
Bitsliced Implementations of the PRINCE, LED and RECTANGLE Block
Ciphers on AVR 8-bit Microcontrollers

Zhenzhen Bao, Wentao Zhang, Peng Luo and Dongdai Lin

State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China

{baozhenzhen, zhangwentao, luopeng, ddlin}@iie.ac.cn

Abstract. Due to the demand for low-cost cryptosystems from industry, there spring up a lot of lightweight
block ciphers which are excellent for some different implementation features. An innovative design is the
block cipher PRINCE. To meet the requirement for low-latency and instantaneously encryption, NXP Semi-
conductors and its academic partners cooperate and design the low-latency block cipher PRINCE. Another
good example is the block cipher LED which is very compact in hardware, and whose designers also aim
to maintain a reasonable software performance. In this paper, we demonstrate how to achieve high software
performance of these two ciphers on the AVR 8-bit microcontrollers using bitslice technique. Our bitsliced im-
plementations speed up the execution of these two ciphers several times with less memory usage than previous
work. In addition to these two nibble-oriented ciphers, we also evaluate the software performance of a newly
proposed lightweight block cipher RECTANGLE, whose design takes bitslicing into consider. Our results show
that RECTANGLE has very high performance ranks among the existing block ciphers in the real-world usage
scenarios on 8-bit microcontrollers.

Keywords: PRINCE, LED, RECTANGLE, bitslice, block cipher, lightweight, cryptography, microcontroller,
wireless sensor, AVR, ATtiny, implementation

1 Introduction

In several emerging areas and in the Internet of Things (IoT) era, where hundreds billion of high constrained
devices are interconnected, working together and typically communicating wirelessly, security and privacy can
be very important. Cryptography techniques will be required for those devices and will be implemented on more
devices at present and in the future. For different application scenarios, there are different efficiency measures to
evaluate whether a cryptography technique can be applied to the scenarios. For hardware implementation, domi-
nant metric are gate count (power, cost), energy, latency etc.. The corresponding application examples are RFID
and low-cost sensors, healthcare devices and battery-powered devices, memory encryption, in-vehicle devices and
industrial control systems. For software implementation, memory (ROM/RAM) and execution time are important
measures. Again, application examples are in-vehicle devices, sensors and consumer electronics.

Compare with general purpose cryptographic algorithms, lightweight cryptographic primitives which relax
implementation requirements have more advantages in those scenarios. In this paper, we mainly talk about block
ciphers which are the most versatile of the symmetric ciphers. Lightweight block ciphers can overcome limitations
of gate count in small chips, for examples a state of the art AES-128 [1] hardware implementation uses 2400 GE
(Gate Equivalent) [7], while PRESENT-128 [5], LED-128 [3,4] and SIMON-128 [6] can respectively offer a 1391
GE [8], a 1265 GE [4] and a 1234 GE [6] implementation. As gate count is small, energy consumption is small. In
applications where instantaneously response is highly desired, lightweight primitives such as PRINCE [2] and SI-
MON can achieve same or less latency of AES with respectively 1/40 and 1/52 gate counts at 130nm low-leakage
Faraday libraries. In other applications, such as sensor nodes or RFID tags, the equipped inexpensive microproces-
sor and microcontroller typically have a limited power budget and severely constrained memory (RAM and flash).
For example, the ATtiny45 [11] has just 4 KBytes of flash, 256 bytes of RAM. There are lightweight ciphers, such
as PRIDE [9] that can use no RAM and achieve similar throughput of AES with 1/2 flash bytes.

Over the last decade, cryptographic community has made significant effort in the development of lightweight
block ciphers. Following as a result, there are now more than a dozen of lightweight block ciphers for industry to
choose from, including PRESENT [5] and CLEFIA [12], which have become ISO/IEC lightweight block cipher
standards, and many other lightweight block ciphers, such as HIGHT [13], KATAN/KATANTAN [14], KLEIN
[15], LBlock [16], LED [3], TWINE [17], PRINCE [2], SIMON and SPECK [6], PRIDE [9], RECTANGLE
[18] etc.. They are all excellent with respect to certain features. We refer to a web page [19] for a complement
lightweight block ciphers list. Consequences are the work and projects to improve and evaluated the performance
of those lightweight block ciphers. With respect to software implementation on microcontrollers, there are several

2 Zhenzhen Bao et al.

survey papers and open projects provide benchmarking results and reports on the performance of lightweight block
ciphers [20,21,22,23,24,25,26,27,28,29,30,31,32,33].

On [25], a web page of ECRYPT II project, compact implementation and performance evaluation of 12 low-
cost block ciphers on AVR ATtiny45 8-bit microcontroller are presentd. The set of analyzed ciphers includes the
low-cost ciphers designed until the corresponding paper [24] publication and thus it does not contain recent de-
signs. The authors introduce a comparison metric that takes into account both the code size (ROM and RAM),
the cycle count and the energy consumption. Implementation of the 12 ciphers comes from 12 different designers
and codes are written in assembly. Both encryption, decryption and key management routines have to be imple-
mented, and there is no usage scenarios (message length and mode of operation) involved. The authors of [29]
implemented 21 low-cost (5 classical and 16 lightweight) block ciphers on the WSN430 sensor which is based on
16-bit TI MSP430 microcontroller. This is the biggest collection of low-cost ciphers implementations available
on 16-bit microcontroller. However, as [32] points out, some of the implemented ciphers do not verify the test
vectors. Both of the two above projects are not active for a long time.

Recently, a new benchmarking frameworks [32] was presented at the NIST Lightweight Cryptography Work-
shop 2015 [36]. Learn from the strengths and weakness of those previous benchmarking frameworks, the authors
manage to design a more flexible and powerful framework for evaluation of lightweight ciphers on different em-
bedded devices commonly used in the IoT context. By the publication, they have studied software performance
of 13 lightweight block ciphers on three different devices, 8-bit AVR, 16-bit MSP and 32-bit ARM. Their evalua-
tion consideration involves two most typical usage scenarios that resemble security-related operations commonly
performed by real-world IoT devices. They also maintain a web page [34] with the most recent results. Triathlon
challenge [33] are announced to improve those results and collect more implementations and more performance
evaluations of more new designs. They introduce a “Figure of Merit” (FOM) according to which an overall rank-
ing of ciphers can be assembled. The FOM metric can assign different weights to execution time, RAM footprint,
and code size, and may even consider security aspects. In their evaluation, the FOM is a weighted sum of each
cipher’s performance across three metrics: code size, RAM consumption and execution time.

Based on their current results in [32], the NSA designs Simon and Speck, AES and LS-designs are among
the smallest and fastest ciphers on all platforms. Unfortunately, PRINCE which is superior as for low-latency and
LED which is very compact as for hardware implementation get the lowest rank. Some newly proposed designs
are also not included in their list, such as RECTANGLE [18] which is published in 2014 and presented at the
NIST Lightweight Cryptography Workshop 2015 [36].

In this paper, we aim to contribute to the performance benchmarks of PRINCE, LED and RECTANGLE on
8-bit microcontrollers. Generally speaking, we expect to improve the performance of those ciphers on 8-, 16- and
32-bit microcontrollers. While, it seems reasonable to begin with 8-bit microcontroller, since the performance of
those cipher on 16- and 32-bit microcontrollers will be much better than that they can achieve on the 8-bit, and 8-
and 16-bit microcontrollers constituted an overwhelming part of the total microcontroller market [35]. Moreover,
optimizations on the 8-bit microcontrollers can have strong reference meanings for that on the 16- and the 32-bit.

1.1 Related Work

For nibble-oriented and byte-oriented ciphers, people usually use look up tables (LUTs), which may need large
memory to achieve high throughput. Both of PRINCE and LED can be seen as nibble-oriented. Specifically, the
original components of the ciphers can be described as operations on nibbles (intra-nibbles and inter-nibbles). For
PRINCE, there are two related efforts which aim to improve the software performance on 8-bit AVR microcon-
trollers. In the first work [37], two implementation of PRINCE are presented. The first is T-table implementation
which combine different operations within a round into a single table lookup operation. The second is block-
parallel implementation which stores two nibbles in one register and processes them in parallel wherever possible.
The S-boxes are stored as two 256-byte tables. In these two implementations, LUTs are too large to store in RAM,
thus they are coded in the programmable flash memory to which each access takes 1 more clock than that takes to
the RAM.

The second work [38] present a nibble-sliced implementation which stemming from bitslicing. Nibble-slicing
is custom-made for nibble-oriented permutation layers. Similar with the block-parallel implementation in the first
work, two nibbles are stored in one register. However, there is a difference between these two work: the block-
parallel implementation processes nibbles within one block in parallel, while the nibble-sliced implementation
processes two blocks in parallel, specifically, two nibbles in same position of two blocks are store in one register.
Thus, it needs 16 registers to store states of two blocks. As in the first work, the second work also uses byte-oriented
LUTs, which are 256-byte tables stored in flash memory for S-boxes computation. Due to the nibble-slicing
manner, the S-boxes computation and the SR operations can be merged together, which helps to reduce execution
time. In the second work, cycle count and memory consumption are derived using AVR Studio simulations. Code

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 3

in both of the two work was implemented in assembly. Performance evaluation in the first work involved cycles
and code for nibble reordering, while it is unclear whether cycles and code for nibble slicing are taken into account
in the second work. Usage scenarios are not considered in both of the two work.

Work to improve performance of LED on 8-bit AVR microcontrollers is quite rare. We can only refer to [34] for
open source software implementation of LED on 8-bit microcontrollers. Unfortunately, the performance achieved
by those C implementations in [32,34] are quite unsatisfactory.

1.2 Our Contributions

This work aims to improve the software performance of PRINCE and LED on 8-bit microcontrollers in two
usage scenarios. By using bitslice technique instead of LUTs, we can minimize the requirement for memory
and at the same time keep high throughput. In our implementations, by inventively rearrange the state bits, each
message block can be processed in fine granularity parallel. By minimizing the number of instructions needed by
each operation (S-boxes, MixColumns, ShiftRows etc.) of these ciphers, high throughput and low memory usage
are achieved at the same time. Thus, these implementations can be used in serial message processing scenarios
(corresponds to Scenario 1 2) in which the work [38] is hard to be used. It is quite natural to processing two blocks
in parallel using our bitslice methods. Thus, in scenarios where message blocks can be processed simultaneously
(corresponds to Scenario 2 2), our implementations also reduce the memory usage and execute time.

With respect to PRINCE, in Scenario 1, we achieve 2.88× boost in throughput with 1/1.5 RAM and 1/2.18
flash memory comparing with [32], achieve 1.28× boost in throughput comparing with [37]. In Scenario 2, we
achieve 4.67× boost in throughput with 1/2.83 RAM and 1/2.09 flash comparing with [32], achieve similar
throughput with 1/9.17 RAM and similar flash comparing with [38]. For LED, comparing with [32], our imple-
mentation achieves 6.12× boost in throughput with 1/2.47 RAM and 1/2.17 flash in Scenario 1, and 11.27×
boost in throughput with 1/3.79 RAM and 1/2.72 flash in Scenario 2. As shown in this work, PRINCE which gets
a low rank in [32] is actually very efficient on 8-bit AVR devices.

We also aim to contribute performance benchmarks in the real-world usage scenarios of a newly proposed
cipher RECTANGLE. Our results show that RECTANGLE gets very high ranks in those scenarios and can parallel
SIMON in performance, see Table 3.

Table 1 and Table 2 summarize our results on performance of PRINCE, LED and RECTANGLE in Scenario
1 and Scenario 2, in which we also include the results of previous work to make comparisons.

The rest of the paper is organized as follows. Section 2 clarifies our target device, considering scenarios and
performance measurement metrics. Section 3, 4 and 5 respectively demonstrate how to achieve high software
performance of PRINCE, LED and RECTANGLE on the AVR 8-bit microcontrollers using bitslice technique. For
each cipher, after a brief description, we exhibit how to rearrange the state bits, and how to implement its main
operations in bitslicing with minimal number of instructions in two usage scenarios. Section 6 summarizes results
of this work.

2 Our AVR Implementations, Considering Scenarios and Performance Measurement

The specific target device in this work is the AVR ATmega128 8-bit microcontroller, which has 128 KBytes of
flash, 4 KBytes of RAM and 32 8-bit general purpose registers. The ATmega128 uses an 8-bit RISC microproces-
sor. The arithmetic and logical instructions are usually destructive source operand, i.e. destination register is one
of the source register. And most of the numeric processing instructions take one clock cycle. Instructions which
load data from and store data to RAM takes 2 clock cycles and that access to flash memory takes 3 clock cycles.
Opcode of most instructions uses 2 bytes, some special types uses 4 bytes. For detailed introduction of 8-bit AVR
instructions, please refer to [32] and [10]. To achieve optimal performance, we code the ciphers in assembly and
the assembly code was written in and compiled using Atmel Studio 6.2. Cycle counts, code sizes and RAM usage
are also determined using this tool.

For each cipher, we have implementations targeting to two scenarios which are introduced in [32].

Scenario 1 - Communication Protocol [32] This scenario covers the need for secure communication in sensor
networks and between IoT devices. Sensitive data is encrypted and decrypted using a lightweight block cipher
in CBC mode of operation. Data length exchanged in a single transmission is fixed to 128 bytes. Master key is
stored in the device’s RAM, from which, round keys are computed using the key schedule and then stored in
RAM for later use. The key schedule does not modify the master key. The data that has to be sent as well as the
initialization vector are also stored in RAM. Encryption is performed in place to reduce the RAM consumption.

4 Zhenzhen Bao et al.

Table 1: Results for Scenario 1 (encryption of 128 bytes of data using CBC mode)

Cipher Implementation Code [Bytes] RAM [Bytes] Time [Cycles]

I: Encryption + Decryption (including key schedule)

PRINCE Triathlon [32] 5358 374 243396
This work † 2454 248 84656

LED Triathlon [32] 5156 574 2221555
This work † 2374 232 362889

RECTANGLE This work 682 310 60298
II: Encryption (without key schedule)

PRINCE Triathlon [32] 4210 174 121137
Block-Parallel [37] ∗1574 ∗24 ∗52048
This work † 1746 ?0 40736

LED Triathlon [32] 2600 242 1074961
This work † 1412 ?0 180384

RECTANGLE This work 250 ?0 29148
III: Decryption (without key schedule)

PRINCE Triathlon [32] 4352 198 122082
This work † 1746 ?0 40976

LED Triathlon [32] 3068 280 1146226
This work † 1414 ?0 182128

RECTANGLE This work 252 ?0 29788
†State rearrangement operations on plaintext, ciphertext and round-keys are all included.
∗[37] evaluates the encryption of one block (3253 cycles), and the cost of dealing with the
encryption mode is not included. We use 3253×16 = 52048 to estimate the cycles count.
?We write the whole program in assembly code. And execution of operations in our
implementations are all in-placed in registers. Thus there is no extra RAM used to store
local variables during the whole executions. While, that inevitably give rise to difficulty
when making a comparison with the inline assembly implementation in [32], in which
extra RAM are needed to store local variables and PUSH and POP instructions are used to
transfer data between functions.

Table 2: Results for Scenario 2 (encryption of 128 bits of data using CTR mode)

Cipher Implementation Code [Bytes] RAM [Bytes] Time [Cycles]

PRINCE Triathlon [32] 4420 68 17271
Nibble-Slice [38] ∗2382 ∗220 ∗3606
This work (FixOrder) 2118 24 3696
This work (ReOrder) 2642 24 4236

LED Triathlon [32] 2602 91 143317
This work (FixOrder) 956 24 12714
This work (ReOrder) 1480 24 13254

RECTANGLE This work (LessTime) 582 24 3405
This work (LowFlash) 428 24 3995

∗In [38] (processing two blocks in parallel in nibble-slicing), it is unclear whether cost of
reordering the nibbles and dealing with the encryption mode are considered.

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 5

Scenario 2 - Challenge-Handshake Authentication Protocol [32] This scenario covers the need of authentica-
tion in the IoT. In the authentication protocol, the block cipher is used in CTR mode to encrypt 128 bits of data.
The device has the cipher round keys stored in Flash memory and there is no master key stored into the device
and consequently no key schedule is required. The data that has to be encrypted is stored in RAM, as well as the
counter value. To reduce the RAM usage, the encryption process is done in place.

We consider the same three metrics of ciphers performance as considered in [32], including code size, RAM
and execution time. Code sizes include the value of the Code and Data sections. Code section contains the bytes
used by the binary code, Data section contains global initialized variables (such as the flash used by round con-
stants etc.). The measurements do not consider the main function’s code size, where all the cipher operations are
put together. RAM usage includes scenario specific RAM data such as data to encrypt, master keys, round keys
and initialization vectors. The execution time is expressed in number of processor cycles spent executing those
procedures, such as encryption, key schedule or decryption. In addition, our measurement including the cost taken
by rearrangement operations on the plaintexts, ciphertexts and round keys.

3 PRINCE AVR Implementations

In this section, we present the first (to our knowledge) bitsliced implementation of the PRINCE cipher on 8-bit
AVR microcontroller.

3.1 The PRINCE cipher

PRINCE operates on 64-bit blocks and uses a 128-bit key k which composed of two 64-bits elements, k0 and k1.
It is based on the so-called FX-construction. The 128-bit key is extended to 192 bits by the mapping: (k0||k1)→
(k0||k′0||k1) = (k0||(k0 ≫ 1)⊕(k0� 63)||k1). k0 and k′0 are used as whitening keys, while k1 is the 64-bit key used
without updates by the 12-round block cipher refer to as PRINCEcore. The whole encryption process of PRINCE
is depicted in Figure 1.

k0 RC0 RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8 RC9 RC10 RC11 k′0

m R1 R2 R3 R4 R5
S M′ S−1

R6 R7 R8 R9 R10
c

k1 k1 k1 k1 k1 k1 k1 k1 k1 k1 k1 k1

S M M−1 S−1

RCi ki ki RCi

Fig. 1: The whole encryption process of PRINCE

PRINCE has an α-reflection property. Decryption can reuse the exact same procedure of encryption by simply
XOR an constant α to the third element k1 of the extended key and exchange the used order between k0 and k′0.
While, both procedures use the inverse round function as well as the round function.

The round function of PRINCE is AES-like, operates on a 4× 4 state matrix of nibbles, which can be seen
as composed of the following operations: KeyXor (correspond to ki-add in the cipher specification) and RCXor
(corresponds to RCi-add), S-box (corresponds to S-Layer), MixColumns (corresponds to The Matrices M′-layer)
and ShiftRows (corresponds to SR, and SR ◦M′ = M which is called the Linear Layer), among which only Mix-
Columns is an involution. Thus, the implementation of the PRINCE have to instantiate the following operations:
the KeyXor and RCXor, the S-box and inverse S-box, the MixColumns, the ShiftRows and Inverse ShiftRows.
For more details about PRINCE please refer to [2].

We implement all of those operations in bitslicing, while previous work are all nibble-oriented and based on
LUTs. Before the demonstration of those bitsliced implementations of each operation, we show how we slice the
state.

6 Zhenzhen Bao et al.

3.2 PRINCE AVR Implementations

State Bits Rearrangement The original arrangement of the state can be seen in Figure 2. In this arrangement,
successive four bits from right to left is called a nibble, successive four nibbles from right to left is a row. Suc-
cessive four bits from top to bottom is a slice, successive four nibbles from top to bottom is a column [40]. Bits
are indexed in the form of xyz, where x is the column index (0 to 3 right-to-left), y is the row index (0 to 3 top-to-
bottom) and z is the slice index (0 to 3 right-to-left) within a column. Then the right up corner can be seen as the
origin of the state.

row 303 302 301 300

313 312 311 310

323 322 321 320

333 332 331 330

nibble

203 202 201 200

213 212 211 210

223 222 221 220

233 232 231 230

column

103 102 101 100

113 112 111 110

123 122 121 120

133 132 131 130

bit

003 002 001 000

013 012 011 010

023 022 021 020

033 032 031 030

slice

Fig. 2: The original arrangement of the state of bits for PRINCE

To bitsliced implement the operations, we gather the bits with index ∗yz, i.e. bits with same row index and
same slice index are gathered together. We call the resulted bit set a lane1, in which all bits will be settled in the
same register in our implementations. And we rearrange the state in a way as depicted in Figure 3a.

We then use the following conventions. Let S denotes the complete state, then S[∗,y,z] denotes a particular
lane. In implementations for Scenario 1, two lanes of one state S[∗,y,z] and S[∗,y+2,z] (y∈ {0,1} , z∈ {0, . . . ,3})
are stored in one register, in the low half and high half respectively. In Scenario 2, two lanes of two states S[∗,y,z]
and S′[∗,y,z] (y ∈ {0, . . . ,3}, z ∈ {0, . . . ,3}) are stored in one register to process two blocks in parallel.

The rearrangement of the state takes 2 clocks per bit using rotate through carry instructions (ROL and ROR).
Thus, rearranging the input state and back rearranging the output state take 4 clocks per bits.

Bitsliced Implementation of the KeyXor and RCXor Since we have rearranged the encryption state, we should
also rearrange the key and the round constant state in the same way. The KeyXor and RCXor operations can
be merged together since they are continuous XOR operations. In Scenario 1, during the key schedule proce-
dure, master key is extended and the resulted 3 sub-keys are rearranged and XORed to the pre-rearranged round
constants to generate round-key-constant materials. The resulted round-key-constant materials are then stored in
RAM. In Scenario 2, the resulted round-key-constant materials is extended (to encrypt two blocks in parallel) and
coded in flash memory.

Bitsliced Implementation of the S-box and the Inverse S-box By rearranging the state bits, we can implement
the S-box and inverse S-box using logical operations instead of LUTs. In our rearrangement, 4 lanes within one
row respectively correspond to the 4 input-outputs of S-boxes, thus 8 S-boxes can be computed in parallel using a
logical instruction sequence operating on 8-bit registers, since 2 lanes share one register.

We firstly managed to find the bitsliced implementation of the 4× 4 S-box (resp. inverse S-box) of PRINCE
using an automatic search tool [41]. Operations in the resulted bitsliced implementations use the ‘operator des-
tination, source1, source2’ instruction format. While in AVR ATtiny, instructions destination register is one of
the source register, i.e. it uses ‘operator destination, source’ instruction format. Thus, we translate the primary
instruction sequences into two-operator instruction sequences manually. In our translation, we try to minimum the
required clock cycles and realize in placed process, i.e. the outputs are in the same registers as the inputs.

The primary bitsliced implementation of the S-box (resp. inverse S-box) of PRINCE need 17 (resp. 16) terms.
Translating into AVR instructions, it turns to be an instruction sequence with length of 17+ 4 = 21 (resp. 16+
6 = 22) with 4 (resp. 6) additional copy register (MOV) instructions. Taking advantage of the copy register pair
(MOVW) instruction, and processing 16 S-boxes together instead of 8 S-boxes, the S-layer (inverse S-layer) of
PRINCE needs 17×2+4 = 38 (resp. 16×2+6 = 38) instructions, instead of 21×2 = 42 (resp. 22×2 = 44).

1 this name is borrowed from names of KECCAK-f state parts [42]

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 7

lane

slice
bit

row
column

nibble

x

y

z

(a) Rearrangement of the state of bits for
PRINCE

1

2

3

(b) ShiftRows of PRINCE

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

addition of a parity bit

mirror on the rows

3≫ 2≫ 1≫ 0≫

0≫ 3≫ 2≫ 1≫

0≫ 3≫ 2≫ 1≫

3≫ 2≫ 1≫ 0≫

slice-wise rotations

(c) MixColumns of PRINCE

Fig. 3: Rearrangement of the state of bits, ShiftRows and MixColumns of PRINCE

Bitsliced Implementation of the MixColumns According to observations on the linear layer of PRINCE in
[39,40], MixColumns of PRINCE can be seen as being composed of three compositions: mirror on the rows,
addition of a parity bit, slice-wise rotations by 0,1,2 or 3 positions. Thus, it can be expressed as the parallel
application of 16 independent transformations operating on one slice of the internal state. Figure 3c explains those
transformations in a 3-dimension way.

In our way of state bits rearrangement, 4 bits in same position within 4 different slices are stored in same
register. Thus, parity bits of 8 slices can be computed in parallel. Mirror on the rows and slice-wise rotations can
combined to be a bits exchanging among different lanes.

In our implementation for Scenario 1, since low half and high half of one register hold lanes in two rows (lane
S[∗,y,z] and lane S[∗,y+ 2,z]), addition of parity bit takes 7 instructions for 4 slices. Thus, addition of parity
bit for the whole state takes 28 instructions per state. Since column S[0,∗,∗] and column S[3,∗,∗] in state S of
PRINCE go through same MixColumns operations M0, slice S[0,∗,z] and slice S[3,∗,z] within column S[0,∗,∗]
and column S[3,∗,∗] go through same mirror and rotation operations for z ∈ {0, . . . ,3}. Thus, bit 0 and bit 3 in a
register, and bit 4 and bit 7 in a register go through same operations. Likewise, since column S[1,∗,∗] and column
S[2,∗,∗] in state S go through same MixColumns operations M1, bit 1 and bit 2 in a register, and bit 5 and bit 6 in
a register go through same operations. Finally, we achieve a 4-way parallel implementation for the combination
between mirror on the rows and slice-wise rotations. That takes 2×9+2×8 = 34 instructions per state.

In our implementation for Scenario 2, since low half and high half of one register hold some lanes in two
state (lane S[∗,y,z] and lane S′[∗,y,z]), addition of the parity bit takes 8 instructions for 8 slices. Thus, addition
of parity bit for the whole state takes 32 instructions for two states (thus 16 instructions per state). Similar to the
implementation for Scenario 1, the 0, 3rd, 4th and 7th bit in a register go through same operations, and the 1st,
2nd, 5th and 6th bit in a register go through another set of operations. We also achieve 4-way and 8-way parallel
implementations for the combination between mirror on the rows and slice-wise rotations. That takes 4×16 = 64
instructions for 2 states (thus 32 instructions per state).

On the whole, in respect of Scenario 1, the MixColumns takes 28+ 34 = 62 instructions per state. And in
respect of Scenario 2, the MixColumns takes 16+32 = 48 instructions per state.

8 Zhenzhen Bao et al.

Bitsliced Implementation of the ShiftRows and the Inverse ShiftRows In our way of state bits rearrangement,
ShiftRows and Inverse ShiftRows correspond to rotate bits in lanes, which are depicted in Figure 3b. Thus that
needs to rotate high half and low half of 8-bit registers separately in our implementation. We implement this by
logical AND (AND), logical shift left and right (LSL and LSR), bit load from the T flag in SREG to a bit in
register (BLD) and bit store from bit in register to T flag in SREG (BST) instructions.

With respect to Scenario 1, it takes 4× 19 = 76 instructions to implement ShiftRows (or Inverse ShiftRows)
per state. With respect to Scenario 2, it takes 4× 19+ 2 = 78 instructions to implement ShiftRows (or Inverse
ShiftRows) per 2 states (thus 39 instructions per state).

4 LED AVR Implementations

In this section, we present the first (to our knowledge) bitsliced implementation of the LED cipher on 8-bit AVR
microcontroller.

4.1 The LED cipher

LED is a 64-bit block cipher, uses a key size from 64 to 128 bits, bases on an substitution-permutation network
(SPN). The two primary instances, 64-bit key LED (named LED-64) and 128-bit key LED (named LED-128),
respectively has 32 rounds and 48 rounds. In this paper, we will focus on LED-128. The key schedule of LED is
very simple. In the case of LED-128, the master key k is composed of two 64-bit subparts, k = k1||k2, each XORed
alternatively to the internal state every 4 rounds. The 4-round operation between two key addition is called a step.
The whole encryption process of LED is described using key addition and step operation, as depicted in Figure 4.

k1 k2 k1 k2 k1 k2 k1

P 4 rounds 4 rounds 4 rounds · · · · · · · · · 4 rounds 4 rounds C

︸ ︷︷ ︸
one step

Fig. 4: The whole encryption process of LED

Similar with the round function of PRINCE, the round function of LED is also AES-like, which operates
on a 4× 4 state matrix of nibbles. It also uses the following operations AddConstants (round constant addition),
SubNibbles (corresponds to SubCells in [4]), ShiftRows, and MixColumnsSerial. as illustrated in Figure 5. None
of those operations is involution. Thus, we should also implement their inverse operations. For more details about
LED, please refer to [4].

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

4 nibbles

4 nibbles 1 nibble (4 bits)

AddConstants SubNibbles ShiftRows MixColumnsSerial

Fig. 5: An overview of a single round of LED

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 9

4.2 LED AVR Implementations

State Bits Rearrangement We follow the same naming convention for PRINCE state mentioned above in Figure
3a to define names of parts of LED state. Our rearrangement of LED state is quite similar with that of PRINCE
state. A difference is that, in Scenario 1, each lane of LED state is store in a whole 8-bit register, i.e. only the high
half of the 8-bit register holds meaningful bits. Thus, 16 lanes S[∗,y,z] are respectively stored in 16 8-bit registers,
leaving the low half part of register empty. In Scenario 2, the low half part of those 16 registers hold 16 lanes in
another state of block.

Bitsliced Implementation of the MixColumnsSerial In MixColumnsSerial, each column of the internal LED
state is transformed by multiplying it once with MDS matrix M, where M = A4. It can also be viewed as four
serial application of a hardware-friendly matrix A, which can be implemented using XOR and bit-permutation.
Bit-permutation is free in hardware but usually not free in software implementations. However, by observing the
iterative processing procedure of M = A4, which is depicted in Figure 6, we find that after 4 times of matrix mul-
tiplication, the four bits in each nibble switched from the order (3,2,1,0) to the order (1,0,3,2). Since each register
in our implementation stores bits at same position within different nibbles, this switching operation corresponds
to an exchanging operation between registers. Since bits needed to be exchanged are located in same nibble, this
switching operation can be combined with the S-box operation, thus there is no need to exchange registers in
real. Thus, we can implement the MixColumnsSerial using sequential XOR instructions, and implement a bit-
permutation variant of the original S-box. In addition, because of the four columns of LED state go through same
MixColumnsSerial operation, and due to our rearrangement of the state of bits, MixColumnsSerial operations on
four columns are done in parallel. In Scenario 1, we achieve a 4-way parallel implementation which needs 64
instructions per state, and in Scenario 2, we achieve an 8-way parallel implementation using 64 instructions for
two states.

A4 =


0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2


4

:

03 02 01 00 13 12 11 10 23 22 21 20 33 32 31 30 01 00 03 02

13 12 11 10 A 23 22 21 20 A 33 32 31 30 A 01 00 03 02 A 11 10 13 12

23 22 21 20 ⇒ 33 32 31 30 ⇒ 01 00 03 02 ⇒ 11 10 13 12 ⇒ 21 20 23 22

33 32 31 30 01 00 03 02 11 10 13 12 21 20 23 22 31 30 33 32

01 = 01⊕13⊕22⊕32 These instructions here is a sequential execution of A to

00 = 00⊕03⊕12⊕21⊕31 update the bits to get the new nibble

03 = 03⊕02⊕11⊕20⊕23⊕30⊕33 in the new state. Similar instructions to

02 = 02⊕10⊕23⊕33 update the other three nibbles are omitted here.

Fig. 6: MixColumnsSerial of LED operate on one column

Bitsliced Implementation of the S-box and the Inverse S-box LED uses the PRESENT Sbox. There are previ-
ous work in which bitsliced implementation of PRESENT Sbox are studied. In [38], the authors aim to improve
the throughput of PRESENT using bitslice technique. Their 19-instruction AVR implementation of PRESENT
S-box based on the 14 terms representation find by Courtois in [43]. Using the automatic search tool [41], we try
to find optimal bitsliced implementations of both PRESENT S-box and the inverse S-box. The best solutions also
need 14 terms for PRESENT S-box and it need 15 terms for the inverse S-box.

Similar with our work on PRINCE S-box, we also try to find the best translation from those general solutions to
instruction sequences in AVR instruction set. Through our manual optimization, there are 4 additional instructions
(mov) penalty to implement the S-box on AVR based on the 14 terms (resp. 15 terms) sequences. When take
advantage of the MOVW instruction, and deal with two set of 8-bit registers together, 32 instructions (resp. 34
instructions) are needed to finish 16 S-boxes (in Scenario 1, since the low part of a register leaved empty, it takes
64 instructions to execute 16 S-boxes).

As mentioned above, our implementation of MixColumnsSerial for LED does not execute the last switching
operation, instead, we combine this switching operation with S-box operation. To encrypt, the input of S-boxes
are switched between bit 0 and bit 2, and between bit 1 and bit 3. To decrypt, the output of inverse S-boxes

10 Zhenzhen Bao et al.

are switched similarly. Thus, in our implementation, we actually implement a bit-permutation version of the S-
box and the inverse S-box, and the final instruction number is 33 for 16 input-switched S-boxes and 34 for 16
output-switched inverse S-boxes.

Bitsliced Implementation of the ShiftRows and the Inverse ShiftRows ShiftRows and the Inverse ShiftRows
of LED are same with that of PRINCE. Difference between the implementations of the two ciphers is caused by
the difference in the arrangement of the state bits in Scenario 1. 4× 12 = 48 instructions are need in Scenario 1
to rotate 16 lanes in one state and 4×19 = 76 instructions are need in Scenario 2 to rotate 32 lanes in two states
(thus 38 instructions to rotate 16 lanes in average).

5 RECTANGLE AVR Implementations

Presented at [36], RECTANGLE [18] is the most recent cipher discussed here, which is not involved in the ana-
lyzed ciphers list in [32]. Thus, in this paper we aim to provide a software performance benchmark for this cipher
to [34].

5.1 The RECTANGLE cipher

RECTANGLE operates on 64-bit cipher state. The key length can be 80 or 128 bits. In this paper, we mainly
focus on the 128-bit key version (named RECTANGLE-128). The encryption also bases on an SP network. The
substitution layer consists of 16 4× 4 S-boxes in parallel, which is called SubColumn. The permutation layer
is composed of 3 rotations, which is called ShiftRows. Figure 7 shows the arrangement of the cipher state, the
SubColumn and ShiftRows operations. For more details about RECTANGLE, please refer to [18].


a0,15 · · · a0,1 a0,0

a1,15 · · · a1,1 a1,0

a2,15 · · · a2,1 a2,0

a3,15 · · · a3,1 a3,0


(a) Arrangement of the
cipher state for RECT-
ANGLE

(
a0,15 · · · a0,1 a0,0

)
≪ 0−−→

(
a0,15 · · · a0,1 a0,0

)
(
a1,15 · · · a1,1 a1,0

)
≪ 1−−→

(
a1,14 · · · a1,0 a1,15

)
(
a2,15 · · · a2,1 a2,0

)
≪ 12−−−→

(
a2,3 · · · a2,5 a2,4

)
(
a3,15 · · · a3,1 a3,0

)
≪ 13−−−→

(
a3,2 · · · a3,4 a3,3

)
(b) ShiftRows of RECTANGLE


a0,15

a1,15

a2,15

a3,15

 · · ·


a0,1

a1,1

a2,1

a3,1




a0,0

a1,0

a2,0

a3,0


↓ S · · · ↓ S ↓ S

b0,15

b1,15

b2,15

b3,15

 · · ·


b0,1

b1,1

b2,1

b3,1




b0,0

b1,0

b2,0

b3,0


(c) SubColumns of RECTANGLE

Fig. 7: Arrangement of the state of bits, SubColumns and ShiftRows of RECTANGLE

5.2 RECTANGLE AVR Implementations

State Bits Arrangement Since the main idea of the design of RECTANGLE is to allow fast implementations
using bitslicing techniques, the state arrangement in the bitsliced implementation is quite straightforward. Each
16-bit row of the cipher state is held by 2 registers, thus 8 registers are needed to hold the cipher state.

Bitsliced Implementation of the S-box and the Inverse S-box (SubColumns) Similar with our work on
PRINCE and LED S-box, we first find the the optimal general bitsliced implementations of the S-box and the
inverse S-box, both of which requires 12 terms. Then we try to get the best translation from those general so-
lutions to instruction sequences in AVR instruction set. Our manual optimization needs 2 (resp. 3) additional
instructions (mov) penalty to implement the S-box (resp. inverse S-box) on AVR. When take advantage of the
MOVW instruction, and deal with two set of 8-bit registers together, 26 = 12× 2+ 2 (resp. 27 = 12× 2+ 3)
instructions are needed to finish 16 S-boxes.

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 11

Bitsliced Implementation of the ShiftRows The 1-bit rotation of the 16-bit row can be carried out using AVR’s
logical shift left (LSL), rotate left through carry (ROL) and add with carry (ADC) instructions, together with an all
0 register. We mainly focus on implement the 12-bit and 13-bit rotation of the 16-bit row with minimized number
of instructions. Thanks for our optimization on the 4-bit rotation (both left and right) of 16-bit row using swap
nibbles (SWAP), copy register pair (MOVW), logical AND with immediate (ANDI) and exclusive OR (EOR)
instructions and 2 temporary registers, it only need 7 instructions to perform 12-bit rotation (both left and right)
of the 16-bit row. Thus the total ShiftRows and the inverse ShiftRows only need 20 instructions per state.

Bitsliced Implementation of the Key Schedule and Adding Round Key The 128-bit key state are arranged as
a 4× 32 matrix. Key schedule for RECTANGLE-128 consists of applying the 4× 4 S-boxes to the 8 rightmost
columns of the four 32-bit rows of the key state, 1-round generalized Feistel transformation on the 4 rows and
5-bit round constant XORing on a single row. The 64-bit round key rk consists of the 16 rightmost columns of the
four 32-bit rows. Figure 8 shows the one round updating on the key state.

In our implementation, applying the 4×4 S-boxes to the 8 columns takes 14 logical instructions (28 bytes and
14 cycles), the 1-round generalized Feistel transformation takes 18 instructions (36 bytes and 18 cycles), the 5-bit
round constant XORing takes 2 instructions (4 bytes and 4 cycles). There are two key bytes shared between every
two successive round keys. According to this observation, we can use 8+25×6 bytes instead of 26×8 bytes to
store 26 round keys. Mean while, by reordering the key bytes and using two additional registers, we can use 6 load
instructions instead of 8 when adding the 8-byte round keys during encryption and decryption.

w3 w2 w1 w0

S3(lsb8) S2(lsb8) S1(lsb8) S0(lsb8)

≪ 16 RCi ≪ 8

w3 rk3 = lsb16(w3) w2 rk2 = lsb16(w2) w1 rk1 = lsb16(w1) w0 rk0 = lsb16(w0)

Fig. 8: One round key schedule of RECTANGLE-128, where lsbn means taking the n least significant bits

Our results are consistent with that shown in [18], while evaluation in this paper considers the two typical
real-world usage scenarios. In addition, we develop a high throughput implementation (LessTime) and a low
flash implementation (LowFlash) in Scenario 2. In the high throughput implementation, two blocks are processed
simultaneously. Thus it allows to load the subkeys one time every two blocks and reduce the cycles by sacrificing
146 bytes of flash than that in the low flash implementation which processes blocks one by one using a loop.

6 Results Summary and Comparisons

The vast majority of instructions used in our bitsliced implementations are types of instruction which takes one
clock cycle and 2 bytes. And there is no memory access except for load inputs, load round keys, load round
constants and store outputs. We write the whole program in assembly code. And execution of operations in our
implementations are all in-placed in registers. Thus there is no extra RAM used to store local variables during the
whole executions of encryption, decryption and key schedule. While, that inevitably give rise to difficulty when
making a comparison with the inline assembly implementation in [32] or [34], in which extra RAM are needed
to store local variables and PUSH and POP instructions are used to transfer data between functions. Besides, it
would be hard to process blocks in parallel if comply with the C interface provided in [31].

All of our implementations have verified the test vectors provided in the cipher specifications, and the source
codes are available in a web site [46].

For Scenario 1, our implementations include the key schedule and encryption, inverse key schedule (when
needed) and decryption procedures. State rearrangement operations on the plaintext, ciphertext and round-keys

12 Zhenzhen Bao et al.

are all included in our measurement. For Scenario 2, we only need to implement the encryption procedure, no
decryption and no key schedule procedure are needed. Since encryption of 128 bits data using CTR mode, data
is XORed by the output of the encryption procedure with counters as the input. There are two conventions on the
usage of the two counters in our implementation for PRINCE and LED, because we rearrange the input of the
encryptions. In the first convention, these two counters must be rearranged before going through the encryption
procedure and must be back rearranged after the encryption procedure before XORed to the 128 bits message.
We denoted this convention ReOrder. In the other convention, we encrypt the two counter directly and XOR the
output with the 128 bits message without rearrangement of the state bits. We denoted this convention FixOrder. In
our opinion, FixOrder convention does not relate to the security issues and is more efficient, thus it can be used as
the final performance benchmark.

Our results on performance of PRINCE, LED and RECTANGLE in Scenario 1 and Scenario 2 are summarized
in Table 1 and Table 2, in which we also include the results of previous work to make comparisons. In addition, we
have also implemented Simon and Speck in assembly according to the method provided in [45]. If use our results
to update the results in [34], we get the following Table 3. Since AES and PRESENT are coded in assembly, we
only include this two ciphers to make comparisons. As shown in Table 3, RECTANGLE get higher rank than AES
and slightly lower rank than SIMON both in Scenario 1 and Scenario 2. PRINCE and LED respectively get higher
rank than AES in Scenario 1 and higher rank than PRESENT in Scenario 2. We believe that comparison in [34]
is inevitable unfair since only AES, PRESENT, SIMON and SPECK are coded in assembly. Several other ciphers
may also get performance improvement if coded in assembly. And as pointed above, there is also unfairness
when making a comparison between implementation using pure assembly code and implementation using inline
assembly code. We remain the optimization work on other ciphers and a more fair comparison to future.

Table 3: Updated results for ciphers performance in Scenario 1 and Scenario 2

Scenario 1 (encryption of 128 bytes of data
using CBC mode)

Scenario 2 (encryption of 128 bits of data
using CTR mode)

Cipher Code
[Bytes]

RAM
[Bytes]

Time
[Cycles]

pi Cipher Code
[Bytes]

RAM
[Bytes]

Time
[Cycles]

pi

Speck† 560 280 44264 3.21 Speck† 294 24 2563 3.00

Simon† 566 320 64884 3.86 Simon† 364 24 4181 3.87

RECTANGLE† 682 310 60298 3.92 RECTANGLE† 428 24 3995 4.01

PRINCE† 2454 248 84656 7.36 AES∗ 1246 81 3408 8.94

AES∗ 3010 408 58246 8.45 LED† 956 24 12714 9.21

PRESENT∗ 2160 448 245232 11.32 PRINCE† 2118 24 3696 9.65

LED† 2374 232 362889 13.44 PRESENT∗ 1294 56 16849 13.31

pi = ∑m∈M(wm×
vi,m

mini(vi,m)
), where M ={the code, the RAM, the cycles}, wm = 1 [32].

∗Results for assembly implementations in [34]. † Results for assembly implementations by this work.

Acknowledgement

Many thanks go to the anonymous reviewers. The research presented in this paper is supported by the National
Natural Science Foundation of China (No.61379138), the “Strategic Priority Research Program" of the Chinese
Academy of Sciences (No.XDA06010701).

References

1. Daemen, J., Rijmen, V.: The Design of Rijndael - AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)
2. Borghoff, J., Canteaut, A., Güneysu T., Kavun, E.B., Knežević M., Knudsen, L.R., Leander, G, Nikov, V., Parr, C., Rech-

berger, C., Rombouts, P., Thomsen, S.S., and Yalçn, T. PRINCE – A Low-Latency Block Cipher for Pervasive Computing

Bitsliced Implementations of the PRINCE, LED and RECTANGLE on 8-bit AVR 13

Applications. In Wang, X. and Sako, K. (eds.) ASIACRYPT 2012, LNCS vol. 7658, pp.208–225, Springer, Heidelberg
(2012).

3. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. The LED Block Cipher. In Preneel, B. and Takagi, T. (eds.) CHES 2011,
LNCS vol. 6917, pp. 326–341, Springer, Heidelberg (2011).

4. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M. The LED Block Cipher. http://eprint.iacr.org/2012/600.
5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.:

PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol 4727,
pp.450–466. Springer, Heidelberg (2007)

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L. SIMON and SPECK: Block Ciphers
for the Internet of Things. http://eprint.iacr.org/2015/585.

7. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: a Very Compact and a Threshold Implemen-
tation of AES. In: Advances in Cryptology EUROCRYPT 2011 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, vol. 6632, pp. 69 (2011)

8. Poschmann, A.: Lightweight Cryptography Cryptographic Engineering for a Pervasive World. PhD Dissertation, Faculty
of Electrical Engineering and Information Technology, Ruhr-University Bochum, Germany (2009)

9. Albrecht, M.R., Driessen, B., Kavun, E., Leander, G., Paar, C., Yalçin, T.: Block Ciphers - Focus On The Linear Layer
(feat. PRIDE). In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol 8616, pp.57–76. Springer, Heidelberg (2014).

10. Atmel Corporation. 8-bit AVR Instruction Set, http://www.atmel.com/images/doc0856.pdf.
11. Atmel Corporation. AVR 8-bit Microcontrollers, http://www.atmel.com/products/microcontrollers/avr/

default.aspx.
12. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In:

Biryukov, A. (ed.) FSE 2007. LNCS, vol 4593, pp.181–195. Springer, Heidelberg (2007).
13. Hong, D., Sung, J, Hong, S., Lim, J., Lee, S., Koo, B, Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., and Chee,

S.. Hight: A new block cipher suitable for low-resource device. In Cryptographic Hardware and Embedded Systems –
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pp. 46–59. Springer, 2006.

14. De Cannière, C.,Dunkelman, O., Knežević, M.:KATAN and KTANTAN - A Family of Small and Efficient Hardware-
Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol 5747, pp. 272–288. Springer, Heidelberg
(2009).

15. Gong, Z., Nikova, S., Law, Y.: KLEIN: A New Family of Lightweight Block Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec
2012. LNCS, vol 7055, pp. 1–18. Springer, Heidelberg (2012).

16. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol 6715,
pp. 327–344. Springer, Heidelberg (2011).

17. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : A Lightweight Block Cipher for Multiple Platforms. In:
Knudsen, L., Wu, H. (eds.) SAC 2012. LNCS, vol 7707, pp. 339–354. Springer, Heidelberg (2012).

18. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: A Bit-slice Ultra-Lightweight Block
Cipher Suitable for Multiple Platforms. Science China Information Sciences, December 2015, Vol.58. Springer-Verlag
Berlin Heidelberg (2015).

19. CryptoLUX: Lightweight Block Ciphers. http://www.cryptolux.org/index.php/Lightweight_Block_Ciphers.
20. Law, Y. W., Doumen, J., and Hartel, P. H.: Survey and Benchmark of Block Ciphers for Wireless Sensor Networks. ACM

Transactions on Sensor Networks (TOSN), 2(1):65–93, 2006.
21. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel, L.: A Survey of Lightweight-Cryptography Implemen-

tations. IEEE Design & Test of Computers, 24(6):522–533, 2007.
22. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., and Standaert, F.-X.: Towards Green Cryptography: A Comparison of

Lightweight Ciphers From the Energy Viewpoint. In Cryptographic Hardware and Embedded Systems – CHES 2012, pp.
390–407. Springer, 2012.

23. Knežević, M., Nikov, V., and Rombouts, P.: Low-Latency Encryption – Is Lightweight=Light+Wait? In Cryptographic
Hardware and Embedded Systems – CHES 2012, pp. 426–446. Springer, 2012.

24. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F. et
al.: Compact Implementation and Performance Evaluation of Block Ciphers in ATtiny Devices. In Progress in Cryptology
– AFRICACRYPT 2012, LNCS 7374, pp. 172–187. Springer, 2012.

25. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F.
et al.: Implementations of Low Cost Block Ciphers in Atmel AVR Devices. http://perso.uclouvain.be/fstandae/
lightweight_ciphers/, Feb. 2015.

26. Matsui, M. and Murakami, Y.: Minimalism of Software Implementation. In Fast Software Encryption, pp. 393–409.
Springer, 2014.

27. Cazorla, M., Marquet, K., and Minier, M.: Survey and Benchmark of Lightweight Block Ciphers for Wireless Sensor
Networks. http://eprint.iacr.org/2013/295.

28. Cazorla, M., Marquet, K., and Minier, M.: Survey and Benchmark of Lightweight Block Ciphers for Wireless Sensor
Networks. In Pierangela Samarati, editor, SECRYPT 2013 – Proceedings of the 10th International Conference on Security
and Cryptography, Reykjavík, Iceland, 29–31 July, 2013, pp. 543–548. SciTePress, 2013.

29. Cazorla, M., Marquet, K., and Minier, M.: Implementations of Lightweight Block Ciphers on a WSN430 sensor. http:
//bloc.project.citi-lab.fr/library.html, Feb. 2015.

30. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y. L., Perrin, L.: FELICS – Fair Evalua-
tion of Lightweight Cryptographic Systems. http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/
session7-dinu-paper.pdf, July 2015.

http://eprint.iacr.org/2012/600
http://eprint.iacr.org/2015/585
http://www.atmel.com/images/doc0856.pdf
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.cryptolux.org/index.php/Lightweight_Block_Ciphers
http://perso.uclouvain.be/fstandae/lightweight_ciphers/
http://perso.uclouvain.be/fstandae/lightweight_ciphers/
http://eprint.iacr.org/2013/295
http://bloc.project.citi-lab.fr/library.html
http://bloc.project.citi-lab.fr/library.html
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session7-dinu-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session7-dinu-paper.pdf

14 Zhenzhen Bao et al.

31. CryptoLUX.: FELICS (Fair Evaluation of Lightweight Cryptographic Systems), http://www.cryptolux.org/index.
php/FELICS, 15 August 2015.

32. Dinu, D., Corre, Y. L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: Triathlon of Lightweight Block Ciphers
for the Internet of Things, http://eprint.iacr.org/2015/209.

33. CryptoLUX.: FELICS Triathlon. http://www.cryptolux.org/index.php/FELICS_Triathlon, 12 August 2015.
34. Dinu, D., Corre, Y. L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: FELICS Block Ciphers Brief Results

and FELICS Block Ciphers Detailed Results. http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_
Brief_Results, http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results, 1 Octo-
ber 2015.

35. PROCESSOR WATCH. http://www.linleygroup.com, 8 Jan 2013.
36. National Institute of Standards and Technology (NIST). Lightweight Cryptography Workshop 2015. http://www.nist.

gov/itl/csd/ct/lwc_workshop2015.cfm.
37. Shahverdi, A., Chen, C., and Eisenbarth, T.: AVRprince – An Efficient Implementation of PRINCE for 8-bit Microproces-

sors. http://www.ashahverdi.com/files/papers/avrPRINCEv01.pdf. Technical Report, Worcester Polytechnic
Institute, 2014.

38. Papapagiannopoulos, K.: High Throughput in Slices: The Case of PRESENT, PRINCE and KATAN64 Ciphers. In: Saxena,
N. and Sadeghi, A. (eds.) Radio Frequency Identification: Security and Privacy Issues. LNCS, vol 8651, pp. 137–155.
Springer International Publishing (2014).

39. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., and Reinhard, J.: Multiple Differential Cryptanalysis of Round-
Reduced PRINCE. Presentation at Fast Software Encryption FSE 2014, London, UK. fse2014.isg.rhul.ac.uk/
slides/slides-09_4.pdf, 25 March 2014.

40. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., and Reinhard, J.: Multiple Differential Cryptanalysis of Round-
Reduced PRINCE (Full version), eprint.iacr.org/2014/089.

41. Gladman, B.: Serpent S Boxes as Boolean Functions, http://www.gladman.me.uk/.
42. Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.: The Keccak Reference, January 2011, http://keccak.

noekeon.org/.
43. Courtois, N. T., Hulme, D., and Mourouzis, T.: Solving Circuit Optimisation Problems in Cryptography and Cryptanalysis.

Appears in electronic proceedings of 2nd IMA Conference Mathematics in Defence, UK, Swindon, 2011.
44. Boyar, J. and Peralta, R.: A New Combinational Logic Minimization Technique With Applications to Cryptology, in

Experimental Algorithms, ser. Lecture Notes in Computer Science, P. Festa, Ed. Springer Berlin Heidelberg, 2010, vol.
6049, pp. 178–189.

45. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L.,: The Simon and Speck Block Ciphers
on AVR 8-bit Microcontrollers. http://eprint.iacr.org/2014/947.

46. Bao, Z., Zhang, W., Luo, P., Lin, D.: Bitsliced Implementations of Block Ciphers on AVR 8-bit Microcontrollers. http:
//github.com/FreeDisciplina/BlockCiphersOnAVR, October 2015.

http://www.cryptolux.org/index.php/FELICS
http://www.cryptolux.org/index.php/FELICS
http://eprint.iacr.org/2015/209
http://www.cryptolux.org/index.php/FELICS_Triathlon
http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results
http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Brief_Results
http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results
http://www.linleygroup.com
http://www.nist.gov/itl/csd/ct/lwc_workshop2015.cfm
http://www.nist.gov/itl/csd/ct/lwc_workshop2015.cfm
http://www.ashahverdi.com/files/papers/avrPRINCEv01.pdf
fse2014.isg.rhul.ac.uk/slides/slides-09_4.pdf
fse2014.isg.rhul.ac.uk/slides/slides-09_4.pdf
eprint.iacr.org/2014/089
http://www.gladman.me.uk/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/2014/947
http://github.com/FreeDisciplina/BlockCiphersOnAVR
http://github.com/FreeDisciplina/BlockCiphersOnAVR

	Bitsliced Implementations of the PRINCE, LED and RECTANGLE Block Ciphers on AVR 8-bit Microcontrollers
	Introduction
	Related Work
	Our Contributions

	Our AVR Implementations, Considering Scenarios and Performance Measurement
	PRINCE AVR Implementations
	The PRINCE cipher
	PRINCE AVR Implementations
	State Bits Rearrangement
	Bitsliced Implementation of the KeyXor and RCXor
	Bitsliced Implementation of the S-box and the Inverse S-box
	Bitsliced Implementation of the MixColumns
	Bitsliced Implementation of the ShiftRows and the Inverse ShiftRows

	LED AVR Implementations
	The LED cipher
	LED AVR Implementations
	State Bits Rearrangement
	Bitsliced Implementation of the MixColumnsSerial
	Bitsliced Implementation of the S-box and the Inverse S-box
	Bitsliced Implementation of the ShiftRows and the Inverse ShiftRows

	RECTANGLE AVR Implementations
	The RECTANGLE cipher
	RECTANGLE AVR Implementations
	State Bits Arrangement
	Bitsliced Implementation of the S-box and the Inverse S-box (SubColumns)
	Bitsliced Implementation of the ShiftRows
	Bitsliced Implementation of the Key Schedule and Adding Round Key
	

	Results Summary and Comparisons

