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Abstract. We improve on the first fall degree bound of polynomial
systems that arise from a Weil descent along Semaev’s summation poly-
nomials.

1. Introduction

Finding solutions to algebraic equations is a fundamental task. A common
approach is a Groebner basis computation via an algorithm such as Faugère’s
F4 and F5 [1, 2]. In recent applications Groebner basis techniques have
become relevant to the solution of the Elliptic Curve Discrete Logarithm
Problem (ECDLP). Here one seeks solutions to polynomial equations arising
from a Weil descent along Semaev’s summation polynomials [10] which
represents a crucial step in an index calculus method for the ECDLP, see
e.g. [9, 11]. The efficiency of Groebner basis algorithms is governed by a
so-called degree of regularity, that is the highest degree occurring along the
subsequent computation of algebraic relations. It is widely believed that
this often intractable complexity parameter is closely approximated by the
degree of the first non-trivial algebraic relation, the first fall degree. In
particular, the algorithms for the ECDLP of Petit and Quisquater [9] are
sub-exponential under the assumption that this approximation is in o(1).

In the present paper, we will improve Petit’s and Quisquater’s [9] first
fall degree bound m2 + 1 for the system arising from Semaev’s (m+ 1)-th
summation polynomial. That is, we prove that a first fall occurs at degree
m(m− 1) + 1. Along our argumentation we can improve on special instances
of a general bound proved by Hodges, Petit and Schlather [5] on the first fall
degree of systems induced by a multivariate polynomial. This allows us to
explain some discrepancies presented in their experiments.

2. Notation

Our considerations take place over a degree n extension F2n of the binary
field F2. The notions in §3 and §4 generalise easily to Fqn with q being an
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arbitrary prime power. We will comment on some specific generalisations to
Fqn throughout the text.

3. The first fall degree

Consider the decomposition of the graded ring

S = F2[X0, . . . , Xn−1]/(X2
0 , . . . , X

2
n−1)

into its homogeneous components

S = S0 ⊕ S1 ⊕ · · · ⊕ Sn.
Each Sj is a F2-vector space generated by the monomials of degree j. Let I
be an ideal in S generated by homogeneous polynomials f1, . . . , fr ∈ Sd all
of the same degree d. Then we have a surjective map

φ : Sr −→ I
(g1, . . . , gr) 7→ g1f1 + · · ·+ grfr.

Let ei denote the canonical i-th basis element of the free S-module Sr. The
S-module U generated by the elements

fjei + fiej and fkek(3.1)

is a subset of ker(φ). If we restrict φ to the F2-subvector space Srj−d ⊂ Sr

we obtain a surjective map

φj−d : Srj−d −→ I ∩ Sj
whose kernel contains the F2-subvector space Uj−d = U ∩ Srj−d and hence
factors through

φ̄j−d : Srj−d/Uj−d → I ∩ Sj .

Definition 3.1 (Cf. [5, Definition 2.2]). The first fall degree of a homoge-
neous system f1, . . . , fr ∈ Sd is the smallest j such that the induced F2-linear
map φ̄j−d is not injective, that is the smallest j such that dimF2(I ∩ Sj) <
dimF2(Srj−d/Uj−d). For a general system of equations we define its first fall
degree as the first fall degree of its highest degree homogeneous part.

Note 3.2. If j < 2d then Uj−d = 0 and the first fall degree depends on the
non-injectivity of φj−d : Srj−d → I ∩ Sj , it equals the smallest j such that

dimF2(I ∩ Sj) < dimF2(Srj−d).

4. Some transformations of algebraic equations

Let F2n [X] be a univariate polynomial ring, and let τ : F2n → F2n , τ(α) =
α2 denote the Frobenius automorphism. Fix a basis of F2n over F2 by
1, z, . . . , zn−1 and let

X = X0 + zX1 + · · ·+ zn−1Xn−1 ∈ F2n [X0, . . . , Xn−1].

The F2-linear polynomials Yj = X2j can be written as a linear transform of
(X0, . . . , Xn−1) via the Vandermonde matrix

V = V (z, τ(z), . . . , τn−1(z))(4.1)
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=


1 z z2 · · · zn−1

1 τ(z) τ(z2) · · · τ(zn−1)
...

...
...

. . .
...

1 τn−1(z) τn−1(z2) · · · τn−1(zn−1)

 .

That is

(Y0, Y1, . . . , Yn−1) = (X,X2, . . . , X2n−1
) = (X0, X1, . . . , Xn−1) · V t,(4.2)

and in particular

Yj = X2j = X0 + τ j(z)X1 + · · ·+ τ j(zn−1)Xn−1.(4.3)

Each Xi can be written as a polynomial in the F2-linear variables Yj by
a binary expansion of i. Recall that as an endomorphism of F2n we have
X2n −X = 0 and hence without loss of generality i < 2n, that is

Xi = Xa0(X2)a1 · · · (X2n−1
)an−1 = Y a0

0 Y a1
1 · · ·Y

an−1

n−1(4.4)

in F2n [Y0, . . . , Yn−1] of degree ≤ a0 + · · · + an−1 where ai ∈ {0, 1}. To
summarize, any polynomial f ∈ F2n [X] can be written as a polynomial
F ∈ F2n [Y0, . . . , Yn−1] in the F2-linear variables Yj such that the degree in
each variable is < 2, and each variable Yi arises from a linear change of the
variables X0, . . . , Xn−1. To be precise,

f(X) = F ((X0, . . . , Xn−1) · V t) =
n−1∑
i=0

ziFi(X0, . . . , Xn−1),(4.5)

where we have arranged the terms on the left-hand side as equations
F0, . . . , Fn−1 ∈ F2n [X0, . . . , Xn−1] (in fact the coefficients of the Fj lie in F2)
according to the basis 1, z, . . . , zn−1. We apply the Vandermonde matrix V
to the vector of equations F0, . . . , Fn−1 to obtain an equivalent system of

algebraic equations F, F τ , . . . , F τ
n−1 ∈ F2n [Y0, . . . , Yn−1] via

V ·


F0

F1
...

Fn−1

 (X0, . . . , Xn−1) =


F
F τ

...

F τ
n−1

 ((X0, . . . , Xn−1) · V t).(4.6)

In particular, each entry is given by

F τ
j
((X0, . . . , Xn−1) · V t) =

n−1∑
i=0

τ j(zi)Fi(X0, . . . , Xn−1).(4.7)

The system in F0, . . . , Fn−1 regarded in F2n [X0, . . . , Xn−1] can be aug-
mented by the field equations X2

0−X0, . . . , X
2
n−1−Xn−1 to produce solutions

in the base field F2. Likewise a linear transform of the field equations forces
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K-valued solutions of F, F τ , . . . , F τ
n−1

as follows. Recall from (4.3) that

Y 2
j =

n−1∑
i=0

(z2j+1
)iX2

i and Yj+1 =

n−1∑
i=0

(z2j+1
)iXi(4.8)

That is, we have the following linear transform

CV ·


X2

0 −X0
...

X2
n−2 −Xn−2

X2
n−1 −Xn−1

 =


Y 2

0 − Y1
...

Y 2
n−2 − Yn−1

Y 2
n−1 − Y0

(4.9)

where C denotes the circulant matrix

C =

(
0 Idn−1

1 0

)
.(4.10)

Therefore, the extension of the linear transformation in (4.6) such that

the systems F• = (F0, . . . , Fn−1)t and F τ
•

= (F, F τ , . . . , F τ
n−1

)t viewed in
F2n [X0, . . . , Xn−1] equally produce solutions in F2 is given by(

V 0
0 CV

)
·
(

F•
Xq
• −X•

)
(X0, . . . , Xn−1)(4.11)

=

(
F τ
•

Y q
• − Y•+1

)
((X0, . . . , Xn−1) · V t).

Note that the application of τ naturally performs as a cyclic shift on

the variables Yi = X2j . Therefore, each F τ
j

can be computed from F
by the application of τ j to the coefficients of F and its evaluation at
(Yj , . . . , Yn−1, Y0, . . . , Yj−1). The linear isomorphisms in (4.6) and (4.11)
seem to be common knowledge, see e.g. [4, 4.2], [9, 4.4].

When we reduce the system F0, . . . , Fn−1 by the field equations X2
0 −

X0, . . . , X
2
n−1 −Xn−1 it is important to note that the degree of the resulting

highest degree homogeneous component cannot drop below the degree of

its counterpart in F, F τ , . . . , F τ
n−1

. In other words we have the following
invariance.

Proposition 4.1. The first fall degree of p0, . . . , pn−1 given by

pi ≡ Fi mod (X2
0 −X0, . . . , X

2
n−1 −Xn−1).

is equal to the first fall degree of F, F τ , . . . , F τ
n−1

.

Proof. Due to the linearity of the transforms (4.6) and (4.11) we only have
to compare the degrees of the highest degree homogeneous parts. Let d0 be
the highest degree that appears in the p0, . . . , pn−1. As explained previously
τ performs as a cyclic shift on the variables Yi, so it is sufficient to consider
the homogeneous parts of F which are of the form

A(d) =
∑

a0 + · · ·+ an−1 = d
a0, . . . , an−1 ∈ {0, 1}

ca0,...,an−1Y
a0

0 Y a1
1 · · ·Y

an−1

n−1 .
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Let A(d1) be the highest degree homogeneous part of F . Since the transform
(4.6) is linear, it is clear that the maximal degree of each Fi is ≤ a0 + · · ·+
an−1 ≤ d1 and so d0 ≤ d1. We consider the following commutative diagram
where φ, ψ are linear isomorphisms induced by the Vandermonde matrix V t

from (4.2) and πX , πY are the natural projections.

F2n [X0, . . . , Xn−1]
φ //

πX
��

F2n [Y0, . . . , Yn−1]

πY
��

F2n [X0, . . . , Xn−1]/(Xq
0 , . . . , X

q
n−1)

ψ // F2n [Y0, . . . , Yn−1]/(Y q
0 , . . . , Y

q
n−1)

We have πY (A(d1)) 6= 0 since the variables Yi appear with powers ai ∈ {0, 1}.
Since ψ is a linear isomorphism we obtain

0 6= ψ−1(πY (A(d1))) = cµ+ · · ·
where c ∈ F2n and µ is a monomial of degree d1 such that each Xi appears
with degree < 2. Therefore µ remains unchanged when lifted along πX and
reduced by the field equations (X2

0−X0, . . . , X
2
n−1−Xn−1), and consequently

d0 = d1. �

5. A first fall degree bound

From now on let f(X) ∈ F2n [X] have degF2n
f ≤ 2M − 1 and degF2

f = d,
and assume M ≤ n. Then f(X) = F (Y0, . . . , Yn−1) is an element of the
truncated graded ring

R0,M−1 = F2n [Y0, . . . , YM−1]/(Y 2
0 , . . . , Y

2
M−1)

= R0,M−1
0 ⊕R0,M−1

1 ⊕ · · · ⊕R0,M−1
M .

For studying its first fall degree we can assume without loss of generality

that F is an element of the degree d homogeneous component R0,M−1
d .

Proposition 5.1. The F2n-linear mapping

R0,M−1
j−d −→ R0,M−1

j

µ 7→ µF

has a non-trivial kernel if

j ≥ M + d

2
+ 1.

Proof. The dimensions of the components Rδ of the graded ring R are
encoded in the Hilbert series

HSR0,M−1(t) =
(1− t2)M

(1− t)M
= (1 + t)M =

M∑
δ=0

(
M

δ

)
tδ.

A non-trivial kernel occurs if

dimF2n
R0,M−1
j−d =

(
M

j − d

)
>

(
M

j

)
=

(
M

M − j

)
= dimF2n

R0,M−1
j ,
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i.e. if

j − d > M − j ⇔ j ≥ M + d

2
+ 1.

�

According to Note 3.2 the non-injectivity of µ 7→ µF yields a first fall
degree bound when trivial relations cannot occur.

Corollary 5.2. If j < 2d the first fall degree of F is ≤ 1
2(M + d) + 1.

This bound can be generalized to ≤ 1
2((q−1)M +d) + 1 for polynomials F

that have coefficients in Fqn , when still j < 2d. Hodges, Petit and Schlather
[5, Theorem 4.9] prove that general bound without the restriction on j.
However, in our restricted setting we can improve Corollary 5.2 by one due
to the following observations.

Proposition 5.3. 1 Assume M − j = j − d, such that M + d and M − d
are even and dimF2n

R0,M−1
(M−d)/2 = dimF2n

R0,M−1
(M+d)/2 =

(
M
j−d
)
. Then, the linear

transform

R0,M−1
(M−d)/2 −→ R0,M−1

(M+d)/2

µ 7→ µF

has a non-trivial kernel if
(
M
j−d
)

is odd. If furthermore M < 3d, the first fall

degree of F is ≤ 1
2(M + d).

Proof. For a subset J ⊂ Ω = {0, . . . ,M − 1} we denote the monomial
µJ =

∏
i∈J Yi and write the homogeneous polynomial F =

∑
|J |=d cJµJ .

Denote by Ij−d ⊂ Ω = {0, . . . ,M − 1} a subset of cardinality j − d and
consider

µIj−dF =
∑

J∩Ij−d=∅

cJµJ∪Ij−d .

Each µJ∪Ij−d is an element of R0,M−1
(M+d)/2. Since M − j = j − d we can further

write

µIj−dF =
∑

I′j−d∩Ij−d=∅

cΩ\(I′j−d∪Ij−d)µΩ/µI′j−d .(5.1)

Because of the symmetry of Ij−d and I ′j−d the coefficients on the right-

hand side of (5.1) form a square symmetric matrix of odd dimension
(
M
j−d
)
.

Since any symmetric matrix in characteristic 2 is also anti-symmetric its
determinant vanishes. If M < 3d, then j < 2d and there are no trivial
relations according to Note 3.2. Hence we have a first fall. �

When
(
M
j−d
)

is even one cannot expect the determinant of the linear

transform from Proposition 5.3 to vanish. Instead the following approach
yields a first fall.

1Timothy J. Hodges informed us that he and Sergio Molina observed the same behavior
and anti-symmetry argument in ongoing unpublished work.
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Proposition 5.4. Assume M − j = j − d, such that M + d and M − d are

even, and recall the polynomials F ∈ R0,M−1
d and F τ ∈ R1,M

d from (4.6).
We assume M ≤ n− 1 such that τ acts as a simple shift on the variables Yi
without turning round. Then, the defect of the linear transform

R0,M−1
(M−d)/2 ⊕R

1,M
(M−d)/2 −→ R0,M

(M+d)/2

(µ, µ′) 7→ µF + µ′F τ

is at least
(
M−1
j

)
> 0. If furthermore M < 3d, the first fall degree of F, F τ

is ≤ 1
2(M + d).

Proof. We denote by Ii ⊂ Ω = {0, . . . ,M−1} and I ′i ⊂ {1, . . . ,M} subsets of

cardinality i, respectively. Consider the linear subspace in R0,M
(M+d)/2 spanned

by the 2
(
M
j−d
)

= 2
(
M
j

)
many products

µIj−dF =
∑

Ij⊃Ij−d

cFIj\Ij−dµIj ,

µI′j−dF
τ =

∑
I′j⊃I′j−d

cF
τ

I′j\I′j−d
µI′j .

Then, the coefficients cFIj\Ij−d , c
F τ

I′j\I′j−d
form a matrix with 2

(
M
j

)
rows and(

M
j

)
+(
(
M
j

)
−
(
M−1
j

)
) columns, since the above representations overlap exactly

in the
(
M−1
j

)
many subsets Ij from {1, . . . ,M − 1}. That is, the defect of

that linear transform is at least
(
M−1
j

)
> 0 as claimed. If M < 3d, then

j < 2d and there are no trivial relations according to Note 3.2. Hence we
have a first fall. �

Let us compile a list of experiments. We choose uniformly at random a
homogeneous polynomial F (Y0, . . . , YM−1) of degree d in F2n [Y0, . . . , Yn−1]
such that the degree in each variable Yi is ≤ q − 1. and compute a Groebner
basis of the ideal

I = (F, F τ
m
, . . . , F τ

m(n−1))
, Y 2

0 − Y1, . . . , Y
2
n−2 − Yn−1, Y

2
n−1 − Y0)

in F2n [Y0, . . . , Yn−1] generated by the system in (4.11). The computation is
done with Magma’s GroebnerBasis() function tuned to verbosity level 1.
The empirical first fall degree Dff is read off as the step degree of the first
step where new lower degree (i.e. < step degree) polynomials are added. The
empirical degree of regularity Dreg is read off as the highest step degree of
all steps where new polynomials are added.

The gray colored part of Table 1 is a copy of the lines with p = 2,
discrepancy B > Dff from [5, Table 1] (their t being our M), and t > 3d.
We were able to reproduce their experimental data on Dff and Dreg. The
white cells document our first fall degree bound (M + d)/2 that solves the

discrepancy B > Dff according to Proposition 5.3 when
(
M
j−d
)

is odd and

Proposition 5.4 when
(
M
j−d
)

is even. The defect
(
M−1
j

)
is listed as appropriate.



8 ON THE FIRST FALL DEGREE OF SUMMATION POLYNOMIALS

Table 1. Empirical and theoretical first fall degree for degree
d homogeneous F (Y0, . . . , YM−1) with coefficients in F2n . The
empirical data is based on 10 repetitions.

p t(= M) d n B Dff Dreg
M+d

2

(
M
j−d
) (

M−1
j

)
2 6 4 11 6 5.0 5.0 5 6 1
2 6 4 13 6 5.0 5.0 5 6 1
2 6 4 17 6 5.0 5.1 5 6 1
2 7 3 11 6 5.0 5.0 5 21 −
2 7 3 13 6 5.0 5.0 5 21 −
2 7 3 17 6 5.0 5.0 5 21 −
2 7 5 11 7 6.0 6.0 6 7 −
2 7 5 13 7 6.0 6.0 6 7 −
2 7 5 17 7 6.0 6.1 6 7 −

Remark 5.5. There is a multinomial version of Proposition 5.4 for polyno-
mials with coefficients in Fqn assuming (q − 1)M − j = j − d. The defect of
the analogous linear transform is the coefficient of tj in (1+t+ · · ·+tq−1)M−1.
That way one can improve the bound of Hodge, Petit and Schlather [5, The-
orem 4.9] to ≤ ((q− 1)M + d)/2 when (q− 1)M < 3d. The latter restriction
does not scale well with q but excludes trivial relations such as fiej − fjei
from (3.1), and of course f q−1

k ek. However, this explains the discrepancy in
[5, Table 1] in the case p = 3, t = 5, d = 4.

6. Weil descent along summation polynomials

We will derive the first fall degree bound ≤ m(m−1)+1 for the polynomial
system that arises from a Weil descent along Semaev’s summation polynomial
Sm+1(x1, . . . , xm+1) [10]. This is an improvement over m2 + 1 that results
from [5, Theorem 5.2] and [9, §4]. We briefly describe the polynomial system
arising from the Weil descent and refer the reader to e.g. [9] for more details.
Fix a basis 1, z, . . . , zn−1 of F2n over F2 and let V be a random subvector
space in F2n of dimension n′ and basis ν1, . . . , νn′ over F2. We introduce mn′

variables yij that model the linear constraints xi =
∑n′

l=1 yilνl, set xm+1 to
an arbitrary element c ∈ F2n , and obtain the equation system

Sm+1(x1, . . . , xm, xm+1) = Sm+1

(
n′∑
l=1

y1lνl, . . . ,
n′∑
l=1

ymlνl, c

)
= f0(yij) + zf1(yij) + · · ·+ zn−1fn−1(yij)

The first fall degree of interest is that of the reduced polynomial system

sk ≡ fk mod (y2
11 − y11, . . . , y

2
mn′ − ymn′).
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By the definition of the first fall degree we are interested in the highest
degree homogeneous part of s0, . . . , sn−1 whose degree can be determined as
follows.

Proposition 6.1. Let m ≥ 3. The highest degree homogeneous part of
the polynomial system s0, . . . , sn−1 is of degree m(m − 1) and is induced

by the monomial x2m−1−1
1 · · ·x2m−1−1

m xm+1 in the summation polynomial
Sm+1(x1, . . . , xm, xm+1).

Proof. First we show the existence of this monomial in Sm+1. Due to Semaev
[10] we have

S3(x1, x2, x3) = (x2
1 + x2

2)X2 + x1x2x3 + x2
1x

2
2 + t

Sm+1(x1 . . . , xm, xm+1) = ResX(Sm(x1, . . . , xm−1, X), S3(xm, xm+1, X))

and the degree of Sm+1 in each variable xi is 2m−1. The resultant of
f, g ∈ F2n [X] of degree k und l is the determinant of the Sylvester matrix

ResX(f, g) = det Syl(f, g)

= det



fk · · · f0

fk · · · f0

. . .
. . .

fk · · · f0

gl · · · g0

gl · · · g0

. . .
. . .

gl · · · g0


That is, with

S3(xm, xm+1, X) = (x2
m + x2

m+1)X2 + xmxm+1X + x2
mx

2
m+1 + t

Sm(x1, . . . , xm−1, X) = c2m−1X2m−1
+ · · ·+ c0

we have

Sm+1(x1 . . . , xm, xm+1)

= det


c2m−1 c2m−1−1 · · · c0 0

0 c2m−1 · · · c1 c0

x2
m + x2

m+1 xmxm+1 x2
mx

2
m+1 + t

. . .
. . .

x2
m + x2

m+1 xmxm+1 x2
mx

2
m+1 + t


with a total of 2 + 2m−2 rows and columns. In order to prove our claim we
have to find proper Laplace expansions for the determinant of the Sylvester
matrix.

Step 1: Prove by induction (start with x2
1x

2
2 in S3) that Sm+1 contains

the monomial x2m−1

1 · · ·x2m−1

m . For that we expand along the term c0 in the
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first two rows. The resulting minor is an upper triangular matrix in the last
2m−2 rows and hence

Sm+1(x1 . . . , xm, xm+1) = c0c0

2m−2∏
i=1

(x2
m + x2

m+1) + . . .

= (x2m−2

1 · · ·x2m−2

m−1 )2x2m−1

m + . . .

= x2m−1

1 · · ·x2m−1

m−1 x
2m−1

m + . . .

Step 2: Prove by induction (start with x1x2x3 in S3) that Sm+1 contains

the monomial x2m−1−1
1 · · ·x2m−1−1

m xm+1. For that we expand along c1 in the
first and along c0 in the second row. The resulting minor is again an upper
triangular matrix in the last 2m−2 rows and we have

Sm+1(x1 . . . , xm, xm+1)

= c1c0xmxm+1

2m−2−1∏
i=1

(x2
m + x2

m+1) + . . .

= (x2m−2−1
1 · · ·x2m−2−1

m−1 )(x2m−2

1 · · ·x2m−2

m−1 )xmxm+1(x2
m)2m−2−1 + . . .

= x2m−1−1
1 · · ·x2m−1−1

m−1 x2m−1−1
m xm+1 + . . .

The degree claim is argued as follows. The variables yij of the sk are over F2

where taking squares is a linear operation. Therefore the degrees of the homo-
geneous parts of the system s0, . . . , sn−1 depend only on the Hamming weight
wt(xα1

1 · · ·xαmm ) =
∑

wt(αi) of a monomial in Sm+1. Since the degree of Sm+1

in each variable xi is 2m−1 the monomial x2m−1−1
1 · · ·x2m−1−1

m−1 x2m−1−1
m xm+1,

when xm+1 is set to an element c ∈ F2n , produces the highest Hamming
weight

∑m
i=1 wt(2m−1− 1) = m(m− 1). To be precise, we consider the linear

change

Yij = x2j

i = (

n′∑
l=1

yilνl)
2j =

n′∑
l=1

yilν
2j

l

and obtain

x2m−1−1
1 · · ·x2m−1−1

m c = c
m∏
i=1

m−2∏
j=0

Yij

= c
m∏
i=1

m−2∏
j=0

n′∑
l=1

yilν
2j

l

=
∑
k

γk

m∏
i=1

m−2∏
j=0

yilj + terms of degree < m(m− 1)

where γk ∈ F2n and the lj for j = 0, . . . ,m− 2 are pairwise distinct. �

We are ready to prove
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Theorem 6.2. The first fall degree of the polynomial system s0, . . . , sn−1

resulting from the Weil descent along the summation polynomial Sm+1,m ≥ 3
is ≤ m(m− 1) + 1.

Proof. We consider again the linear change of variables

Yij = x2j

i = (

n′∑
l=1

yilνl)
2j =

n′∑
l=1

yilν
2j

l .

This is induced by the m× n′ matrix
ν1 · · · νn′
ν2

1 · · · ν2
n′

...
. . .

...

ν2m−1

1 · · · ν2m−1

n′


that can be completed to an invertible linear transform assuming m ≤ n′

(which holds in any practical instance) by [8, Lemma 3.51]. Therefore the
first fall degree of the polynomial Fc ∈ F2n [Yij ], c ∈ E, that is

Fc(Y10, . . . , Y1(m−1), . . . , Ym0, . . . , Ym(m−1)) = Sm+1(x1, . . . , xm, c),

is equal to the first fall degree of the polynomial system s0, . . . , sn−1. As

explained earlier the monomial x2m−1−1
1 · · ·x2m−1−1

m c induces the highest
degree homogeneous part of Fc, that is

A(m(m−1)) = c′
m∏
i=1

m−2∏
j=0

Yij

with some c′ ∈ F2n . This is of degree d = m(m − 1) in M = m(m − 1)
many variables Yij over F2. Since 1

2(M + d) + 1 = m(m − 1) + 1 < 2d
our Corollary 5.2 now gives that the first fall degree of Fc and hence of
s0, . . . , sn−1 is ≤ m(m− 1) + 1. �

Remark 6.3. From [5, Theorem 5.2] and [9, §4] one deduces a first fall
degree ≤ m2 + 1 for the summation polynomial Sm+1. The argumentation in
our proof is completely analogous except that we do not generically bound
the degree of Sm+1 in each variable (which is 2m−1) by 2m − 1.

Remark 6.4. Our Theorem 6.2 remains true also in the case m = 2 with
first fall degree ≤ 2 · 1 + 1 = 3. This bound is not sharp though, in fact the
first fall degree in the case m = 2 equals 2 [7, Corollary 4.11 and Remark
4.12].

Remark 6.5. When the vector space V ⊂ F2n/F2 is a subfield the first
fall degree equals the highest degree, that is m(m − 1), of the induced
homogeneous part of s0, . . . , sn−1. This is easy to see from the equation
system (4.6) and (4.11), respectively, since by the subfield condition there is

some k such that F = F τ
k

which is a trivial relation that induces a first fall.
Those symmetries explain certain observations in [12, §6].
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In the light of the first fall degree bound given in Theorem 6.2 we computed
a Groebner basis for the ideal resulting from the Weil descent along the
summation polynomial Sm+1(x1, . . . , xm, xm+1) for m = 2, 3, 4 on an AMD
Opteron CPU with Magma’s GroebnerBasis() function. Again, we set the
verbose level to 1 and extracted the empirical first fall degree Dff as the
step degree of the first step where new lower degree (i.e. < step degree)
polynomials are added. The empirical degree of regularity Dreg is the highest
step degree of all steps where new polynomials appear. In each experiment
we chose a random non-singular elliptic curve over F2n , a random subvector
space of dimension n′ = dn/me as the factor basis, and set xm+1 to the
x-coordinate of a random point on the curve.

Like Kosters and Yeo [7, §5] we observed a raise in the regularity degree for
m = 2 in our experiments and were able to verify their observation that with
the low degree polynomials V = span{1, z, . . . , zn′} chosen as the factor basis
(Cf. [11, 4.5]) the raise in the regularity degree was produced for slightly
greater n = 45. It would be very interesting to observe a raise in the degree
of regularity for higher Semaev polynomials, but time and memory amounts
become a serious issue for m ≥ 3. However, such observations might neither
falsify [9, Assumption 2] that Dreg = Dff +o(1) nor lead to further evidence
that the gap between the degree of regularity and the first fall degree depends
on n as discussed in [6, §5.2].

However, we believe our first fall degree bound m(m− 1) + 1 to be sharp
in generic cases, and rephrase [9, Assumption 2] as the following question:

Dreg = m2 −m+ 1 + o(1) ?(6.1)
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