
9 PIS(pos,P(ind, i), k, dummy);

// Determine the tag of the leaf to be
evicted to

10 tag = headers2pos ;
11 download headers of bucket P(ind, i+ 1) and

P(ind + 1, i+ 1);

12 set pos $← Dummy block positions;
// Write the real/dummy block in the

children buckets
13 if tagi+1 = 0 then
14 PIS(pos,P(ind, i + 1), k, dummy);
15 PIS(pos,P(ind + 1, i + 1), k, data);
16 else
17 PIS(pos,P(ind + 1, i + 1), k, dummy);
18 PIS(pos,P(ind, i + 1), k, data);
19 end
20 update headers accordingly;
21 end
22 end

Algorithm 4: Evict(ν): NE-ORAM evict operation

B ∈ Ω(log2N) which is clearly larger than the lower bound
of blocks λ ∈ O(logN). As PIS requires 2 · k server for an
IT-PIR with k servers, the total number of servers is 4.

IV. CNE-ORAM

In CNE-ORAM, we augment C-ORAM [21] with IT-PIR.
CNE-ORAM inherits C-ORAM’s major properties, such as
its eviction technique, bucket size, tree structure, and more
importantly the oblivious merge technique. CNE-ORAM main
idea is to integrates IT-PIR’s read techniques into CNE-
ORAM. This is challenging, as the oblivious merge must be
adopted to function in our no-encryption framework. In C-
ORAM, the oblivious merge makes crucial use of additively
homomorphic encryption, which we have to find a suitable
information-theoretic equivalent for.

For CNE-ORAM, we use the basic IT-PIR construction of
Algorithm 1 and the secret sharing technique of Section II-E.
While this basic PIS construction has communication com-
plexity linear in the number of blocks, we show how to
efficiently use it in a tree-based ORAM setting with oblivious
merge. This will lead to constant communication complexity
per access in total.

Overview: As a start, consider a version of the C-ORAM
tree where buckets and headers are unencrypted. Let this
unencrypted ORAM tree be Tree. We create two shares from
Tree, Tree1 and Tree2, such that Tree = Tree1⊕Tree2, bucket

by bucket, block by block, and header by header. We store
the two shares at two non-colluding servers s1 and s2. This
approach trivially gives information theoretic security, i.e.,
without collusion, a server cannot learn anything from their
share. As we will be using IT-PIR on each share separately,
we need to introduce two more servers, s′1 and s′2, that
replicate the shares. In conclusion, share Tree1 is stored at
servers s1, s′1, respectively, and Tree2 is stored at servers s2,
s′2, respectively.

We now present full details about how to create and access
shares Tree1 and Tree2.

Details: CNE-ORAM is a tree-based ORAM of height L. Each
bucket contains 3 headers header1, header2, and header3, and
λ blocks of size B. The first two headers are λ by L two
dimensional arrays. Similarly to NE-ORAM, each row i in
header1 contains the address of block i in that bucket. Each
row i in header2 contains the leaf tag of block i in that bucket.
header3 is a λ by 2 bit matrix that captures the state of every
block in the bucket. Each block can be either empty, real or
noisy. For details about the meaning of empty, real or noisy,
cf. Section II-D.

Note that the height L is slightly smaller than logN , the
bucket size λ is in O(logN), and the noisy blocks are a
consequence of using the oblivious merge technique [21]. We
will give more details about the choice of these parameters
in the analysis, cf. Section V. For each bucket and header,
we compute 2 shares. A block data in a bucket is equal to
data = data1 ⊕ data2, with data1

$← {0, 1}logB . We store
data1 on two servers s1, s′1, respectively, and data2 on servers
s2, s

′
2, respectively. For clarity sake, whenever we mention

downloading or uploading a header/bucket, this implicitly
refers to retrieving the corresponding shares using IT-PIR
construction, cf. Algorithm 1. For ease of exposition, let us
again assume that the position map is stored on the client
side. As before, we recursively outsource the position map
in smaller CNE-ORAM structures [28] and add a logarithmic
factor in our complexity analysis later.

To read a block at address adr, the client first fetches leaf tag
tag from the position map. Second, the client instructs servers
to download all headers of buckets on the path P(tag). For
each header, the client receives back 4 bit strings b1, b2, b3, b4
and can reassemble the header by computing b1⊕b2⊕b3⊕b4.
Using the headers, the client knows the exact position of the
block at address adr on path P(tag). That is, the client knows
which bucket and which block in that bucket.

Now, the client generates a random λ · L bit IT-PIR query
vector vect1

$← {0, 1}λ·L. The client also creates a second
λ · L bit vector vec2 that is equal to vect1 besides that the
bit at position adr is flipped: vect2[pos] = 1⊕ vect1[adr]. The
client sends vector vect1 to servers s1, s′1 and vect2 to servers
s2, s

′
2.

Each server performs the conditional XOR operation de-
scribed in the IT-PIR computation of Algorithm 1 and sends
the resulting bit string back to the client. To recover the block
at address adr, the client computes an XOR over all 4 bit
strings received. Finally, the client has to upload back the
block to the root, and sets the previous position of the retrieved
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block to noisy. For this, the client has to download all headers,
generates new shares while updating both the header of the
root and the header of the block that has been accessed. Note
that generating new shares hides from the server which header
has been updated. As in [21], one block from the accessed leaf
has to be refreshed in case it contains a noisy block. This is
performed in a deterministic order. For the same leaf, a block
is never accessed twice before accessing all other blocks.

After χ read operations, the client needs to evict real
blocks from the root bucket. First, the client downloads the
entire root bucket, shuffles the position of real elements and
adds a number of empty blocks. The client uploads the root
bucket to the server. The client then downloads all headers,
applies the oblivious merge algorithm to output L oblivious
merge permutations. The server will use these permutations to
merge every two adjacent (parent-child) buckets from the root
down to the leaf. The order of the eviction follows a reverse
deterministic lexicographic order.

Atomic insertion: The eviction process as described above is
performed after every χ read operations. This will only provide
an amortized constant communication scheme. Fortunately,
we can de-amortize the eviction by the following trick. We
know that after every evict operation, the root bucket is empty.
Now, instead of inserting the real blocks after every read and
then performing the shuffle operations on the client side, we
upload after every read φ blocks, where φ − 1 equals the
number of empty blocks needed to handle the noisy blocks in
lower levels. While the eviction is still performed after every
χ = O(λ) operations, its cost in terms of bit is now equal
to a read operation. Thus, CNE-ORAM offers a worst-case
constant communication overhead.

We give further details about access operation and eviction
in Algorithms 5 and 6.

A. CNE-ORAM correctness

We need to show that the read operation, cf. Algorithm 5,
will output the “correct” block data. Also, we need to show
that merging buckets in Algorithm 6 preserves the values of
real blocks.

In Algorithm 5 lines 17-20, the server performs XOR
operations over blocks for which the IT-PIR vector contains a
1. We know that CNE-ORAM’s tree is stored over four servers.
Two servers storing two shares, while the other two store exact
duplicates of each share. In order to retrieve a block, the client
needs to retrieve the block from all four servers. Formally,
the first server stores for each block datai a random value ri
such that the second server stores datai ⊕ ri. The third and
forth server store respectively the duplicates ri and datai⊕ri.
Now, each read operation, the path P(pos) has to be accessed
in order to retrieve the desired block, see Algorithm 5 lines
1-2. Now, given this path, we need to identify the bucket that
contains the block we are looking for. Thus, all headers needs
to be downloaded, lines 3-11, in order to determine the block
position. Given this position, the client generates four IT-PIR
vectors 15-16 and send each to the corresponding server. For
two servers among the four, the block position, pos, in the
IT-PIR vector is set to one, because we need to retrieve both

Input: Operation op, address adr, data block, counter ctr, state
st

Output: Block B associated to address addr
// Fetch tag value from position map

1 tag = posMap(adr);

2 posMap(adr)
$← [N ];

3 for i from 0 to L do
4 download header1i and header3i ;
5 for j from 1 to λ do

// Search if adr exists in header1

6 if header1i [j] = adr then
7 set pos := i · λ+ j;

// Update headers
8 set headers1i [j] = 0 and headers3i [j] = noisy;
9 end

10 end
11 end

// Generate the PIR vectors
12 for i from 0 to L · λ do
13 ptr[i] := δi,pos;
14 end
15 vect1

$←− {0, 1}L·λ;
16 vect2 := Vect1 ⊕ ptr;

// Computation on servers side
17 for i from 0 to L · λ do
18 if vect1[i] = 1 then set rsl1,1 := rsl1,1 ⊕ P(tag, i) ;
19 if vect2[i] = 1 then set rsl2,1 := rsl2,1 ⊕ P(tag, i) ;
20 end

// Computation on client side
21 data := rsl1,1 ⊕ rsl2,1 ⊕ rsl1,2 ⊕ rsl2,2;
22 if op = write then set data = block ;

// Atomic insertion
23 upload new shares of data, and φ− 1 empty blocks to the root

bucket in a random order;
// Refresh headers

24 upload new shares for all headers;
25 if ctr = 0 mod(χ) then Evict(st) ;
26 set ctr := ctr + 1;

Algorithm 5: Access(op, adr, block, ctr, st): CNE-ORAM
access operation

shares. For the the other two vectors, the IT-PIR vector is
exactly the same except for the block position pos which is
now equal to 0. For a path P(tag), we denote blocks starting
from the root to the leaf by {P1(tag), · · · ,Pλ·L(tag)}. The
client retrieves from each server rsli,j for i, j ∈ [2] such that

⊕
i,j∈[2]

rsli,j =
⊕

k∈[λ·L]
vect1[k]=1

(
P1,k(tag)⊕ P2,k(tag)

)
⊕

m∈[λ·L]
vect2[m]=1

(
P3,m(tag)⊕ P4,m(tag)

)
=

⊕
k∈[λ·L]\{pos}

vect1[k]=1

(
P1,k(tag)⊕ P2,k(tag)

)
⊕

m∈[λ·L]\{pos}
vect2[m]=1

(
P3,m(tag)⊕ P4,m(tag)

)
⊕P1,pos(tag)⊕ P2,pos(tag)

=
⊕

k∈[λ·L]\{pos}
vect1[k]=1

(
P1,k(tag)⊕ P2,k(tag)
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Input: Eviction state st
1 for i from 0 to L− 1 do
2 download headers Hi = {header1i , header2i , header3i } and

Hi+1 of bucket P(st, i) and P(st, i+ 1);
// generate oblivious merge permutation

3 set π ← GenPerm(Hi,Hi+1);
// Merge the parent and destination

bucket
4 P(st, i+ 1) := π(P(st, i))⊕ P(st, i+ 1);
5 if i < L− 1 then

// Copy the parent bucket into its
sibling

6 Ps(st, i) := P(st, i);
7 else

// Merge the last bucket with the
sibling leaf

8 download headers Hs
i+1 from the sibling leaf;

9 π ← GenPerm(Hi,H
s
i+1);

10 P(st, i+ 1) := π(P(st, i))⊕ P(st, i+ 1);
11 end
12 update and upload new shares of headers Hi and Hi+1;
13 set P(st, i) := 0λ·B ;
14 end

Algorithm 6: Evict(st): CNE-ORAM evict operation

⊕P1,k(tag)⊕ P2,k(tag)

)
⊕P1,pos(tag)⊕ P2,pos(tag)

= P1,pos(tag)⊕ P2,pos(tag)

= r ⊕ r ⊕ data = data

Now, we need to show that the oblivious merge permutation,
when applied to buckets in a specific path, preserves the real
blocks. From the C-ORAM [21] correctness proof, we know
that there will be always enough space, in the child bucket, for
real elements to be percolated in. Here, we are interested in
another aspect of correctness. We want to show that xoring up
random-looking blocks to each others will not miss up with
the value of real and empty block, and a client can always
retrieve the correct value later on. Formally, let consider two
buckets in two servers containing the two shares Pj(tag, i)
and Pj(tag, i+ 1), for j ∈ [2], each containing λ blocks such
that:

Pj(tag, i) =
(
rji,1, · · · , r

j
i,λ

)
Given the oblivious merge permutation π, we obtain

Pj(tag, i)⊕π
(
Pj(tag, i+1)

)
=
(
rji,1⊕r

j
i+1,π(1), · · · , r

j
i,λ⊕r

j
i+1,π(λ)

)
We have four different cases of XOR that can occur: an

empty block with a real block, two empty blocks, two noisy
blocks, and an empty block with a noisy block. We focus here
on the first case. Given that a block data exists in the (i+1)th

bucket at the kth position, we need to show that⊕
j∈[2]

rji,k ⊕ r
j
i+1,π(k) = data

Assuming that before merging the buckets, the parent’s
block was real and the child’s block empty. Based on secret
sharing, we obtain

⊕
j∈[2]

rji,k ⊕ r
j
i+1,π(k) = r1i,k ⊕ r2i,k ⊕ r1i+1,π(k) ⊕ r2i+1,π(k)

= r1i,k ⊕ r1i,k ⊕ data⊕ r1i+1,π(k) ⊕ r1i+1,π(k)

= data

B. CNE-ORAM bandwidth analysis

In this section, we analyze CNE-ORAM’s communication
complexity. For constant communication ORAM, we need to
determine the lower bound of the block size that CNE-ORAM
can handle. In the following, the number of servers is constant,
and therefore will be hidden in the big-O notation. Also,
these results assume that the expansion factor φ is constant
in the security parameter λ, the height L in O(logN) and
λ ∈ O(logN). These results are going to be further detailed
in the security analysis, cf. Section V.

To read a block (Algorithm 5), the client first downloads
the headers, sends the IT-PIR query and then downloads the
XORed output. Finally, the clients uploads φ blocks back to
the root bucket. This computes to 4L·λ·L+4L·λ+(4+φ)B =
O(log3N +B).

To evict a path, the client needs to download the all headers,
generate permutations for any two adjacent buckets based on
oblivious merge algorithm. The number of required bit for the
eviction is 4L·λ·L+4L·λ·log λ = O(log3N). The eviction is
a process that occurs after after χ = O(logN) read operations.
That is, the amortized number of bit transferred between the
client and servers equals O(log2N).

Before any read operation, the client needs to fetch the
tag from the position map. The position map is a logarithmic
number of CNE-ORAM trees with block size smaller or equal
to L. From an asymptotic point of view, it is valid to consider
all trees with the same maximal height and block size. That
is, the number of trees in the position map, as well as the
block size equal L. Every tree in the position map is a CNE-
ORAM tree, therefore for a read operation, the number of
bit required is similar to the one performed on the main data
ORAM except that the block size B is replaced by L. Since L
is in O(logN) and therefore dominated by O(log3N). That
is, the read operation is in O(log3N), while the evict equals
O(log2N) per tree.

To sum up, the communication overhead equals

O(log3N +B + log2N︸ ︷︷ ︸
Read/Write access and eviction

+ logN · (log2N + log3N)︸ ︷︷ ︸
Position map access

).

In order to obtain a constant communication overhead, it
would be sufficient to lower bound the block size such that

B ∈ Ω(log4N).

Remark: From an asymptotic complexity point of view, for
both NE-ORAM and CNE-ORAM, the position map induces
an additional logarithmic factor to the lower bound of the
required block size. The position map is responsible for
O(log4N) bandwidth overhead, while the access and evic-
tion process only induce a O(log3N + B) communication
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complexity overhead. In practice, storing the position map on
the client side does not represent a memory bottleneck for
fairly large number of elements. For example, for N = 220,
the position map will cost only 2 MByte which is small and
might even be stored on the client side. Some might argue that
storing N logN bits is contrary to our setting where we target
constant memory complexity on the client side. However, this
is not always true, since we target a memory complexity
constant in the number of blocks and not in bits. A block
size in CNE-ORAM, Ω(log 4N), can be larger than N logN
for N ≤ 213. Storing the position map improves the lower
bound on the block size for both NE-ORAM and CNE-ORAM
as follows. For NE-ORAM, the minimal block size to have a
Õ(logN) communication complexity becomes Ω( log2N

(log logN)3 )
bit. For CNE-ORAM, the minimal block size to have constant
communication complexity becomes Ω(log3N) bit.

V. SECURITY ANALYSIS

A. Security definition

We will show that an unbounded adversary with non-
colluding servers can recover a block’s content only with a
probability 2−|B| which is perfectly secure. However, we stress
that due to their tree structure, buckets’ in both CNE-ORAM
and NE-ORAM can overflow. Thus, their security depends
on the bucket overflow rate. Fortunately, bucket overflow,
colluding servers, and block security are independent events.
In the following security definition, we are going to capture
these three aspects. We only define security for CNE-ORAM.
Security for NE-ORAM follows along the same lines.

Definition 5.1: Let −→a = {(op1, d1, a1), (op2, d2, a2), . . . ,
(opM , dM , aM )} be a sequence of M accesses (opi, di, ai),
where opi denotes a ReadAndRemove or an Add operation,
ai the address of the block and di the data to be written if
opi = Add , or di = ⊥ when opi = ReadAndRemove .

We say that CNE-ORAM is information-theoretically secure
iff

1) Servers are not colluding
2) Given a security parameter λ, and Overf be the event that

a bucket overflows during the access, the probability of
overflow Pr(Overf) ≤ negl(λ).

3) for any computationally unbounded adversary D and any
two same-length sequences −→a and

−→
b , access patterns

A(−→a ) and A(
−→
b ),

Pr[D(A(−→a )) = 1] = Pr[D(A(
−→
b )) = 1].

First, we will make sure that buckets in CNE-ORAM will
not overflow. This implies a parametrization of bucket size
λ, height of the tree L, expansion factor φ, and eviction
rate χ. The eviction rate χ refers to the number of allowed
operations before that an eviction occurs. The expansion factor
φ is a security parameter that increases the bucket size to
avoid collisions when using oblivious merge technique. At a
higher level, φ is a multiplicative stretch factor that increase
the number of empty block to be equal to (φ− 1)χ, and that
the overall bucket size λ = φ · χ. Given our atomic eviction
technique, we insert in the root one real block after every
access operation. Thus the number of real blocks in the root is

at most χ before any eviction. Given that our eviction is similar
to previous works, we can inherit their analysis. Second, we
show that an oblivious merge permutation does not impact
ORAM obliviousness. More importantly, we need to show that
our new eviction trick, atomic insertion, does not impact CNE-
ORAM obliviousness.

Given that oblivious merge with the atomic insertion pre-
serves obliviousness, it is straightforward to show that CNE-
ORAM is information-theoretically secure as of Definition 5.1.

B. Overflow probability

CNE-ORAM’s eviction is the same as in various previous
works [7, 21, 26] and works as follows: a path is first
selected following a reverse lexicographic order. After every
read operation, real elements are put back in the root. After
χ read operations an eviction occurs. In CNE-ORAM, the
percolation of real elements in the tree is the same as with
previous schemes. That is, for a similar overflow probability,
the bucket size are equal to those in previous works [7, 21, 26].
Moreover, the eviction rate and the tree height are similar.
Thus, a similar parameterization holds. We only repeat the
main results and refer the reader to Devadas et al. [7] for
details and proofs.

Theorem 5.1: For eviction rate χ and tree height L, with λ ≥
χ and N ≤ χ · 2L−1, the probability that a bucket overflows

is upper bounded by e
−(2λ−χ)2

6·χ .
To avoid bucket overflows, the probability of overflow has

to be small. For an overflow probability negligible in the
security parameter z, it is sufficient to choose λ ∈ Θ(z),
L ∈ Θ(logN), χ ∈ Θ(z). In practice, we can choose
z ∈ ω(logN).

Besides, in CNE-ORAM, the number of empty blocks in
all buckets have to be sufficient to handle noisy blocks. Noisy
blocks are inherent to the oblivious merge technique. Since
our eviction and oblivious merge process are similar to those
in C-ORAM, we borrow their theorem result and refer the
reader to [21] for proof details.

Theorem 5.2: If φ ∈ Θ(1), a real block gets overwritten
with a probability in O(λ−λ).

If bucket size λ ∈ ω(logN), L ∈ Θ(logN), and φ ∈
Θ(1), the probability that a real block gets overwritten is
in O(N− log logN ). Experiments [21] show that empirically
φ ≈ 2.2 is sufficient.
φ is an expansion factor that needs to be adapted to our

atomic eviction trick. In C-ORAM, the eviction was performed
after every access. This made the bucket size smaller for
reasonable overflow probability, and in particular, the eviction
rate was not necessary. Now, with atomic eviction, we evict
less often with more real blocks in the root bucket. Based on
results of [21], the probability that a real block gets overwritten
at the ith level and jth eviction, Pr[Ri,j ], equals

Pr[Ri,j ] ≤Mei+ln(i·χ)+4φ·χ−ln(φ·χ)·φ·χ,

where M is a constant. We can upper-bound the above
quantity for all i ∈ [L] and for all j ∈ N such that
Pr[R] ≤MeL+ln(L·χ)+4φ·χ−ln(φ·χ)·φ·χ.
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Let ez be the number of operations that we want to perform
on CNE-ORAM before an overflow occurs. That is, with a
simple union bound we have

Pr[
⋃
i∈[L]
j∈[ez ]

R] ≤
∑
i∈[L]
j∈[ez ]

Pr[R]

≤ Mez+lnL+L+ln(L·χ)+4φ·χ−ln(φ·χ)·φ·χ,

For example, the bucket size should be equal to χ ·φ = 140
to have an overflow of ≈ 2−20, for an L = 30.

C. Oblivious merge

It is important to show that the oblivious merge algorithm
outputs permutations that are indistinguishable from ran-
dom permutations for computationally unbounded adversaries.
Thus, given a random permutation, the adversary does not get
any additional information about the load of the bucket. In
particular, quantifying the bucket’s load and the permutation
output are two independent events. In C-ORAM [21], authors
have shown that with a random root bucket, any adversary has
a negligible advantage in distinguishing the output of a random
permutation from the output of the oblivious merge algorithm.
The negligible, non-zero advantage in the case of C-ORAM
is a result of using additive homomorphic and symmetric key
encryption. In our case with CNE-ORAM, the adversary has
a zero advantage.

We now extend the previous security argument [21]. That
is, both buckets are not required to be random. Surprisingly,
a slightly weaker assumption is sufficient.

Let GenPerm be the (probabilistic) oblivious merge algo-
rithm. C-ORAM [21] adversarial model is the following: an
adversary can chose any pair of two adjacent buckets’ headers,
and can only get one permutation output by GenPerm for
it. The header has to be random from an adversarial view.
This operation can be performed an unbounded number of
times under the only condition that buckets headers have to
be updated or different from any previous adversarial request.

Our new setting is different from the one above, we don’t
assume that both headers are entirely random for the adversary,
and work with the following setting assumptions:

1) the adversary can choose the load of A but not the one
of B

2) for both headers, any position can be either empty, real
or noisy with a probability > 0 each

CNE-ORAM’s atomic eviction satisfies both of these as-
sumptions. First, notice that for the root bucket, we insert after
every read operation φ blocks such that φ− 1 are empty and
one is real in a random order. Thus, the adversary knows the
load of the root bucket. Second, from an adversarial view, any
position can be either empty or real with a probability of 1

φ

and 1 − 1
φ , respectively. These assumptions are weaker than

both headers being random. The first assumption represent a
worst case. In fact, for all buckets different from the root, an
adversary does not have any advantage of finding the exact
bucket’s load larger than a random guess. That is, the first
assumption can be relaxed for buckets different from the root

to be: the adversary can choose neither the load of A, nor the
one of B.

Let Load
(
(i, nA), (j, nB)

)
the event that the number of real

and noisy blocks in A and B are i, j, and nA and nB . k
represents the size of the buckets.

Theorem 5: Let A and B be two buckets such that for all
permutations π′ from {1, . . . , k}k → {1, . . . , k}k

Pr[π ← GenPerm(header(A), header(B)) = π′] =
1

k!

Proof: We prove the theorem for any two adjacent buckets
A and B. To have the case for A being the root, it would be
sufficient to set nA to 0 in the proof. Throughout the proof,
a combination of a bucket is the possible distribution of real,
empty and noisy blocks. From a fixed combination, we can
generate all possible permutations by taking into consideration
the blocks’ positions.

Let Π be the random variable that captures which permu-
tation has been outputted by GemPerm. For every possible
combination of real, empty, and noisy blocks in B, there are
only few possible combinations for B that can be selected,
for correctness reasons. These combination are called valid
combinations of B, and their set is denoted by VC. Moreover,
let C be the random variable that captures the combination
that bucket B is in before merging. Given that bucket B has
j real elements and nB noisy blocks, the overall number of
possible combinations is

(
k
j

)
·
(
k−j
nB

)
. That is, we have for any

fixed possible combinations δB of bucket B

Pr[C = δB ] =
1(

k
j

)
·
(
k−j
nB

) .
In conclusion, any block in B can be empty, real or noisy, so

all possible combinations on B are possible. Above, for clarity,
we made implicitly a simplification that a noisy block in B
can be considered as empty, this is why we get all possible
combinations over A. Note that this simplification does not
affect the results of this proof.

Besides, the probability that random variable Π is equal to
a specific permutation π computes to

Pr[Π = π′] =
∑
i,j∈[k]

Pr[Π = π′ ∧ Load
(
(i, nA), (j, nB)

)
]

=
∑
i,j∈[k]

Pr[Π = π′ Load
(
(i, nA), (j, nB)

)
] ·

Pr[Load
(
(i, nA), (j, nB)

)
]

=
∑
i,j∈[k]

∑
δB∈VC

Pr[Load
(
(i, nA), (j, nB)

)
] ·

Pr[Π = π′|Load
(
(i, nA), (j, nB)

)
, C = δB ] ·

Pr[C = δB ]

Now, we need to identify the probability of the event E =
{Π = π′|Load

(
(i, nA), (j, nB)

)
, C = δB}. First, note that the

event captures the following: given a valid combination δB for
a fixed load of A and B, we need to calculate the number of
valid combinations of A for an apriori fixed combination of B.
This quantity equals

(
k−j−nB

i

)
·
(
k−j−i
nA

)
. The first term of this
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quantity computes the number of combinations to insert the i
real blocks in A into blocks in B, that is, k − j − nB . Given
these possible combinations, we still need to insert the noise
of A into the blocks of B. The blocks in B that can handle the
noise are either empty or noisy blocks, thus, we have k−j− i
available blocks to handle the nA noisy blocks of A. Given
the number of combinations

(
k−j−nB

i

)
·
(
k−j−i
nA

)
, we can easily

find the valid number of permutations that can be applied over
A such that: nA! · i! · (k − nA − i)! ·

(
k−j−nB

i

)
·
(
k−j−i
nA

)
.The

first three terms of this quantity calculate respectively all
permutation over empty, noisy and real blocks. Thus,

Pr[E] =
1

nA! · i! · (k − nA − i)! ·
(
k−j−nB

i

)
·
(
k−j−i
nA

)
An important remark at this stage would be that the proba-

bility of event E is independent of the valid combination δB .
This implies that

∑
δB∈VC

Pr[E] · Pr[C = δB ] = |VC| · Pr[E] · Pr[C = δB ]

Now, given a fixed combination over bucket A, we need to
find out the number of valid combinations of B. This is also
a counting problem that would be solved as follows: as stated
above, the overall possible number of combinations equal(
k
j

)
·
(
k−j
nB

)
, among those combinations, only few represent

those within the set of valid combinations VC. A combination
over A is valid iff all real elements in both buckets were not
overwritten by any noisy block. That is, for a fixed combina-
tion over A, we need to enumerate the number of combinations
over B that satisfy this statement. A valid combination of
B is therefore the one for which real elements in B have
empty blocks in the combination of A. This computes to(
k−i−nA

j

)(
k−i−j
nB

)
.

That is,

|VC| =
(
k − i− nA

j

)(
k − i− j
nB

)
.

Putting all together, we can verify that

Pr[Π = π′] =
∑
i,j∈[k]

|VC| · Pr[E] · Pr[C = δB ]

·Pr[Load
(
(i, nA), (j, nB)

)
]

=
∑
i,j∈[k]

1

k!
· Pr[Load

(
(i, nA), (j, nB)

)
=

1

k!

VI. EVALUATION

In order to compare CNE-ORAM to related work, we
have to derive concrete values for some of the parameters
which were only expressed asymptotically above. In particular,
although λ is ω(logN) and χ = Θ(λ), exact values are needed
for an implementation.

For our schemes to have good communication complexity,
χ should be as large as possible. However, the larger χ
is the higher the probability of a bucket overflow during
eviction. The ratio between χ and λ is φ and represents the
communication cost for a query. Every query must write φ
blocks to the root note. Figure 1 shows χ versus the number of
operations that an instance of CNE-ORAM is able to support
before an overflow, as determined experimentally (note the
log scale). As χ increases, the number of operations before
an overflow drops off dramatically. For our experiments, we
chose χ = λ/10

For determining λ, we created many instances of CNE-
ORAM with N = 215 and various settings of λ, and then
executed accesses on them until an overflow occurred. Taking
the average over 20 runs for each value of λ, we obtained
the results in Figure 2. Extrapolating out, we can see that for
50 bits of security, CNE-ORAM requires λ to be approxi-
mately 900. This is substantially larger than related constant-
communication schemes like C-ORAM [21]. However, the
bucket size has very little impact on the cost of CNE-ORAM.
The only communication that is performed over buckets is the
headers, which amount to only a few thousand bits even with
large λ.

The more important consideration with λ being so large
is how it impacts server computation time, since the servers
must compute over all buckets in a path to perform PIR and
eviction. Figure 3 shows overall query execution time, includ-
ing network transfer and server computation for CNE-ORAM
and the current state of the art scheme Path ORAM [30] with
various values of N and a block size of 1 MB. We assume
a network speed of 20 Mbps. Furthermore, we assume that
each server is equally powerful and can calculate the XOR
of two 1 MB blocks in 1 ms (the amount of time it took on
our test machine, a 2012 Macbook Pro with 2.4 Ghz Intel i7
processor).

The results show that CNE-ORAM substantially beats Path
ORAM, especially as N increases. The cost of CNE-ORAM
is dominated by the φ blocks that must be uploaded for every
access. To 4 servers, with χ = λ/10, this amounts to 40 MB.
Beyond that, the server computation is almost negligible which
is why CNE-ORAM scales much better for larger N . Note that
CNE-ORAM offers constant memory complexity on the client,
while Path ORAM requires O(logN). Compared to schemes
with homomorphic encryption, like Onion or C-ORAM, a
query in our ORAM can be performed in less than a second
rather than several minutes. A significant advantages especially
for resource-constrained devices.

Also interesting is the increased efficiency on the client
side for CNE-ORAM. The client performs no encryption
operations, only XOR on four blocks and generating φ blocks
of random data using a PRNG. In contrast, Path ORAM clients
perform decryption and reencryption on Z logN blocks. This
encryption time is not accounted for in Figure 3 because it
highly depends on the power of the client, but could easily
double the overall execution time on a low powered device.
This makes CNE-ORAM uniquely attractive to devices with
low computational ability.
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VII. RELATED WORK

Oblivious RAM goes back to the seminal paper by Gol-
dreich and Ostrovsky [13]. There have been several attempts
to improve different aspects of ORAM, such as its communi-
cation complexity, number of interactions between the server
and the client, memory complexity on the client side, and
storage and computation overhead on the server [5, 6, 11–
16, 18–23, 25, 26, 28, 30–32]. We briefly review two ORAM
categorizations. The first discusses recent advances of schemes
with constant client memory complexity, and the second
targets schemes with sublinear client memory.

Constant client memory: Constant client memory is very
appealing for resource-constrained devices with limited mem-
ory, e.g., embedded devices, small sensors, and devices in
the Internet of Things. Goodrich and Mitzenmacher [14] and
Pinkas and Reinman [25] introduced amortize communication
complexity in O(log2N), but with linear worst-case commu-
nication complexity. Shi et al. [28] introduce tree-based struc-

tures providing a worst-case poly-logarithmic communication
complexity in O(log 3N) blocks. Many subsequent papers
build on top of this one to further decrease communication
or storage complexity storage [11, 19, 20, 22]. Recently,
there have been many attempts to decrease the communi-
cation overhead to be constant in the number of blocks.
That is, obliviously reading or writing a block with only
a constant number of transferred blocks as overhead. Using
servers with computational capabilities instead of storage-only
servers, Devadas et al. [7] showed how to construct a constant
communication ORAM for blocks in Ω(log 6N). Fletcher et al.
[9] show how to decrease the number of interaction of Onion
ORAM from logN to 1. Moataz et al. [21] demonstrate how
to preserve constant communication for smaller block size
in Ω(log 4N), while performing eviction with fewer number
of homomorphic multiplications. Although low asymptotic
bounds have been reached for communication complexity, high
computational latency on server side makes constant client
memory not yet ready for deployment [21].

Poly-log client memory: Earlier schemes have memory com-
plexity on the client side in O(

√
N), yet inducing a linear

worst-case communication complexity [31, 32]. Stefanov et al.
[29] show how to get a worst-case memory complexity in
O(
√
N) with a a communication complexity in O(log 2N).

Stefanov et al. [30] present how to provide a O(logN)
communication complexity with only a logarithmic memory
complexity on the client size. This scheme has been improved
by multiplicative constant in [20, 26]. Recently, Garg et al.
[10] improves the number of interactions of Path ORAM to
be constant while inducing a multiplicative security overhead
factor.

Due to the use of encryption, the security of all of the above
related work is based on a computational hardness assumption.
In contrast, this paper tackles information-theoretic security
against unbounded adversary. Information-theoretic security
is especially interesting in situations where encryption would
overburden devices’ computational capabilities, e.g., wireless
sensors.
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