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Abstract We introduce a linear code based on resilient maps on vector spaces
over finite fields, we give a basis of this code and upper and lower bounds for
its minimal distance. Then the use of the introduced code for building vector
space secret sharing schemes is explained and an estimation of the robustness
of the schemes against cheaters is provided.
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1 Introduction

Secret sharing schemes (SSS) were proposed in 1979, independently by Sha-
mir [20] and Blakley [3]. Several variants appeared later, e.g. in [14] it was
discussed the relation between SSS and Reed-Solomon codes and in [7,10,18,
16] error correcting codes built within finite fields were constructed. Through
the Massey’s SSS [13], a general relation between linear codes and SSS is ob-
tained. However, within this approach characterising or predetermining the
access structure may not be an easy task. The most common approach is to
calculate the minimal words at the dual code. In [1] a sufficient condition,
based on the ratio of the maximal and minimal weights in codewords, is pro-
vided in order to have that all non-null codewords be minimal and in [10] the
corresponding access structure is determined.
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In a SSS some participants may cheat their shares in order to gain some
illicit benefit. We use vector space secret sharing schemes (VSSSS) [4], and the
modifications in [17], to diminish the risk of cheaters. VSSSS has been used in
several constructions, e.g. in [8], high information rate ramp schemes are built
whose secrets are vector of field elements, producing non-perfect SSS. Cheater
detection has been analysed in the context of threshold SSS in [15,21].

We propose a SSS in the current paper fitting the first non-threshold
scheme in [17] having an information rate of 2−1, which is almost optimal
and is asymptotically optimal (see Proposition 3 in [17]). The cheating prob-
ability is at most q−1, where q is the order of the finite field. Thereafter we
generalise this contruction in order to have a k-dimensional VSSSS, with infor-
mation rate 2−1 and cheating probability q−r, where r is the dimension of the
vector space of secrets, namely, the probability of uniform random selection in
the space of secrets. This VSSSS is perfect in the sense introduced in [17].

On the other hand, resilient maps were introduced in [9] and in [2] they
reappeared in the context of key distribution protocols for quantum cryptog-
raphy. Among several application in Cryptography [5,24], resilient maps have
been used for random number generation for stream ciphering [19] as well as
for authentication schemes [12].

In the current paper a linear code is introduced whose dual code allows
the construction of a SSS with a well characterised access structure. Using
resilient maps over finite fields and the trace map we build a code whose non-
zero words are all minimal, the minimal distance of its dual is greater or equal
than 2 hence the access structure of the corresponding Massey SSS can be
determined [7] and it is a perfect and ideal scheme [17].

In Section 2 we present our modification of the non-threshold VSSSS. In
Section 3 we introduce the linear code based on resilient maps and we prove
that all its non-zero codewords are minimal in the sense of [7]. Besides, this
code is such that for any coordinate there is a codeword with a non-zero value
at that entry, and its dual code has also this property. This property is useful
in the context of Massey’s secret sharing schemes, because using this code
there is a guarantee that no participant would receive a zero sharing when
a secret is splitted. Finally at Section 3.2 we discuss the generalised VSSSS
using the linear code built in Section 3.

2 Secret sharing

In this section we introduce a secret sharing scheme (SSS) from a general linear
code, satisfying ad-hoc conditions. Later, we will restrict the construction using
the code defined by the equation (17). We begin by recalling the SSS due to
Massey.



SSS Based on Resilient Boolean Maps 3

2.1 Massey’s SSS

This construction can be found in [7,13]. As usual, let us assume that 0 denotes
a dealer and the set of integers {1, . . . , n − 1} is naming n − 1 participants.
Let D be an [n, k, d]q-linear code over the field Fq, with generator matrix

G = [g0 g1 · · · gn−1] =

h
T
0

...
hTk−1

 ∈ Fk×nq ,

where all gj are non-zero vectors in Fkq and all hi are non-zero vectors in Fnq
(here we are assuming that all vectors are indeed column vectors).

The field Fq is the set of secrets. Given a secret s ∈ Fq, the dealer selects
randomly a vector u ∈ Fkq such that

s = u · g0 = uT g0 (1)

and calculates

∀j = 1, . . . , n− 1 : vj = uT gj . (2)

For each j = 1, . . . , n − 1, the dealer gives the j-th value vj ∈ Fq to the j-th
participant as the j-th share.

For any subset J ⊆ {1, . . . , n − 1} of cardinality m = |J | ≤ n − 1, J =
{j1, . . . , jm}, let

GJ = [gj1 · · · gjm ] ∈ Fk×mq

be the matrix whose columns are the columns of the generator matrix G
numbered by J , and vJ = [vj ]j∈J . Clearly, vTJ = uTGJ .

For the set J , the recovering procedure of the secret should be the following:

1. Express g0 as a linear combination of (gj)j∈J , say g0 =
∑
j∈J cjgj ;

2. in case of success, recover the secret as s =
∑
j∈J cjvj .

We recall that a set of participants J ⊂ {1, . . . , n − 1} is an access set if,
by joining all their shares, the participants in J can recover the secret, and an
access set J is minimal if no proper subset of J is an access set.

The following three results are common knowledge on Massey’s SSS:

Proposition 1 J ⊂ {1, . . . , n − 1} is an access set on Massey’s SSS if and
only if the first column in the generator matrix is in the linear space spanned

by the columns indexed by J , in symbols, g0 ∈ L
(

(gj)j∈J

)
.

Proposition 2 ([7,13]) A non-empty set J ⊂ {1, . . . , n − 1} of cardinality
m ≤ n−1 is an access set in the Massey’s SSS if and only if there is a codeword
d = (dj)

n−1
j=0 in the dual code D⊥ such that

[d0 = 1] & [∀j 6∈ {0} ∪ J : dj = 0] & [∃j ∈ J : dj 6= 0] . (3)



4 Juan Carlos Ku-Cauich, Guillermo Morales-Luna

Definition 1 For any x ∈ Fnq , let Spt (x) = {i| xi 6= 0}. A vector x ∈ Fnq
covers another vector y ∈ Fnq if Spt (y) ⊆ Spt (x). The vector x ∈ Fnq is
minimal if it covers just its non-zero multiples.

Corollary 1 Let E = {(ej)n−1j=0 ∈ D
⊥| e0 = 1} be the collection of codewords

in the dual code whose first entry is 1. In the SSS based on the linear code
D, there is a one-to-one and onto correspondence between the collection of
minimal access sets and the collection of minimal words in E.

Remark 1 Let J ⊂ {1, . . . , n − 1} be an access set of participants. Given a
secret s ∈ Fq and a vector u ∈ Fkq chosen by the dealer in order to satisfy (1),

let [vj ]
n−1
j=1 be the shares calculated according to (2). Then, from Proposition 1,

s =
∑
j∈J cjvj .

Remark 2 For any minimal access set J ⊂ {1, . . . , n − 1}, the above remark
obviously holds as well, and condition (3) holds in a stronger form:

[d0 = 1] & [∀j 6∈ {0} ∪ J : dj = 0] & [∀j ∈ J : dj 6= 0] .

Now we recall the following result concerning secret sharing schemes over
the dual code and their minimal access sets:

Theorem 1 ([7,23]) Let D be an [n, k, d]q-linear code over Fq, with gen-
erator matrix G = [g0 g1 · · · gn−1] ∈ Fk×nq . If any non-zero word at D is

minimal, then on the Massey’s SSS based on D⊥ we have:

1. There are qk−1 minimal access sets.
2. If the minimal distance d⊥ of the code D⊥ is 2 then for any j, 1 ≤ j ≤ n−1:

– If gj is a multiple of g0, then the j-th participant is in every minimal
access set.

– If gj is not a multiple of g0, then the j-th participant is in exactly
(q − 1)qk−2 minimal access sets.

3. If d⊥ ≥ 3 and 1 ≤ m ≤ min{k− 1, d⊥ − 2}, then any m-set of participants
is included in (q − 1)mqk−(m+1) minimal access sets.

We may point here another relevant property of codes in secret sharing
schemes. If D is an [n, k, d]q-linear code over the field Fq we will say that D
has a zero constant coordinate if for some index i ∈ {0, . . . , n − 1} and any
codeword π ∈ D we have πi = 0, where πi is the i-th coordinate of π.

If D has a zero constant coordinate, then the generator matrix G of that
code would have a zero column, thus his partcipation does not contribute to
the secret recovering process and it will be publicly known.

On the other side, if the dual code D⊥ has a zero constant coordinate,
then the share corresponding to that participant in the Massey’s SSS will be
always zero and it will be publicly known as well.
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2.2 Massey’s SSS with vector secrets

An immediate extension of Massey’s SSS consists of vector secrets.
Let D be an [n, k, d]q-linear code over Fq with generator matrix

G = [g0 g1 · · · gn−1] ∈ Fk×nq .

The set of n−1 participants is identified with the set of indexes {1, . . . , n−1}
and the dealer with the index 0.

Observe that for any non-zero vector g ∈ Fkq , the map Fkq → Fq, u 7→ u · g,
is a balanced function. Thus, the following implication holds:

∀g ∈ Fkq :
[∣∣{u ∈ Fkq | u · g = 0}

∣∣ > qk−1 =⇒ g = 0
]
. (4)

Let r ∈ Z+be an arbitrary positive integer. The r-dimensional vector space
Frq is taken as the set of secrets. Given a secret s ∈ Frq, the dealer chooses

randomly vectors u0, . . . , ur−1 ∈ Fkq such that

∀ρ = 0, . . . , r − 1 : sρ = uTρ g0 ∈ Fq, (5)

and calculates the vectors

∀j = 1, . . . , n− 1 : vj =
[
uTρ gj

]r−1
ρ=0
∈ Frq. (6)

The dealer gives the vector vj as the corresponding share to the j-th partici-
pant.

The analogous to the Proposition 2 holds almost verbatim:

Proposition 3 A non-empty set J ⊂ {1, . . . , n− 1} of cardinality m ≤ n− 1
is an access set in the Massey’s SSS with vector secrets if and only if there is
a codeword d = (dj)

n−1
j=0 in the dual code D⊥ such that

[d0 = 1] & [∀j 6∈ {0} ∪ J : dj = 0] & [∃j ∈ J : dj 6= 0] . (7)

Proof First let us recall that for any g ∈ Fkq−{0}, the map Fkq → Fq, u 7→ uT g,
is balanced. Due to implication (4), for any index subset J ⊂ {1, . . . , n − 1}
and any coefficients cj ∈ Fq, j ∈ J , the following two conditions are equivalent:

(I) g0 −
∑
j∈J

cjgj = 0 (8)

(II) ∃u0, . . . , ur−1 ∈ Fkq ∀ρ = 0, . . . , r − 1 : uTρ

g0 −∑
j∈J

cjgj

 = 0

Then, the proof of the current theorem is similar to the proof of Proposition 2.

Proposition 3 characterises the access structure for vector secrets in the
same way as Proposition 2 for scalar secrets.

Corollary 1 also holds within this context. Besides, similar to Remark 1:
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Remark 3 Let J ⊂ {1, . . . , n − 1} be an access set of participants. Given a
secret s ∈ Frq and vectors u0, . . . , ur−1 ∈ Fkq chosen by the dealer in order

to satisfy (5), let [vj ]
n−1
j=1 be the shares calculated according to (6). Then,

eq. (8) entails s =
∑
j∈J cjvj , and this representation of the secret, as a linear

combination of the shares (vj)j∈J , is unique.

Clearly, by identifying an alphabet of q symbols with Fq, then the vector
space Frq is identified with the set of words with length r over that alphabet.

2.3 Massey’s SSS variations as vector space SSS’s

In this section we will discuss the robustness of the introduced Massey’s SSS
variations against cheating. Let us firstly recall basic notions.

Massey’s SSS with vector secrets is an ideal SSS [17], namely its information
rate equals 1, i.e. the length in bits of a secret equals the maximum length of
the distributed shares.

Besides, it is perfect because a set of participants may recover any secret
if and only if there is a word in the dual code satisfying (7) but, due to
Proposition 3, it means that the set is indeed an access set. Thus, no non-
access set may recover any secret.

We recall the notion of vector space SSS (VSSSS) [17]. Let us identify a
set of n participants with the set of indexes {0, 1, . . . , n−1}, being 0 the index

of the dealer. For a vector space V over a field K let us assume a set (gj)
n−1
j=0

of vectors in V . An access structure Γ ⊂ P({1, . . . , n − 1}) is a vector space
access structure if:

∀J ⊂ {1, . . . , n− 1} :
[
J ∈ Γ ⇐⇒ g0 ∈ L

(
(gj)j∈J

)]
(L(U) denotes the K-linear span of a set U ⊂ V ). Within such a structure,
Massey’s SSS can be implemented. For any secret s ∈ K the dealer selects a
vector u ∈ K satisfying (1) and builds the shares according to (2).

In the remaining of this section we will assume that the characteristic of
the field K is a prime greater than 2.

Let J ∈ Γ be an access set and let I ⊂ J be a proper non-empty set con-
sisting of cheaters. The participants in I succeed in deceiving the participants
in J − I if, during a secret recovering process, each participant i ∈ I provides
a fake share v′i (instead of his correct share vi), each participant i ∈ J − I
provides his correct share vi, the recovery process produces a secret s′ and
s′ 6= s, where s is the resulting secret if all participants in J would provide
their correct shares. There may be two kind of cheaters: Either the cheaters
know somehow in advance the correct secret s and make believe the other
participants that it is s′, or the cheaters do not know in advance s but they
are able to recover s from s′ (and their own correct shares). We will assume
the second type of cheaters.
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2.3.1 Robustness against cheaters in VSSSS with scalar secrets

In a VSSSS with scalar secrets, as in Section 2.1, let J ⊂ {1, . . . , n− 1} be an
access set.

Suppose first that there is just one cheater i ∈ J in a minimal access set
J . The cheater i may deceive other participants in Ji = J − {i}: When trying
to recover a secret s ∈ K each participant j ∈ Ji = J − {i} provides his share
vj while i provides v′i = vi + ε. Then the recovering process gives

s′ =
∑
j∈Ji

cjvj + civ
′
i = s+ ciε.

The cheater recovers the secret as s = s′ − ciε, while the others get the erro-
neous secret s′ = s+ ciε.

Now, suppose again that J ∈ Γ is minimal and the set of cheaters is
I = J − {m}, where m ∈ J . The participants at I would provide modified
shares, say v′i, instead of the correct shares vi, with i ∈ I. The probability to
cheat m is

am(v′, v) = Pr (m is cheated by v′ | I-shares are v) .

The cheating success probability is

Am(v) = max
v′

am(v′, v).

A VSSSS is (Γ, ε)-robust if, under the assumption that the participants at I
do not know the secret, Am(v) ≤ ε.

A modified SSS with the aim to avoid cheaters is proposed in [17].
Suppose that the dealer and an auxiliary combiner (or black-box) are hon-

est. For any secret s ∈ Fq the dealer selects two vectors u1, u2 ∈ Fkq such that

s = uT1 g0 and s2 = uT2 g0, calculates (vj1, vj2) = (uT1 gj , u
T
2 gj) ∈ F2

q and deals
the shares (vj1, vj2). In the recovering process, for any access set J , the com-
biner receives the shares {(vj1, vj2)}j∈J and calculates t1 =

∑
j∈J cjvj1 and

t2 =
∑
j∈J cjvj2. If t21 = t2 then the combiner reveals t1 as the secret, other-

wise, the combiner warns the existence of a cheater among the participants in
J .

It is proved [17] that the modified SSS has information rate 1
2 and that it

is (Γ, q−1)-robust.
Namely, let J ⊂ {1, . . . , n − 1} be a minimal access set and let I ⊂ J be

a proper non-empty set of supposed cheaters. The participants in I collude in
order to cheat the participants in J − I. Let

aIJ(v′, v) = Pr ((J − I)-participants are cheated by v′ | I-shares are v)

and

AIJ(v) = max
v′

aIJ(v′, v).
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Suppose that in the modified SSS, ∀j ∈ I, (v′j1, v
′
j2) = (vj1, vj2) + (εj1, εj2).

Their cheating attempt will be successful if (t′1)2 = t′2, where

t′1 =
∑
j∈J

cjvj1 +
∑
j∈J−I

cjvj1εj1 = s1 + ε1,

t′2 =
∑
j∈J

cjvj2 +
∑
j∈J−I

cjvj2εj2 = s2 + ε2.

Thus, cheating success occurs if

2s1ε1 + ε21 = ε2. (9)

There are exactly q pairs (ε1, ε2) ∈ F2
q satisfying (9). Thus, AIJ(v) ≤ q−1.

2.3.2 Robustness against cheaters in VSSSS with vector secrets

Consider the setting in Section 2.2 with vector secrets.

Let D be an [n, k, d]q-linear code over Fq, with q a power of a prime greater
than 2, with generator matrix G = [g0 g1 · · · gn−1] ∈ Fk×nq .

The vector space Frq is the set of both secrets and shares.

Then the above construction provides a VSSSS whose information rate is
also 1

2 but it is (Γ, q−r)-robust.

Let us check this last assertion.

Given a secret s ∈ Frq, the dealer finds r vector pairs

(u01, u02), . . . , (ur−1,1, ur−1,2) ∈ Fkq × Fkq

such that

∀ρ = 0, . . . , r − 1 : sρ = uTρ,1g0 & s2ρ = uTρ,2g0

and calculates the vectors

∀j = 1, . . . , n− 1 : vj1 =
[
uTρ,1gj

]r−1
ρ=0

, vj2 =
[
uTρ,2gj

]r−1
ρ=0
∈ Frq.

The dealer gives the vector pair (vj1, vj2) as the corresponding share to the
j-th participant.

For a minimal access set J ⊂ {1, . . . , n − 1}, a proper non-empty set of
supposed cheaters I ⊂ J is in collusion to cheat the participants in J − I.
They alter their shares as (v′ρ1, v

′
ρ2) = (vρ1, vρ2) + (ερ1, ερ2). The cheating

success condition is similar to (9):

∀ρ = 0, . . . , r − 1 : 2s1ερ1 + ε2ρ1 = ερ2.

Then, the cheating success probability satisfies AIJ(v) ≤ q−r.
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3 A linear code based on resilient maps

3.1 Construction of the linear code

For any n ∈ Z+, let Fn2 be the n-dimensional vector space over the prime field
F2 of characteristic 2.

Let n,m ∈ Z+ be such that 1 ≤ m ≤ n. For any index t-subset J ⊂
{0, . . . , n − 1}, say J = {j0, . . . , jt−1}, and any a = (a0, . . . , at−1) ∈ Ft2, the
affine J-variety determined by a is

VJ,a,n = {x ∈ Fn2 | ∀k ∈ {0, . . . , t− 1} : xjk = ak}.

A map f : Fn2 → Fm2 is J-resilient if ∀a = (a0, . . . , at−1) ∈ Ft2, the map f |VJ,a,n

is balanced, namely, ∀y ∈ Fm2 ,
∣∣VJ,a,n ∩ f−1(y)

∣∣ = 2n−t−m.
A map f : Fn2 → Fm2 is t-resilient if it is J-resilient for any set J such that

|J | = t.
Let q be a power of a prime number p ≥ 2 and m,n ∈ Z+. The above

characterisation of resilient maps, assumed as definition, is suitable to be stated
on maps Fnqm → Fqm defined on vector spaces over finite fields [6].

As a sort of example, let s = m logp(q) and

φ : Fnqm → Fnqm ,

(
s−1∑
i=0

ai0p
i, . . . ,

s−1∑
i=0

ai,n−1p
i

)
7→ (a00, . . . , a0,n−1) (10)

Let g : Fnqm → Fqm be an arbitrary map. Then the map

f : Fnqm × Fnqm → Fqm , (x, y) 7→ f(x, y) = x · φ(y) + g(y),

where “·” is the inner product, is t-resilient, with t = n− 1. �

As usual, TFqm/Fq
denotes the trace map z 7→

∑m−1
j=0 zq

j

. Then,

– for each non-zero scalar a ∈ Fqm−{0}, the map Fqm → Fq, z 7→ TFqm/Fq
(az),

is balanced, and
– for each non-zero vector b ∈ Fnqm − {0}, the map Fnqm → Fq defined over

the vector space Fnqm , x 7→ TFqm/Fq
(b · x), is balanced as well.

Let f : Fnqm → Fqm be a t-resilient map with t < n. Then, for any non-zero
scalar a ∈ Fqm −{0}, the map x 7→ a f(x) is t-resilient, hence balanced. Thus,
the collection of points x ∈ Fnqm such that f(x) 6= 0, namely

Nf = f−1(Fqm − {0}) ⊂ Fnqm , (11)

is such that |Nf | = qm(n−1)(qm − 1). Let us fix an enumeration

ν : {0, . . . , qm(n−1)(qm − 1)− 1} → Nf = Fnqm − f−1(0), (12)

say Nf = (ν(ι))
qm(n−1)(qm−1)−1
ι=0 . Under these conditions, by Corollary 1 at [24],

we may state a more general result than Corollary 2 at [24]:
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Whenever (a, b) ∈ Fqm × Fnqm − {(0, 0)} is such that wH(b) ≤ t, where wH
denotes the Hamming weight, the map

γabf : Fnqm → Fq , x 7→ γabf (x) = TFqm/Fq
(a f(x) + b · x), (13)

is balanced.
On one side, fixed (a, b) ∈ Fqm × Fnqm − {(0, 0)}, we have

Nf =
(
Nf ∩ γ−1abf (0)

)
∪
(
Nf ∩ (Fnqm − γ−1abf (0))

)
,

then necessarily ∣∣∣Nf ∩ (Fnqm − γ−1abf (0))
∣∣∣ > 2. (14)

On the other side,
[
γabf (x) = 0 ⇔ a f(x) + b · x ∈ ker

(
TFqm/Fq

)]
. Suppose

that x ∈ Nf , i.e. f(x) 6= 0, then the map a 7→ a f(x) is a permutation within
Fqm , hence necessarily there exists an element a ∈ Fqm−{0} such that a f(x) 6∈
ker
(
TFqm/Fq

)
. Thus

∀x ∈ Nf ∃(a, b) ∈ Fqm × Ftqm − {(0, 0)} : γabf (x) 6= 0. (15)

Define

cabf = [γabf (x)]x∈Nf
∈ Fq

m(n−1)(qm−1)
q (16)

where each cabf is regarded as a column vector, namely, as a matrix of order
(qm(n−1)(qm − 1))× 1. By identifying Ftqm with Ftqm ⊕ {0n−t} ⊂ Fnqm , we may
define

Cf = {cabf | a ∈ Fqm & b ∈ Ftqm}. (17)

Proposition 4 Let ei = (δij)
n−1
j=0 be the i-th vector in the canonical basis of

Fnqm , where δij is the Kronecker delta, and α ∈ Fqm be a primitive element,

i.e.
(
αk
)m−1
k=0

is a basis of Fqm over Fq.
Let D =

{
αk ei| 0 ≤ i ≤ t− 1 , 0 ≤ k ≤ m− 1

}
⊂ Fnqm . Then

Df =
(
cαk0f

)m−1
k=0

∪ (c0df )d∈D

is a basis of the linear code Cf defined by (17).

Proof Fix a ∈ Fqm and a vector of the form b = (b0, . . . , bt−1, 0, . . . , 0) ∈
Ftqm ⊕ {0n−t}. By writing, for each i = 0, . . . , t − 1, bi =

∑m−1
k=0 bikα

k ∈ Fqm ,
we have

b =
t−1∑
i=0

biei =

t−1∑
i=0

m−1∑
k=0

bikα
kei =

t−1∑
i=0

m−1∑
k=0

bikdik,

where dik = αk ei, k ∈ {0, . . . ,m− 1}.
We claim that the vector cabf is a linear combination of the elements in

Df .
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For each x ∈ Fnqm :

γabf (x) = TFqm/Fq
(a f(x) + b · x)

= TFqm/Fq

((
m−1∑
k=0

akα
k

)
f(x) +

(
t−1∑
i=0

m−1∑
k=0

bikdik

)
· x

)

= TFqm/Fq

(
m−1∑
k=0

ak
(
αk f(x)

)
+

t−1∑
i=0

m−1∑
k=0

bik (dik · x)

)

=

m−1∑
k=0

akTFqm/Fq

(
αk f(x)

)
+

t−1∑
i=0

m−1∑
k=0

bikTFqm/Fq
(dik · x) ,

hence cabf ∈ LFp
(Cf ).

Now, let us check that Df is linearly independent. Suppose that

m−1∑
k=0

akTFqm/Fq

(
αk f(x)

)
+

t−1∑
i=0

m−1∑
k=0

bikTFqm/Fq
(dik · x) = 0.

Thus, for a =
∑m−1
k=0 akα

k and b =
∑t−1
i=0

∑m−1
k=0 bikdik we have that for all

x ∈ Fnqm , γabf (x) = 0. Then, for these special a and b, γabf is not a balanced
map. This entails a = 0 and b = 0 and all coefficients ak and bik are zero. The
proof of the proposition is thus complete.

Corollary 2 The code Cf is a linear [qm(n−1)(qm − 1), (1 + t)m]-code.

From the above discussion, the generator matrix for the code Cf is G ∈

F((1+t)m)×(qm(n−1)(qm−1))
q whose transpose is

GT =
[
c10f cα0f · · · cαm−10f‖

c0d00f · · · c0d0,m−1f |
...

c0dt−1,0f · · · c0dt−1,m−1f

]T ∈ F(qm(n−1)(qm−1))×((1+t)m)
q (18)

where the column vectors cabf are those defined at eq. (16) (as a matter of
notation: the array at (18) should be read as a single row of length (1 + t)m
in which each entry is a column vector of dimension qm(n−1)(qm− 1)). Hence,
the rows of the generator matrix are of the form cTabf for some a ∈ Fqm and
b ∈ Fnqm .

Due to relations (13) and (16), Cf is certainly a Fq-linear space, by (14)
it has minimum weight greater than 2, and by (15), Cf has no zero constant
coordinate.

Proposition 5 No column of the generator matrix G is zero. (Or equivalently,
no row of the matrix GT , as displayed in (18), is zero.)
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In the sequel, we will enumerate the rows of G as follows:
For any k ∈ {0, . . . , (1 + t)m− 1} let k0 = k mod m and k1 = k−k0

m . Then
k = k1m+ k0. Let

µ(k) =

{
(αk0 , 0) if k1 = 0
(0, dk1−1,k0) = (0, αk0ek1−1) if k1 > 0

(19)

Then, according with (18), G =
[
cTµ(k)f

](1+t)m−1
k=0

.

Proposition 6 The dual code C⊥f has minimum weight greater than 1, and

besides, for each entry i there is a codeword π ∈ C⊥f such that π(i) 6= 0.

Proof The first assertion follows from Proposition 5. For the second assertion,
we observe:

∀x ∈ Fq
m(n−1)(qm−1)
q :

[
x ∈ C⊥f ⇐⇒ Gx = 0 ∈ F(1+t)m

q

]
.

Let H ∈ F((1+t)m)×(qm(n−1)(qm−1))
q be the row-equivalent row-reduced echelon

matrix of G. The matrix H is obtained from G through row-elementary oper-
ations [11], hence it has the same rank as G, it spans as well the code Cf , and
being the rows of H codewords in Cf they have minimum weight greater than
2. The linear equations system Hx = 0 can be expressed as[

0
0

]
= 0 = Hx = HIxI +HJxJ = [HI HJ ]

[
xI
xJ

]
where HI is a non-singular matrix of order (1 + t)m × (1 + t)m consisting
of (1 + t)m columns of H indexed by I and J is the complement set of I.
Thus, xI = −H−1I HJxJ , namely, (1 + t)m “dependent” variables are put in
terms of qm(n−1)(qm − 1)− (1 + t)m “independent” variables. By assigning
proper values to the independent variables the assertion at the proposition is
obtained.

Proposition 7 Let wmin, wmax be the minimum and maximum weights of
Cf . Then:

`f ≤ wmin ≤ wmax ≤ uf (20)

where

`f = qm(n−1) (qm−1(q − 1)− 1
)

+

{
1 if f(0) = 0
0 if f(0) 6= 0

and

uf = qmn−1(q − 1).

Proof We recall and point out the following remarks:

– The length of the linear code Cf is qm(n−1)(qm − 1).
– Since f : Fnqm → Fqm is t-resilient, it is balanced, hence

∣∣f−1(0)
∣∣ = qm(n−1).
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– For any (a, b) ∈ Fqm × Fnqm − {(0, 0)}, the map

γabf : Fnqm → Fq , γabf : x 7→ TFqm/Fq
(a f(x) + b · x)

is balanced, hence
∣∣∣γ−1abf (0)

∣∣∣ = qmn−1.

Besides, he following implication holds trivially: [f(0) = 0 ⇒ γabf (0) = 0] .

Let cabf = [γabf (x)]x∈Nf
be an arbitrary word in the code Cf , with a ∈ Fqm ,

b ∈ Ftqm and the set Nf defined in (11). We have f−1(0) = Fnqm − Nf . The
vector space Fnqm can be partitioned by the following sets:

– S00 = f−1(0) ∩ γ−1abf (0),

– S01 = f−1(0) ∩ (Fnqm − γ−1abf (0)),

– S10 = Nf ∩ γ−1abf (0),

– S11 = Nf ∩ (Fnqm − γ−1abf (0)).

Thus, writing sij = |Sij |, the following relations are immediate:

s00 + s01 = qm(n−1) s00 + s10 = qmn−1

s10 + s11 = qm(n−1)(qm − 1) s01 + s11 = qmn−1(q − 1)
(21)

where w(cabf ) = s11 is the weight of the codeword cabf . From (21) we obtain,

s00 = w(cabf )− qm(n−1) (qm−1(q − 1)− 1
)
, (22)

s01 = qmn−1(q − 1)− w(cabf ), (23)

s10 = qm(n−1)(qm − 1)− w(cabf ).

Clearly qm(n−1)(qm − 1) ≥ qmn−1(q − 1), thus (22) and (23) establish lower
and upper bounds for the weight of the codeword, just because s00, s01 are
non-negative integers.

On one extreme, for w(cabf ) = qm(n−1) (qm−1(q − 1)− 1
)

we have

s00 = 0 , s01 = qm(n−1) , s10 = qmn−1,

while on the other extreme, for w(cabf ) = qmn−1(q − 1),

s00 = qm(n−1) , s01 = 0 , s10 = qm(n−1)(qm−1 − 1).

If f(0) = 0 then 0 ∈ S00, hence w(cabf ) ≥ qm(n−1) (qm−1(q − 1)− 1
)

+ 1.
The proposition’s claim (20) follows.

Let us recall an important result:

Theorem 2 (Carlet et al. [7]) Let C be a [n, k]q-linear code and let wmin,
wmax be its minimum and maximum weights. If

wmin
wmax

>
q − 1

q
(24)

then any non-zero codeword in C is minimal (in the sense of definition (1)).
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Proposition 8 Whenever q ≥ 2, all non-zero codewords in the code Cf are
minimal.

Proof The polynomial Pmn(X) = Xmn−1−Xmn−2−Xmn−m+ 1 is such that
the following implication holds:

q ≥ 2 =⇒ Pmn(q) > 0.

But the following relations are equivalent:

Pmn(q) > 0⇐⇒
(
q − 1

qm(n−1)−1

)
< qm−1(q − 1)

⇐⇒ 1

q − 1

(
q − 1

qm(n−1)−1

)
< qm−1

⇐⇒
mn−m−1∑
k=0

1

qk
< qm−1. (25)

Now, (20) and the relation (25) entail the relation (24). Hence, the result
follows from Theorem 2.

3.2 Using the introduced code for VSSSS

Let q be the power of a prime number p, and m,n ∈ Z+. Let f : Fnqm → Fqm
be a resilient map as introduced in Section 3. Let Cf be the linear code defined
at relation (17). Cf is a linear [qm(n−1)(qm − 1), (1 + t)m]-code, according to
Proposition 4.

The general results quoted in Section 2.1 are applied directly to the linear
code Cf defined in eq. (17). In particular from Theorem 1 and the comments
thereafter, we have that for Massey’s SSS over the dual code C⊥f , the codewords
in Cf are minimal.

According to Proposition 5, the introduced generator matrix G of Cf has
no zero constant coordinate. Thus, all participants contribute effectively in the
secret recovery processes. Since also the generator matrix of C⊥f has no zero
constant coordinate then no participant will receive a zero share.

The construction given at Section 2.3.2, using the code Cf as the code D,
gives a VSSSS that is (Γ, q−r)-robust, with k = (1 + t)m and involving up to
qm(n−1)(qm − 1) participants, including the dealer.

Thus within this paper, we have introduced a VSSSS whose information
rate is 1

2 and it is (Γ, q−r)-robust; in the introduced VSSSS no null shares ap-
pear; when applied the shown construction to the linear code based on reslient
maps of Section 3, then the VSSSS has parameters that can entirely be cal-
culated, the cheating probabilities can be exponentially be decreased in terms
of k, and finally, the VSSSS is an application of the balanced functions (13)
obtained by resilient maps.
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