
Re-encryption Verifiability: How to Detect
Malicious Activities of a Proxy in Proxy Re-encryption⋆

Satsuya Ohata1,3, Yutaka Kawai2, Takahiro Matsuda3, Goichiro Hanaoka3, and Kanta Matsuura1

1 The University of Tokyo, Tokyo, Japan {satsuya,kanta}@iis.u-tokyo.ac.jp
2 Mitsubishi Electric, Kanagawa, Japan Kawai.Yutaka@da.MitsubishiElectric.co.jp

3 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In this paper, we introduce a new functionality for proxy re-encryption (PRE) that
we call re-encryption verifiability. In a PRE scheme with re-encryption verifiability (which we
simply call verifiable PRE, or VPRE), a receiver of a re-encrypted ciphertext can verify whether
the received ciphertext is correctly transformed from an original ciphertext by a proxy, and thus
can detect illegal activities of the proxy. We formalize the security model for a VPRE scheme,
and show that the single-hop uni-directional PRE scheme by Hanaoka et al. (CT-RSA 2012) can
be extended to a secure VPRE scheme.

Keywords: Proxy Re-encryption, Re-encryption Verifiability, Soundness.

1 Introduction

Proxy re-encryption (PRE) is an interesting extension of traditional public key encryption (PKE). In
addition to the normal operations of PKE, with a dedicated re-encryption key (generated by receiver
A), a semi-trusted party called proxy can turn a class of ciphertexts destined for user A into those for
user B. A remarkable property of PRE is that the proxy carrying out the transform is totally ignorant
of the plaintext. PRE was first formalized by Blaze et al. [8] and has received much attention in recent
years. There are many models as well as implementations [8, 3, 10, 20, 28, 12, 15, 17]. The type of PRE
we focus on in this paper is “single-hop” and “uni-directional”, where a ciphertext4 can be transformed
only once, and a re-encryption key used to transform a ciphertext for user A to that for user B cannot
be used to transform for the opposite direction.

In ordinary PRE schemes, a proxy is modeled as a semi-trusted party, and is typically assumed to
perform the re-encryption process honestly. This means that we have to put relatively high level of
trust on proxies, and it may be undesirable for some applications of PRE, e.g. cloud-based file sharing
systems. In this paper, we study a mechanism that enables us to reduce the level of trust on proxies
in PRE systems.

To motivate it further, consider a cloud storage service, one of the major applications of PRE, in
which users store a (possibly large) encrypted data c. PRE allows an easy way to share the encrypted
data in the cloud with another user: if an owner (say user A) of the encrypted data c wants to share it
with user B, it can simply give a re-encryption key rkA→B to the cloud manager, and can go off-line;
when later B requests the data for the cloud manager, he/she can transform c into a re-encrypted
ciphertext ĉ that can be decrypted by user B. However, in this situation, can user B be sure if ĉ
is actually a re-encryption of c? Can B detect whether the cloud manager (proxy) has misbehaved?
However, an ordinary PRE scheme is not required to support the functionality to check the relation
between an original ciphertext c and a re-encrypted ciphertext ĉ (if user A reveals its secret key to
user B, then B can check the relation, but it is clearly undesirable). It is therefore desirable if there

⋆ An extended abstract of this paper appears in the proceedings of CT-RSA 2015
4 In the context of single-hop uni-directional PRE, an original ciphertext (which can be re-encrypted) and a
re-encrypted ciphertext (which cannot be re-encrypted further) are typically called a second-level ciphertext
and a first-level ciphertext, respectively [20, 15], and we will also use the names.

2

is a PRE scheme in which the relation between original and re-encrypted ciphertexts can be checked
efficiently by a recipient of a re-encrypted ciphertext (user B in this example), without the help of the
other entities.

1.1 Our Contribution

In this paper, we introduce a new functionality for PRE that we call re-encryption verifiability. In a
PRE scheme with re-encryption verifiability (which we simply call verifiable PRE, or VPRE), a receiver
of a re-encrypted ciphertext can verify whether the received ciphertext is correctly transformed from
an original ciphertext by a proxy, and thus can detect an illegal activity of the proxy. We may even
expect that the existence of re-encryption verifiability suppresses proxy’s illegal activities, and this
functionality enables us to relax the level of trust that we have to put on proxies. We achieve re-
encryption verifiability by introducing a new algorithm that we call the re-encryption verification
algorithm, into the syntax of (single-hop, uni-directional) PRE. This algorithm takes two ciphertexts
c and ĉ, a secret key skB (of the receiver B) and a public key pkA (of another user A) as input,
and can tell whether ĉ is transformed from c using a re-encryption key that transforms a ciphertext
from user A to user B. We stress that this algorithm needs not only a re-encrypted ciphertext ĉ but
also a (candidate) original ciphertext c (while to normally decrypt a re-encrypted ciphertext, original
ciphertext c is not required). Note that such a situation is natural in the applications of PRE which
we explained earlier.

We formalize the security model for a VPRE scheme. In particular, in order for the re-encryption
verification algorithm to be meaningful, in addition to ordinary chosen ciphertext (CCA) security (for
both original/transformed ciphertexts), we introduce a new security notion that we call soundness. Our
security model for CCA security is based on the one used by Hanaoka et al. [15], and is extended to take
the existence of the re-encryption verification algorithm into account. For “backward compatibility”
with the model of ordinary PRE (without re-encryption verification algorithm), we show that a VPRE
scheme secure in our model is in general secure as a PRE scheme in the model of [15]. Then, we show
that the PRE scheme by Hanaoka et al. [15] (which we call “HKK+”) can be extended to a VPRE
scheme (which we call “eHKK+”), by augmenting the HKK+ scheme with the dedicated re-encryption
verification algorithm. To prove the security of the VPRE scheme eHKK+, we need the property that
we call strong smoothness (which is essentially the same notion as that introduced in [14] with the
name γ-uniformity) for the underlying TPKE scheme. This property is unconditionally satisfied by
natural TPKE schemes, and thus is not a strong assumption at all. For more details, see Section 4.

Naive Approaches and Their Problems. Although one might think that the problem of checking
dishonest behaviors of a proxy can be resolved by using a signature scheme in a PRE scheme (that is, by
considering a proxy re-“signcryption” scheme), we argue that this approach does not work. Specifically,
consider a situation where a sender holds a key pair of a signature scheme, and consider the typical
“Sign-then-Encrypt”-style construction of a proxy re-signcryption scheme, i.e. the construction where a
ciphertext is generated by first signing the plaintext, and then the plaintext together with the signature
are encrypted by the PRE scheme. Note that what is verified in such a proxy re-signcryption scheme
(by a recipient of a re-encrypted ciphertext) is that the original plaintext has not been modified and
that it is indeed generated by the sender, but not that the transformed ciphertext resulted from re-
encryption performed by the proxy. For example, such a construction is vulnerable to the following
attack: a sender generates several ciphertexts to the proxy, then the proxy re-encrypts one of them,
and sends it to the recipient. The recipient may find that the plaintext recovered from the received
ciphertext indeed comes from the sender, but he will not be sure which of the ciphertexts the proxy
owns was re-encrypted (and even that whether the received ciphertext is a re-encryption of one of the
ciphertexts). In the “Encrypt-then-Sign”-style construction, i.e. the construction where the sender first
encrypts a plaintext and then generates a signature on the ciphertext, the situation is worse, because
the signature attached to the original ciphertext will not be a valid signature for a re-encrypted
ciphertext. Furthermore, these proxy re-signcryption-style approaches also have a potential drawback

3

that the receiver needs to be aware of the sender who generates the original ciphertext, which is not
necessary in our VPRE model (and in an ordinary PRE scheme), and may be a barrier for some
applications of (V)PRE. In summary, we emphasize that what is achieved by proxy re-signcryption-
style approaches and what we achieve in this paper (i.e. verifiability of a dishonest behavior of a proxy)
are two very different properties, and one approach cannot be a solution for the other.

On the Choice of Security Models on which Our Security Definitions Are Based. We
note that, as mentioned above, our definitions for VPRE are based on those of PRE adopted by
Hanaoka et al. [15]. Their security definitions (of chosen ciphertext security) are known to be one of
the strongest in the literature of PRE. Notably, besides capturing the chosen ciphertext security (not
re-playable variant [11]), the security models in [15] do not assume the so-called knowledge-of-secret-key
(KOSK) assumption [9], in which an adversary can use any public key for corrupted users, without
revealing the corresponding secret key. The KOSK assumption typically appears in security models
of cryptographic primitives in which multiple users are inherently involved (e.g. multi-receiver PKE
[4, 25], multi-signature [9, 7, 27]). The KOSK assumption does not reflect the reality quite well, and
there are several critiques on this assumption (e.g. in the discussions in [7, 27, 25]). To the best of our
knowledge, the Hanaoka et al. model is the only security definitions for PRE that do not assume the
KOSK assumption, and thus we base our security definitions on theirs.

As far as we are aware, most popular PRE schemes without random oracles are secure only under
the KOSK assumption (e.g. [20, 17]). 5 Therefore, we do not think these schemes can be shown to
achieve re-encryption verifiability in our model. However, we do not rule out the possibility that these
existing PRE schemes can be extended to VPRE schemes that can be shown to be secure in the security
models that are appropriately extended from the security models in which the original PRE schemes
are proved secure. Especially, the pairing-based schemes (e.g. [20, 17]) seem to allow strong validity
checking properties between a re-encrypted ciphertext and an original ciphertext, and we think they
are good candidates of VPRE schemes. We would like to leave it as our future work whether these
existing PRE schemes can be extended to VPRE schemes and can be proven secure in security models
appropriately extended from the original security models.

1.2 Related Work

We briefly review the related work. Mambo and Okamoto introduced the concept of proxy decryp-
tion [21]. Later, Ivan and Dodis [18] proposed a generic construction of proxy cryptography based
on sequential multiple encryption. Blaze, Bleumer and Strauss formulated the concept of PRE cryp-
tosystems [8] and proposed the first bidirectional PRE scheme based on the ElGamal PKE scheme.
Subsequently, Ateniese et al. [3], Canetti and Hohenberger [10], Libert and Vergnaud [20], and Chow
et al. [12], proposed different PRE schemes with various properties. Shao and Cao [28] proposed a
PRE scheme without pairings. Later, however, Zhang et al. [30] pointed out that it is not secure in the
Libert-Vergnaud security model [20]; that is, it does not provide master key security. Subsequently,
Matsuda et al. proposed a PRE scheme without pairings [22], but later, Weng, Zhao, and Hanaoka [29]
pointed out that their scheme is not chosen-ciphertext secure. Hanaoka et al. [15] proposed a new def-
inition of CCA security in PRE and showed a generic construction of uni-directional PRE. Isshiki et
al. [17] proposed a CCA secure PRE scheme.6 Kirshanova [19] proposed a lattice-based PRE scheme.
To the best of our knowledge, none of the previous works considered the re-encryption verifiability.
5 To be more precise, in the security models adopted in these papers, public keys (of even a corrupted user)
that can be used in the security games (say, in a re-encryption key generation and/or re-encryption queries)
are generated by the challenger, who always generates these keys honestly. Therefore, the KOSK assumption
is automatically assumed in these security models.

6 Although it is claimed that their security model is stronger than that of [15], they are actually incomparable.
The security model for a transformed ciphertext (first-level ciphertext) in [17] allows an adversary a slightly
more flexible challenge query than that of [15]. However, all public keys in the security models of [17] that
can be used for re-encryption key generation and re-encryption queries must be generated by the challenger,
and such restriction is not posed in the model of [15].

4

2 Preliminalies

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N, we let [n] := {1, . . . , n}.
“x ← y” denotes that x is chosen uniformly at random from y if y is a finite set, x is output from
y if y is a function or an algorithm, or y is assigned to x otherwise. “x∥y” denotes a concatenation
of x and y. “|x|” denotes the size of the set if x is a finite set or bit length of x if x is a string.
“PPT” stands for probabilistic polynomial-time. If A is a probabilistic algorithm then y ← A(x; r)
denotes that A computes y as output by taking x as input and using r as randomness. k denotes the
security parameter. A function f(k) : N→ [0, 1] is said to be negligible if for all positive polynomials
p and all sufficiently large k ∈ N, we have f(k) < 1/p(k).

2.1 Public Key Encryption

A public key encryption scheme (PKE) consists of the following three algorithms (PKG,PEnc,PDec).

PKG This is the key generation algorithm that takes 1k as input, and outputs a pair of decryption key
dk and public key pk.

PEnc This is the encryption algorithm that takes a public key pk and a plaintext m as input, and
outputs a ciphertext c.

PDec This is the decryption algorithm that takes a decryption key dk and a ciphertext c as input, and
outputs a decryption result m (which could be the special symbol ⊥ meaning that c is invalid).

We require the standard correctness for a PKE scheme, namely, for any (dk, pk) ← PKG(1k) and
any plaintext m, we have m = PDec(dk,PEnc(pk,m)).

Chosen Ciphertext Security [23, 26, 13]. We recall the definition of chosen ciphertext security
(CCA security, for short) of PKE, which is defined by the following game between the challenger and an
adversary A: First, the challenger picks the challenge bit b ∈ {0, 1}, computes (dk, pk)← PKG(1k), and
gives 1k and pk to A. A can adaptively make a challenge query (only once) and decryption queries. For
a challenge query (m0,m1), where (m0,m1) is a message pair of equal length, the challenger computes
c∗ ← PEnc(pk,mb), and then returns the challenge ciphertext c∗ to A. For a decryption query c, the
challenger responds with m ← PDec(dk, c), except that if c is the challenge ciphertext c∗, then the
challenger returns ⊥ to A. Finally, A outputs a guess bit b′ for b. A wins the game if b = b′. We define
the advantage of A by AdvCCA-PKEA (k) = |Pr[b′ = b]− 1/2|. We say a PKE scheme is CCA secure, if for
any PPT adversary A, AdvCCA-PKEA (k) is negligible.

Chosen Ciphertext Security in the Multi-user Setting [5]. In this paper, we will also use the
multi-user version of the CCA security for a PKE scheme, which was introduced by Bellare, Boldyreva,
and Micali [5]. We briefly recall it here. CCA security in the multi-user setting is also defined by the
game that is parameterized by an integer n, and is played between the challenger and an adversary:
Firstly, the challenger picks the challenge bit b ∈ {0, 1}, computes (dki, pki)← PKG(1k) for i ∈ [n], and
gives 1k and (pk1, . . . , pkn) to A. A can adaptively make “left-or-right” (LR) queries and decryption
queries. An LR query is of the form (j ∈ [n],m0,m1) such that |m0| = |m1|, and the challenger
responds to it with Enc(pkj ,mb). A decryption query is of the form (j, c), and the challenger responds
to it with PDec(skj , c), except that if c is a ciphertext that is some of the answers to previous LR
queries, the challenger answers with ⊥. Finally, A outputs a guess bit b′ for b. A wins the game if
b = b′. We define the advantage of A by AdvCCA-PKE(A,n) (k) = |Pr[b′ = b]− 1/2|.

We say a PKE scheme is CCA secure in the multi-user setting, if for all positive polynomials
n = n(k) and for any PPT adversary A, AdvCCA-PKE(A,n) (k) is negligible.

Bellare, Boldyreva, and Micali [5] showed that ordinary CCA security and CCA security in the
multi-user setting are polynomially equivalent.

5

2.2 Signature

A signature scheme consists of the following three algorithms (SKG, Sign, SVer).

SKG This is the key generation algorithm that takes 1k as input, and outputs a signing key sk and a
verification key vk.

Sign This is the signing algorithm that takes a signing key sk and a message m as input, and outputs
a signature σ.

SVer This is the verification algorithm that takes a verification key vk, a message m, and a signature
σ as input, and outputs either ⊤ or ⊥ (indicating whether the signature is valid or not).

We require the standard correctness for a signature scheme, namely, for any (sk, vk) ← SKG(1k)
and any message m, we have SVer(vk,m, Sign(sk,m)) = ⊤.

Strong Unforgeability [1]. We recall the definition of strong unforgeability [1] of a signature scheme,
which is defined by the following game between the challenger and an adversary A. First, the challenger
computes (sk, vk) ← SKG(1k), and gives 1k and vk to A. A can adaptively make signing queries.
For the i-th signing query on a message mi, the challenger computes σi ← Sign(sk,mi), returns σi
to A, and stores (mi, σi). Finally, A outputs a message/signature pair (m∗, σ∗). A wins the game if
SVer(vk,m∗, σ∗) = ⊤ and (m∗, σ∗) ̸= (mi, σi) for all i. We define the advantage of A by AdvSUF-SIGA (k) =
Pr[A wins].

We say a signature scheme is strongly unforgeable, if for any PPT adversary A, AdvSUF-SIGA (k) is
negligible.

2.3 Re-splittable Threshold Public Key Encryption

A re-splittable threshold public key encryption (TPKE) scheme was introduced in [15]. It is a special
class of TPKE in which a secret key can be split multiple times, and security of the scheme is maintained
as long as the number of corrupted secret key shares under the same splitting is less than the threshold.
The first re-splittable TPKE scheme was proposed by [15]. Recently, Ohata et al. [24] proposed three
more schemes. (All schemes so far are based on bilinear maps.)

Formally, a re-splittable TPKE scheme consists of the following six PPT algorithms:

TKG This is the key generation algorithm that takes 1k, n, and t such that 0 < t ≤ n as input, and
outputs a secret key tsk and a public key tpk.

TEnc This is the encryption algorithm that takes tpk and a plaintext m as input, outputs a ciphertext
c.

TSplit This is the key-splitting algorithm that takes tsk as input, and outputs n secret key shares
tsk1, · · · , tskn and a verification key tvk.

TShDec This is the share-decryption algorithm that takes tpk, a secret key share tski (i ∈ [n]) output
by TSplit(tsk), and c as input, and outputs a decryption share µi (which could be the special
symbol ⊥ meaning that c is invalid).

TShVer This is the share-verification algorithm that takes tpk, tvk, c, an index i ∈ [n], and a decryption
share µ as input, and outputs ⊤ or ⊥. When the output is ⊤ (resp. ⊥), we say that µ is a valid
(resp. invalid) decryption share of the ciphertext c.

TCom This is the combining algorithm that takes tpk, tvk, c, and t decryption shares (generated under
distinct secret key shares) as input, and outputs a decryption result m (which could be the special
symbol ⊥).

For any k ∈ N, any polynomials t, n such that 0 < t ≤ n, any (tsk, tpk) ← TKG(1k, n, t) and any
(tsk1, · · · , tskn, tvk) ← TSplit(tsk), we require the following two correctness properties: (1) For any
ciphertext c and index i ∈ [n], if µ = TShDec(tpk, tski, c), then we have TShVer(tpk, tvk, c, i, µ) = ⊤.
(2) For any plaintext m, if c is output from TEnc(tpk,m) and S = {µs1 , · · · , µst} is a set of decryption
shares (i.e. µsi = TShDec(tpk, tsksi , c) for all i ∈ [t]), then we have TCom(tpk, tvk, c, S) = m.

6

Chosen Ciphertext Security. CCA security of a re-splittable TPKE scheme is defined using the
following game which is parameterized by two integers t, n with 0 ≤ t ≤ n and is played by the
challenger and an adversary A: The challenger first runs (tsk, tpk) ← TKG(1k, n, t) and gives tpk to
A. Then A can adaptively make the following types of queries.

Split&corruption query: On input a set of indices S = {s1, . . . , st−1}, the challenger runs (tsk1,
. . . , tskn, tvk) ← TSplit(tsk) and returns (tsks1 , . . . , tskst−1 , tvk) to A. The challenger also stores
{tski}i∈[n] and tvk for later share decryption queries from A.

Share decryption query: On input (tvk, i, c), where tvk is required to be one of the answers to
previously asked split&corruption queries, i ∈ [n], and c ̸= c∗, the challenger finds tski that is
previously generated together with tvk, and returns a decryption share µi ← TShDec(tpk, tski, c)
to A.

Challenge query: This query is asked only once. On input (m0,m1), the challenger randomly picks
b ∈ {0, 1} and returns c∗ ← TEnc(tpk,mb) to A.

Finally, A outputs its guess b′ for b, and wins the game if b = b′. We define the advantage of A by
AdvCCA-TPKE(A,n,t) (k) = |Pr[b = b′]− 1/2|. We say that a re-splittable TPKE scheme is CCA secure, if for any

PPT adversary A and for any polynomials t and n with 0 < t ≤ n, AdvCCA-TPKE(A,n,t) (k) is negligible.

Decryption Consistency. Decryption consistency is defined using the game which is defined in the
same way as the CCA game, without the challenge query. The adversary A finally outputs a ciphertext
c, a verification key tvk, and two sets of decryption shares S = {µs1 , . . . , µst} and S′ = {µ′s′1 , . . . , µ

′
s′t
}.

A wins if (a) tvk is one of verification keys returned as a response to one of A’s split&corruption queries.
(b) All shares in S and S′ are valid for a ciphertext c under tvk. That is, TShVer(tpk, tvk, c, i, µsi) =
TShVer(tpk, tvk, c, i, µ′s′i

) = ⊤ for all i ∈ [t]. (c) S and S′ are sets that are distinct regardless of re-

ordering the elements. (d) TCom(tpk, tvk, c, S) ̸= TCom(tpk, tvk, c, S′). We let AdvDC-TPKE(A,n,t)(k) denote
the probability of A winning in this game. We say that a TPKE scheme has decryption consistency,
if for any PPT adversary A and for any polynomials t and n such that 0 < t ≤ n, AdvDC-TPKE(A,n,t)(k) is
negligible.

Strong Smoothness. In this paper, we will use the property which we call strong smoothness. This
is introduced under the name of γ-uniformity in [14] for ordinary PKE, and is a stronger version of
smoothness used in [6]. (We borrow the name from [6] because we believe it describes the property
more directly.)

Formally, we say that a re-splittable TPKE scheme has strong smoothness if the following quantity

Smth(k) = max
c,m,R,

(tpk,tsk)←TKG(1k;R),

Pr
c′←TEnc(tpk,m)

[c = c′]

is negligible. Here, R is a randomness used by TKG.
We note that strong smoothness is satisfied if a ciphertext contains an unpredictable component

(such as a random group element gr with a generator g of a cyclic group and a randomness r), and we
are not aware of any natural construction of (re-splittable) TPKE based on bilinear maps that does
not have strong smoothness. For example, the re-splittable TPKE schemes proposed in [15, 24] have
this property unconditionally.

3 Verifiable Proxy Re-Encryption

In this section, we present the model and the security definitions of VPRE. Note that we only focus
on a single-hop uni-directional scheme.

This section is organized as follows: In Section 3.1, we define the syntax of a VPRE scheme. In
Section 3.2, based on the definitions given in [15] for (ordinary) PRE, we define three kinds of security

7

definitions of VPRE. In particular, we introduce soundness, which plays an important role for VPRE.
We also explain the difference between our definitions and those of [15]. Finally, in Section 3.3, we show
that a VPRE secure in our definitions is also secure (as an ordinary PRE scheme) in the definitions of
[15], and thus our definitions have “backward compatibility” with [15].

3.1 Model

Here, we define the syntax of VPRE. As mentioned earlier, the main feature of VPRE is the re-
encryption verification algorithm REncVer.

Formally, a VPRE scheme consists of the following seven algorithms:

KG This is the key generation algorithm that takes 1k as input, and outputs a secret key sk and a
public key pk. This process is written as (sk, pk)← KG(1k).

RKG This is the re-encryption key generation algorithm that takes a secret key ski of user i and a
public key pkj of user j as input, and outputs a re-encryption key rki→j . This process is written
as rki→j ← RKG(ski, pkj).

Enc This is the encryption algorithm that takes a public key pk and a plaintext m as input, and
outputs a second-level ciphertext c that can be re-encrypted for another party. This process is
written as c← Enc(pk,m).

REnc This is the re-encryption algorithm that takes a second-level ciphertext c (for user i) and a
re-encryption key rki→j as input, and outputs a first-level ciphertext ĉ (for user j) or the special
symbol ⊥meaning that (rki→j or) c is invalid. This process is written as ĉ (or ⊥)← REnc(rki→j , c).

REncVer This is the re-encryption verification algorithm that takes a public key pki of user i, a secret
key skj of user j, a second-level ciphertext c, and a first-level ciphertext ĉ as input, and outputs ⊤
(meaning that ĉ is a valid re-encrypted ciphertext of ci) or ⊥. This process is written as ⊤ (or ⊥)←
REncVer(pki, skj , c, ĉ).

Dec1 This is the first-level decryption algorithm that takes a secret key sk and a first-level ciphertext
ĉ as input, and outputs a decryption result m (which could be the special symbol ⊥ meaning that
ĉ is invalid). This process is written as m← Dec1(sk, ĉ).

Dec2 This is the second-level decryption algorithm that takes a secret key sk and a second-level ci-
phertext c as input, and outputs a decryption result m (which could be ⊥ as above). This process
is written as m← Dec2(sk, c).

The REncVer algorithm needs not only a re-encrypted ciphertext ĉ but also a (candidate) original
ciphertext c. We again stress that such a situation is natural in the applications of PRE which we
explained in Section 1. We remark that as in [15], we do not consider the direct first-level encryption
algorithm (that generates a first-level ciphertext that cannot be re-encrypted further), because such a
functionality can be realized by just using a CCA secure PKE scheme in addition to a (V)PRE scheme.

We say that a VPRE scheme is correct if for all (ski, pki) and (skj , pkj) output from KG(1k), all
plaintexts m, all rki→j ← RKG(ski, pkj), all ci ← Enc(pki,m), and all ĉj ← REnc(rki→j , ci), we have:
(1) Dec2(ski, ci) = m, (2) Dec1(skj , ĉj) = m, and (3) REncVer(pki, skj , ci, ĉj) = ⊤.

3.2 Security Definitions

In this subsection, we give the formal security definitions of VPRE.

Soundness. According to the correctness requirement, an algorithm that outputs 1 for any input is
“correct” as the re-encryption verification algorithm REncVer. However, this is clearly not what we
expect for REncVer. To avoid such triviality and a meaningless definition, here we introduce soundness
of the REncVer algorithm. Roughly, our soundness definition guarantees that if an adversary who owns
a re-encryption key rki→j and is given an original (second-level) ciphertext c, it can produce only a
re-encrypted ciphertext ĉ that can decrypt to the same value as the decryption result of c. Furthermore,

8

if an adversary does not have the re-encryption key rki→j , then it cannot produce a valid re-encrypted
ciphertext ĉ at all.

Formally, we define the soundness of re-encryption with the following game which is parameterized
by an integer n ∈ N and is played between the challenger and an adversary A: Firstly, the challenger
generates honest users’ key pairs (ski, pki) ← KG(1k) for i ∈ [n], and sets PK = {pki}i∈[n]. Next, the

challenger generates a challenge user’s key pair (ski∗ , pki∗) ← KG(1k). Then, the challenger gives 1k

and PK∗ = PK ∪ {pki∗} to A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input (pki ∈ PK∗, pkj), where pkj is an arbi-
trary public key of A’s choice (for which A is not required to reveal the corresponding secret key),
the challenger responds as follows: If pki = pki∗ and pkj /∈ PK∗, then the challenger responds with
⊥. Otherwise, the challenger responds with RKG(ski, pkj).

Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an arbitrary public key
of A’s choice (for which A is not required to reveal the corresponding secret key), the challenger
responds with REnc(RKG(ski, pkj), c).

Re-encryption verification (REncVer) query: On input (pki, pkj ∈ PK∗, c, ĉ), where pki is an ar-
bitrary public key of A’s choice (for which A is not required to reveal the corresponding secret
key), the challenger responds with REncVer(pki, skj , c, ĉ).

Challenge query: This query is asked only once. On input m∗, the challenger runs c∗ ← Enc(pki∗ ,
m∗), and returns c∗ to A.

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the challenger responds with Dec1(skj , ĉ).
Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the challenger responds with

Dec2(ski, c).

Finally, A outputs (pkj ∈ PK∗, ĉ∗) and wins the game if they satisfy the following three conditions:

1. REncVer(pki∗ , skj , c
∗, ĉ∗) = ⊤

2. ĉ∗ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗)

3. Either of the following conditions is satisfied:
– In the case that A has submitted a RKG query of the form (pki∗ , pkj) and obtained a re-
encryption key rki∗→j : Dec1(skj , ĉ

∗) ̸= m∗.
– Otherwise: Dec1(skj , ĉ

∗) ̸= ⊥.

We define the advantage of A by AdvSND-VPRE(A,n) (k) = Pr[A wins].

Definition 1 (Soundness of Re-encryption). We say that a VPRE scheme satisfies soundness, if
for any PPT adversary A and for all positive polynomials n, AdvSND-VPRE(A,n) (k) is negligible.

Second-Level CCA Security. Here, we define the security for second-level ciphertexts (second-level
CCA security) with the following game which is parameterized by an integer n ∈ N and is played
between the challenger and an adversary A: Firstly, the challenger generates honest users’ key pairs
(ski, pki)← KG(1k) for i ∈ [n], and sets PK = {pki}i∈[n]. Next, the challenger generates the challenge

user’s key pair (ski∗ , pki∗) ← KG(1k). Then, the challenger gives 1k and PK∗ = PK ∪ {pki∗} to A.
Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) and Re-encryption verification (REncVer) queries: These
are the same as those in the soundness game.

Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an arbitrary public key
of A’s choice (for which A is not required to reveal the corresponding secret key), the challenger
responds as follows. If (pki, c) = (pki∗ , c

∗) and pkj /∈ PK∗, then the challenger returns ⊥ to A.
Otherwise, the challenger responds with REnc(RKG(ski, pkj), c).

Challenge query: This query is asked only once. On input (m0,m1), the challenger picks a bit
b ∈ {0, 1} uniformly at random, and computes c∗ ← Enc(pki∗ ,mb). Then it gives c∗ to A.

9

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the challenger responds as follow:
If
REncVer(pki∗ , skj , c

∗, ĉ) = ⊤, then the challenger returns ⊥ to A. Otherwise, the challenger re-
sponds with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the challenger responds with
Dec2(ski, c), except that if (pki, c) = (pki∗ , c

∗), then the challenger returns the special symbol ⊥ to
A.

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the advantage of A by
Advsecond-VPRE(A,n) (k) = |Pr[b = b′]− 1/2|.

Definition 2 (Second-Level CCA Security). We say that a VPRE scheme is second-level CCA
secure, if for any PPT adversary A and all positive polynomials n, Advsecond-VPRE(A,n) (k) is negligible.

First-Level CCA Security. Next, we define the security for first-level ciphertexts (first-level CCA
security) with the following game between the challenger and an adversary A: Firstly, the challenger
generates the challenge key pair (sk∗, pk∗)← KG(1k), and gives 1k and pk∗ toA. Then,A can adaptively
make the following types of queries:

Re-encryption key generation (RKG) query: On input pk, where pk is an arbitrary public key
of A’s choice (for which A is not required to reveal the corresponding secret key), the challenger
responds with RKG(sk∗, pk).

Re-encryption verification (REncVer) query: On input (pk, c, ĉ), where pk is an arbitrary public
of A’s choice (for which A is not required to reveal the corresponding secret key), the challenger
responds with REncVer(pk, sk∗, c, ĉ).

Challenge query: This query is asked only once. On input (skA, pkA,m0,m1) where (skA, pkA) is
required to be a valid key pair7, the challenger picks the challenge bit b ∈ {0, 1} randomly and
runs c← Enc(pkA,mb) and ĉ

∗ ← REnc(RKG(skA, pk
∗), c). It then returns ĉ∗ to A.

First-level decryption (Dec1) query: On input ĉ, the challenger responds with Dec1(sk
∗, ĉ), except

that if ĉ = ĉ∗, then the challenger returns the special symbol ⊥ to A.
Second-level decryption (Dec2) query: On input c, the challenger responds with Dec2(sk

∗, c).

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the advantage of A by
Advfirst-VPREA (k) = |Pr[b = b′]− 1/2|.

Definition 3 (First-Level CCA Security). We say that a VPRE scheme is first-level CCA secure,
if for any PPT adversary A, Advfirst-VPREA (k) is negligible.

Difference with the Definitions (for PRE) in [15]. Soundness is a new security definition for
VPRE. Furthermore, regarding the definition of first-level CCA security, we naturally allow REncVer
queries for an adversary in addition to queries allowed in the first-level CCA definition of [15, Definition
2].

For the security definition of second-level ciphertexts, we also allow an adversary to make REncVer
queries. Furthermore, there is a remarkable difference in the response to Dec1 queries. The response to
Dec1 queries in the second-level CCA security game defined in [15, Definition 1] is as follows (where
we emphasize the difference).

First-level decryption query (of [15]) : On input (pkj ∈ PK∗, ĉ), the challenger responds as fol-
lows: If A has asked a REnc query of the form (pki∗ , pkj ∈ PK, c∗) and obtained ĉi previously,
then the challenger returns ⊥ to A. Else if A has asked a RKG query of the form (pki∗ , pkj ∈ PK)
previously and Dec1(ski, ĉ) ∈ {m0,m1} holds, then the challenger returns the special symbol test to
A. Otherwise, the challenger responds with Dec1(ski, ĉ). (We note that here, test is a symbol that
is distinguished from ⊥.)

7 That is, (skA, pkA) is required to be in the range of KG(1k).

10

Note that in a CCA security definition, what we expect is that an adversary can ask any ciphertext
that does not trivially allow it to decrypt the challenge ciphertext. The emphasized sentences above
are the definitional approach take in [15] to avoid such “self-broken” definition considered in [15].
On the other hand, our definition of second-level CCA security given in this subsection uses REncVer
for deciding “prohibited” decryption queries, and thus is simplified (of course, we additionally need
soundness in order for REncVer to be meaningful). Our use of REncVer for deciding “prohibited” queries
in the CCA security game for an encryption scheme has some similarity with secretly detectable re-
playable CCA security of [11] and detectable PKE of [16], and we believe these connections to be
interesting.

3.3 Implications to the Definitions of [15]

Here, we show a “backward compatibility” of our security definitions. Namely, we show that if a VPRE
scheme satisfies security definitions given in Section 3.2, then it is also secure as a (V)PRE under the
definitions of [15].

Theorem 1. If a VPRE scheme is first-level CCA secure in the sense of Definition 3, then the VPRE
scheme is first-level CCA secure in the sense of [15, Definition 2].

This is obvious from the definition. In particular, an adversary in our first-level CCA security
definition is only more powerful than that of [15, Definition 2] (our adversary can make REncVer
queries which are not considered in [15]).

Theorem 2. If a VPRE scheme is second-level CCA secure in the sense of Definition 2 and satisfies
soundness (Definition 1), then the VPRE scheme is second-level CCA secure in the sense of [15,
Definition 1].

Proof of Theorem 2 Let n > 0 be a polynomial, and A be any PPT adversary that attacks a VPRE
scheme in the sense of [15, Definition 1] and makes Q > 0 Dec1 queries. (Since A is PPT, Q is
polynomial.) Consider the following games.

Game 0. The second-level CCA game of [15, Definition 1].
Game 1. Same as Game 0, except that if A submits a Dec1 query (pkj , ĉ) such that (1) REncVer(pki∗ ,

skj , ci∗ , ĉ) = ⊤, and (2) ĉ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗),

then the challenger responds as follows:
If A has submitted a RKG query (pki∗ , pkj) before, then the challenger returns test to A. Otherwise,
the challenger returns ⊥ to A.

For i ∈ {0, 1}, let Succi be the event that in Game i A succeeds in guessing the challenge bit (i.e.
b′ = b occurs), and let Badi be the event that in Game i, A submits at least one Dec1 query (pkj , ĉ)
such that it satisfies the following conditions simultaneously:

1. REncVer(pki∗ , skj , c
∗, ĉ) = ⊤.

2. ĉ has not appeared as an answer to some of A’s previous REnc queries of the form (pki∗ , pkj , c
∗).

3. Either of the following conditions is satisfied:

– In the case that A has submitted a RKG query (pki∗ , pkj) and obtained a re-encryption key
rki∗→j : Dec1(skj , ĉ) /∈ {m0,m1}.

– Otherwise: Dec1(skj , ĉ) ̸= ⊥.

A’s advantage (in the second-level CCA definition of [15, Definition 1]) is calculated as follows:

|Pr[Succ0]−
1

2
| ≤ |Pr[Succ0]− Pr[Succ1]|+ |Pr[Succ1]−

1

2
|.

Thus, it suffices to show that each term in the right hand side of the above inequality is negligible.

11

Firstly, note that Game 0 and Game 1 proceed identically unless Bad0 or Bad1 occurs in the
corresponding games. Hence, we have |Pr[Succ0] − Pr[Succ1]| ≤ Pr[Bad0] = Pr[Bad1]. Then, we show
that we can construct a soundness adversary B such that AdvSND-VPRE(B,n) (k) ≥ (1/Q) · Pr[Bad1], which
implies that Pr[Bad1] is negligible.

The construction of B is as follows: First, B is given public keys (pk1, · · · , pkn, pki∗) from the
soundness challenger. Then B forwards them to A.
B answers to A’s queries (except for the challenge query) exactly as specified in Game 1. This is

possible because B can also query to B’s challenger except for the challenge query. When A submits the
challenge query (m0,m1), B randomly picks d← {0, 1}, submits md as B’s challenge to B’s challenger,
receives c∗, and returns c∗ to A.

When A terminates, from A’s Dec1 queries, B randomly picks one query (pkj , ĉ), and terminates
with output (pkj , ĉ).

The above completes the description of B. It is not hard to see that B simulates Game 1 perfectly for
A until A submits a Dec1 query satisfying the conditions of the event Bad1. Therefore, the probability
that A submits a Dec1 query satisfying the conditions of Bad1 in the game simulated by B is exactly the
same as the probability of this event occurring in Game 1. Furthermore, once A makes such a query, B
can pick it with probability at least 1/Q. Therefore, we have AdvSND-VPRE(B,n) (k) ≥ (1/Q) ·Pr[Bad1]. Hence,
Pr[Bad1] is negligible. This in turn implies that |Pr[Succ1]− Pr[Succ2]| is negligible.

To prove Theorem 2, it remains to show that |Pr[Succ1]−1/2| is negligible. However, it is straight-
forward from the definition of the second-level CCA security of the VPRE scheme (in the sense of
Definition 2). In particular, a second-level CCA adversary (in the sense of Definition 2) can simulate
Game 1 perfectly for A, and such adversary has advantage exactly |Pr[Succ1]− 1/2|.

This completes the proof of Theorem 2. ⊓⊔

4 A Concrete VPRE Scheme

In this section, we show a concrete VPRE scheme, and prove its security. Specifically, our VPRE
scheme is a simple extension of the PRE scheme by Hanaoka et al. (which we denote by HKK+) [15],
and we show how to implement the re-encryption verification algorithm for it.

Intuition to Achieve the Functionality of Re-encryption Verification. Consider a situation in
which a second-level ciphertext cA for user A is re-encrypted into a first-level ciphertext ĉB for user B.
In order to achieve PRE with re-encryption verifiability, one promising approach is to design a PRE
scheme with the following properties: (1) When re-encrypting cA into ĉB , cA is somehow embedded
into ĉB in such a way that when user B decrypts ĉB , the embedded second-level ciphertext cA can
be extracted. (2) In re-encryption verification (between ĉB and a candidate second-level ciphertext
c′A) user B checks whether an extracted ciphertext cA is equal to the given candidate c′A. We observe
that the HKK+ scheme has the desirable properties, and this is the reason why we focus on the PRE
scheme. We next explain how we extend it into a VPRE scheme.

Extending the Hanaoka et al. PRE [15] to VPRE. Recall that the PRE scheme HKK+ is a
generic construction from a re-splittable TPKE scheme, an (ordinary) PKE scheme, and a signature
scheme. We observe that a re-encrypted ciphertext (i.e. first-level ciphertext) ĉ of the HKK+ scheme
contains the information on an original ciphertext (i.e. second-level ciphertext) c which is just a cipher-
text of the underlying TPKE scheme. Our re-encryption verification algorithm is thus fairly simple:
On input (pki, skj , c, ĉ), it executes the first-level decryption algorithm of the HKK+ scheme partway
to recover the “embedded” second-level ciphertext c′, and checks whether c = c′ holds.

Now, we formally describe the VPRE scheme, which we denote eHKK+ (which stands for “extended
HKK+”). Let (TKG, TEnc, TSplit, TShDec, TShVer, TCom) be a re-splittable TPKE scheme, (PKG,
PEnc, PDec) be a PKE scheme, and (SKG, Sign, SVer) be a signature scheme. Using these as building
blocks, the VPRE scheme eHKK+ is constructed as in Fig. 1.

12

KG(1k) :
(tsk, tpk)← TKG(1k, 2, 2)

(d̂k, p̂k)← PKG(1k)
(dk, pk)← PKG(1k)
(sk, vk)← SKG(1k)

sk← (tsk, d̂k, dk, sk)

pk← (tpk, p̂k, pk, vk)
Return (sk, pk).

Enc(pki,m) :

(tpki, p̂ki, pki, vki)← pki
Return c← TEnc(tpki,m).

RKG(ski, pkj) :

(tski, d̂ki, dki, ski)← ski
(tpkj , p̂kj , pkj , vkj)← pkj
(tski.1, tski.2, tvki)← TSplit(tski)
ψ ← PEnc(pkj , tski.1)
σ ← Sign(ski, ⟨ψ∥tvki∥pki∥pkj⟩)
rki→j ← (pki, pkj , tski.2, ψ, tvki, σ)
Return rki→j .

Dec1(skj , ĉj) :

(tskj , d̂kj , dkj , skj)← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.
⟨pk′i∥pk

′
j∥ci∥µ2∥ψ∥tvki∥σ⟩ ← M̂

If pk′j ̸= pkj then return ⊥.
(tpki, p̂ki, pki, vki)← pk′i
If SVer(vki, ⟨ψ∥tvki∥pk′i∥pk

′
j⟩, σ) = ⊥

then return ⊥.
tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
µ1 ← TShDec(tpki, tski.1, ci)
If µ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, µ2) = ⊥

then return ⊥.
m← TCom(tpki, tvki, ci, {µ1, µ2})
Return m.

REnc(rki→j , ci) :
(pki, pkj , tski.2, ψ, tvki, σ)← rki→j

(tpki, p̂ki, pki, vki)← pki
If SVer(vki, ⟨ψ∥tvki||pki∥pkj⟩, σ) = ⊥

then return ⊥.
(tpkj , p̂kj , pkj , vkj)← pkj
µ2 ← TShDec(tpki, tski.2, ci)
If µ2 = ⊥ then return ⊥.
M̂ ← ⟨pki∥pkj∥ci∥µ2∥ψ∥tvki∥σ⟩
Return ĉj ← PEnc(p̂kj , M̂).

Dec2(ski, c) :

(tpki, p̂ki, pki, vki)← pki
(tski, d̂ki, dki, ski)← ski
(tski.1, tski.2, tvki)← TSplit(tski)
µ1 ← TShDec(tpki, tski.1, c)
If µ1 = ⊥ then return ⊥.
µ2 ← TShDec(tpki, tski.2, c)
If µ2 = ⊥ then return ⊥.
m← TCom(tpki, tvki, c, {µ1, µ2})
Return m.

REncVer(pki, skj , c
′
i, ĉj) :

(tpki, p̂ki, pki, vki)← pki
(tskj , d̂kj , dkj , skj)← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.
⟨pk′i∥pk

′
j∥ci∥µ2∥ψ∥tvki∥σ⟩ ← M̂

If (pk′i, pk
′
j) ̸= (pki, pkj) then return ⊥.

If SVer(vki, ⟨ψ∥tvki∥pk′i∥pk
′
j⟩, σ) = ⊥

then return ⊥.
tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
µ1 ← TShDec(tpki, tski.1, ci)
If µ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, µ2) = ⊥

then return ⊥.
If c′i = ci then return ⊤ else return ⊥.

Fig. 1. The VPRE scheme eHKK+ based on the PRE scheme by Hanaoka et al. [15]. Since Dec2
described above needs to run TSplit, it is probabilistic. However, it can be made deterministic by
running (tsk1, tsk2)← TSplit(tsk) in KG (instead of running it in Dec2) and including (tsk1, tsk2) into
sk. We do not take this approach in the above so that the description is kept close to the original one
shown in [15].

13

Security. We show that eHKK+ satisfies the three kinds of security of VPRE.

Theorem 3. If the PKE scheme is CCA secure, the signature scheme is strongly unforgeable, and
the re-splittable TPKE scheme has decryption consistency, then the VPRE scheme eHKK+ satisfies
soundness.

Intuition. The formal proof is given in Appendix A. Here, we show the intuition of the proof of
soundness. Recall that the third winning condition of an adversary A who outputs a pair (pkj , ĉ

∗) in
the soundness game is different depending on whether A has obtained a re-encryption key rki∗→j by
making a RKG query of the form (pki∗ , pkj). If A has issued such a RKG query, then the condition
is “Dec1(skj , ĉ

∗) ̸= m∗”, where m∗ is the challenge message, while if A has not done so, then the
condition is “Dec1(skj , ĉ

∗) ̸= ⊥”.
We will show that the probability of the adversary A coming up with the pair (pkj , ĉ

∗) in the latter
case is negligible, mainly due to the strong unforgeability of the signature scheme. Intuitively this can
be shown because if A can output (pkj , ĉ

∗) such that Dec1(skj , ĉ
∗) ̸= ⊥ without using a re-encryption

key rki∗→j , (among other things) A must have generated a forged signature in the plaintext of ĉ∗,
without relying on RKG queries. However, note that A may indirectly obtain rki∗→j through a REnc
query of the form (pki∗ , pkj , c) where c is some second-level ciphertext. Therefore, we also need to use
the CCA security of the PKE scheme to guarantee that REnc queries of the above form do not help A
to indirectly obtain rki∗→j .

To show that the probability of the adversary A coming up with a ciphertext ĉ∗ such that
Dec1(skj , ĉ

∗) ̸= m∗ in case A has obtained rki∗→j (via a RKG query), we will use the decryption
consistency of the re-splittable TPKE scheme. In doing so, as above we have to use the CCA security
of the PKE scheme to guarantee that REnc queries do not help, and also to guarantee that the in-
formation of tski∗.1 does not leak from a re-encryption key rki∗→j that is obtained by A through the
RKG query that A issued. Finally, note that the decryption consistency is guaranteed only under an
honestly generated verification key tvki∗ , but A may have generated the ciphertext ĉ∗ in such a way
that tvki∗ is generated maliciously by A. To prevent it, we will again rely on the strong unforgeability
of the signature scheme, which ensures that the only way to generate a valid re-encrypted ciphertext
is to use a re-encryption key which is generated honestly (and thus tvki∗ is also honestly generated).

Theorem 4. If the PKE scheme is CCA secure, the signature scheme is strongly unforgeable, and the
re-splittable TPKE scheme is CCA secure, then the VPRE scheme eHKK+ is second-level CCA secure.

Intuition. The formal proof is given in Appendix B. Here, we show the intuition of the proof of second-
level CCA security. The proof follows closely to the above proof of soundness, and the original security
proof of the HKK+ scheme [15]. More specifically, the difference is that we calculate the (differences of
the) probabilities of A succeeding in guessing the challenge bit (instead of the event that an adversary
succeeds in breaking the conditions of soundness). In the final game, we can show that there exists a
PPT CCA adversary B against the re-splittable TPKE scheme such that its advantage AdvCCA-TPKE(B,n) (k)
is exactly the difference between the success probability of A in the final game and 1/2.

Theorem 5. If the PKE scheme is CCA secure and the re-splittable TPKE scheme has strong smooth-
ness, then the VPRE scheme eHKK+ is first-level CCA secure.

Intuition. The formal security proof is given in Appendix C. Here, we show the intuition of the proof
of first-level CCA security. As shown in [15], a first-level ciphertext in the eHKK+ scheme is wrapped

entirely by the underlying PKE scheme (regarding p̂k), and thus its CCA security naturally leads to
first-level CCA security, if it were not for re-encryption verification queries.

The main difference from the proof in [15] is that we need the strong smoothness of the underlying
re-splittable TPKE scheme, which was not necessary in the original proof of [15], in order to deal with
REncVer queries. More specifically, recall that in the first-level CCA security game, an adversary A
can choose a key pair (skA, pkA) for the second-level encryption of the challenge query. In particular,

14

A can know tskA. Now, suppose that this TPKE scheme has a “weak plaintext” mw in the sense that
it is easy to find given tskA, and its encryption cw ← TEnc(tpkA,mw) is easy to guess. (Such property
does not contradict the CCA security of the TPKE scheme, because mw could be hard to find without
tskA.) Then A can choose such mw as one of the challenge plaintexts, submit it with (skA, pkA) as a
challenge query, and obtain the challenge ciphertext ĉ∗. Then A by itself calculates the “easy-to-guess”
ciphertext cw corresponding to mw, and submits a REncVer query (pkA, cw, ĉ

∗), which by definition
reveals the challenge bit (because its answer essentially tells whether “ĉ∗ is a re-encryption of cw”).
However, if the underlying re-splittable TPKE scheme is guaranteed to have strong smoothness, such
weak plaintexts cannot exist, and hence we can conclude that REncVer queries do not help A.

References

1. J.H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and Encryption. EUROCRYPT
2002, LNCS 2332, pp. 83–107, 2002.

2. S. Arita and K. Tsurudome. Construction of Threshold Public-Key Encryptions through Tag-Based En-
cryptions. ACNS 2009, LNCS 5536, pp. 186–200, 2009.

3. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes with applications
to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), pp. 1–30, 2006.

4. M. Bellare, A. Boldyreva, K. Kurosawa and J. Staddon. Multirecipient Encryption Schemes: How to Save
on Bandwidth and Computation Without Sacrificing Security. IEEE Trans. on IT. 53(11), pp. 3927–3943,
2007.

5. M. Bellare, A. Boldyreva, and S. Micali. Public Key Encryption in a Multi-user Setting: Security Proofs
and Improvements. EUROCRYPT 2000, LNCS 1807, pp. 259–274, 2000.

6. M. Bellare, D. Hofheinz, and E. Kiltz. Subtleties in the Definition of IND-CCA: When and How Should
Challenge Decryption Be Disallowed? J. Cryptology, 28(1), pp. 29-48, 2015.

7. M. Bellare, and G. Neven. Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma.
ACMCCS 2006, pp. 390–399, 2006.

8. M. Blaze, G. Bleumer, and M. Strauss. Divertible Protocols and Atomic Proxy Cryptography. EURO-
CRYPT 1998, LNCS 1403, pp. 127–144, 1998.

9. A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-
Hellman-Group Signature Scheme. PKC 2003, LNCS 2567, pp. 31–46, 2003.

10. R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. ACMCCS 2007, pp. 185–
194, 2007.

11. R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing Chosen-Ciphertext Security. CRYPTO 2003, LNCS
2729, pp. 565-582, 2003.

12. S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. AFRICACRYPT
2010, LNCS 6055, pp. 316–332, 2010.

13. D. Dolev, C. Dwork, and M. Naor. Non-malleable Cryptography. SIAM Journal on Computing, 30(2), pp.
391–437, 2000.

14. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Schemes.
CRYPTO 1999, LNCS 1666, pp. 538–554, 1999.

15. G. Hanaoka, Y. Kawai, N. Kunihiro, T. Matsuda, J. Weng, R. Zhang, and Y. Zhao. Generic Construction
of Chosen Ciphertext Secure Proxy Re-Encryption. CT-RSA 2012, LNCS 7178, pp. 349–364, 2012.

16. S. Hohenberger, A.B. Lewko, and B. Waters. Detecting Dangerous Queries: A New Approach for Chosen
Ciphertext Security. EUROCRYPT 2012, LNCS 7237, pp. 663-681, 2012.

17. T. Isshiki, M.H. Nguyen, and K. Tanaka. Proxy Re-Encryption in a Stronger Security Model Extended
from CT-RSA2012. CT-RSA 2013, LNCS 7779, pp. 277–292, 2013.

18. A.A. Ivan and Y. Dodis. Proxy Cryptography Revisited. NDSS 2003, 2003.
19. E. Kirshanova. Proxy Re-encryption from Lattices. PKC 2014, LNCS 8383, pp. 77–94, 2014.
20. B. Libert and D. Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-Encryption. PKC 2008,

LNCS 4939, pp. 360–379, 2008.
21. M. Mambo and E. Okamoto. Proxy Cryptosystems: Delegation of the Power to Decrypt Ciphertexts. In

IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, E80-A(1), pp.
54–63, 1997.

22. T. Matsuda, R. Nishimaki, and K. Tanaka. CCA Proxy Re-Encryption without Bilinear Maps in the
Standard Model. PKC 2010, LNCS 6056, pp. 261–278, 2010.

15

23. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. Proc.
of STOC 1990, pp. 427–437, 1990.

24. S. Ohata, T. Matsuda, G. Hanaoka, and K. Matsuura. More Constructions of Re-splittable Threshold
Public Key Encryption. IWSEC 2014, LNCS 8639, pp.109-118, 2014.

25. A. Pinto, B. Poettering, and J.C.N. Schuldt. Multi-recipient Encryption, Revisited. AsiaCCS 2014, pp.
229–238, 2014.

26. C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext
Attack. CRYPTO 1991, LNCS 576, pp. 433–444, 1991.

27. T. Ristenpart, and S. Yilek. The Power of Proofs-of-Possession: Securing Multiparty Signatures against
Rogue-Key Attacks. EUROCRYPT 2007, LNCS 4515, pp. 228–245, 2007.

28. J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. PKC 2009, LNCS 5443, pp.
357–376, 2009.

29. J. Weng, Y. Zhao, and G. Hanaoka. On the Security of a Bidirectional Proxy Re-Encryption Scheme from
PKC 2010. PKC 2011, LNCS 6571, pp. 284–295, 2011.

30. X. Zhang, M. Chen, and X. Li. Comments on Shao-Cao’s Unidirectional Proxy Re-Encryption Scheme
from PKC 2009. Journal of Information Science and Engineering. 27(3), pp. 1153–1158, 2011.

A Lemmas and Their Proofs for Theorem 3

Here, we state the proof of soundness in Theorem 3. For the security proofs of soundness and second-
level CCA security, it is convenient to introduce the following algorithms MiniDec and MiniREncVer:

MiniDec is the sub-procedure of Dec1 that starts from the step “µ1 ← TShDec(tpki, tski.1, c)” of Dec1.
More specifically, it takes a TPKE public key tpk, a TPKE verification key tvk, a secret key share
tsk1, a decryption share µ2, and a second-level ciphertext c, and runs as follows:

MiniDec(tpk, tvk, tsk1, µ2, c) :

[µ1 ← TShDec(tpk, tsk1, c); If µ1 = ⊥ then return ⊥.;
If TShVer(tpk, tvk, c, 2, µ2) = ⊥ then return ⊥.;
m← TCom(tpk, tvk, c, {µ1, µ2}); Return m.]

MiniREncVer is the REncVer-analogue of MiniDec. Namely, this algorithm takes a tuple (tpk, tvk, tsk1,
µ2, c), and another second-level ciphertext c′ as input, and runs as follows:

MiniREncVer(tpk, tvk, tsk1, µ2, c, c
′) :

[µ1 ← TShDec(tpk, tsk1, c); If µ1 = ⊥ then return ⊥.;
If TShVer(tpk, tvk, c, 2, µ2) = ⊥ then return ⊥.;
If c′ = c then return ⊤ else return ⊥.]

(Here, c and c′ are supposed to correspond to those that appear in the description of REncVer in Fig 1.)
Let n = n(k) > 0 be any polynomial, and A be any PPT soundness adversary that attacks the

soundness of the VPRE scheme eHKK+. Consider the following sequence of games:

Game 0. This is the soundness game regarding eHKK+. Since the subsequent games consider A’s
queries of some special types, without loss of generality we let the challenger generate two empty
lists L∗RKG and L∗REnc at the beginning, and store the values that appear in the response to a
re-encryption key generation query and a re-encryption query of special types. More concretely,

– If A issues a RKG query of the form (pki∗ , pkj) with pkj ∈ PK, then the challenger stores the
values (pkj , ψ, tvki∗ , σ, tski∗.1) into L∗RKG, where (ψ, tvki∗ , σ, tski∗.1) are the values generated
when calculating rki∗→j ← RKG(ski∗ , pkj).

16

– If A issues a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK and the answer ĉ to this
query is not⊥, then the challenger stores the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L

∗
REnc, where

(µ2, tvki∗ , tski∗.1) are the values generated when calculating ĉ← REnc(RKG(ski∗ , pkj), c).

Game 1. Same as Game 0, except for the following changes to the response to REncVer queries and
Dec1 queries: For REncVer queries (pki, pkj , c

′, ĉ), the challenger responds as follows:

– (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗REnc for some (c, µ2, tvki∗ , tski∗.1), then:

• (1a) If pki ̸= pki∗ , then return ⊥.
• (1b) Otherwise (i.e. pki = pki∗), run MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c

′) and return
the result.

– (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc), run REncVer(pki, skj , c, ĉ) and return the result.

For Dec1 queries (pkj , ĉ), the challenger responds as follows:

– (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗REnc for some (c, µ2, tvki∗ , tski∗.1), then execute m ←
MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return m to A.

– (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc, then execute m ← Dec1(skj , ĉ), and return ⊥ to
A.

We would like to emphasize that from this game on, the challenger need not perform PDec(d̂kj , ĉ)
for a REncVer query (∗, pkj , ∗, ĉ) and a Dec1 query (pkj , ĉ) such that (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc.

Game 2. Same as Game 1, except that in this game, a re-encrypted ciphertext ĉ which is from the
challenge key pki∗ to an honest user key pkj ∈ PK, is generated in such a way that ĉ contains no
information. More precisely, if A submits a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK,
then the challenger responds as follows:

– (1) Compute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).
– (2) Compute µ2 ← TShDec(tpki∗ , tski∗.2, c), and return ⊥ to A if µ2 = ⊥.
– (3) Compute ĉ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩) where 0 is the zero-string of appropriate length.
– (4) Return ĉ to A and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L∗REnc, where tski∗.1 is
the secret key share corresponding to (tski∗.2, tvki∗) that appears in the above step (1).

Game 3. Same as Game 2, except that in this game, if a re-encrypted ciphertext ĉ which is from the
challenge key pki∗ to an honest user key pkj ∈ PK is submitted as a REncVer query (with pkj and
some c) or as a Dec1 query (with pkj), then ĉ is immediately answered with ⊥ unless (a) it is an
answer to a previously asked REnc query of the form (pki∗ , pkj , c), or (b) it is a re-encryption using
a re-encryption key rki∗→j that is returned as an answer to a previously asked RKG query.
More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c

′, ĉ) as follows:

– (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc, then respond as in Game 1.

– (2) Run M̂ = (pk′i∥pk
′
j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if M̂ = ⊥,

(pk′i, pk
′
j) ̸= (pki, pkj), or SVer(vki, ⟨ψ∥tvki∥pk

′
i∥pk

′
j⟩, σ) = ⊥.

– (3) If pki ̸= pki∗ then execute REncVer(pki, skj , c
′, ĉ), and return the result to A.

– (4) If pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗RKG, then return ⊥ to A.
– (5) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1), as in the
above step (3), execute the remaining procedure of REncVer, and output the result to A.

Furthermore, the challenger responds to Dec1 queries (pkj , ĉ) as follows:

– (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc, then respond as in Game 1.

– (2) Run M̂ = (pk′i∥pk
′
j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if M̂ = ⊥ or

pk′j ̸= pkj .

– (3) Parse pk′i as (tpki, p̂ki, pki, vki), and return ⊥ if SVer(vki, ⟨ψ∥tvki∥pk′i∥pk
′
j⟩, σ) = ⊥.

– (4) If pk′i ̸= pki∗ then calculate m by following the remaining procedure of Dec1 (i.e. from the
step “tski.1 ← PDec(dkj , ψ)”), and return m to A.

– (5) If pk′i = pki∗ and (pkj , ψ, tvki, σ, ∗) /∈ L∗RKG, then return ⊥ to A.
– (6) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki, σ, tski∗.1) ∈ L∗RKG for some tski∗.1), as in the
above step (4), calculate m by following the remaining procedure of Dec1.

17

Game 4. Same as Game 3, except that in this game, if A issues a REncVer query (pki, pkj , c
′, ĉ) or

Dec1 query (pkj , ĉ), such that ĉ is a re-encrypted ciphertext from the challenge key pki∗ to pkj
using a re-encryption key rki∗→j that is an answer to a previously asked RKG query of the form
(pki∗ , pkj) (which can be checked using L∗RKG as in Game 3), then the query is answered using the
information of tski∗.1 found in L∗RKG.
More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c

′, ĉ) as follows:
– (1), (2), (3), and (4): Same as in Game 3.
– (5): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1.
Execute MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c

′), and return the result to A.
Furthermore, the challenger responds to the Dec1 queries (pkj , ĉ) in the following way:
– (1), (2), (3), (4), and (5): Same as in Game 3.
– (6): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1.
Run m← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return the result to A.

We would like to emphasize that from this game on, the challenger need not perform PDec(dkj , ψ)
for a REncVer query (pki, pkj , c

′, ĉ) and a Dec1 query (pkj , ĉ) that are processed at their steps (6),

namely, those queries that satisfy (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc, PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸=
⊥, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤, and (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗RKG.

Game 5. Same as Game 4, except that in this game, if A issues a RKG query of the form (pki∗ , pkj)
with pkj ∈ PK, then the component ψ in a re-encryption key rki∗→j is generated in such a way
that it contains no information.
More precisely, for this query, the challenger generates rki∗→j = (pki∗ , pkj , tski∗.2, ψ, tvki∗ , σ) by

following the procedure of RKG(ski∗ , pkj) except that ψ is generated by ψ ← PEnc(pkj , 0
|tski∗.1|).

Then the challenger returns rki∗→j to A and stores the values (pkj , ψ, tvki∗ , σ, tski∗.1) into L
∗
RKG.

In Game 0 (i.e. the original soundness game), we define the event Win0 as the event that A wins, i.e.
the following conditions are satisfied: (where (pkj , ĉ

∗) represents A’s output)

(1) REncVer(pki∗ , skj , c
∗, ĉ∗) = ⊤

(2) ĉ∗ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗)

(3) Either of the following conditions is satisfied:
– In the case that A has submitted a RKG query of the form (pki∗ , pkj) and obtained a re-
encryption key rki∗→j : Dec1(skj , ĉ

∗) ̸= m∗

– Otherwise: Dec1(skj , ĉ
∗) ̸= ⊥

Furthermore, for i ∈ [5], we also define the event Wini in Game i, in the same way as Win0 except
that the condition of “REncVer(pki∗ , skj , c

∗, ĉ∗) = ⊤” is replaced with “The response to the REncVer
query (pki∗ , pkj , c

∗, ĉ∗) in Game i is ⊤”, and the condition “Dec1(skj , ĉ
∗) ̸= m∗” (resp. “Dec1(skj , ĉ

∗) ̸=
⊥”) is replaced with the condition “The response to the Dec1 query (pkj , ĉ

∗) is not m∗ (resp. ⊥)”.
Finally, for i ∈ {0, . . . , 5} let Aski be the event that A issues a RKG query of the form (pki∗ , pkj)

where pkj is used as the output of A in the soundness game. “(Whether this event has occurred is
determined when A outputs (pkj , ĉ

∗) and terminates.)”
Note that by definition, for any i ∈ {0, . . . , 5}, we have

Pr[Wini] = Pr[Wini ∧ Aski] + Pr[Wini ∧ Aski].

The soundness advantage of A is, by definition, AdvSND-VPRE(A,n) (k) = Pr[Win0]. By the above equation
and the triangle inequality, we have:

AdvSND-VPRE(A,n) (k) ≤
∑

i∈{0,1,2}

|Pr[Wini]− Pr[Wini+1]|+ Pr[Win3 ∧ Ask3]

+
∑

i∈{3,4}

|Pr[Wini ∧ Aski]− Pr[Wini+1 ∧ Aski+1]|+ Pr[Win5 ∧ Ask5].

18

We complete the proof by upperbounding each term in the right-hand side of the above inequality
to be negligible.

Lemma 1. Pr[Win0] = Pr[Win1].

Proof of Lemma 1. Note that the difference between Game 0 and Game 1 is only in how the
challenger responds to a REncVer query (pki, pkj , c

′, ĉ) and a Dec1 query (pkj , ĉ) such that there is an
entry (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) for some (c, µ2, tvki∗ , tski∗.1) in the list L∗REnc. Recall that according
the definition of Game 0 (and Game 1), the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) are stored into the list
L∗REnc if and only if A makes a re-encryption query of the form (pki∗ , pkj , c) satisfying (1) pkj ∈ PK
and (2) TShDec(tpki∗ , tski∗.2, c) = µ2 ̸= ⊥ where tski∗.2 is the secret key share that is generated for
answering the re-encryption query.

Therefore, it is sufficient to show that the answer to the REncVer query (pki, pkj , c
′, ĉ) and a Dec1

query of the above type in Game 0 and that in Game 1 are always the same, where ĉ is an output of
REnc(RKG(ski∗ , pkj), c), pkj ∈ PK, and c satisfies the above condition (2).

Firstly, we consider how a REncVer query (pki, pkj , c
′, ĉ) is answered in both Game 0 and Game 1.

We know that ĉ is a correctly generated re-encrypted ciphertext, and thus it holds that PDec(d̂kj , ĉ) =
⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤, and PDec(dkj , ψ) = tski∗.1 ̸= ⊥,
due to the correctness of the building block PKE scheme and signature scheme. If pki ̸= pki∗ , then
by definition the query is answered with ⊥ in Game 1. This is also the case in Game 0, because
we know that ĉ contains pki∗ in its plaintext, and thus the check performed in the sixth line in the
REncVer algorithm cannot be passed. Otherwise (i.e. pki = pki∗), note that tski∗.1 recovered from ψ and
tski∗.1 in the entry corresponding to (pkj , ĉ) in L

∗
REnc are identical (due to the correctness of the PKE

scheme), and thus the procedure of REncVer(pki∗ , pkj , c
′, ĉ) after the step “tski∗.1 ← PDec(dkj , ψ)” and

the procedure of MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c
′) are exactly the same. The explanation here

implies that the result of a REncVer query in Game 0 and that in Game 1 agree.
With a very similar observation to the above, we can also show that the result of a Dec1 query

(pkj , ĉ) in Game 0 and that in Game 1 agree. Specifically, the procedure of Dec1(skj , ĉ) after the step
“tski∗.1 ← PDec(dkj , ψ)” and the procedure of MiniDec(tpki∗ , tvki∗ , tski∗.1, µ, c) are exactly the same,
and thus the result of a Dec1 query in Game 0 and that in Game 1 agree.

We have seen that the answer to a REncVer query and that of Dec1 query agree in both Game 0
and Game 1. This completes the proof of Lemma 1. ⊓⊔

Lemma 2. If the PKE scheme is CCA secure in the multi-user setting, |Pr[Win1] − Pr[Win2]| is
negligible.

Proof of Lemma 2.We show that we can construct a multi-user CCA adversary B against the underlying
PKE scheme such that AdvCCA-PKE(B,n) (k) = |Pr[Win1]− Pr[Win2]|. By the multi-user CCA security of the
underlying PKE scheme (which is equivalent to the ordinary CCA security), the above implies that
|Pr[Win1]− Pr[Win2]| is negligible, which proves the lemma. The description of B is as follows:

First, B is given 1k and public keys (p̂k1, . . . , p̂kn) from the challenger. Then B generates other key

materials of the honest users (except {d̂ki}i∈[n]) as well as the challenge key pair (ski∗ , pki∗)← KG(1k).

B then sets PK = {pki}i∈[n] and PK∗ = {pki∗} ∪ PK, and gives 1k and PK∗ to A. B also generates
an empty list L∗REnc. (Since the list L∗RKG does not play any role in Game 1 and Game 2, B need not
generate it.)

When A makes a REnc query (pki ∈ PK∗, pkj , c), B responds as follows: (Recall that B does not

need the knowledge of {d̂ki}i∈[n] for answering to re-encryption queries.) (1) If pki ̸= pki∗ or pkj /∈ PK,
then B calculates ĉ ← REnc(RKG(ski, pkj), c), and returns ĉ to A. (2) Otherwise (i.e. pki = pki∗ and
pkj ∈ PK), B proceeds as follows:

(2a) Execute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗) and µ2 ← TShDec(tpki∗ , tski∗.2, c), and return ⊥
to A if µ2 = ⊥.

(2b) Execute ψ ← PEnc(pkj , tski∗.1) and σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩).

19

(2c) Set M0 = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ and M1 = ⟨pki∗∥pkj∥0⟩, where 0 is the zero-string such
that it holds that |M0| = |M1|. Then, submit (j,M0,M1) as an LR query to the challenger, and

receive ĉ← PEnc(p̂kj ,Mb) as the response (where b is the challenge bit for B).
(2d) Return ĉ to A, and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into the list L∗REnc.

B answers to all other queries from A in the same way as the challenger in Game 1 (and thus as in

Game 2) does. This is possible because B holds all secret key materials except {d̂ki}i∈[n], and when B
needs to run PDec(d̂kj , ĉ) with j ∈ [n], B submits a decryption query (j, ĉ) to the challenger, and uses

the received result. Here, as described in the description of Game 1, B need not perform PDec(d̂kj , ĉ)
such that ĉ is obtained as a response to some of B’s LR queries. (Such queries will be answered using
the list L∗REnc, as described in Game 1.)

Finally, when A terminates with output (pkj ∈ PK, ĉ∗), B proceeds as follows. If ĉ∗ is an answer
to some of A’s REnc queries of the form (pki∗ , pkj , c

∗), then B outputs 0 and terminates. Otherwise,
it is guaranteed that ĉ∗ is different from any answer to LR queries that B receives as an answer to
its LR queries. B checks whether the pair (pkj , ĉ

∗) satisfies the winning condition of Win1 (which is
the same as Win2) by simulating the response to the REncVer query (pki∗ , pkj , c

∗, ĉ∗) and the response
to the Dec1 query (pki∗ , ĉ

∗) by itself. If this is the case, then B outputs 1, otherwise outputs 0, and
terminates.

The above completes the description of B. Note that B submits a LR query of the form (j,M0,M1)
only if A submits a re-encryption query of the form (pki∗ , pkj , c) satisfying pkj ∈ PK and TShDec
(tpki∗ , tski∗.2, c) ̸= ⊥. Note also that B never submits a decryption query (j, ĉ) such that ĉ is an
answer to some of B’s LR queries of the form (j,M0,M1) (with the same j).

Let b be B’s challenge bit. Let WinB be the event that A’s output (pkj , ĉ
∗) satisfies the three

conditions of Win1 (which is the same as Win2) in the experiment simulated by B. The multi-user CCA
advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

=
1

2
|Pr[WinB|b = 0]− Pr[WinB|b = 1]|

Now, consider the case when b = 0. In this case, a re-encrypted ciphertext ĉ from the challenge
public key pki∗ to a honest user key pkj ∈ PK is generated as in Game 1. Moreover, it is easy to see
that all the other values are calculated as in Game 1. Therefore, B simulates Game 1 perfectly for A.
Under this situation, the probability that the event WinB occurs is exactly the same as the probability
that Win1 occurs in Game 1. That is, Pr[WinB|b = 0] = Pr[Win1].

On the other hand, when b = 1, a re-encrypted ciphertext ĉ from pki∗ to pkj ∈ PK is an encryption
of ⟨pki∗∥pkj∥0⟩, where 0 is the zero-string of appropriate length, which is exactly how it is generated
in Game 2. Since this is the only difference from the case b = 0, with a similar argument to the above
we have Pr[WinB|b = 1] = Pr[Win2].

In summary we have AdvCCA-PKE(B,n) (k) = 1
2 |Pr[Win1]−Pr[Win2]|, as required. This completes the proof

of Lemma 2. ⊓⊔

Lemma 3. If the signature scheme is strongly unforgeable, |Pr[Win2]− Pr[Win3]| is negligible.

Proof of Lemma 3. For i ∈ {2, 3}, let Forgei be the event that in Game i, A submits at least one
REncVer query of the form (pki∗ , pkj , c

′, ĉ) or at least one Dec1 query (pkj , ĉ) satisfying the following
conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc
(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥
(c) (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗RKG

20

(d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤.

Game 2 and Game 3 proceed identically until the event Forge2 or Forge3 occurs in the corresponding
games. Therefore we have |Pr[Win2]− Pr[Win3]| ≤ Pr[Forge2] = Pr[Forge3].

Now, we show that we can construct another adversary B against the strong unforgeability of the
underlying signature scheme such that AdvSUF-SIGB (k) ≥ Pr[Forge3]. By the strong unforgeability of the
signature scheme, the above inequation implies that Pr[Forge3] is negligible, which in turn implies that
|Pr[Win2]− Pr[Win3]| is negligible, and thus proves the lemma. The description of B is as follows.

First, B is given 1k and a verification key vki∗ from the challenger. B generates other key materials
of the the honest users’ keys PK and the challenge key pair (ski∗ , pki∗) except the signing key ski∗

corresponding to vki∗ . Then, B sets PK = {pki}i∈[n] and PK∗ = {pki∗} ∪ PK, and gives 1k and PK∗
to A. B also generates two empty lists L∗RKG and L∗REnc.
B answers to A’s queries exactly as in Game 3. This is possible because B holds all key ma-

terials except the signing key ski∗ corresponding to vki∗ , and whenever B has to compute σ ←
Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩) (for answering RKG or REnc queries) B submits ⟨ψ∥tvki∗∥pki∗∥pkj⟩ as
a signing query to the challenger and uses the obtained result σ.

When A terminates with output (pkj , ĉ
∗), from the REncVer queries of the form (pki∗ , pkj , c

′, ĉ) and
the Dec1 queries (pkj , ĉ) made by A, B tries to find a query that satisfies the conditions (a) to (d) satis-

fied by a query that causes the event Forge3. Namely: (a) (pkj , ĉj , ∗, ∗, ∗, ∗) /∈ L∗REnc, (b) PDec(d̂kj , ĉ) =
⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥, (c) (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗RKG, and (d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗
∥pkj⟩, σ) = ⊤. If such a REncVer query (pki∗ , pkj , c, ĉ) or a Dec1 query (pkj , ĉ) is found, then B
terminates with output the message ⟨ψ∥tvki∗∥pki∗∥pkj⟩ and the signature σ as a forgery pair, where
these values are the ones that appear in the plaintext of ĉ (decrypted using PDec). If there is no such
query, then B simply gives up and aborts.

The above completes the description of B. It is not hard to see that B simulates Game 3 perfectly
for A. We note that B submits a signing query when A submits a re-encryption key generation query of
the form (pki∗ , pkj) or when A submits a re-encryption query of the form (pki∗ , pkj , c) with pkj /∈ PK.

Now, we argue that whenever A submits a REncVer query (pki∗ , pkj , c
′, ĉ) or a Dec1 query (pkj , ĉ)

satisfying the above conditions (a) to (d), B breaks the strong unforgeability of the building block
signature scheme: In order for B to break the strong unforgeability, B has to come up with a valid
message-signature pair that has not appeared in B’s signing query/answer pairs. Here, the condition
(d) guarantees that the message-signature pair (⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) is valid, and the condition (c)
guarantees that the message-signature pair output by B is different from all signing query/answer pairs
made/received by B. (Here, we note that although the list L∗RKG does not contain the signing queries
(and the answers to them) that are made for generating a re-encryption key rki∗→j′ for a corrupted
user j′ (which is generated during the response to REnc queries (pki∗ , pkj′ , c)), these signing queries
M = ⟨ψ∥tvki∗∥pki∗∥pkj′⟩ always satisfy pkj′ /∈ PK and thus as a message-signature pair, the pair
finally output by B will always be different from signing queries/answers of this type.)

This means B’s strong unforgeability advantage is at least the probability Pr[Forge3], as required.
This completes the proof of Lemma 3. ⊓⊔

Lemma 4. Pr[Win3 ∧ Ask3] = 0.

Proof of Lemma 4. Note that the conditions of the event Win3 ∧ Ask3 implies that for A’s output
(pkj , ĉ

∗) in Game 3, (among other conditions) the answer to Dec1 query of the form (pkj , ĉ
∗) is not

⊥. This in turn implies that (1) PDec(d̂kj , ĉ
∗) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∥σ⟩ for some (c, µ2, ψ, tvki, σ),

and (2) (pkj , ψ, tvki, σ, ∗) ∈ L∗RKG.
However, if Ask3 occurs, the above (1) and (2) cannot be satisfied simultaneously, because A has

not issued a RKG query of the form (pki∗ , pkj), and thus there is no entry of the form (pkj , ∗, ∗, ∗, ∗)
in L∗RKG. This completes the proof of Lemma 4. ⊓⊔

Lemma 5. Pr[Win3 ∧ Ask3] = Pr[Win4 ∧ Ask4].

21

Proof of Lemma 5. Notice that the difference between Game 3 and Game 4 is only in how a REncVer
query (pki∗ , pkj , c

′, c) and a Dec1 query (pkj , ĉ) satisfying the following conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc
(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩
(c) (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗RKG

are answered. More concretely, the difference in these games is only in whether the challenger checks
the signature σ and decrypt ψ that appear in the plaintext of ĉ as is done in REncVer(pki∗ , skj , c

′, ĉ)
and Dec1(skj , ĉ), or ignores ψ and σ and just decrypt the second level ciphertext c using the values
(tvki∗ , tski∗.1) found in L∗RKG. However, with the similar argument in the proof of lemma 1, the results
in Game 3 and Game 4 always agree, due to the correctness of the underlying PKE scheme and the
underlying signature scheme.

Therefore, Game 3 and Game 4 are identical, which in particular implies the Lemma 5. ⊓⊔

Lemma 6. If the PKE scheme is CCA secure in the multi-user setting, |Pr[Win4 ∧Ask4]−Pr[Win5 ∧
Ask5]| is negligible.

Proof of Lemma 6. We show that we can construct a multi-user CCA adversary B (against the
underlying PKE scheme) such that AdvCCA-PKE(B,n) (k) = |Pr[Win4 ∧Ask4]−Pr[Win5 ∧Ask5]|. By the multi-
user CCA security of the underlying PKE scheme (which is equivalent to the ordinary CCA security),
the above implies that |Pr[Win4 ∧Ask4]−Pr[Win5 ∧Ask5]| is negligible, which proves the lemma. The
description of B is as follows:

First, B is given 1k and public keys (pk1, . . . , pkn) from the challenger. B generates other key
materials of the challenge key pki∗ and the honest users’ keys PK except {dki}i∈[n]. B then gives 1k

and PK∗ = {pki∗} ∪ PK to A. B also generates two empty lists L∗RKG and L∗REnc.
When A makes a RKG query (pki ∈ PK∗, pkj), B responds as follows: (Recall that B does not need

the knowledge of {dki}i∈[n] for answering to RKG queries.) (1) If pki ̸= pki∗ then B calculates rki∗→j

by faithfully following the procedure of RKG(ski, pkj), and returns rki∗→j to A. (2) If pki = pki∗ and
pkj /∈ PK, then B returns ⊥ to A. (3) Otherwise (i.e. pki = pki∗ and pkj ∈ PK), B proceeds as follows:

(3a) Execute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).
(3b) Set M0 = tski∗.1 and M1 = 0|tski∗.1|, submit (j,M0,M1) as a LR query to the challenger, and

receive ψ ← PEnc(pkj ,Mb) as the response (where b is the challenge bit for B).
(3c) Compute σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩) and set rki∗→j = (pki∗ , pkj∗ , tski∗.2, ψ, tvki∗ , σ).
(3d) Return rki∗→j to A, and store the values (pkj , ψ, tvki, σ, tski∗.1) into the list LRKG.

B answers to all other queries from A in the same way as the challenger in Game 4 (and thus as in
Game 5) does. This is possible because B holds all secret key materials except {dk}i∈[n], and when B
needs to run PDec(dkj , ψ) with j ∈ [n], B submits a decryption query (j, ψ) to the challenger, and uses
the received result. As emphasized in the description of Game 4, B need not perform PDec(dkj , ψ) for
ψ that it receives as an answer to some of B’s LR queries. (Such case is dealt with by the use of the
list L∗RKG.)

Finally, when A terminates with output (pkj ∈ PK, ĉ∗), B proceeds as follows. If ĉ∗ is an answer
to some of A’s REnc queries of the form (pki∗ , pkj , c

∗), or A has not asked a RKG query of the
form (pki∗ , pkj), then B outputs 0 and terminates. B simulates the response to the REncVer query
(pki∗ , pkj , c

∗, ĉ∗) and the response to the Dec1 query (pki∗ , ĉ
∗) by itself, and checks whether the pair

(pkj , ĉ
∗) satisfies the winning condition of Win4 (which is the same as Win5) for the case that A has

asked the RKG query (pki∗pkj) (i.e. whether the result of the REncVer query (pki∗ , pkj , c
∗, ĉ∗) is ⊤ and

the Dec1 query (pkj , ĉ
∗) is different from m∗). It this is the case, then B outputs 1, otherwise output

0, and terminates.
The above completes the description of B. Note that B submits an LR query of the form (j,M0 =

tski∗.1,M1 = 0|tski∗.1|) only when A submits a RKG query of the form (pki∗ , pkj) with pkj ∈ PK.

22

Moreover, note also that all the ciphertexts ψ that B receives as an answer to a LR query of the form
(j,M0,M1) are stored into L∗RKG, and all the REncVer queries (pki∗ , pkj , c, ĉ) and all the Dec1 queries
(pkj , ĉ) such that the plaintext of ĉ contains ψ that appears in L∗RKG are answered with either ⊥ or
using MiniREncVer and MiniDec, respectively. Therefore, B never submits a decryption query (j, ψ)
such that ψ is an answer to some of B’s LR query of the form (j,M0,M1) (with the same j).

Let b be B’s challenge bit. Let WinB be the event that A’s output (pkj , ĉ
∗ satisfies the condition

of Win4 in the experiment simulated by B, and let AskB be the event A asks a RKG query of the form
(pki∗ , pkj) in the experiment simulated by B. Note that by our construction of B, it outputs 1 only
when both WinB and AskB occur.

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

=
1

2
|Pr[WinB ∧ AskB|b = 0]− Pr[WinB ∧ AskB|b = 1]|

Then, a similar analysis to the proof of Lemma 2 shows that Pr[WinB∧AskB|b = 0] = Pr[Win4∧Ask4]
and Pr[WinB ∧ AskB|b = 1] = Pr[Win5 ∧ Ask5]. Using these in the above inequality, and recalling the
assumption that the underlying PKE scheme is CCA secure in the multi-user setting, we conclude that
|Pr[Win4 ∧ Ask4]− Pr[Win5 ∧ Ask5]| is negligible. ⊓⊔

Lemma 7. If the re-splittable TPKE scheme has decryption consistency, Pr[Win5∧Ask5] is negligible.

Proof of Lemma 7. We show that we can construct a PPT adversary B against the decryption
consistency of the underly re-splittable TPKE scheme such that AdvDC-TPKE(B,2,2) (k) = Pr[Win5 ∧ Ask5]. By
the decryption consistency of the TPKE scheme, the above equation implies that Pr[Win5 ∧ Ask5] is
negligible, which proves the lemma. The description of B is as follows.

First, B is given 1k and a public key tpki∗ from the challenger. B generates other key materials
of the the honest users’ keys PK and the challenge key pair (sk∗, pk∗) except for the secret key tski∗
corresponding to tpki∗ . Then, B gives 1k and PK∗ = {pki∗} ∪ PK to A. B also generates two empty
lists L∗RKG and L∗REnc.

When A submits a challenge query m∗, B just encrypts c∗ ← TEnc(tpki∗ ,m
∗), and returns c∗ to

A.
When A submits a RKG query (pki ∈ PK∗, pkj), B responds as follows: (1) If pki ̸= pki∗ , then B

runs rki→j ← RKG(ski, pkj), and returns rki→j to A. (2) If pki = pki∗ and pkj /∈ PK, then B returns
⊥ to A. (3) Otherwise (i.e. pki = pki∗ and pkj ∈ PK), B proceeds as follows:

(3a) Submit a split&corruption query that asks for the second secret key share to the challenger, and
receive (tski∗.2, tvki∗).

(3b) Compute ψ ← PEnc(pkj , 0
|tski∗.1|) and σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩).

(3c) Set rki∗→j = (pki∗ , pkj , tski∗.2, ψ, tvki∗ , σ), return rki∗→j toA, and store the values (pkj , ψ, tvki∗ ,
σ,−) into the list L∗RKG, where “−” is a “blank”.

When A submits a REnc query (pki ∈ PK∗, pkj , c), B responds as follows:

(1) If pki ̸= pki∗ , then execute ĉ← REnc(RKG(ski, pkj), c), and return ĉ to A.
(2) (From here on it holds that pki = pki∗ .) Submit a split&corruption query that asks for the first

key share to the challenger, and receive (tski∗,1, tvki∗) as the response.
(3) Execute ψ ← PEnc(pkj , tski∗.1) and σ ← (ski∗ , ⟨ψ∥tvki∗∥σ⟩).
(4) If pkj /∈ PK and c = c∗, then return ⊥ (recall that a REnc query (pki, pkj , c) with pki = pki∗ ,

pkj /∈ PK and c = c∗ is answered with ⊥).
(5) Else if pkj /∈ PK and c ̸= c∗, then submit a share decryption query (tvki∗ , 2, c), and receive µ2 as

the response. Here, if µ2 = ⊥ then return ⊥ to A.

23

(6) Otherwise (i.e. pkj ∈ PK), execute ĉ ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩, return ĉ to A, and store the
values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into the list L∗REnc.

B answers to REncVer, Dec1, and Dec2 queries from A exactly as in Game 5. This is possible
because B holds all key materials except the tski∗ corresponding to tpk∗, and whenever B has to
compute TSplit(tski) or TShDec(tpki, tski.γ , c) (γ ∈ {1, 2}), B can submit a split&corruption/share
decryption query to the challenger and use the obtained result. Here, we stress that B never falls into
the situation where both of the secret shares tski∗.1 and tski∗.2 (under the same splitting) are required.
In particular, to answer to Dec2 queries, B does not need the exact values of tski∗.1 and tski∗.2, but
the decryption shares computed using them, and thus Dec2 queries can be simulated by utilizing the
share decryption queries.

Finally, when A terminates with output (pkj , ĉ
∗), B checks whether the conditions of Win5 and

Ask5 hold for this (pkj , ĉ
∗) by simulating the response to the REncVer query (pki∗ , pkj , c

∗, ĉ∗) and the
response to the Dec1 query (pkj , ĉ

∗) by itself. If the conditions of Win5 and Ask5 are not satisfied, then
B gives up and aborts.

Otherwise (i.e. the conditions of Win5 and Ask5 are satisfied), let {µ1, µ2}, tski∗.1, and tvki∗ be
the decryption shares, the secret key share, and the verification key that appear when simulating the
response to the Dec1 query (pkj , ĉ

∗). Note that due to how B answers to the RKG queries of the form
(pki∗ , pkj), if Win5 and Ask5 occur, then the following conditions are satisfied:

(a) TShVer(tpki∗ , tvki∗ , c
∗, 2, µ2) = ⊤.

(b) µ1 = TShDec(tpki∗ , tski∗.1, c
∗).

(c) tvki∗ is one that is obtained as an answer to one of the split&corruption queries made by B (during
the response to the RKG query (pki∗ , pkj)).

Note also that these three conditions also imply TShVer(tpki∗ , tvki∗ , c
∗, 1, µ1) = ⊤, because of the

correctness property of the TPKE scheme.
Then, B submits a share decryption query (tvki∗ , 2, c

∗) and receives the result µ′2. (Note that that
Win5 and Ask5 occur in particular implies that TCom(tpki∗ , tvki∗ , c

∗, {µ1, µ
′
2}) ̸= TCom(tpki∗ , tvki∗ , c

∗, {µ1,
µ2}) = m∗ and µ2 ̸= µ′2.)

Finally, B terminates with output c∗, tvki∗ , and two sets of decryption shares {µ1, µ2} and {µ1, µ
′
2}.

The above completes the description of B. It is not hard to see that B perfectly simulates Game
5 for A. In particular, as explained above, B never falls into the situation where both of the secret
shares tski∗.1 and tski∗.2 (under the same splitting) are required. Hence, the probability that A and
A’s output (pkj , ĉ∗) satisfy the conditions of Win5 and Ask5 in the experiment simulated by B is exactly
the same as the probability that A and A’s output satisfy those in the actual Game 5.

Furthermore, as we explained in the description of B, whenever A and A’s output satisfy the
conditions of Win5 and Ask5, B can always output c∗, tvki∗ , and {µ1, µ2} and {µ1, µ

′
2} satisfying the

conditions of violating the decryption consistency, namely,

(a) tvki∗ is one of the split&corruption queries made by B.
(b) TShVer(tpki∗ , tvki∗ , c

∗, 1, µ1) = ⊤, TShVer(tpki∗ , tvki∗ , c∗, 2, µ2) = ⊤, and TShVer(tpki∗ , tvki∗ , c
∗,

2, µ′2) = ⊤ (where the last equation is due to the correctness of the TPKE scheme and the fact
that µ′2 is the result of the share decryption query of the form (tvki∗ , 2, c

∗)
(c) µ2 ̸= µ′2 (and thus {µ1, µ2} ̸= {µ1, µ

′
2})

(d) TCom(tpki∗ , tvki∗ , c
∗, {µ1, µ2}) ̸= TCom(tpki∗ , tvki∗ , c

∗, {µ1, µ
′
2})

Putting everything together, B’s advantage in breaking the decryption consistency is AdvDC-TPKE(B,2,2) (k) =
Pr[Win5 ∧ Ask5], as required. This completes the proof of Lemma 7. ⊓⊔

B Proof of Theorem 4

Let n = n(k) > 0 be any polynomial, and A be any PPT second-level CCA adversary against the
VPRE scheme eHKK+. We will consider the following sequence of games, which are very similar to the

24

games we used in the proof of Theorem A. The difference is that we will treat the share decryption of
c∗ slightly differently in several places, which is to guarantee that a reduction algorithm for attacking
the CCA security of the re-splittable TPKE scheme will not fall into the situation in which it needs
to perform the share decryption of c∗.

Game 0. This is the second-level CCA security game regarding eHKK+. Since the subsequent games
consider A’s queries of some special types, without loss of generality we let the challenger generate
two empty lists L∗RKG and L∗REnc at the beginning, and store the values that appear in the response
to a re-encryption key generation query and a re-encryption query of special types. More concretely,

– If A issues a RKG query of the form (pki∗ , pkj) with pkj ∈ PK, then the challenger stores the
values (pkj , ψ, tvki∗ , σ, tski∗.1) into L∗RKG, where (ψ, tvki∗ , σ, tski∗.1) are the values generated
when calculating rki∗→j ← RKG(ski∗ , pkj).

– If A issues a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK and the answer ĉ to this
query is not⊥, then the challenger stores the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L

∗
REnc, where

(µ2, tvki∗ , tski∗.1) are the values generated when calculating ĉ← REnc(RKG(ski∗ , pkj), c).

Game 1. Same as Game 0, except the following changes to the response to REncVer queries and Dec1
queries: For REncVer queries (pki, pkj , c

′, ĉ), A responds as follows:

– (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗REnc for some (c, µ2, tvki∗ , tski∗.1), then:

• (1a) If pki ̸= pki∗ , then return ⊥.
• (1b) Else if pki = pki∗ and c′ = c∗, then: If c = c∗ and TShVer(tpki∗ , tvki∗ , c

∗, 2, µ2) = ⊤
then return ⊤, else return ⊥.
• (1c) Otherwise (i.e. pki = pki∗ and c′ ̸= c∗) run MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c

′)
and return the result.

– (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc), run REncVer(pki, skj , c, ĉ) and return the result.

For Dec1 queries (pkj , ĉ), the challenger responds as follows: (Here, note that we consider the
zero-th step corresponding to checking whether REncVer(pki∗ , pkj , c

∗, ĉ) = ⊤.)
– (0) Simulate the response to the REncVer query of the form (pki∗ , pkj , c

∗, ĉ) for this game, and
return ⊥ if the result of the response is ⊤. (If A has not made the challenge query, this step is
skipped.)

– (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗REnc for some (c, µ2, tvki∗ , tski∗.1), then:

• (1a) If c = c∗ then return ⊥.8
• (1b) Otherwise (i.e. c ̸= c∗), execute m ← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return
m to A.

– (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc), then execute m← Dec1(skj , ĉ), and return m to
A.

We would like to emphasize that from this game on, the challenger need not perform PDec(d̂kj , ĉ)
for a REncVer query (∗, pkj , ∗, ĉ) and a Dec1 query (pkj , ĉ) such that (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc.

Game 2. Same as Game 1, except that in this game, a re-encrypted ciphertext ĉ which is from the
challenge key pki∗ to an honest user key pkj ∈ PK, is generated in such a way that ĉ contains no
information. More precisely, if A submits a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK,
then the challenger responds as follows:

– (1) Compute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).
– (2) Compute µ2 ← TShDec(tpki∗ , tski∗.2, c), and return ⊥ to A if µ2 = ⊥.
– (3) Compute ĉ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩) where 0 is the zero-string of appropriate length.
– (4) Return ĉ to A and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L∗REnc, where tski∗.1 is
the secret key share corresponding to (tski∗.2, tvki∗) that appears in the above step (1).

8 This case will correspond to the situation where A asks a Dec1 query (pkj , ĉ) such that ĉ is an an-
swer to some of A’s previous REnc query of the form (pki∗ , pkj , c

∗), but such a ciphertext ĉ satisfies
REncVer(pki∗ , skj , c

∗, ĉ) = ⊤, and thus has already been answered with ⊥ at the zero-th step. And thus, the
condition c = c∗ checked here is never satisfied in Game 1. This is introduced just to clarify the later proof
of Lemma 13 where we need to ensure that TShDec(tpki, tski∗.1, c

∗) is never performed.

25

Game 3. Same as Game 2, except that in this game, if a re-encrypted ciphertext ĉ which is from the
challenge key pki∗ to an honest user key pkj ∈ PK is submitted as a REncVer query (with pkj and
some c) or as a Dec1 query (with pkj), then ĉ is immediately answered with ⊥ unless (a) it is an
answer to a previously asked REnc query of the form (pki∗ , pkj , c), or (b) it is a re-encryption using
a re-encryption key rki∗→j that is returned as an answer to a previously asked RKG query.
More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c

′, ĉ) as follows:

– (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc, then respond as in Game 1.

– (2) Run M̂ = (pk′i∥pk
′
j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if M̂ = ⊥, or

(pk′i, pk
′
j) ̸= (pki, pkj), or SVer(vki, ⟨ψ∥tvki∥pk

′
i∥pk

′
j⟩, σ) = ⊥.

– (3) If pki ̸= pki∗ then execute REncVer(pki, skj , c
′, ĉ), and return the result to A.

– (4) If pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗RKG, then return ⊥ to A.
– (5) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1), as in the
above step 4, execute the remaining procedure of REncVer, and output the result to A.

Furthermore, the challenger responds to Dec1 queries (pkj , ĉ) as follows:

– (0) Simulate the response to the REncVer query of the form (pki∗ , pkj , c
∗, ĉ) for this game, and

return ⊥ if the result of the response is ⊤. (If A has not made the challenge query, this step is
skipped.)

– (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗REnc, then respond as in Game 1.

– (2) Run M̂ = (pk′i∥pk
′
j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if M̂ = ⊥ or

pk′j ̸= pkj .

– (3) Parse pk′i as (tpki, p̂ki, pki, vki), and return ⊥ if SVer(vki, ⟨ψ∥tvki∥pk′i∥pk
′
j⟩, σ) = ⊥.

– (4) If pk′i ̸= pki∗ then calculate m by following the remaining procedure of Dec1 (i.e. from the
step “tski.1 ← PDec(dkj , ψ)”), and return m to A.

– (5) If pk′i = pki∗ and (pkj , ψ, tvki, σ, ∗) /∈ L∗RKG, then return ⊥ to A.
– (6) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki, σ, tski∗.1) ∈ L∗RKG for some tski∗.1), as in the
above step 4, calculate m by following the remaining procedure of Dec1.

Game 4. Same as Game 3, except that in this game, if A issues a REncVer query (pki, pkj , c
′, ĉ) or

Dec1 query (pkj , ĉ), such that ĉ is a re-encrypted ciphertext from the challenge key pki∗ to pkj
using a re-encryption key rki∗→j that is an answer to a previously asked RKG query of the form
(pki∗ , pkj) (which can be checked using L∗RKG as in Game 3), then the query is answered using the
information of tski∗.1 found in L∗RKG.
More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c

′, ĉ) as follows:

– (1), (2), (3), and (4): Same as in Game 3.
– (5): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1.
The challenger proceeds as follows:

• (5a) If c′ = c∗ then: If TShVer(tpki∗ , tvki∗ , c
∗, 2, µ2) = ⊤ then return ⊤ else return ⊥ to A.

• (5b) Otherwise (i.e. c′ ̸= c∗), execute MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c
′), and return

the result to A.
Furthermore, the challenger responds to the Dec1 queries (pkj , ĉ) in the following way:

– (0), (1), (2), (3), (4), and (5): Same as in Game 3.
– (6): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗RKG for some tski∗.1.
The challenger proceeds as follows:

• (6a) If c = c∗, then return ⊥.9

9 This case implies that c∗ is contained in the plaintext of ĉ, and thus ĉ is potentially a re-encryption of c∗.
However, before this step, the challenger has performed the zero-th step test and thus have checked whether
REncVer(pki∗ , skj , c

∗, ĉ) = ⊤. If the result of REncVer was ⊤, then the query must have been answered with
⊥ at its zero-th step. Therefore, that this step (6a) is performed means that ĉ was not a valid re-encryption
of c∗, and thus ĉ containing c∗ must be an invalid ciphertext whose decryption result is ⊥. With a similar
reason explained in the previous footnote, this step is introduced to ensure that TShDec(tpki∗ , tski∗.1, c

∗) is
never performed, which will be important in the proof of Lemma 13.

26

• (6b) Otherwise (i.e. c ̸= c∗), run m ← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return the
result to A.

We would like to emphasize that from this game on, the challenger need not perform PDec(dkj , ψ)
for a REncVer query (pki, pkj , c

′, ĉ) and a Dec1 query (pkj , ĉ) that are processed at their steps

(5), namely, those queries that satisfy (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc, PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥
tvki∗∥σ⟩ ̸= ⊥, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤, and (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗RKG.

Game 5. Same as Game 4, except that in this game, if A issues a RKG query of the form (pki∗ , pkj)
with pkj ∈ PK, then the component ψ in a re-encryption key rki∗→j is generated in such a way
that it contains no information.
More precisely, for this query, the challenger generates rki∗→j = (pki∗ , pkj , tski∗.2, ψ, tvki∗ , σ) by

following the procedure of RKG(ski∗ , pkj) except that ψ is generated by ψ ← PEnc(pkj , 0
|tski∗.1|).

Then the challenger returns rki∗→j to A and stores the values (pkj , ψ, tvki∗ , σ, tski∗.1) into L
∗
RKG.

For i ∈ {0, . . . , 5}, let Succi be the event that A succeeds in guessing the challenge bit in Game i,
namely, b = b′ occurs. Then, the second-level CCA advantage of A is estimated as:

Advsecond-VPRE(A,n) (k) = |Pr[Succ0]−
1

2
|

≤
∑

i∈{0,1,2,3,4}

|Pr[Succi]− Pr[Succi+1]|+ |Pr[Succ5]−
1

2
|. (1)

We complete the proof by upperbounding each term in the right-hand side of the above inequality.

Lemma 8. Pr[Succ0] = Pr[Succ1].

This lemma can be shown in almost the same way as the proof of Lemma 1, and thus we omit a formal
proof. In the response to REncVer query of Game 1, we treat the challenge ciphertext c∗ (namely, the
steps (1b) and (1c)). However, note that we know that the challenge ciphertext c∗ is always correctly
generated, and thus that the challenger does not run TShDec(tski∗.1, tski∗.1, c) in case c′ = c∗ does not
change the output of MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c

′). The rest of the argument is exactly the
same as the proof of Lemma 1.

Lemma 9. If the PKE scheme is CCA secure in the multi-user setting, |Pr[Succ1] − Pr[Succ2]| is
negligible.

Proof of Lemma 9. We show that we can construct a multi-user CCA adversary B against the
underlying PKE scheme such that AdvCCA-PKE(B,n) (k) = |Pr[Succ1] − Pr[Succ2]|. By the multi-user CCA
security of the underlying PKE scheme (which is equivalent to the ordinary CCA security), the above
implies that |Pr[Succ1] − Pr[Succ2]| is negligible, which proves the lemma. The description of B is as
follows:

First, B is given 1k and public keys (p̂k1, . . . , p̂kn) from the challenger. Then B generates other key

materials of the honest users (except {d̂ki}i∈[n]) as well as the challenge key pair (ski∗ , pki∗)← KG(1k).

B then sets PK = {pki}i∈[n] and PK∗ = {pki∗} ∪ PK, and gives 1k and PK∗ to A. B also generates
an empty list L∗REnc. (Since the list L∗RKG does not play any role in Game 1 and Game 2, B need not
generate it.)

When A makes a challenge query (m0,m1), B picks a random bit d ∈ {0, 1}, encrypts c∗ ←
TEnc(tpki∗ ,md), and returns c∗ to A.
B answers to A’s queries except the challenge query in exactly the same way as B in the proof of

Lemma 2 does.
Finally, when A outputs the guess bit d′, B outputs b′ = 0 if d = d′, otherwise outputs b′ = 1.
The above completes the description of B. Note that B submits a LR query of the form (j,M0,M1)

only if A submits a re-encryption query of the form (pki∗ , pkj , c) satisfying pkj ∈ PK and TShDec

27

(tpki∗ , tski∗.2, c) ̸= ⊥. Note also that B never submits a decryption query (j, ĉ) such that ĉ is an
answer to some of B’s LR queries of the form (j,M0,M1) (with the same j).

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]|

=
1

2
|Pr[d = d′|b = 0]− Pr[d = d′|b = 1]|

Now, consider the case when b = 0. In this case, a re-encrypted ciphertext ĉ from the challenge
public key pki∗ to a honest user key pkj ∈ PK is generated as in Game 1. Moreover, it is easy to
see that all the other values are calculated as in Game 1. Under this situation, the event d = d′

corresponds to the event that A succeeds in guessing the challenge bit in Game 1, and thus we have
Pr[d = d′|b = 0] = Pr[Succ1].

On the other hand, when b = 1, a re-encrypted ciphertext ĉ from pki∗ to pkj ∈ PK is an encryption
of ⟨pki∗ ||pkj ||0⟩, where 0 is the zero-string of appropriate length, which is exactly how it is generated
in Game 2. Since this is the only difference from the case b = 0, with a similar argument to the above
we have Pr[d = d′|b = 1] = Pr[Succ2].

In summary we have AdvCCA-PKE(B,n) (k) = 1
2 |Pr[Succ1]− Pr[Succ2]|, as required. ⊓⊔

Lemma 10. If the signature scheme is strongly unforgeable, |Pr[Succ2]− Pr[Succ3]| is negligible.

Proof Sketch of Lemma 10. For i ∈ {2, 3}, let Forgei be the event that in Game i, A submits at
least one Dec1 query (pkj , ĉ) or a REncVer query of the form (pki∗ , pkj , c

′, ĉ) satisfying the following
conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗REnc
(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥
(c) (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗RKG
(d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤.

Game 2 and Game 3 proceed identically until the event Forge2 or Forge3 occurs in the corresponding
games. Therefore we have

|Pr[Succ2]− Pr[Succ3]| ≤ Pr[Forge2] = Pr[Forge3].

Then, we can show that there is another PPT adversary B against the strong unforgeability of the
underlying signature scheme such that AdvSUF-SIGB (k) ≥ Pr[Forge3]. By the strong unforgeability of
the underlying signature scheme, the above implies that Pr[Forge3] is negligible, and thus |Pr[Succ2]−
Pr[Succ3]| is negligible, proving the lemma. Since the description of B and the analysis of B’s advantage
are essentially the same as those of the reduction algorithm B we used in the proof of Lemma 3 we
omit a formal proof. ⊓⊔

Lemma 11. Pr[Succ3] = Pr[Succ4]

The proof for this lemma is essentially the same as the proof of Lemma 5, and thus we omit a formal
proof.

Lemma 12. If the PKE scheme is CCA secure in the multi-user setting, |Pr[Succ4] − Pr[Succ5]| is
negligible

28

Proof of Lemma 12. We show that we can construct a multi-user CCA adversary B (against the
underlying PKE scheme) such that AdvCCA-PKE(B,n) (k) = |Pr[Succ4] − Pr[Succ5]|. By the multi-user CCA
security of the underlying PKE scheme (which is equivalent to the ordinary CCA security), the above
implies that |Pr[Succ4] − Pr[Succ5]| is negligible, which proves the lemma. The description of B is as
follows:

First, B is given 1k and public keys (pk1, . . . , pkn) from the challenger. B generates other key
materials of the challenge key pki∗ and the honest users’ keys PK except {dki}i∈[n]. B then gives 1k

and PK∗ = {pki∗} ∪ PK to A. B also generates two empty lists L∗RKG and L∗REnc.
When A makes a challenge query (m0,m1), B picks a random bit d ∈ {0, 1}, encrypts c∗ ←

TEnc(tpki∗ ,md), and returns c∗ to A.
B answers to A’s queries except the challenge query in exactly the same way as B in the proof of

Lemma 6 does.
Finally, when A outputs the guess bit d′, B outputs b′ = 0 if d = d′, otherwise outputs b′ = 1.

The above completes the description of B. Note that B submits an LR query of the form (j,M0 =
tski∗.1,M1 = 0|tski∗.1|) only when A submits a RKG query of the form (pki∗ , pkj) with pkj ∈ PK.
Moreover, note also that all the ciphertexts ψ that B receives as an answer to a LR query of the form
(j,M0,M1) are stored into L∗RKG, and all the REncVer queries (pki∗ , pkj , c, ĉ) and all the Dec1 queries
(pkj , ĉ) such that the plaintext of ĉ contains ψ that appears in L∗RKG are answered with either ⊥ or
using MiniREncVer and MiniDec, respectively. Therefore, B never submits a decryption query (j, ψ)
such that ψ is an answer to some of B’s LR query of the form (j,M0,M1) (with the same j).

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 0|b = 1]− Pr[b′ = 0|b = 0]|

=
1

2
|Pr[d = d′|b = 1]− Pr[d = d′|b = 0]|

Then, a similar analysis to the proof of Lemma 6 shows that Pr[Succ4] = Pr[d′ = d|b = 0] and
Pr[Succ5] = Pr[d′ = d|b = 1]. Using these in the above inequality, and recalling the assumption that
the underlying PKE scheme is CCA secure in the multi-user setting, we conclude that |Pr[Succ4] −
Pr[Succ5]| is negligible. ⊓⊔

Lemma 13. If the re-splittable TPKE scheme is CCA secure, |Pr[Succ5]− 1/2| is negligible.

Proof of Lemma 13. We show that we can construct a CCA adversary B against the underly TPKE
scheme such that AdvCCA-TPKE(B,2,2) (k) = |Pr[Succ5] − 1/2|. By the CCA security of the TPKE scheme, the
above equation implies that |Pr[Succ5] − 1/2| is negligible, which proves the lemma. The description
of B is as follows.

First, B is given 1k and a public key tpki∗ from the challenger. B generates other key materials
of the the honest users’ keys PK and the challenge key pair (sk∗, pk∗) except for the secret key tski∗

corresponding to tpki∗ . Then, B gives 1k and PK∗ = {pki∗} ∪ PK to A. B also generates two empty
lists L∗RKG and L∗REnc.

When A submits a challenge query (m0,m1), B submits the same pair (m0,m1) as a challenge
query to the challenger and obtains the challenge ciphertext c∗. Then, B returns this c∗ to A.
B answers to A’s RKG and REnc queries in exactly the same way as B in the proof of Lemma 7

does. This is possible because an adversary attacking the decryption consistency and an adversary
attacking CCA security for a re-splittable TPKE scheme have the same interface (except an output).
B answers to REncVer, Dec1, and Dec2 queries from A exactly as in Game 5. This is possible

because B holds all key materials except the tski∗ corresponding to tpk∗, and whenever B has to
compute TSplit(tski) or TShDec(tpki, tski.γ , c) (γ ∈ {1, 2}), B can submit a split&corruption/share

29

decryption query to the challenger and use the obtained result. Here, we stress that B never falls
into the situation where both of the secret shares tski∗.1 and tski∗.2 (under the same splitting) are
required, or the situation where B has to compute TShDec(tpki∗ , tski∗.γ , c

∗) for some γ ∈ {0, 1}. These
are guaranteed by the definition of Game 5 (see also the footnotes 4 and 5).

Finally, when A terminates with its guess bit b′ ∈ {0, 1}, B uses this b′ as its guess for the challenge
bit and terminates.

The above completes the description of B. It is not hard to see that B perfectly simulates Game 5 so
thatA’s challenge bit is that of B. (In particular, as explained above, B never submits a prohibited query
c∗ as a share decryption query.) Therefore, the probability that B succeeds in guessing its challenge
bit is exactly the probability that A succeeds in guessing the challenge bit in Game 5. Therefore, B’s
CCA advantage can be calculated as

AdvCCA-TPKE(B,2,2) (k) = |Pr[Succ5]− 1/2|,

as required. This completes the proof of Lemma 13. ⊓⊔

Lemmas 8 to 13 guarantee that the right hand side of the inequation (1) is negligible, and thus
A has negligible advantage in the second-level CCA game. Since the negligible upperbound of the
advantage can be shown for any second-level CCA adversary A and any polynomial n, we conclude
that the VPRE scheme eHKK+ is second-level CCA secure. This completes the proof of Theorem 4.

⊓⊔

C Proof of Theorem 5

Let A be any PPT adversary that attacks the first-level CCA security of the VPRE scheme eHKK+

and makes in total Q queries. (Since A is PPT, Q is polynomial.) Consider the following games, where
the values with asterisk (*) are those related to the challenge ciphertext ĉ∗ of A:

Game 0. The first-level CCA game of the VPRE scheme eHKK+.
Game 1. Same as Game 0, except that if A submits a REncVer query (pk, c, ĉ) satisfying ĉ = ĉ∗, then

without actually executing REncVer, the query is answered with ⊤ if (pk, c) = (pkA, c
∗) or with ⊥

otherwise.
Game 2. Same as Game 1, except that if A submits a REncVer query (pk, c, ĉ) satisfying c = c∗, then

it is answered with ⊥. This change in particular implies that now all REncVer queries (pk, c, ĉ) with
ĉ = ĉ∗ are always answered with ⊥.

Game 3. Same as Game 2, except that ĉ∗ is generated in such a way that it does not contain any infor-

mation on c∗. More precisely, ĉ∗ is generated so that ĉ∗ ← PEnc(d̂k∗, ⟨pkA∥pk
∗∥0ℓ∥ψ∗∥tvk∗A∥σ∗⟩),

where ℓ = |c∗|+ |µ∗2|.

For i ∈ {0, 1, 2}, let Succi be the event that in Game i A succeeds in guessing the challenge bit
(i.e. b′ = b occurs), and let Queryi be the event that in Game i, A submits at least one REncVer query
(pk, c, ĉ) satisfying c = c∗.
A’s first-level CCA advantage is calculated as follows:

Advfirst-VPREA (k) = |Pr[Succ0]−
1

2
| ≤

∑
i∈{0,1,2}

|Pr[Succi]− Pr[Succi+1]|+ |Pr[Succ3]−
1

2
|.

Thus, it suffices to show that each term in the right hand side of the above inequality is negligible.
Firstly, note that in Game 3, the information on the challenge bit is not at all contained in ĉ∗ or

answers to A’s queries, and hence A’s view is independent of the challenge bit. Therefore, we have
Pr[Succ3] = 1/2. Note also that it holds that Pr[Succ0] = Pr[Succ1], due to the correctness of the

30

building block PKE scheme. Specifically, ĉ∗ contains (in its plaintext) pkA and c∗, and thus a REncVer
query (pk, c, ĉ∗) with (pk, c) ̸= (pkA, c

∗) cannot make REncVer output ⊤.
Next, we show that |Pr[Succ2] − Pr[Succ3]| is negligible, due to the CCA security of the building

block PKE scheme. To see this, consider the following CCA adversary B that simulates Game 2 or
Game 3 perfectly for A depending on B’s challenge bit:

At the beginning of the CCA game, B is given p̂k∗. B generates the challenge public/secret key

pair (sk∗, pk∗) except d̂k∗, by executing (tsk∗, tpk∗) ← TKG(1k, 2, 2), (dk∗, pk∗) ← PKG(1k), and

(sk∗, vk∗) ← SKG(1k), and setting sk∗ ← (tsk∗,⊥, dk∗, sk∗) and pk∗ = (tpk∗, p̂k∗, pk∗, vk∗). Now,
since B knows tsk∗, dk∗ and sk∗, B can answer to re-encryption key generation, re-encryption, and
second-level decryption queries perfectly. Furthermore, B can answer to first-level decryption queries
ĉ by its ability to make decryption queries and the knowledge of tsk∗ and dk∗.

When A submits two plaintexts (m0,m1) of equal length and a key pair (skA, pkA) as a challenge
query, B proceeds as follows:

1. Parse skA as (tskA, d̂kA, dkA, skA) and pkA as (tpkA, p̂kA, pkA, vkA).
2. Flip a fair coin w ∈ {0, 1}, and execute c∗ ← TEnc(tpkA,mw), (tsk

∗
A.1, tsk

∗
A.2, tvk

∗
A)← TSplit(tskA),

ψ∗ ← TEnc(pk∗, tsk∗A.1), σ
∗ ← Sign(sk∗, ⟨ψ∗∥tvk∗A∥pkA∥pk

∗⟩), and µ∗2 ← TShDec(tpkA, tsk
∗
A.2, c

∗).

3. Set M̂0 = ⟨pkA∥pk
∗∥c∗∥µ∗2∥ψ∗∥tvk∗A]|σ∗⟩ and M̂1 = ⟨pkA∥pk

∗∥0ℓ∥ψ∗∥tvk∗A∥σ∗⟩, where ℓ = |c∗| +
|µ∗2|.

4. Submit (M̂0, M̂1) to B’s CCA challenger, and receive B’s challenge ciphertext ĉ∗.
5. Return ĉ∗ to A as A’s challenge ciphertext.

When A asks a re-encryption verification query (pk, c, ĉ), if ĉ = ĉ∗, then B answers with ⊥ (which
is the legitimate answer in Games 2 and 3). Otherwise (i.e. ĉ ̸= ĉ∗), B can answer to the re-encryption
verification query perfectly as the challenger in Games 2 and 3 does, by forwarding ĉ to B’s challenger
as a decryption query and calculating the remaining procedure of REncVer using tsk∗ and dk∗.

Finally, when A terminates with its guess bit w′ ∈ {0, 1}, B sets b′ ← 1 if w′ = w, otherwise it sets
b′ ← 0, and terminates with output b′.

Let b be B’s challenge bit. It is easy to see that depending on B’s challenge bit b, B simulates Game
2 or Game 3 perfectly for A so that A’s challenge bit is w. In particular, B answers to all queries
made by A as should be done in Games 2 and 3 perfectly. Furthermore, B outputs 1 whenever A
succeeds in guessing w (i.e. w′ = w occurs). Therefore, we have Pr[b′ = 1|b = 0] = Pr[Succ2] and
Pr[b′ = 1|b = 1] = Pr[Succ3], and thus |Pr[Succ2]−Pr[Succ3]| is negligible by the CCA security of the
underlying PKE scheme.

It remains to show the upperbound of |Pr[Succ1]−Pr[Succ2]| to be negligible. To see this, note that
Game 1 and Game 2 proceed identically unless Query1 or Query2 occurs in the corresponding games.
Hence, we have

|Pr[Succ1]− Pr[Succ2]| ≤ Pr[Query1] = Pr[Query2].

Furthermore, by the triangle inequality, we have

Pr[Query2] ≤ |Pr[Query2]− Pr[Query3]|+ Pr[Query3]

We can show the upperbound of |Pr[Query2]−Pr[Query3]| to be negligible by the CCA security of
the building block PKE scheme, with essentially the same way as we did for |Pr[Succ2] − Pr[Succ3]|.
Specifically, consider the reduction algorithm B′ that runs in the same way as the above B, except that
B′ outputs b′ = 1 only when A makes a re-encryption verification query that contains c∗. Then, B′
simulates Game 2 and Game 3 perfectly, and thus the probability that A makes a re-encryption query
that contains c∗ is exactly the same as the probability that A does so in the game simulated by B′, i.e.
Pr[b′ = 1|b = 0] = Pr[Query2] and Pr[b′ = 1|b = 1] = Pr[Query3], and thus |Pr[Query2]− Pr[Query3]| is
negligible due to the CCA security of the underlying PKE scheme.

Finally, we can show that Pr[Query3] is upperbounded to be negligible due to the strong smoothness
(see the last paragraph of Section 2.3) of the underlying TPKE scheme. To see this, note that in Game

31

3, the information on c∗ is not at all contained in A’s challenge ciphertext ĉ∗. Note also that in Game
3, although the key pair (skA, pkA) is chosen by A, it is required to be a valid key pair (and thus
must be in the range of TKG). Moreover, the randomness for generating c∗ is honestly chosen by the
challenger in Game 3, and thus the probability that c∗ is contained in one particular re-encryption
verification query is bounded by Smth(k). By applying the union bound over all of A’s Q queries, the
upperbound of Pr[Query3] is Q · Smth(k), which is negligible.

We have seen that each |Pr[Succi]− Pr[Succi+1]| is negligible and Pr[Succ3] = 1/2, and therefore,
A’s first-level CCA advantage is negligible. This completes the proof of Theorem 5. ⊓⊔

