
Λ◦λ :
A Functional Library for Lattice Cryptography

Eric Crockett* Chris Peikert†

November 24, 2015

Abstract

This work describes the design and implementation of Λ◦λ, a general-purpose software library
for lattice cryptography, written in the functional and strongly typed language Haskell. In comparison
with several prior implementations of lattice-based cryptographic schemes, Λ◦λ has several novel and
distinguishing features, which include:

• Generality and modularity: Λ◦λ defines simple but general interfaces for the lattice cryptography
“toolbox,” allowing for a wide variety of cryptographic schemes to be expressed very naturally
and concisely. For example, we implement an advanced fully homomorphic encryption (FHE)
scheme in as few as 2–5 lines of code per feature, via code that very closely matches the scheme’s
mathematical definition.

• Parallelism: Λ◦λ automatically exploits multi-core parallelism, achieving nearly linear speedups
per core. It also allows for the use of other parallel “backends” (e.g., based on GPUs or other
specialized hardware), with no changes to application code.

• Theory affinity: Λ◦λ is designed from the ground-up around the specialized ring representations, fast
algorithms, and worst-case hardness proofs that have been developed for the Ring-LWE problem
and its cryptographic applications. In particular, Λ◦λ implements fast algorithms for sampling
from theory-recommended error distributions over arbitrary cyclotomic rings, and provides tools
for maintaining tight control of error growth in cryptographic schemes.

• Advanced features: Λ◦λ exposes the rich hierarchy of cyclotomic rings to cryptographic applications.
We use this to give the first-ever implementation of a set of FHE operations collectively known as
“ring switching,” and also describe a more efficient variant that we call “ring tunneling.”

Finally, we document a variety of perspectives, objects, and algorithms related to practical and
theoretically sound usage of Ring-LWE in cyclotomic rings, which we believe will serve as a useful
reference for future implementations.

*School of Computer Science, Georgia Institute of Technology.
†Department of Computer Science and Engineering, University of Michigan. Much of this work was done while the author

was at the Georgia Institute of Technology. This material is based upon work supported by the National Science Foundation under
CAREER Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, by the Alfred P. Sloan Foundation, and
by a Google Research Award. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation, DARPA or the U.S. Government, the
Sloan Foundation, or Google. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

1

Contents

1 Introduction 4
1.1 Introducing Λ◦λ . 4
1.2 Why Haskell? . 5
1.3 Overview and Paper Organization . 6
1.4 Limitations and Future Work . 7

2 Integer and Modular Arithmetic 8
2.1 Representing Z and Zq . 8
2.2 Reduce and Lift . 9
2.3 Rescale . 9
2.4 CRTrans . 10
2.5 Gadgets . 11
2.6 Type-Level Arithmetic for Cyclotomic Indices . 12

3 Cyclotomic Rings 13
3.1 Mathematical Background . 13
3.2 Safe Interface: Cyc . 15
3.3 Unsafe Interface: UCyc . 17
3.4 UCyc Implementation . 18

3.4.1 Representations . 18
3.4.2 Arithmetic Operations . 18
3.4.3 Promoting from Base Ring to Cyclotomics . 19

4 Homomorphic Encryption in Λ◦λ 20
4.1 Keys, Plaintexts, and Ciphertexts . 21
4.2 Encryption and Decryption . 22
4.3 Homomorphic Addition and Multiplication . 23
4.4 Modulus Switching . 24
4.5 Key Switching and Linearization . 24
4.6 Ring Tunneling . 26

A Haskell Background 32
A.1 Types . 32
A.2 Type Classes . 33

B More on Type-Level Cyclotomic Indices 34
B.1 Promoting Factored Naturals . 34
B.2 Applying the Promotions . 35

C Sparse Decompositions and Haskell Framework 35
C.1 Sparse Decompositions . 36
C.2 Haskell Framework . 36

2

D Tensor Interface and Implementation 38
D.1 Mathematical Background . 38

D.1.1 Cyclotomic Rings and Powerful Bases . 38
D.1.2 (Tweaked) Trace, Dual Ideal, and Decoding Bases 41
D.1.3 Chinese Remainder Bases . 43

D.2 Single-Index Transforms . 44
D.2.1 Prime-Power Factorization . 44
D.2.2 Embedding Scalars . 44
D.2.3 Converting Between Powerful and Decoding Bases 44
D.2.4 Multiplication by gm . 45
D.2.5 Chinese Remainder and Discrete Fourier Transforms 46
D.2.6 Generating (Tweaked) Gaussians in the Decoding Basis 46

D.3 Two-Index Transforms and Values . 48
D.3.1 Prime-Power Factorization . 48
D.3.2 Coefficients in Relative Bases . 48
D.3.3 Embed Transforms . 48
D.3.4 Twace Transforms . 49

D.4 CRT Sets . 50
D.4.1 Mathematical Background . 50
D.4.2 Computing CRT Sets . 51

E Tensor Product of Rings 53

3

1 Introduction

Lattice-based cryptography has seen enormous growth over the past decade, due to attractive features
like apparent resistance to quantum attacks; good efficiency and parallelism, especially via the use of
algebraically structured lattices arising from rings (e.g., [HPS98, Mic02, LPR10]); and versatile cryptographic
constructions like identity-based, attribute-based, and fully homomorphic encryption (e.g., [GPV08, Gen09,
BV11b, BGV12, GSW13, GVW13, BGG+14]).

The past few years have seen a movement toward the practical implementation of lattice-based schemes,
with an impressive array of results. To date, each such implementation has been specialized to a particular
cryptographic primitive (and sometimes even to a specific computational platform), e.g., collision-resistant
hashing (using SIMD instruction sets) [LMPR08], digital signatures [GLP12, DDLL13], fully homomorphic
encryption (FHE) [NLV11, HS] (using GPUs and FPGAs [WHC+12, CGRS14]), and key-establishment
protocols [BCNS15, ADPS15]. However, these systems share little common ground in their interfaces and
implementations, and it is not easy to adapt them to the many other kinds of lattice-based constructions.

1.1 Introducing Λ◦λ

This work describes the design and implementation of Λ◦λ, a general-purpose software library for lattice-
based cryptography, written in the functional, strongly typed programming language Haskell.1,2 As with
prior implementations, our main focus is on cryptosystems defined over cyclotomic rings, because they lie at
the heart of efficient lattice-based cryptography (see, e.g., [HPS98, Mic02, LPR10, LPR13]). However, Λ◦λ
has several novel properties that distinguish it in scope and functionality from prior implementations, as we
now discuss.

Generality, modularity, and concision: Λ◦λ defines a collection of simple but general interfaces and
implementations for the lattice cryptography “toolbox,” i.e., the handful of core operations that are shared
across a wide variety of modern cryptographic constructions, from basic encryption and authentication
primitives to advanced homomorphic and attribute-based systems. This allows cryptographic schemes to be
expressed rather easily and naturally in Λ◦λ, via code that closely mirrors their mathematical definitions. For
example, we implement a full-featured FHE scheme in as few as 2–5 lines of code per feature.

In addition, Λ◦λ supports arbitrary cyclotomic rings. By contrast, most prior implementations are limited
to the narrow subclass of two-power cyclotomics (which are algorithmically the simplest case). In Λ◦λ, all
cyclotomic rings are on “equal footing,” i.e., it is easy to implement cryptographic schemes generically, and
then instantiate them to work in any satisfactory cyclotomic. We point out that many advanced techniques in
ring-based cryptography, such as “plaintext packing” and homomorphic SIMD operations [SV10, SV11],
inherently require non-two-power cyclotomics when using characteristic-two plaintext spaces like F2k .

Performance and parallelism: in our preliminary experiments, Λ◦λ delivers performance in the same
league as that of specialized implementations in lower-level languages like C/C++, for comparable crypto-
graphic applications. In addition, Λ◦λ automatically exploits multi-core parallelism, providing near-linear
speedups in the number of cores. Other “backends,” e.g., based on specialized hardware like GPUs, can also
be implemented and easily plugged in without requiring any changes to application code.

1The name Λ◦λ refers to the combination of lattices and functional programming, which are often signified by Λ and λ,
respectively. The recommended pronunciation is “L O L.”

2Λ◦λ is available on Hackage, the Haskell community’s central repository, and may be installed via cabal install lol. The
latest version is also available at https://github.com/cpeikert/Lol.

4

https://github.com/cpeikert/Lol

Theory affinity: Λ◦λ is designed from the ground-up around the specialized ring representations, fast
algorithms, and worst-case hardness proofs developed in [LPR10, LPR13] for the design and analysis of Ring-
LWE-based cryptosystems (in arbitrary cyclotomic rings). To our knowledge, Λ◦λ is the first implementation
of these techniques, which include:

• fast and modular algorithms for converting among the three most useful representations of ring elements,
namely, those corresponding to the powerful, decoding, and Chinese Remainder Theorem (CRT) bases;

• fast algorithms for sampling from “theory-recommended” error distributions over rings—i.e., those for
which the Ring-LWE problem enjoys provable worst-case hardness—for use in encryption and related
operations;

• proper use of the powerful- and decoding-basis representations to maintain tight control of error growth
under various cryptographic operations, and for the best error tolerance in decryption.

We especially emphasize the importance of using appropriate error distributions for Ring-LWE, because
ad-hoc instantiations that are not supported by worst-case hardness proofs can turn out to be completely
insecure (see, e.g., [ELOS15, CLS15]).

Advanced features: Λ◦λ exposes the rich hierarchy of cyclotomic rings, by making subring and extension-
ring relationships accessible to cryptographic applications. Building on this, Λ◦λ also provides the first
implementation of a set of homomorphic operations collectively known as ring-switching [BGV12, GHPS12,
AP13]. Ring-switching enables the homomorphic evaluation of certain structured linear transforms, which
has applications to, e.g., asymptotically efficient “bootstrapping” algorithms for FHE [AP13]. In more detail:

• We document and implement a variety of important objects, linear transforms, and fast algorithms
related to subring and extension-ring relations on cyclotomics. In particular, we describe simple
linear-time algorithms for the core embed and “tweaked” trace operations in the three main bases of
interest (powerful, decoding, and CRT), and for computing the relative analogues of these bases for
cyclotomic extension rings.

• We describe and implement a more efficient variant of ring-switching, which we call ring tunneling.
While the prior technique from [AP13] “hops” from one ring to another through a common extension
ring to evaluate a linear function, our new approach “tunnels” through a common subring, which makes
it more efficient. In addition, we show how the evaluated linear function can be integrated into the
accompanying key-switching step, thus unifying two operations into a simpler and even more efficient
one.

1.2 Why Haskell?

Haskell has several properties that make it an excellent match for our goals. These include:

1. Elegant, functional syntax: Haskell’s syntax is very mathematical, which yields a close match between
the definitions of lattice operations and their implementations in code.

2. Purity (“no side effects”): By default, computations cannot mutate state or otherwise modify their
environment, so invoking a function on the same input always produces the same output. This makes
code easier to reason about and test, and is a natural fit for the kinds of mathematical operations used
in lattice cryptography. “Effectful” computations (e.g., those performing input/output or using random
numbers) are still possible, but must be embedded in a structure that precisely delineates what effects
are allowed. This likewise enforces discipline and eases analysis, leading to more reliable code.

5

3. Strong, static typing: Haskell is statically typed, i.e., every expression has a type that can be checked
for validity at compile time. This catches many common classes of programming errors very early on,
making for safer code.3 Static typing can also yield faster programs, by eliminating the need for many
runtime checks and enabling other type-specific optimizations. Finally, Haskell’s type system lets the
programmer express rich constraints on types, ensuring that only legal and meaningful expressions
typecheck. For example, Λ◦λ uses such constraints to restrict certain operations to valid subrings or
extension rings.

4. Power and concision: Haskell natively supports many powerful abstractions like higher-order functions,
functors and monads, and embedded domain-specific languages (DSLs). These allow the programmer
to express computations at a high level of abstraction and modularity. For example, we use these tools
in Λ◦λ to concisely express a variety of important linear transformations in terms of their “sparse
decompositions,” and to automatically derive corresponding fast algorithms.

5. Performance and parallelism: Well-crafted Haskell programs tend to run more efficiently than those
written in other high-level languages. In some cases, compiled Haskell code can even be as fast or faster
than hand-tuned C code (see, e.g., [Ste08]). Haskell also has substantial library support for expressing
data-parallel computations (e.g., [KCL+10, CKL+11]), especially the “embarrassingly parallel” ones
that are abundant in lattice cryptography.

For the reader who is new to Haskell, in Appendix A we give a brief tutorial that provides sufficient
background to understand the code fragments appearing in this paper.

1.3 Overview and Paper Organization

The components of Λ◦λ are arranged in a few main layers of interfaces and implementations; the remainder
of this paper dedicates a section to each one in turn. From the bottom up, they are:

Integer layer (Section 2 and Appendix B): This layer contains interfaces and implementations for domains
like the integers Z and its quotient rings Zq = Z/qZ. This includes specialized operations like rescaling
and “(bit) decomposition,” which are used across a wide variety of cryptographic schemes. This layer
also contains tools for representing and operating on moduli and cyclotomic indices at the type level,
which enable static (compile-time) verification that all operations are mathematically valid.

Tensor layer (Appendices C and D): This layer’s main interface, called Tensor, encapsulates all the “back-
end” linear transformations and special values needed for working efficiently in cyclotomic rings,
building on the mathematical framework developed in [LPR13]. So far, Λ◦λ provides two implementa-
tions of Tensor, one in C and the other in pure Haskell. The latter is built upon the repa library for
parallel array operations [KCL+10, LCKJ12], together with a custom domain-specific language for
expressing “sparse decompositions” of linear transforms (see Appendix C). Because the tensor layer is
completely hidden from typical cryptographic applications, we defer to Appendix D the details of its
design and implementation, which include several supporting linear transforms and algorithms that
have not previously appeared in the literature.

Cyclotomic layer (Section 3): This layer defines data types and interfaces that represent cyclotomic rings
and their cryptographically relevant operations (including functions that map between different rings).
Our implementation is essentially a thin wrapper around Tensor, which automatically manages the
internal representations of ring elements to make operations as efficient as possible.

3A common joke about Haskell code is “if it compiles, it must be correct.”

6

Cryptography layer (Section 4): This layer consists of any implementations of cryptographic schemes that
rely upon the lower layers. As a detailed example, we describe an advanced Ring-LWE-based FHE
scheme that unifies and refines a broad collection of features from a long series of works [LPR10,
BV11a, BV11b, BGV12, GHS12, GHPS12, AP13]. We also demonstrate how its implementation in
Λ◦λ very closely and concisely matches its mathematical definition.

1.4 Limitations and Future Work

Security. While Λ◦λ has many attractive functionality and safety features, we stress that it is still an
early-stage research prototype, and is not yet recommended for production purposes—especially in scenarios
where security is vital. Potential security issues include, but may not be limited to:

• Most functions in Λ◦λ are not constant time, and may therefore leak secret information via timing or
other side channels. (Protecting lattice cryptography from side-channel attacks is an important area for
further research.)

• While Λ◦λ implements a fast algorithm for sampling from theory-recommended error distributions, the
current implementation is somewhat naïve in terms of precision. By default, we use double-precision
floating-point arithmetic to approximate a sample from a continuous Gaussian, before rounding. We
have not yet analyzed the associated security implications, if any. (We note that Ring-LWE is robust to
small variations in the error distribution, as shown in, e.g., [LPR10, Section 5].)

Discrete Gaussian sampling. Many lattice-based cryptosytems, such as digital signatures and identity-
based or attribute-based encryption schemes following [GPV08], require sampling from a discrete Gaussian
probability distribution over a given lattice coset, using an appropriate kind of “trapdoor.” Supporting this
operation in Λ◦λ is left to future work, for the following reasons. While it is straightforward to give a
clean interface for discrete Gaussian sampling (similar to the Decompose class described in Section 2.5),
providing a secure and practical implementation is very subtle, especially for arbitrary cyclotomic rings:
one needs to account for the non-orthogonality of the standard bases, use practically efficient algorithms,
and ensure sufficient fidelity to the desired distribution using only finite precision. Although there has been
good progress in addressing these issues (see, e.g., [DN12, LPR13, DP15b, DP15a]), obtaining a complete
practical solution still requires further research.

Language layer. Rich lattice-based cryptosystems, especially homomorphic encryption, involve a large
number of tunable parameters and different routes to the user’s end goal. In current implementations, merely
expressing a homomorphic computation requires expertise in the intricacies of homomorphic encryption
itself, and of its particular implementation. For future work, we envision domain-specific languages (DSLs)
that allow the programmer to express a desired plaintext computation at a reasonably high level above the
“native instruction set” of the homomorphic encryption scheme. A specialized compiler would then translate
the user’s description into a homomorphic computation (on ciphertexts) using the cryptosystem’s instruction
set, and possibly even instantiate secure parameters for it. Because Haskell is an excellent host language for
embedded DSLs, we believe that Λ◦λ will serve as a strong foundation for such tools.

Applications. For future work, we envision implementations of a wide variety of other lattice-based
cryptosystems in Λ◦λ. Apart from digital signatures and identity/attribute-based encryption (which use
discrete Gaussian sampling), other primitives that can be implemented using Λ◦λ’s existing interfaces include:

7

standard Ring-LWE-based [LPR10, LPR13] and NTRU-style encryption [HPS98, SS11], encryption with
security under chosen-ciphertext attacks (e.g., from [MP12]), and pseudorandom functions (PRFs) [BPR12,
BLMR13, BP14]. Using the above-mentioned language layer, we also plan to implement a simple and natural
homomorphic evaluation of lattice-based PRFs, in the same spirit as prior homomorphic evaluations of
AES [GHS12, CLT14].

Whole-program optimization. Currently, Λ◦λ’s implementation of cyclotomic rings uses a heuristic to
decide which representation will be most efficient for upcoming operations (e.g., it prefers the Chinese
remainder representation, which is best for the most commonly invoked operations). It also allows the client
to provide “advice” about the representation, which can prevent duplicate or unnecessary transformations
in certain contexts. However, the heuristic is limited because it lacks information about the surrounding
computation, and client-specified advice is error prone and requires the application programmer to have
specialized knowledge. For future work, we envision a two-phase process that first “lazily” builds a description
of the entire computation from the client code, then analyzes it to determine the best representation for each
intermediate value before actually executing. Such a two-phase design is typical for embedded languages,
and is easy to implement in Haskell.

2 Integer and Modular Arithmetic

At its core, lattice-based cryptography is built around arithmetic in the ring of integers Z and quotient rings
Zq = Z/qZ of integers modulo q, i.e., the cosets x+ qZ with the usual addition and multiplication operations.
In addition to these standard ring operations, a variety of specialized operations are also widely used, e.g.,
“lifting” a coset in Zq to its smallest representative in Z, “rescaling” one quotient ring Zq to another, and
“decomposing” a Zq-element as a vector of small Z-elements.

Here we recall the relevant mathematical background for all these domains and operations, and describe
how they are represented and implemented in Λ◦λ. This will provide a foundation for the next section,
where we show how all these operations are very easily “promoted” from base rings (like Z and Zq) to
cyclotomic rings, to support ring-based cryptosystems. (Similar promotions can also easily be done to support
plain-LWE/SIS systems, but we elect not to do so in our library, mainly because those systems are not as
practically efficient.)

2.1 Representing Z and Zq
We use fixed-precision primitive Haskell types like Int and Int64 to represent the integers Z, and define
our own specialized types like ZqBasic q z to represent Zq. Here the q parameter is a “phantom” type
that represents the value of the modulus q, while z is an integer type (like Int64) specifying the underlying
representation of the integer residues modulo q.

This approach has multiple advantages: by defining ZqBasic q z as an instance of Ring, we can use
(+) and (*) as usual without needing to write any explicit modular reductions. More importantly, at compile
time the type system disallows operations on incompatible types—e.g., attempting to add a ZqBasic q1 z to
a ZqBasic q2 z for distinct q1, q2—with no runtime overhead. Finally, we implement ZqBasic q z as a
newtype for z, which means that these types have identical representations, and there is no runtime overhead
associated with converting between them.

8

CRT/RNS representation. Some applications, like homomorphic encryption, can require moduli q that
are too large for standard fixed-precision integer types. Many languages have support for unbounded integers
(e.g., Haskell’s Integer type), but the operations are relatively slow. Moreover, the values have varying
sizes, which means they cannot be stored efficiently in “unboxed” form in arrays. A standard solution is to
use the Chinese Remainder Theorem (CRT), also known as Residue Number System (RNS), representation:
choose q to be the product of several pairwise coprime (and sufficiently small) q1, . . . , qt, so that we have a
ring isomorphism between Zq and the product ring Zq1 × · · · × Zqt , where addition and multiplication are
both component-wise.

In Haskell, using the CRT representation—and more generally, working in product rings—is very natural
using the generic pair type (,): we simply adopt the convention that whenever types a and b respectively
represent rings A and B, the pair type (a,b) represents the product ring A×B. This just requires defining
the obvious instances of Additive and Ring for (a,b)—which in fact has already been done for us by
the numeric prelude. Products of more than two rings are immediately supported by nesting pairs, e.g.,
((a,b),c), or by using higher-arity tuples like (a,b,c). A final nice feature is that a pair (or tuple) has fixed
representation size as long as all its components do, so arrays of pairs can be stored directly in “unboxed”
form, without requiring an extra layer of indirection.

2.2 Reduce and Lift

Two basic, widely used operations are reducing a Z-element to its residue class in Zq, and lifting a Zq-
element to its smallest integer representative, i.e., in Z ∩ [− q

2 ,
q
2). These operations are examples of the

natural homomorphism, and canonical representative map, for arbitrary quotient groups. Therefore, we
define class (Additive a, Additive b) => Reduce a b to represent that b is a quotient group of a,
and class Reduce a b => Lift b a for computing canonical representatives.4 These classes respectively
introduce the functions

reduce :: Reduce a b => a -> b
lift :: Lift b a => b -> a

where reduce ◦ lift should be the identity function.
Instances of these classes are straightforward. We define an instance Reduce z (ZqBasic q z) for any

suitable integer type z and q representing a modulus that fits within the precision of z, and a corresponding
instance for Lift. For product groups (pairs) used for CRT representation, we define the obvious instance
Reduce a (b1,b2) whenever we have instances Reduce a b1 and Reduce a b2. However, we do not have
(nor do we need) a corresponding Lift instance, because there is no sufficiently generic algorithm to combine
canonical representatives from two quotient groups.

2.3 Rescale

Another operation commonly used in lattice cryptography is rescaling (sometimes also called rounding) Zq
to a different modulus. Mathematically, the rescaling operation b·eq′ : Zq → Zq′ is defined as

bx+ qZeq′ :=
⌊
q′

q · (x+ qZ)
⌉

=
⌊
q′

q · x
⌉

+ q′Z ∈ Zq′ , (2.1)

4Precision issues prevent us from merging Lift and Reduce into one class. For example, we can reduce an Int into Zq1 ×Zq2 if
both components can be represented by Int, but lifting may cause overflow.

9

where b·e denotes rounding to the nearest integer. (Notice that the choice of representative x ∈ Z has no
effect on the result.) In terms of the additive groups, this operation is at least an “approximate” homo-
morphism: bx + yeq′ ≈ bxeq′ + byeq′ , with equality when q|q′. We represent the rescaling operation via
class (Additive a, Additive b) => Rescale a b, which introduces the function

rescale :: Rescale a b => a -> b

Instances. A straightforward instance, whose implementation just follows the mathematical definition, is
Rescale (ZqBasic q1 z) (ZqBasic q2 z) for any integer type z and types q1, q2 representing moduli
that fit within the precision of z.

More interesting are the instances involving product groups (pairs) used for CRT representation. A
naïve implementation would apply Equation (2.1) to the canonical representative of x+ qZ, but for large q
this would require unbounded-integer arithmetic. Instead, following ideas from [GHS12], here we describe
algorithms that avoid this drawback.

To “scale up” x ∈ Zq1 to Zq1q2 ∼= Zq1 × Zq2 where q1 and q2 are coprime, i.e., to multiply by q2, simply
output (x · q2 mod q1, 0). This translates easily into code that implements the instance Rescale a (a,b).
Notice, though, that the algorithm uses the value of the modulus q2 associated with b. We therefore require b
to be an instance of class Mod, which exposes the modulus value associated with the instance type. The
instance Rescale b (a,b) works symmetrically.

To “scale down” x = (x1, x2) ∈ Zq1×Zq2 ∼= Zq1q2 to Zq1 , we essentially need to divide by q2, discarding
the (signed) remainder. To do this,

1. Compute the canonical representative x̄2 ∈ Z of x2.

(Observe that (x′1 = x1 − (x̄2 mod q1), 0) ∈ Zq1 × Zq2 is the multiple of q2 closest to x = (x1, x2).)

2. Divide by q2, outputting q−1
2 · x′1 ∈ Zq1 .

The above easily translates into code that implements the instance Rescale (a,b) a, using the Lift and
Reduce classes described above. The instance Rescale (a,b) b works symmetrically.

2.4 CRTrans

Fast multiplication in cyclotomic rings is enabled by converting ring elements to the Chinese remainder
representation, using the Chinese Remainder Transform (CRT) over the base ring. This is an invertible
linear transform akin to the Discrete Fourier Transform (over C) or the Number Theoretic Transform (over
appropriate Zq), which has a fast algorithm corresponding to its “sparse decomposition” (see Appendix D.2.5
and [LPR13, Section 3] for further details).

Applying the CRT and its inverse requires knowledge of certain roots of unity, and the inverse of a certain
integer, in the base ring. For this purpose, we define class Ring r => CRTrans r, which exposes the
necessary information for a base ring r:

type CRTInfo r = (Int -> r, r)
crtInfo :: CRTrans r => Int -> Maybe (CRTInfo r)

The function crtInfo, given an integer m, outputs the information required to apply and invert the index-m
CRT over r (note that because the CRT may not exist for certain m, the output type is a Maybe). The
information consists of two components: (1) a function that, given an integer exponent i, returns the ith

10

power of a certain principal mth root of unity ωm in r, and (2) the multiplicative inverse of m̂ in r, where
m̂ = m/2 if m is even, else m̂ = m.5

We give nontrivial instances of CRTrans for ZqBasic q z (representing Zq) for prime q, and for
Complex Double (representing C). In addition, because we use tensors and cyclotomic rings over base
rings like Z and Q, we also need to define trivial instances of CRTrans for Int, Int64, Double, etc., for
which crtInfo always returns Nothing.

2.5 Gadgets

Many advanced lattice cryptosystems use special objects called gadgets [MP12], which support certain
operations as described below. For the purposes of this work, a gadget is a tuple over a quotient ring
Rq = R/qR, where R is a ring that admits a meaningful “geometry.” For concreteness, one can think of R
as merely being the integers Z, but later on we generalize to cyclotomic rings.

Perhaps the simplest gadget is the powers-of-two vector g = (1, 2, 4, 8, . . . , 2`−1) over Zq, where
` = dlg qe. There are many other ways of constructing gadgets, either “from scratch” or by combining
gadgets. For example, one may use powers of integers other than two, mixed products, the Chinese Remainder
Theorem, etc. The salient property of a gadget g is that it admits efficient algorithms for the following tasks:

1. Decomposition: given u ∈ Rq, output a short vector x over R such that 〈g,x〉 = gt · x = u (mod q).

2. Error correction: given a “noisy encoding” of the gadget bt = s · gt + et mod q, where s ∈ Rq and e
is a sufficiently short error vector over R, output s.

A key property is that decomposition and error-tolerant encoding relate in the following way (where the
notation is as above, and ≈ hides a short error vector over R):

s · u = (s · gt) · x ≈ bt · x (mod q).

We represent gadget vectors and their associated operations via the following classes:

class Ring u => Gadget gad u where
gadget :: Tagged gad [u]
encode :: u -> Tagged gad [u]

class (Gadget gad u, Reduce r u) => Decompose gad u r where
decompose :: u -> Tagged gad [r]

class Gadget gad u => Correct gad u where
correct :: Tagged gad [u] -> u

The class Gadget gad u says that the ring u supports a gadget vector indexed by the type gad; the gadget
vector itself is given by the term gadget. Note that its type is actually Tagged gad [u]: this is a newtype
for [u], with the additional type-level context Tagged gad indicating which gadget the vector represents
(recall that there are many possible gadgets over a given ring). This tagging aids safety, by preventing
the nonsensical mixing of values associated with different kinds of gadgets. In addition, Haskell provides

5A principal mth root of unity in r is an element ωm such that ωm
m = 1, and ωm/t

m − 1 is not a zero divisor for every prime t
dividing m. Along with the invertibility of m̂ in r, these are sufficient conditions for the index-m CRT over r to be invertible.

11

generic ways of “promoting” ordinary operations to work within this extra context. (Formally, this is because
Tagged gad is an instance of the Functor class.)

The class Decompose gad u r says that a u-element can be decomposed into a vector of r-elements
(with respect to the gadget index by gad), via the decompose method.6 The class Correct gad u says that a
noisy encoding of a u-element (with respect to the gadget) can be corrected, via the correct method.

Note that we split the above functionality into three separate classes, both because their arguments are
slightly different (e.g., Correct has no need for the r type), and because in some cases we have meaningful
instances for some classes but not others.

Instances. For our type ZqBasic q z representing Zq, we give a straightforward instantiation of the “base-
b” gadget g = (1, b, b2, . . .) and error correction and decomposition algorithms, for any positive integer b
(which is represented as a parameter to the gadget type). In addition, we implement the trivial gadget
g = (1) ∈ Z1

q , where the decomposition algorithm merely outputs the canonical Z-representative of its
Zq-input. This gadget turns out to be useful for building nontrivial gadgets and algorithms for product rings,
as described next.

For the pair type (which, to recall, we use to represent product rings in CRT representation), we give
instances of Gadget and Decompose that work as follows. Suppose we have gadget vectors g1,g2 over
Rq1 , Rq2 , respectively. Then the gadget for the product ring Rq1 × Rq2 is essentially the concatenation
of g1 and g2, where we first attach 0 ∈ Rq2 components to the entries of g1, and similarly for g2. The
decomposition of (u1, u2) ∈ Rq1×Rq2 with respect to this gadget is the concatenation of the decompositions
of u1, u2. All this translates easily to the implementations

gadget = (++) <$> (map (,zero) <$> gadget) <*> (map (zero,) <$> gadget)

decompose (a,b) = (++) <$> decompose a <*> decompose b

In the definition of gadget, the two calls to map attach zero components to the entries of g1,g2, and (++)
appends the two lists. (The syntax <$>, <*> is standard applicative notation, which promotes normal functions
into the Tagged gad context.)

2.6 Type-Level Arithmetic for Cyclotomic Indices

As discussed in the Section 3 below, there is one cyclotomic ring for every positive integer index m. (The
index is also sometimes called the conductor.) The index m, and in particular its factorization, plays a major
role in the definitions of the ring operations. For example, the index-m “Chinese remainder transform” is
similar to a mixed-radix FFT, where the radices are the prime divisors of m. In addition, cyclotomic rings
can sometimes be related to each other based on their indices. For example, the mth cyclotomic can be seen
as a subring of the m′th cyclotomic if and only if m|m′; the largest common subring of the m1th and m2th
cyclotomics is the gcd(m1,m2)th cyclotomic, etc.

In Λ◦λ, a cyclotomic index m is specified by an appropriate type m, and the data types representing
cyclotomic rings (and their underlying coefficient tensors) are parameterized by such an m. Based on this
parameter, Λ◦λ generically derives algorithms for all the relevant operations in the corresponding cyclotomic.
In addition, for operations that involve more than one cyclotomic, Λ◦λ expresses and statically enforces (at
compile time) the laws governing when these operations are well defined.

6For simplicity, here we have depicted r as an additional parameter of the Decompose class. Our actual code adopts the more
idiomatic practice of using a type family DecompOf u, which is defined by each instance of Decompose.

12

We achieve the above properties using Haskell’s type system, with the help of the powerful data kinds
extension [YWC+12] and the singletons library [EW12, ES14]. Essentially, these tools enable the “promotion”
of ordinary values and functions from the data level to the type level. More specifically, they promote every
value to a corresponding type, and promote every function to a corresponding type family, i.e., a function on
the promoted types. We stress that all type-level computations are performed at compile time, yielding the
dual benefits of static soundness guarantees and no runtime overhead.

Implementation. Concretely, Λ◦λ defines a special data type Factored that represents positive integers
by their factorizations, along with several functions on such values. Singletons then promotes all of this to the
type level. This yields concrete “factored types” Fm for various useful values of m, e.g., F1, . . . , F100, F128,
F256, F512, etc. In addition, it yields the following type families, where m1, m2 are variables representing any
factored types:

• FMul m1 m2 (synonym: m1 * m2) and FDiv m1 m2 (synonym: m1 / m2) respectively yield the
factored types representing m1 ·m2 and m1/m2 (if it is an integer; else it yields a compile-time error);

• FGCD m1 m2 and FLCM m1 m2 respectively yield the factored types representing gcd(m1,m2) and
lcm(m1,m2);

• FDivides m1 m2 yields the (promoted) boolean type True or False, depending on whether m1|m2.
In addition, m1 `Divides` m2 is a convenient synonym for the constraint True ~ Divides m1 m2.
(This constraint is used Section 3 below.)

Finally, Λ◦λ also provides several entailments representing number-theoretic laws that the compiler itself
cannot derive from our data-level code. For example, transitivity of the “divides” relation is represented by
the entailment

(k `Divides` l, l `Divides` m) :- (k `Divides` m)

which allows the programmer to satisfy the constraint k|m in any context where the constraints k|` and `|m
are satisfied.

Further details on type-level indices and arithmetic, and how they are used to derive algorithms for
cyclotomic ring operations, may be found in Appendix B.

3 Cyclotomic Rings

In this section we describe our interfaces and implementations for working in cyclotomic rings. The material
is divided in two main parts: in Section 3.2 we describe our “safe” interface, which completely hides from
clients the internal representations of ring elements. Then in Sections 3.3 and 3.4 we describe a lower-level
“unsafe” interface and implementation that allows limited control over the internal representation, along with
functions whose behavior depends on the representation.

3.1 Mathematical Background

To appreciate the material in this section, one only needs the following high-level background; see Section D.1
and [LPR10, LPR13] for many more mathematical and computational details.

13

Cyclotomic rings. For a positive integer m, the mth cyclotomic ring is R = Z[ζm], the ring extension of
the integers Z obtained by adjoining an element ζm having multiplicative order m. The ring R is contained in
the mth cyclotomic number field K = Q(ζm). The minimal polynomial (over the rationals) of ζm has degree
n = ϕ(m), so deg(K/Q) = deg(R/Z) = n. We endow K (and thus R) with a geometry via a certain
function σ : K → Cn called the canonical embedding. E.g., we define the `2 norm on K as ‖x‖2 = ‖σ(x)‖2,
and use this to define Gaussian-like distributions over R and (discretizations of) K.

For cryptographic purposes, there are two particularly important Z-bases of R: the powerful basis pm
and the decoding basis dm. There is also a special element gm ∈ R, which is used for managing error terms
in cryptographic applications, as described later in Section 4.

The mth cyclotomic ring R = Z[ζm] can be seen as a subring of the m′th cyclotomic ring R′ = Z[ζm′] if
and only if m|m′, and in such a case we can embed R into R′ by identifying ζm with ζm

′/m
m′ . In the reverse

direction, we can twace from R′ to R, which is a certain R-linear function that fixes R pointwise. (The name
is short for “tweaked trace,” because the twace is the appropriate variant of the true trace function to our
“tweaked” setting, described next.) The relative powerful basis pm′,m is an R-basis of R′ that is obtained
by “factoring out” (in a formal sense) the powerful basis of R from that of R′, and similarly for the relative
decoding basis dm′,m.

Ring-LWE and (tweaked) error distributions. Ring-LWE is a family of computational problems that
was defined and analyzed in [LPR10, LPR13]. Those works deal with a form of Ring-LWE involving a
special (fractional) ideal R∨ that is dual to R. More specifically, the problem relates to “noisy” products

bi = ai · s+ ei mod qR∨,

where ai ∈ R/qR, s ∈ R∨/qR∨ (so ai ·s ∈ R∨/qR∨), and ei is drawn from some error distribution ψ, which
is a parameter of the problem. In one of the worst-case hardness theorems for Ring-LWE, the distribution ψ
corresponds to a spherical Gaussian Dr of parameter r = αq ≈ n1/4 or more in the canonical embedding.7

Such spherical distributions also behave very well in cryptographic applications.
For practical purposes, it is convenient to use a form of Ring-LWE that does not involveR∨. As suggested

in [AP13], this can be done with no loss in security or efficiency by working with an equivalent “tweaked”
form of the problem, which is obtained by multiplying the noisy products bi by a certain factor t = tm ∈ Rm
for which t ·R∨ = R. Doing so yields new noisy products

b′i = t · bi = ai · (t · s) + (t · ei) mod qR,

where both ai and s′ = t·s reside inR/qR, and the error term t·ei comes from the “tweaked” distribution t·ψ.
Note that when ψ corresponds to a spherical Gaussian (in the canonical embedding), its tweaked form t · ψ
may be very far from spherical, but this is not a problem: the tweaked form of Ring-LWE is entirely equivalent
to the above one involving R∨, because the tweak is reversible. (In Section 4 we show how to properly
manage error terms from the tweaked distribution in cryptographic applications.)

Finally, we remark that the decoding basis of R is merely the “tweaked” decoding basis of R∨ (as
defined in [LPR13]), so all the efficient algorithms described in [LPR13] involving R∨ and its decoding
basis—e.g., for sampling from spherical Gaussians, converting between bases ofR∨, etc.—carry over without
any modification to the tweaked setting.

7Moreover, no subexponential (in n) attacks are known when r ≥ 1 and q = poly(n).

14

3.2 Safe Interface: Cyc

The data type Cyc t m r and its associated operations (see Figure 1) represents the mth cyclotomic ring over
a base ring r—typically, one of Q, Z, or Zq—backed by an underlying Tensor type t (see Section D for
details on Tensor). The functions and instances associated with Cyc represent the cryptographically relevant
operations and values associated with cyclotomic rings. In particular, the interface surrounding Cyc is “safe,”
in that it completely hides the internal representations of ring elements from the client, and it can never
produce a runtime error (assuming all other types t, m, r, etc. satisfy their requisite contracts). Therefore, we
recommend that cryptographic applications use Cyc wherever possible.

Instances. As one might expect, Cyc t m r is an instance of Eq, Additive, Ring, etc., for any ap-
propriate choices of t, m, and r. Therefore, we can use the standard operators (==), (+), (*), etc.,
along with any polymorphic functions that rely upon them. In addition, we naturally “promote” instances
of Reduce, Gadget, Decompose, and others from the base ring r to Cyc t m r. For example, we have
Reduce (Cyc t m z) (Cyc t m zq) whenever we have Reduce z zq.8 These promoted instances are
implemented very generically and concisely, as described below in Section 3.4.3.

Functions. We now describe the main functions that operate on Cyc data (see Figure 1), starting with those
that involve a single index m.

scalarCyc embeds a scalar element from the base ring r into the mth cyclotomic ring over r.

mulG, divG respectively multiply and divide by the special element gm in the mth cyclotomic ring. These
operations are commonly used in applications, and have particularly efficient algorithms in our
representations, which is why we expose them as special functions (rather than, say, just exposing a
value representing gm). Note that because the input may not always be divisible by gm, the output type
of divG is a Maybe.

adviseB for B = Pow, Dec, CRT returns an equivalent ring element that might be represented in, respectively,
the powerful, decoding, or Chinese Remainder Theorem basis (if it exists). This has no externally
visible effect on the results of any operations, but it can serve as a useful optimization hint: if one needs
to compute v * w1, v * w2, etc., then advising that v be in CRT representation can speed up these
operations by avoiding duplicate CRT conversions across the operations.

The following functions relate to sampling error terms from theory-recommend probability distributions:

tGaussian samples an element ofK from the “tweaked” spherical Gaussian distribution t ·Dr, given v = r2.
(See Section 3.1 above for background on, and the relevance of, tweaked Gaussians. The input is
v = r2 because that is more convenient for implementation.) Because the output is random, its type
must be monadic: rnd (Cyc t m r) for MonadRandom rnd.

errorRounded is a discretized version of tGaussian, which generates a sample from the latter and rounds
each decoding-basis coefficient to the nearest integer, thereby producing an output in R.

8However, we do not promote Lift and Rescale instances, because lifting and rescaling are basis dependent, and applications
often need to perform them in a specified basis. Instead, we define liftCyc and rescaleCyc functions, which take arguments that
indicate the desired basis.

15

data Basis = Pow | Dec -- powerful and decoding

scalarCyc :: (Fact m, CElt t r) => r -> Cyc t m r
mulG :: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r
divG :: (Fact m, CElt t r) => Cyc t m r -> Maybe (Cyc t m r)
advisePow, adviseDec, adviseCRT

:: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r

-- for sampling error terms
tGaussian :: (OrdFloat q, ToRational v, MonadRandom rnd, CElt t q, ...)

=> v -> rnd (Cyc t m q)
errorRounded :: (ToInteger z, ...) => v -> rnd (Cyc t m z)
errorCoset :: (ToInteger z, ...) => v -> Cyc t m zp -> rnd (Cyc t m z)

-- for extension rings
embed :: (m `Divides` m’, CElt t r) => Cyc t m r -> Cyc t m’ r
twace :: (m `Divides` m’, CElt t r) => Cyc t m’ r -> Cyc t m r
coeffsCyc :: (m `Divides` m’, CElt t r) => Basis -> Cyc t m’ r -> [Cyc t m r]
powBasis :: (m `Divides` m’, CElt t r) => Tagged m [Cyc t m’ r]
crtSet :: (m `Divides` m’, CElt t r, ...) => Tagged m [Cyc t m’ r]

Figure 1: Representative functions for the Cyc data type. (The CElt t r constraint is a synonym for a
collection of constraints that include Tensor t, along with various constraints on r.)

errorCoset samples an error term from a (discretized) tweaked Gaussian of parameter p · r over a given
coset of Rp = R/pR = Zp[ζm]. This operation is often used in encryption schemes when encrypting
a desired message from the plaintext space Rp.9

Finally, the following functions involve Cyc data types for two indices m|m’; recall that this means we can
view the mth cyclotomic ring as a subring of the m’th one. Notice that in the type signatures, the divisibility
constraint is expressed as m `Divides` m’, and recall from Section 2.6 that this constraint is statically
checked by the compiler and carries no runtime overhead.

embed, twace are respectively the embedding and “tweaked trace” functions between the mth and m’th
cyclotomic rings.

coeffsCyc expresses an element of the m’th cyclotomic ring with respect to the relative powerful or decoding
basis (pm′,m and dm′,m, respectively), as a list of coefficients from the mth cyclotomic.

powBasis is the relative powerful basis pm′,m of the m’th cyclotomic over the mth one.10 Note that the
Tagged m type annotation is needed to specify which subring the basis is relative to.

9The extra factor of p in the Gaussian parameter reflects the connection between coset sampling as used in cryptosystems, and the
underlying Ring-LWE error distribution actually used in their security proofs. Therefore, the input v has a consistent meaning across
all the error-sampling functions.

10We also could have defined decBasis, but it is slightly more complicated to implement, and we have not needed it in any of our
applications.

16

crtSet is the relative CRT set cm′,m of the m’th cyclotomic ring over the mth one, modulo a prime power.
(See Section D.4 for its formal definition and a novel algorithm for computing it.) We have elided
some constraints which say that the base type r must represent Zpe for a prime p.

We emphasize that both powBasis and crtSet are values (of type Tagged m [Cyc t m’ r]), not
functions. Due to Haskell’s laziness, only those values that are actually used in a computation are ever
explicitly computed; moreover, the compiler usually ensures that they are computed only once each and then
memoized.

In addition to the above, we also could have included functions that apply automorphisms of cyclotomic
rings, which would be straightforward to implement in our framework. We leave this for future work, merely
because we have not yet needed automorphisms in any of our applications.

3.3 Unsafe Interface: UCyc

The Cyc data type described in the previous subsection is merely a newtype wrapper around another data
type UCyc, which has a wider but “unsafe” interface. By this we mean that the UCyc interface exposes limited
control over the underlying representation of ring elements, along with functions whose behavior depends on
the current representation. Moreover, for some combinations of operations and representations the behavior
is not well defined, so improper usage of UCyc can result in a runtime error. Therefore, client code must use
unsafe functions correctly, by ensuring that their UCyc inputs are in appropriate representations. (Cyc is itself
a client that does just that, which is why it is safe and recommended over UCyc.)

Instances. As might be expected, UCyc t m r is an instance of all the same classes Eq, Additive, Ring,
Reduce, Gadget, Decompose, etc. as Cyc t m r is. (Indeed, Cyc’s instances are merely costless wrappers
around UCyc’s.) The implementations of these classes are described in Sections 3.4.2 and 3.4.3 below. In
addition, the partially applied type UCyc t m is an instance of the generic “container” classes Functor,
Applicative, Foldable, and Traversable. This allows us to easily and generically “promote” operations
from the base type r to UCyc t m r, as described in Section 3.4.3 below.

forceBasis :: (Fact m, CElt t r) => Maybe Basis -> UCyc t m r -> UCyc t m r
fmapC :: (Fact m, CElt t a, CElt t b) => (a -> b) -> UCyc t m a -> UCyc t m b

Figure 2: Additional functions for the UCyc data type.

Functions. The UCyc type admits safe functions that have the exact same names and descriptions as those
for the Cyc type (see Figure 1). In addition, we have the following unsafe functions (see Figure 2 for their
type signatures):

forceBasis returns an equivalent ring element that is internally represented in a specified r-basis, as
determined by the first argument: Just Pow for the powerful basis, Just Dec for the decoding basis,
and Nothing for an arbitrary r-basis of the implementation’s choice. This function has no externally
visible effect on the results of arithmetic operations like (==), (+), and (*), but, like adviseCRT, it
may affect runtimes by altering the number of basis conversions required by a computation.

More importantly, forceBasis does affect the behavior of UCyc’s instances of the “container” classes
Functor, Applicative, etc. This is because these instances operate on the vector of r-coefficients in
the current representation. See Section 3.4.3 for further details.

17

fmapC is an analogue of the fmap function from the Functor class, but restricted to base types that satisfy
the CElt constraint (whereas fmap must be defined for arbitrary base types). This restriction allows for
more efficient implementations.

3.4 UCyc Implementation

Here we summarize our implementation of UCyc. In short, it is a relatively thin wrapper around an instance of
the Tensor class. (Recall that a Tensor encapsulates a coefficient vector and all the relevant linear transforms
that we may need to perform on it; see Appendix D for full details.) UCyc mainly manages the choice of
internal representation for ring elements, implicitly performing the appropriate conversions (via Tensor
methods) to support efficient ring operations. This design has the advantage of decoupling the higher-level
management from the computation-intensive work, allowing for multiple implementations of the latter
without affecting higher-level code.

3.4.1 Representations

UCyc t m r can represent an element of the mth cyclotomic ring over base ring r in several ways:

• as a tensor of r-coefficients with respect to either the powerful or decoding basis;

• in one of two possible Chinese Remainder Theorem (CRT) representations, the choice of which
depends on the properties of r as described in the next paragraph; or

• when applicable, directly as a scalar from the base ring r, or as an element of the kth cyclotomic
(sub)ring for some k|m.

The last of these representations provides a particularly useful optimization, because applications often need
to treat scalars and subring elements as residing in a larger ring, yet UCyc exploits knowledge of their “true”
domains to operate more efficiently.

The two possible CRT representations are as follows: if there is a CRT basis of index m over r itself,
then UCyc uses it, employing the Chinese remainder transform to convert between the powerful and CRT
bases. Otherwise, UCyc embeds r into a ring r’ that is guaranteed to have a CRT basis of any index, and
stores a tensor of r’-coefficients with respect to this basis. Often, r’ is (some representation of) the complex
numbers C, but the choice of r’ is defined by r itself, and UCyc is entirely agnostic to it. For example, the
associated embedding ring of a product ring (r1,r2) is (r1’,r2’), where ri’ is the embedding ring of ri.

3.4.2 Arithmetic Operations

UCyc implements operations like (==), (+), and (*) in the following way: it converts the inputs to a
“compatible” representation in the most efficient way possible, then computes the output in this representation.
A few representative rules for how this is accomplished include:

• For two scalars from the base ring r, the result is computed and stored as a scalar.

• Arguments from (possibly different) subrings, of indices k1, k2|m, are embedded into the compositum
of the two subrings—i.e., the cyclotomic of index k = lcm(k1, k2), which divides m—and the result is
computed there and stored as a subring element.

• For (+), the arguments are converted to a common representation and added entry-wise.

18

• For (*), if one of the arguments is a scalar from the base ring r, it is simply multiplied by the
coefficients of the other argument (in any r-basis). Otherwise, the two arguments are converted to the
same CRT representation and multiplied entry-wise.

UCyc implements the embed and twace operations in the following way: embed from index m to m’ is
“lazy,” merely storing its argument as a subring element and returning instantly. For twace from index m’
to m, UCyc typically just computes the result in the current representation by invoking the appropriate linear
transformation (from Tensor). However, it is optimized for subring elements: for an element in the k’th
cyclotomic, UCyc applies twace from index k’ to index k = gcd(m, k’), where the result is guaranteed to
reside, and stores the result as a subring element.

3.4.3 Promoting from Base Ring to Cyclotomics

Many operations on cyclotomic rings are defined as entry-wise operations on the ring element’s coefficient
vector, with respect to either a particular basis or an arbitrary one. For example, reducing from R to Rq
is equivalent to reducing the coefficients from Z to Zq in any basis, while “decoding” Rq to R (used in
decryption) means lifting the Zq-coefficients to their smallest representatives in Z, using the decoding
basis. To implement these and other functions for UCyc, we use a very generic and modular mechanism
for “promoting” operations on the base ring to corresponding operations on cyclotomic rings. Specifically,
we define UCyc t m to be an instance of Haskell’s standard “container” classes Functor, Applicative,
Foldable, and Traversable.

To illustrate this approach, consider the Functor class, which introduces the method

fmap :: Functor f => (a -> b) -> f a -> f b.

The Functor instance for UCyc t m defines fmap g c to apply g entry-wise to c’s vector of coefficients in
its current representation, namely, the powerful, decoding, or CRT basis (if it exists); other representations
yield a runtime error. (Recall from Section 3.3 that we can convert to a particular representation using
forceBasis.) We can therefore easily implement the above-described reduce and decode operations by
promoting the methods of our classes from Section 2: an instance Reduce z zq is promoted to an instance
Reduce (UCyc t m z) (UCyc t m zq), and an instance Lift zq z is promoted to the decoding operation,
as follows:

reduce = fmap reduce . forceBasis Nothing

decode :: (Lift b a, ...) => UCyc t m b -> UCyc t m a
decode = fmap lift . forceBasis (Just Dec)

As a richer example, consider gadgets and decomposition (Section 2.5) for a cyclotomic ring Rq over
base ring Zq. For any gadget over Zq, we get an identical gadget over Rq simply by embedding the scalar
Zq-entries into Rq. This lets us promote an instance of Gadget for zq to an instance for UCyc t m zq as
follows:

gadget = fmap (fmap scalarCyc) gadget

(The double use of fmap is because there are two Functor layers around the zq-entries of the underlying
gadget :: Tagged gad [zq]: the list [], and the Tagged gad context.)

Decomposing an Rq-element into a short vector over R works coefficient-wise in the power basis. That
is, we decompose each Zq-coefficient into a short vector over Z, then collect the corresponding entries of

19

these vectors to yield a vector of short R-elements. To implement this strategy, one might try to promote
the function (here with slightly simplified signature) decompose :: Decompose zq z => zq -> [z] to
UCyc t m zq, as we did with reduce and lift above. However, this does not work: fmap decompose has
type c m zq -> c m [z], whereas we need output type [c m z]. The solution is to use the Traversable
class, which introduces the method

traverse :: (Traversable v, Applicative f) => (a -> f b) -> v a -> f (v b)

In our setting, v stands for UCyc t m, and f stands for the list type [], which is indeed an instance of
Applicative.11 We therefore easily promote an instance of Decompose from zq to UCyc t m zq via:

decompose = traverse decompose . forceBasis (Just Pow)

We promote many other operations on base rings just as easily, including the error-correction operation
correct, the rescaling function rescale (from Zq to Zq′), discretization of Q to Z or to a desired coset
of Zp, and many more.

Rescaling. To rescale a cyclotomic ringRq toRq′ , we typically need to apply the integer rescaling operation
b·eq′ : Zq → Zq′ (represented by the function rescale :: Rescale a b => a -> b; see Section 2.3)
coordinate-wise in either the powerful or decoding basis, for geometrical reasons. However, rescaling
cyclotomics is special, because there are at least two distinct algorithms, depending on the representation
of Zq and Zq′ . First, there is the generic algorithm, which simply converts the input to the desired basis and
then rescales coefficient-wise. Second, there is a more efficient, specialized algorithm due to [GHS12] for
rescaling a product ring Rq = Rq1 ×Rq2 to Rq1 . When rescaling an input in the CRT basis to an output in
the CRT basis, this algorithm requires only about half as many CRT transformations over individual moduli.

In more detail, the specialized rescaling algorithm is analogous to the one for product rings Zq1 × Zq2
described at the end of Section 2.3. Specifically, to rescale a = (a1, a2) ∈ Rq1×Rq2 to Rq1 , we lift a2 ∈ Rq2
to a relatively short representative ā2 ∈ R using the powerful or decoding basis; this implicitly involves an
inverse-CRT over Rq2 . We then output q−1

2 · (a1 − ā2) ∈ Rq1 ; this implicitly involves a CRT over Rq1 on
(ā2 mod q1R). In total, we perform only one (inverse-)CRT transformation for each Rqi component, whereas
the generic algorithm involves a transform in both directions for Rq1 . Because Rq1 is itself often the product
of many sub-components, its CRT transforms are the bottleneck, and so the specialized algorithm is nearly
twice as fast as the generic one.

To capture the polymorphism represented by above algorithms, we define a class called RescaleCyc,
which introduces the method rescaleCyc. We give instances of RescaleCyc for both the generic and
specialized algorithms, and the compiler automatically chooses the appropriate one based on the concrete
types representing the moduli.

4 Homomorphic Encryption in Λ◦λ

In this section we describe a full-featured fully homomorphic encryption implementation in Λ◦λ, using
the interfaces described in the previous sections. At the mathematical level, the system closely follows
the Ring-LWE cryptosystem and homomorphic operations developed over a long series of works [LPR10,

11While this is true, the instance of Applicative for [] actually models nondeterminism, not the entry-wise operations we need.
Fortunately, there is a standard newtype wrapper around [], called ZipList, that instantiates Applicative in exactly the way we
need. So our actual promotion of decompose converts (for free) between [] and ZipList at appropriate points.

20

BV11a, BV11b, BGV12, GHPS12, LPR13, AP13]. In addition, we include some important generalizations
and new operations, such as “ring-tunneling,” that have not yet appeared in the literature. Along with the
mathematical description of each main component, we present the corresponding Haskell code, showing how
the two forms match very closely.

4.1 Keys, Plaintexts, and Ciphertexts

The cryptosystem is parameterized by two cyclotomic rings: R = Om andR′ = Om′ wherem|m′, makingR
a subring of R′. The spaces of keys, plaintexts, and ciphertexts are derived from these rings as follows:

• A secret key is an element s ∈ R′. Some operations require s to be “small;” more precisely, we need
s · gm′ to have small entries in the canonical embedding of R′ (see Invariant 4.1 below). Recall that
this is indeed the case for theory-recommended Ring-LWE error distributions over R′.

• The plaintext ring is Rp = R/pR, where p is a (typically small) positive integer, e.g., p = 2. For
technical reasons, p must be coprime with every odd prime dividing m′. A plaintext is simply an
element µ ∈ Rp.

• The ciphertext ring is R′q = R′/qR′ for some integer modulus q ≥ p that is coprime with p. A
ciphertext is essentially just a polynomial c(S) ∈ R′q[S], i.e., one with coefficients from R′q in an
indeterminant S, which represents the (unknown) secret key. We often identify c(S) with its vector of
coefficients (c0, c1, . . . , cd) ∈ (R′q)

d+1, where d is the degree of c(S).

In addition, a ciphertext carries a nonnegative integer k ≥ 0 and a factor l ∈ Zp as auxiliary information.
These values are affected by certain operations on ciphertexts, as described below.

Data types. Following the above definitions, our data types for plaintexts, keys, and ciphertexts as follows.
The plaintext type PT rp is merely a synonym for its argument type rp representing the plaintext ring Rp.

The data type SK representing secret keys is defined as follows:

data SK r’ where SK :: ToRational v => v -> r’ -> SK r’

Notice that a value of type SK r’ consists of an element from the secret key ring R′, and in addition it carries
a rational value (of “hidden” type v) representing the (squared) parameter v = r2 of the (tweaked) Gaussian
distribution from which the key was sampled. Binding the parameter to the secret key in this way allows us to
automatically generate ciphertexts and other key-dependent information using consistent error distributions,
thereby relieving client code of the responsibility for managing error parameters across multiple functions.

The data type CT representing ciphertexts is defined as follows:

data Encoding = MSD | LSD
data CT m zp r’q = CT Encoding Int zp (Polynomial r’q)

The CT type is parameterized by three arguments: a cyclotomic index m and a Zp-representation zp defining
the plaintext ring Rp, and a representation r’q of the ciphertext ring R′q. A CT value has four components:
a flag indicating the “encoding” of the ciphertext (MSD or LSD; see below); the auxiliary integer k and
factor l ∈ Zp (as mentioned above); and a polynomial c(S).

21

Decryption relations and error invariant. A ciphertext c(S) (with auxiliary values k ∈ Z, l ∈ Zp)
encrypting a plaintext µ ∈ Rp under secret key s ∈ R′ satisfies the relation

c(s) = c0 + c1s+ · · ·+ cds
d = e (mod qR′) (4.1)

for some sufficiently “small” error term e ∈ R′ such that

e = l−1 · gkm′ · µ (mod pR′). (4.2)

More precisely, by “small” we mean that decoding c(s) ∈ R′q to R′ (i.e., lifting using the decoding
basis) should yield e itself. In particular, this holds if all the coefficients of e ∈ R′ in the decoding basis
have magnitudes smaller than q/2. To control these coefficients as tightly as possible, all our operations
maintain the following informal invariant. This invariant is satisfied by “fresh” error terms drawn from
tweaked Gaussians over R′ (see Section 3.1), and is a sufficient condition for obtaining sharp bounds on the
decoding-basis coefficients, as shown in [LPR13, Section 6]:

Invariant 4.1. For an error term e ∈ R′, every complex coordinate of the canonical embedding σ(e · gm′) ∈
Cn is nearly independent (up to the conjugate pairs), and bounded by a distribution with “light” (e.g.,
subexponential) tails.

A ciphertext satisfying Equations (4.1) and (4.2) is said to be in “least significant digit” (LSD) form,
because the message µ is encoded in the mod-p value of the error term. An alternative form, which is more
convenient for certain homomorphic operations, is the “most significant digit” (MSD) form. Here the relation
is

c(s) ≈ q
p · (l

−1 · gkm′ · µ) (mod qR′), (4.3)

where the approximation hides a small fractional error term (in 1
pR
′) that satisfies Invariant 4.1. Notice that

the message is represented as a multiple of qp modulo q, hence the name “MSD.” One can losslessly transform
between LSD and MSD forms in linear time, just by multiplying by appropriate Zq-elements (see [AP13,
Appendix A]). Each such transformation implicitly multiplies the plaintext by some fixed element of Zp,
which is why our ciphertexts carry auxiliary factors l ∈ Zp that must be accounted for upon decryption.

4.2 Encryption and Decryption

To encrypt a message µ ∈ Rp under a key s ∈ R′, one does the following:

1. sample an error term e ∈ µ+ pR′ (from a distribution that should be a p factor wider than that of the
secret key);

2. sample a uniformly random c1 ← R′q;

3. output the LSD-form ciphertext c(S) = (e− c1 · s) + c1 · S ∈ R′q[S], with k = 0, l = 1 ∈ Zp.
(Observe that c(s) = e (mod qR′), as desired.)

This translates directly into just a few lines of Haskell code, which is monadic due to its use of randomness:

encrypt :: (m `Divides` m’, MonadRandom rnd, ...)
=> SK (Cyc t m’ z) -> PT (Cyc t m zp) -> rnd (CT m zp (Cyc t m’ zq))

encrypt (SK v s) mu = do
e <- errorCoset v (embed mu) -- error from mu + pR’
c1 <- getRandom -- uniform from R’/qR’
return $ CT LSD zero one $ fromCoeffs [reduce e - c1 * reduce s, c1]

22

To decrypt an LSD-form ciphertext c(S) ∈ R′q[S] under secret key s ∈ R′, we first evaluate c(s) ∈ R′q
and then lift the result to R′ (using the decoding basis) to recover the error term e, as follows:

errorTerm :: (Lift zq z, m `Divides` m’, ...)
=> SK (Cyc t m’ z) -> CT m zp (Cyc t m’ zq) -> Cyc t m’ z

errorTerm (SK _ s) (CT LSD _ _ c) = liftCyc Dec (evaluate c (reduce s))

Following Equation (4.2), we then compute l · g−km′ · e mod pR′. This yields the embedding of the message µ
into R′p, so we finally take the twace to recover µ ∈ Rp itself:

decrypt :: (Lift zq z, Reduce z zp, ...)
=> SK (Cyc t m’ z) -> CT m zp (Cyc t m’ zq) -> PT (Cyc t m zp)

decrypt sk ct@(CT LSD k l _) =
let e = reduce (errorTerm sk ct)
in (scalarCyc l) * twace (iterate divG e !! k)

4.3 Homomorphic Addition and Multiplication

Homomorphic addition of ciphertexts with the same values of k and l is simple: convert the ciphertexts to the
same form (MSD or LSD), then add their polynomials. It is also possible adjust the values of k, l as needed
by multiplying the polynomial by an appropriate factor, which only slightly enlarges the error. Accordingly,
we define CT m zp (Cyc t m’ zq) to be an instance of Additive, for appropriate argument types.

Now consider homomorphic multiplication: suppose ciphertexts c1(S), c2(S) encrypt messages µ1, µ2

in LSD form, with auxiliary values k1, l1 and k2, l2 respectively. Observe that

c1(s) · c2(s) · gm′ = e1 · e2 · gm′ (mod qR′)

e1 · e2 · gm′ = (l1l2)−1 · gk1+k2+1
m′ · (µ1µ2) (mod pR′),

and the error term e = e1 · e2 · gm′ satisfies Invariant 4.1, because e1, e2 do (recall that multiplication in the
canonical embedding is coordinate-wise). Therefore, the LSD-form ciphertext

c(S) := c1(S) · c2(S) · gm′ ∈ R′q[S]

encrypts µ1µ2 ∈ Rp with auxiliary values k = k1 + k2 + 1 and l = l1l2 ∈ Zp. Notice that the degree of the
output polynomial is the sum of the degrees of the input polynomials.

More generally, it turns out that we only need one of c1(S), c2(S) to be in LSD form; the product c(S)
then has the same form as the other ciphertext.12 All this translates immediately to an instance of Ring for
CT m zp (Cyc t m’ zq), with the interesting case of multiplication having the one-line implementation

(CT LSD k1 l1 c1) * (CT d2 k2 l2 c2) =
CT d2 (k1+k2+1) (l1*l2) (mulG <$> c1 * c2)

(The other cases just swap the arguments or convert one ciphertext to LSD form, thus reducing to the case
above.)

12If both ciphertexts are in MSD form, then it is possible to use the “scale free” homomorphic multiplication method of [Bra12],
but we have not implemented it because it appears to be significantly less efficient than just converting one ciphertext to LSD form.

23

4.4 Modulus Switching

Switching the ciphertext modulus is a form of rescaling typically used for decreasing the modulus, which
commensurately reduces the absolute magnitude of the error in a ciphertext—though the error rate relative
to the modulus stays essentially the same. Because homomorphic multiplication implicitly multiplies the
error terms, keeping their absolute magnitudes small can yield major benefits in controlling the error growth.
Modulus switching is also sometimes useful to temporarily increase the modulus, as explained in the next
subsection.

Modulus switching is easiest to describe and implement for ciphertexts in MSD form (Equation (4.3))
that have degree at most one. Suppose we have a ciphertext c(S) = c0 + c1S under secret key s ∈ R′, where

c0 + c1s = d ≈ q
p · γ (mod qR′)

for γ = l−1 · gkm′ · µ ∈ Rp. Switching to a modulus q′ is just a suitable rescaling of each ci ∈ R′q′ to some
c′i ∈ R′q′ such that c′i ≈ (q′/q) · ci; note that the right-hand sides here are fractional, so they need to be
discretized using an appropriate basis (see the next paragraph). Observe that

c′0 + c′1s ≈
q′

q (c0 + c1s) = q′

q · d ≈
q′

p · γ (mod q′R′),

so the message is unchanged but the absolute error is essentially scaled by a q′/q factor.
Note that the first approximation above hides the extra discretization error e0 + e1s where ei = c′i −

q′

q ci,
so the main question is what bases of R′ to use for the discretization, to best maintain Invariant 4.1.
We want both e0 and e1s to satisfy the invariant, which means we want the entries of σ(e0 · gm′) and
σ(e1s · gm′) = σ(e1)� σ(s · gm′) to be essentially independent and as small as possible; because s ∈ R′
itself satisfies the invariant (i.e., the entries of σ(s · gm′) are small), we want the entries of σ(e1) to be as
small as possible. It turns out that these goals are best achieved by rescaling c0 using the decoding basis d,
and c1 using the powerful basis p. This is because gm′ · d and p respectively have nearly optimal spectral
norms over all bases of gm′R′ and R′, as shown in [LPR13].

Our Haskell implementation is therefore simply

rescaleLinearCT :: (Rescale zq zq’, ...)
=> CT m zp (Cyc t m’ zq) -> CT m zp (Cyc t m’ zq’)

rescaleLinearCT (CT MSD k l (Poly [c0,c1])) =
let c’0 = rescaleDec c0

c’1 = rescalePow c1
in CT MSD k l $ Poly [c’0, c’1]

4.5 Key Switching and Linearization

Recall that homomorphic multiplication causes the degree of the ciphertext polynomial to increase. Key
switching is a technique for reducing the degree, typically back to linear. More generally, key switching is a
mechanism for proxy re-encryption: given two secret keys sin and sout (which may or may not be different),
one can construct a “hint” that lets an untrusted party convert an encryption under sin to one under sout, while
preserving the secrecy of the message and the keys.

Key switching uses a gadget g ∈ (R′q)
` and associated decomposition function g−1 : R′q → (R′)` (both

typically promoted from Zq; see Sections 2.5 and 3.4.3). Recall that g−1(c) outputs a short vector over R′

such that gt · g−1(c) = c (mod qR′).

24

The core operations. Let sin, sout ∈ R′ denote some arbitrary secret values. A key-switching hint for sin
under sout is a matrix H ∈ (R′q)

2×`, where each column can be seen as a linear polynomial over R′q, such that

(1, sout) ·H ≈ sin · gt (mod qR′). (4.4)

Such an H is constructed simply by letting the columns be Ring-LWE samples with secret sout, and adding
sin · gt to the top row. In essence, such an H is pseudorandom by the Ring-LWE assumption, and hence hides
the secrets.

The core key-switching step takes a hintH and some c ∈ R′q, and simply outputs c′ = H ·g−1(c) ∈ (R′q)
2,

which can be viewed as a linear polynomial c′(S). Notice that

c′(sout) = (1, sout) · c′ = ((1, sout) ·H) · g−1(c) ≈ sin · gt · g−1(c) = sin · c (mod qR′), (4.5)

where the approximation holds because g−1(c) is short. More precisely, because the error terms in Equa-
tion (4.4) satisfy Invariant 4.1, we want all the elements of the decomposition g−1(c) to have small entries in
the canonical embedding, so it is best to decompose relative to the powerful basis.

Switching ciphertexts. The above tools can be used to switch MSD-form ciphertexts of degree up to d
under sin as follows: first publish a hint Hi for each power siin, i = 1, . . . , d, all under the same sout. Then to
switch a ciphertext c(S):

• For each i = 1, . . . , d, apply the core step to coefficient ci ∈ R′q using the corresponding hint Hi, to
get a linear polynomial c′i = Hi · g−1(ci). Also let c′0 = c0.

• Sum the c′i to get a linear polynomial c′(S), which is the output.

Then c′(sout) ≈ c(sin) (mod qR′) by Equation (4.5) above, so the two ciphertexts encrypt the same message.
Notice that the error rate in c′(S) is essentially the sum of two separate quantities: the error rate in the

original c(S), and the error rate in H times a factor corresponding to the norm of the output of g−1. We
typically set the latter error rate to be much smaller than the former, so that key-switching incurs essentially
no error growth. This can be done by constructing H over a modulus q′ � q, and scaling up c(S) to this
modulus before decomposing.

Haskell functions. Our implementation includes a variety of key-switching functions, whose types all
roughly follow this general form:

keySwitchFoo :: (MonadRandom rnd, ...) => SK r’ -> SK r’
-> Tagged (gad, zq’) (rnd (CT m zp r’q -> CT m zp r’q))

Unpacking this, the inputs are the two secret keys sout, sin ∈ R′, and the output is essentially a re-encryption
function that maps one ciphertext to another. The extra Tagged (gad,zq’) context indicates what gadget
and modulus are used to construct the hint, while the rnd wrapper indicates that randomness is used in
constructing (but not applying) the function; this is because constructing the hint requires randomness.

Outputting a re-encryption function—rather than just a hint itself, which would need to be fed into a
separate function that actually does the switching—has advantages in terms of simplicity and safety. First, it
reflects the abstract re-encryption functionality provided by key switching. Second, we implement a variety
of key-switching functions that each operate slightly differently, and may even involve different types of
hints (e.g., see the next subsection). With our approach, the hint is abstracted away entirely, and each style

25

of key-switching can be implemented by a single client-visible function, instead of requiring two separate
functions and a specialized data type.

A prototypical implementation of a key-switching function is as follows, where ksHint and switch are
simple auxiliary functions that perform the core operations described above:

-- switch a linear ciphertext from one key to another
keySwitchLinear sout sin = tag $ do -- rnd monad
hint :: Tagged gad [Polynomial (Cyc t m’ zq’)] <- ksHint sout sin
return $ \ (CT MSD k l (Poly [c0,c1])) ->

CT MSD k l $ Poly [c0] + switch hint c1

4.6 Ring Tunneling

The term “ring switching” encompasses a collection of techniques, introduced in [BGV12, GHPS12, AP13],
that allow one to change the ciphertext ring for various purposes. These techniques can also induce a
corresponding change in the plaintext ring, at the same time applying a desired linear function to the
underlying plaintext.

In this subsection we describe a novel method of ring switching, which we call ring tunneling, that is
more efficient than the functionally equivalent method of [AP13], which for comparison we call ring hopping.
The difference between the two methods is that hopping goes “up and then down” through the compositum of
the source and target rings, while tunneling goes “down and then up” through their intersection (the largest
common subring). Essentially, tunneling is more efficient because it uses an intermediate ring that is smaller
than, instead of larger than, the source or target ring. In addition, we show how the linear function that is
homomorphically applied to the plaintext can be integrated into the key-switching hint, thus combining two
separate steps into a simpler and more efficient operation overall. We provide a simple implementation of
ring tunneling in Λ◦λ, which to our knowledge is the first realization of ring-switching of any kind.

Linear functions. We will need some basic theory of linear functions on rings. Let E be a common subring
of some rings R,S. A function L : R→ S is E-linear if for all r, r′ ∈ R and e ∈ E,

L(r + r′) = L(r) + L(r′) and L(e · r) = e · L(r).

From this it follows that for any E-basis b of R, an E-linear function L is uniquely determined by its
values yj = L(bj) ∈ S. Specifically, if r = bt · e ∈ R for some e over E, then L(r) = L(b)t · e = yt · e.

Accordingly, we introduce a useful abstract data type to represent linear functions on cyclotomic rings:

newtype Linear t z e r s = D [Cyc t s z]

The parameters t, z respectively represent the underlying Tensor representation and base type, while the
parameters e, r, s represent the indices of the cyclotomic rings E, R, S. For example, Cyc t s z represents
the ring S. An E-linear function L is internally represented by its list y = L(dr,e) of values on the relative
decoding basis dr,e of R/E, hence the constructor named D. (We could also represent linear functions via the
relative powerful basis, but so far we have not needed to do so.) Using our interface for cyclotomic rings
(Section 3), evaluating a linear function is straightforward:

evalLin :: (e `Divides` r, e `Divides` s, ...)
=> Linear t z e r s -> Cyc t r z -> Cyc t s z

evalLin (D ys) r = dotprod ys (fmap embed (coeffsCyc Dec r :: [Cyc t e z]))

26

Extending linear functions. Now let E′, R′, S′ respectively be cyclotomic extension rings of E,R, S
satisfying certain conditions described below. As part of ring switching we will need to extend an E-linear
function L : R → S to an E′-linear function L′ : R′ → S′ that agrees with L on R, i.e., L′(r) = L(r) for
every r ∈ R. The following lemma gives a sufficient condition for when and how this is possible. (It is a
restatement of Lemma E.1, whose proof appears in Appendix E).

Lemma 4.2. Let e, r, s, e′, r′, s′ respectively be the indices of cyclotomic rings E,R, S,E′, R′, S′, and
suppose e = gcd(r, e′), r′ = lcm(r, e′), and lcm(s, e′)|s′. Then:

1. The relative decoding bases dr,e of R/E and dr′,e′ of R′/E′ are identical.

2. For any E-linear function L : R → S, the function L′ : R′ → S′ defined by L′(dr′,e′) = L(dr,e) is
E′-linear and agrees with L on R.

The above lemma leads to the following very simple Haskell function to extend a linear function; notice
that the constraints use the type-level arithmetic described in Section 2.6 to enforce the hypotheses of
Lemma 4.2.

extendLin :: (e ~ FGCD r e’, r’ ~ FLCM r e’, (FLCM s e’) `Divides` s’)
=> Linear t z e r s -> Linear t z e’ r’ s’

extendLin (Dec ys) = Dec (fmap embed ys)

Ring tunneling as key switching. Abstractly, ring tunneling is an operation that homomorphically evalu-
ates a desired Ep-linear function Lp : Rp → Sp on a plaintext, by converting its ciphertext over R′q to one
over S′q. Operationally, it can be described simply as an enhanced form of key switching.

Ring tunneling involves two phases: a preprocessing phase where we use the desired linear function Lp
and the secret keys to produce appropriate hints, and an online phase where we apply the tunneling operation
to a given ciphertext using the hint. The preprocessing phase is as follows:

1. Extend Lp to an E′p-linear function L′p : R′p → S′p that agrees with Lp on Rp, as described above.

2. Lift L′p to a “small” E′-linear function L′ : R′ → S′ that induces L′p. Specifically, define L′ by
L′(dr′,e′) = y, where y (over S′) is obtained by lifting yp = L′p(dr′,e′) using the powerful basis.

The above lifting procedure is justified by the following considerations. We want L′ to map ciphertext
errors in R′ to errors in S′, maintaining Invariant 4.1 in the respective rings. In the relative decoding
basis dr′,e′ , ciphertext error e = dtr′,e′ · e ∈ R′ has E′-coefficients e that satisfy the invariant for E′,
and hence for S′ as well. Because we want

L′(e) = L′(dtr′,e′ · e) = yt · e ∈ S′

to satisfy the invariant for S′, it is therefore best to lift yp from S′p to S′ using the powerful basis, for
the same reasons that apply to modulus switching when rescaling the c1 component of a ciphertext
(Section 4.4).13

13The very observant reader may notice that because L′p(dr′,e′) = Lp(dr,e) is over Sp, the order in which we extend and lift does
not matter.

27

3. Prepare an appropriate key-switching hint using keys sin ∈ R′ and sout ∈ S′. Let b be an arbitrary
E′-basis ofR′ (which we also use in the online phase below). Using a gadget vector g over S′q, generate
key-switching hints Hj for the components of L′(sin · bt), such that

(1, sout) ·Hj ≈ L′(sin · bj) · gt (mod qS′). (4.6)

(As usual, the approximation hides appropriate Ring-LWE errors that satisfy Invariant 4.1.) Recall that
we can interpret the columns of Hj as linear polynomials.

The online phase proceeds as follows. As input we are given an MSD-form, linear ciphertext c(S) =
c0 + c1S (over R′q) with associated integer k = 0 and arbitrary l ∈ Zp, encrypting a message µ ∈ Rp under
secret key sin.

1. Express c1 uniquely as c1 = bt · e for some e over E′q (where b is the same E′-basis of R′ used in
Step 3 above).

2. Compute L′(c0) ∈ S′q, apply the core key-switching operation to each ej with hint Hj , and sum the
results. Formally, output a ciphertext having k = 0, the same l ∈ Zp as the input, and the linear
polynomial

c′(S) = L′(c0) +
∑
j

Hj · g−1(ej) (mod qS′). (4.7)

For correctness, notice that we have

c0 + sin · c1 ≈ q
p · l
−1 · µ (mod qR′)

=⇒ L′(c0 + sin · c1) ≈ q
p · l
−1 · L(µ) (mod qS′), (4.8)

where the error in the second approximation is L′ applied to the error in the first approximation, and therefore
satisfies Invariant 4.1 by design of L′. Then we have

c′(sout) ≈ L′(c0) +
∑
j

L′(sin · bj) · gt · g−1(ej) (Equations (4.7), (4.6))

= L′(c0 + sin · bt · e) (E′-linearity of L′)

= L′(c0 + sin · c1) (definition of e)

≈ q
p · l
−1 · L(µ) (mod qS′) (Equation (4.8))

as desired, where the error in the first approximation comes from the hints Hj .

Comparison to ring hopping. We now describe the efficiency advantages of ring tunneling versus ring
hopping. We analyze the most natural setting where both the input and output ciphertexts are in CRT
representation; in particular, this allows the process to be iterated as in [AP13].

Both ring tunneling and ring hopping convert a ciphertext over R′q to one over S′q, either via the greatest
common subring E′q (in tunneling) or the compositum T ′q (in hopping). In both cases, the vast majority of the
work happens during key-switching, where we compute one or more values H · g−1(c) for some hint H and
ring element c (which may be over different rings). This proceeds in two main steps:

1. We convert c from CRT to powerful-basis representation for g−1-decomposition, and then convert each
entry of g−1(c) to CRT representation. Each such conversion takes Θ(n log n) = Θ̃(n) time in the
dimension n of the ring that c resides in.

28

2. We multiply each column of H by the appropriate entry of g−1(c), and sum. Because both terms are in
CRT representation, this takes linear Θ(n) time in the dimension n of the ring that H is over.

The total number of components of g−1(c) is the same in both tunneling and hopping, so we do not consider
it further in this comparison.

In ring tunneling, we switch dim(R′/E′) elements ej ∈ E′q (see Equation (4.7)) using the same number
of hints over S′q. Thus the total cost is

dim(R′/E′) · (Θ̃(dim(E′)) + Θ(dim(S′))) = Θ̃(dim(R′)) + Θ(dim(T ′)).

By contrast, in ring hopping we first embed the ciphertext into the compositum T ′q and key-switch there.
Because the compositum has dimension dim(T ′) = dim(R′/E′) · dim(S′), the total cost is

Θ̃(dim(T ′)) + Θ(dim(T ′)).

The second (linear) terms of the above expressions, corresponding to Step 2, are essentially identical. For
the first (superlinear) terms, we see that Step 1 for tunneling is at least a dim(T ′/R′) = dim(S′/E′) factor
faster than for hopping. In typical instantiations, this factor is a small prime between, say, 3 and 11, so the
savings can be quite significant in practice.

References

[ADPS15] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - a new hope.
Cryptology ePrint Archive, Report 2015/1092, 2015. http://eprint.iacr.org/.

[AP13] J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In CRYPTO, pages
1–20. 2013.

[BCNS15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. In IEEE Symposium on Security and
Privacy, pages 553–570. 2015.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In EUROCRYPT, pages 533–556. 2014.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. TOCT, 6(3):13, 2014. Preliminary version in ITCS 2012.

[BLMR13] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic PRFs and
their applications. In CRYPTO, pages 410–428. 2013.

[BP14] A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom functions. In
CRYPTO, pages 353–370. 2014.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In EUROCRYPT,
pages 719–737. 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
In CRYPTO, pages 868–886. 2012.

29

http://eprint.iacr.org/

[BV11a] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 505–524. 2011.

[BV11b] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. SIAM J. Comput., 43(2):831–871, 2014. Preliminary version in FOCS 2011.

[CGRS14] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok. An FPGA co-processor implementation
of homomorphic encryption. In HPEC 2014, pages 1–6. 2014.

[CKL+11] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. Accelerating haskell
array codes with multicore GPUs. In DAMP 2011, pages 3–14. 2011.

[CLS15] H. Chen, K. Lauter, and K. E. Stange. Attacks on search RLWE. Cryptology ePrint Archive,
Report 2015/971, 2015. http://eprint.iacr.org/.

[CLT14] J. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryption over the
integers. In PKC, pages 311–328. 2014.

[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal gaussians.
In CRYPTO, pages 40–56. 2013.

[DN12] L. Ducas and P. Q. Nguyen. Faster Gaussian lattice sampling using lazy floating-point arithmetic.
In ASIACRYPT, pages 415–432. 2012.

[DP15a] L. Ducas and T. Prest. Fast fourier orthogonalization. Cryptology ePrint Archive, Report
2015/1014, 2015. http://eprint.iacr.org/.

[DP15b] L. Ducas and T. Prest. A hybrid Gaussian sampler for lattices over rings. Cryptology ePrint
Archive, Report 2015/660, 2015. http://eprint.iacr.org/.

[ELOS15] Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange. Provably weak instances of ring-LWE. In
CRYPTO, pages 63–92. 2015.

[ES14] R. A. Eisenberg and J. Stolarek. Promoting functions to type families in haskell. In Haskell
2014, pages 95–106. 2014.

[EW12] R. A. Eisenberg and S. Weirich. Dependently typed programming with singletons. In Haskell
2012, pages 117–130. 2012.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GHPS12] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-style homomorphic
encryption. Journal of Computer Security, 21(5):663–684, 2013. Preliminary version in
SCN 2012.

[GHS12] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO,
pages 850–867. 2012.

[GLP12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES, pages 530–547. 2012.

30

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–92. 2013.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In STOC,
pages 545–554. 2013.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
ANTS, pages 267–288. 1998.

[HS] S. Halevi and V. Shoup. HELib: an implementation of homomorphic encryption. https:
//github.com/shaih/HElib, last retrieved 17 Mar 2015.

[KCL+10] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. P. Jones, and B. Lippmeier. Regular,
shape-polymorphic, parallel arrays in haskell. In ICFP 2010, pages 261–272. 2010.

[LCKJ12] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. L. P. Jones. Guiding parallel array fusion
with indexed types. In Haskell 2012, pages 25–36. 2012.

[Lip11] M. Lipovac̆a. Learn You a Haskell for Great Good! No Starch Press, 2011. Available free
online at http://learnyouahaskell.com/.

[LMPR08] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest proposal for
FFT hashing. In FSE, pages 54–72. 2008.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
Journal of the ACM, 60(6):43:1–43:35, November 2013. Preliminary version in Eurocrypt 2010.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT, pages 35–54. 2013.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Computational Complexity, 16(4):365–411, 2007. Preliminary version in FOCS 2002.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012.

[NLV11] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In
CCSW, pages 113–124. 2011.

[SS11] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In EUROCRYPT, pages 27–47. 2011.

[Ste08] D. Stewart. Haskell as fast as C: working at a high altitude for low level
performance, June 2008. https://donsbot.wordpress.com/2008/06/04/
haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/.

[SV10] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography, pages 420–443. 2010.

31

https://github.com/shaih/HElib
https://github.com/shaih/HElib
http://learnyouahaskell.com/
https://donsbot.wordpress.com/2008/06/04/haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/
https://donsbot.wordpress.com/2008/06/04/haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/

[SV11] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and
Cryptography, 71(1):57–81, 2014. Preliminary version in ePrint Report 2011/133.

[TTJ15] D. Thurston, H. Thielemann, and M. Johansson. Haskell numeric prelude, 2015. https:
//hackage.haskell.org/package/numeric-prelude.

[WHC+12] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Accelerating fully homomorphic encryption
using GPU. In HPEC 2012, pages 1–5. 2012.

[YWC+12] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and J. P. Magalhães. Giving
Haskell a promotion. In TLDI 2012, pages 53–66. 2012.

A Haskell Background

In this section we give a brief primer on the basic syntax, concepts, and features of Haskell needed to
understand the material in the rest of the paper. For further details, see the excellent tutorial [Lip11].

A.1 Types

Every well-formed Haskell expression has a particular type, which is known statically (i.e., at compile time).
An expression’s type can be explicitly specified by a type signature using the :: symbol, e.g., 3 :: Integer
or True :: Bool. However, such low-level type annotations are usually not necessary, because Haskell has
very powerful type inference, which can automatically determine the types of arbitrarily complex expressions
(or declare that they are ill-typed).

Every function, being a legal expression, has a type, which is written by separating the types of the
input(s) and the output with the arrow -> symbol, e.g., xor :: Bool -> Bool -> Bool. Functions can be
either fully or only partially applied to arguments having the appropriate types, e.g., we have the expressions
xor False False :: Bool and xor True :: Bool -> Bool, but not the ill-typed xor 3. Partial applica-
tion works because -> is right-associative, so the “true” type of xor is Bool -> (Bool -> Bool), i.e., it
takes a boolean as input and outputs a function that itself maps a boolean to a boolean. Functions can also
take functions as inputs, e.g.,

selfCompose :: (Integer -> Integer) -> (Integer -> Integer)

takes any f :: Integer -> Integer as input and outputs another function (presumably representing f ◦ f).
The names of concrete types, such as Integer or Bool, are always capitalized. This is in contrast with

lower-case type variables, which can stand for any type (possibly subject to some constraints; see the next
subsection). For example, the function alwaysTrue :: a -> Bool takes a value of any type, and outputs a
boolean value (presumably True). More interestingly, cons :: a -> [a] -> [a] takes a value of any type,
and a list of values all having that same type, and outputs a list of values of that type.

Types can be parameterized by other types. For example:

• The type [] seen just above is the generic “(ordered) list” type, whose single argument is the type
of the listed values, e.g., [Bool] is the “list of booleans” type. (Note that [a] is just syntactic sugar
for [] a.)

• The type Maybe represents “either a value (of a particular type), or nothing at all;” the latter is typically
used to signify an exception. Its single argument is the underlying type, e.g., Maybe Integer.

32

https://hackage.haskell.org/package/numeric-prelude
https://hackage.haskell.org/package/numeric-prelude

• The generic “pair” type (,) takes two arguments that specify the types being paired together, e.g.,
(Integer,Bool).

Only fully applied types can admit values, e.g., there are no values of type [], Maybe, or (Integer,).

A.2 Type Classes

Type classes, or just classes, define abstract interfaces that types can implement, and are therefore a pri-
mary mechanism for obtaining polymorphism. For example, the Additive class (from the numeric pre-
lude [TTJ15]) represents types that form abelian additive groups. As such, it introduces the terms14

zero :: Additive a => a
negate :: Additive a => a -> a
(+), (-) :: Additive a => a -> a -> a

In type signatures like the ones above, the text preceding the => symbol specifies the class constraint(s) on
the type variable(s). The constraints Additive a seen above simply mean that the type represented by a
must be an instance of the Additive class. A type is made an instance of a class via an instance declaration,
which simply defines the actual behavior of the class’s terms for that particular type. For example, Integer
and Double are instances of Additive. While Bool is not, it could be made one via the instance declaration

instance Additive Bool where
zero = False
negate = id
(+) = xor -- same for (-)

Using class constraints, one can write polymorphic expressions using the terms associated with the corre-
sponding classes. For example, we can define double :: Additive a => a -> a as double x = x + x.
The use of (+) here is legal because the input x has type a, which is constrained to be an instance of Additive
by the type of double. As a slightly richer example, we can define

isZero :: (Eq a, Additive a) => a -> Bool
isZero x = x == zero

where the class Eq introduces the function (==) :: Eq a => a -> a -> Bool to represent types whose
values can be tested for equality.15

The definition of a class C can declare other classes as superclasses, which means that any type that is
an instance of C must also be an instance of each superclass. For example, the class Ring from numeric
prelude, which represents types that form rings with identity, has Additive as a superclass; this is done
by writing class Additive r => Ring r in the class definition.16 One advantage of superclasses is that
they help reduce the complexity of class constraints. For example, we can define f :: Ring r => r -> r
as f x = one + double x, where the term one :: Ring r => r is introduced by Ring, and double is as
defined above. The use of (+) and double is legal here, because f’s input x has type r, which (by the class
constraint on f) is an instance of Ring and hence also of Additive.

14Operators like +, -, *, /, and == are merely functions introduced by various type classes. Function names consisting solely of
special characters can be used in infix form in the expected way, but in all other contexts they must be surrounded by parentheses.

15Notice the type inference here: the use of (==) means that x and zero must have the same type a (which is an instance of
Additive), so there is no ambiguity about which implementation of zero to use.

16It is generally agreed that the arrow points in the wrong direction, but for historical reasons we are stuck with this syntax.

33

So far, the discussion has been limited to single-parameter classes: a type either is, or is not, an instance
of the class. In other words, such a class can be seen as merely the set of its instance types. More generally,
multi-parameter classes express relations among types. For example, the two-argument class definition
class (Ring r, Additive a) => Module r a represents that the additive group a is a module over the
ring r, via the scalar multiplication function (*>) :: Module r a => r -> a -> a.

B More on Type-Level Cyclotomic Indices

Picking up from Section 2.6, in Section B.1 we give more details on how cyclotomic indices are represented
and operated upon at the type level. Then in Section B.2 we describe how all this is used to generically derive
algorithms for arbitrary cyclotomics.

B.1 Promoting Factored Naturals

Operations in a cyclotomic ring are largely governed by the prime-power factorization of its index. Therefore,
we define the data types PrimePower and Factored to represent factored positive integers (note that type
Nat is a standard Peano encoding of the nonnegative integers, though any other representation would work
just as well):

-- Invariant: first component is prime, second component (the exponent) is positive.
newtype PrimePower = PP (Nat,Nat)
-- List invariant: primes appear in strictly increasing order (no duplicates).
newtype Factored = F [PrimePower]

To enforce the invariants, we hide the PP and F constructors from clients, and instead export only legal values
and operations that maintain the invariants. For example, we have the following values and functions, whose
implementations are straightforward:

f1, f2, f3, f4, ... :: Factored -- naturals in factored form

fDivides :: Factored -> Factored -> Bool
fMul, fGCD, fLCM :: Factored -> Factored -> Factored

We use data kinds and singletons to mechanically promote all these terms to the type level. Concretely,
the above values f1, f2, f3, etc. yield the types F1, F2, F3, etc., whose inhabiting values are just the singletons
sF1::F1, sF2::F2, etc. Note that we also can obtain the singleton value of any promoted type in a uniform
manner via the term sing; e.g., sing :: Sing m yields the singleton value of promoted type m. We can also
go in the reverse direction using the “magic” withSingI function, which lets us use a singleton value to set a
corresponding type variable in an expression, e.g., withSingI sF5 (one :: Cyc RT m Int). Finally, we
can reflect any singleton value back to the original value that defined the singleton’s type, via the function
fromSing; e.g., fromSing (sF2::F2) yields f2.

Analogously, promoting the above functions yields the type families FDivides, FMul, FGCD, and
FLCM, which we can apply to the promoted types. For example, FMul F2 F2 yields the type F4, as does
FGCD F12 F8. Similarly, FDivides F5 F30 yields the type True. (Nearly all values from Haskell’s standard
types, like Bool in this case, are themselves automatically promoted to types.)

34

B.2 Applying the Promotions

Here we summarize how we use the promoted types and singletons to generically derive algorithms for
working in arbitrary cyclotomics. We also use the “sparse decomposition” framework described in Appendix C
below; for our purposes here, we only need that the type Trans r represents linear transforms over base
ring r via their sparse decompositions.

A detailed example will illustrate our approach: consider the polymorphic function

crt :: (Fact m, CRTrans r, ...) => Tagged m (Trans r)

which represents the index-m Chinese Remainder Transform (CRT) over a base ring r (e.g., Zq or C).
Equation (D.7) gives a sparse decomposition of CRT in terms of prime-power indices, and Equations (D.8)
and (D.9) give sparse decompositions for the prime-power case in terms of CRT and DFT for prime indices,
and “twiddle” transforms for prime-power indices.

Following these decompositions, our implementation of crt works as follows:

1. It first reflects the Factored value represented by type m, using fromSing (sing :: Sing m), and
extracts the list of PrimePower factors. For each of these, it tensors the appropriate specializations of
the prime-power CRT function

crtPP :: (PPow pp, CRTrans r, ...) => Tagged pp (Trans r)

The correct specializations are obtained by “elevating” the PrimePower values to the pp type variable
using withSingI, as described above.

In fact, this reduction from Factored to PrimePower types applies equally well to all our transforms
of interest. Therefore, we implement a completely generic combinator that builds a transform indexed
by arbitrary (factored) m from one indexed by prime powers.

2. Similarly, crtPP reflects the PrimePower value represented by type pp, extracts the Nat values of its
prime and exponent, and composes the appropriate specializations of the prime-index CRT and DFT
functions

crtP, dftP :: (NatC p, CRTrans r, ...) => Tagged p (Trans r)

along with transforms that apply the appropriate “twiddle” factors.

3. Finally, crtP and dftP reflect the prime Nat value represented by type p, and actually apply the
CRT/DFT transformations indexed by this value (using the naïve algorithms). This requires the pth
roots of unity in r, which are obtained via the CRTrans interface.

C Sparse Decompositions and Haskell Framework

As shown in Appendix D, the structure of the powerful, decoding, and CRT bases yield sparse decompositions,
and thereby efficient algorithms, for cryptographically important linear transforms relating to these bases. Here
we explain the principles of sparse decompositions, and summarize our Haskell framework for expressing
and evaluating them.

35

C.1 Sparse Decompositions

A sparse decomposition of a matrix (or the linear transform it represents) is a factorization into sparser or
more “structured” matrices, such as diagonal matrices or Kronecker products. Recall that the Kronecker
(or tensor) product A⊗B of two matrices or vectors A ∈ Rm1×n1 , B ∈ Rm2×n2 over a ringR is a matrix
in Rm1m2×n1n2 . Specifically, it is the m1-by-n1 block matrix (or vector) made up of m2-by-n2 blocks,
whose (i, j)th block is ai,j ·B ∈ Rm2×n2 , where A = (ai,j). The Kronecker product satisfies the properties

(A⊗B)t = (At ⊗Bt)

(A⊗B)−1 = (A−1 ⊗B−1)

and the mixed-product property

(A⊗B) · (C ⊗D) = (AC)⊗ (BD),

which we use extensively in what follows.
A sparse decomposition of a matrix A naturally yields an algorithm for multiplication by A, which can

be much more efficient and parallel than the naïve algorithm. For example, multiplication by In ⊗A can be
done using n parallel multiplications by A on appropriate chunks of the input, and similarly for A⊗ In and
Il ⊗ A⊗ Ir. More generally, the Kronecker product of any two matrices can be expressed in terms of the
previous cases, as follows:

A⊗B = (A⊗ Iheight(B)) · (Iwidth(A) ⊗B) = (Iheight(A) ⊗B) · (A⊗ Iwidth(B)).

If the matrices A,B themselves have sparse decompositions, then these rules can be applied further to yield a
“fully expanded” decomposition. All the decompositions we consider in this work can be fully expanded as
products of terms of the form Il ⊗ A ⊗ Ir, where multiplication by A is relatively fast, e.g., because A is
diagonal or has small dimensions.

C.2 Haskell Framework

We now describe a simple, deeply embedded domain-specific language for expressing and evaluating sparse
decompositions in Haskell. It allows the programmer to write such factorizations recursively in natural
mathematical notation, and it automatically yields fast evaluation algorithms corresponding to fully expanded
decompositions. For simplicity, our implementation is restricted to square matrices (which suffices for our
purposes), but it could easily be generalized to rectangular ones.

As a usage example, to express the decompositions

A = B ⊗ C
B = (In ⊗D) · E

where C, D, and E are “atomic,” one simply writes

transA = transB @* transC -- A⊗B
transB = (Id n @* transD) .* transE -- (In ⊗D) · E
transC = trans functionC -- similarly for transD, transE

36

where functionC is (essentially) an ordinary Haskell function that left-multiplies its input vector by C. The
above code causes transA to be internally represented as the fully expanded decomposition

A = (In ⊗D ⊗ Idim(C)) · (E ⊗ Idim(C)) · (Idim(E) ⊗ C).

Finally, one simply writes eval transA to get an ordinary Haskell function that left-multiplies by A
according to the above decomposition.

Data types. We first define the data types that represent transforms and their decompositions (here Array r
stands for some arbitrary array type that holds elements of type r)

-- (dim(f), f) such that (f l r) applies Il ⊗ f ⊗ Ir
type Tensorable r = (Int, Int -> Int -> Array r -> Array r)

-- transform component: a Tensorable with particular Il, Ir
type TransC r = (Tensorable r, Int, Int)

-- full transform: a sequence of zero or more components
data Trans r = Id Int -- identity sentinel

| TSnoc (Trans r) (TransC r)

• The client-visible type alias Tensorable r represents an “atomic” transform (over the base type r)
that can be augmented (tensored) on the left and right by identity transforms of any dimension. It
has two components: the dimension d of the atomic transform f itself, and a function that, given any
dimensions l, r, applies the ldr-dimensional transform Il ⊗ f ⊗ Ir to an array of r-elements. (Such a
function could use parallelism internally, as already described.)

• The type alias TransC r represents a transform component, namely, a Tensorable r with particular
values for l, r. TransC is only used internally; it is not visible to external clients.

• The client-visible type Trans r represents a full transform, as a sequence of zero or more components
terminated by a sentinel representing the identity transform. For such a sequence to be well-formed, all
the components (including the sentinel) must have the same dimension. Therefore, we export the Id
constructor, but not TSnoc, so the only way for a client to construct a nontrivial Trans r is to use the
functions described below (which maintain the appropriate invariant).

Evaluation. Evaluating a transform is straightforward. Simply evaluate each component in sequence:

evalC :: TransC r -> Array r -> Array r
evalC ((_,f), l, r) = f l r

eval :: Trans r -> Array r -> Array r
eval (Id _) = id -- identity function
eval (TSnoc rest f) = eval rest . evalC f

Constructing transforms. We now explain how transforms of type Trans r are constructed. The function
trans wraps a Tensorable as a full-fledged transform:

37

trans :: Tensorable r -> Trans r
trans f@(d,_) = TSnoc (Id d) (f, 1, 1) -- Id · f

More interesting are the functions for composing and tensoring transforms, respectively denoted by the oper-
ators (.*), (@*) :: Trans r -> Trans r -> Trans r. Composition just appends the two sequences of
components, after checking that their dimensions match; we omit its straightforward implementation. The
Kronecker-product operator (@*) simply applies the appropriate rules to get a fully expanded decomposition:

-- Im ⊗ In = Imn
(Id m) @* (Id n) = Id (m*n)

-- In ⊗ (A ·B) = (In ⊗A) · (In ⊗B), and similarly
i@(Id n) @* (TSnoc a (b, l, r)) = TSnoc (i @* a) (b, (n*l), r)
(TSnoc a (b, l, r)) @* i@(Id n) = TSnoc (a @* i) (b, l, (r*n))

-- (A⊗B) = (A⊗ I) · (I ⊗B)
a @* b = (a @* Id (dim b)) .* (Id (dim a) @* b)

(The dim function simply returns the dimension of a transform, via the expected implementation.)

D Tensor Interface and Implementation

In this section we detail the “backend” representations and algorithms for computing in cyclotomic rings. We
implement these algorithms using the sparse decomposition framework outlined in Appendix C.

An element of the mth cyclotomic ring over a base ring r (e.g., Q, Z, or Zq) can be represented as a
vector of n = ϕ(m) coefficients from r, with respect to a particular r-basis of the cyclotomic ring. We call
such a vector a (coefficient) tensor to emphasize its implicit multidimensional nature, which arises from the
tensor-product structure of the bases we use.

The class Tensor (see Figure 3) represents the cryptographically relevant operations on coefficient tensors
with respect to the powerful, decoding, and CRT bases. An instance of Tensor is a data type t that itself
takes two type parameters: an m representing the cyclotomic index, and an r representing the base ring. So
the fully applied type t m r represents an index-m cyclotomic tensor over r.

The Tensor class introduces a variety of methods representing linear transformations that either convert
between two particular bases (e.g., lInv, crt), or perform operations with respect to certain bases (e.g.,
mulGPow, embedDec). It also exposes some important fixed values related to cyclotomic ring extensions
(e.g., powBasisPow, crtSetDec). An instance t of Tensor must implement all these methods and values for
arbitrary (legal) cyclotomic indices.

D.1 Mathematical Background

Here we recall the relevant mathematical background on cyclotomic rings, largely following [LPR13, AP13]
(with some slight modifications for convenience of implementation).

D.1.1 Cyclotomic Rings and Powerful Bases

Prime cyclotomics. The first cyclotomic ring is O1 = Z. For a prime p, the pth cyclotomic ring is
Op = Z[ζp], where ζp denotes a primitive pth root of unity, i.e., ζp has multiplicative order p. The minimal

38

class Tensor t where
-- single-index transforms

scalarPow :: (Ring r, Fact m) => r -> t m r
scalarCRT :: (CRTrans r, Fact m, ...) => Maybe (r -> t m r)

l, lInv :: (Ring r, Fact m) => t m r -> t m r

mulGPow, mulGDec :: (Ring r, Fact m) => t m r -> t m r
divGPow, divGDec :: (IDZT r, Fact m) => t m r -> Maybe (t m r)

crt, crtInv, mulGCRT, divGCRT :: (CRTrans r, IDZT r, Fact m)
=> Maybe (t m r -> t m r)

tGaussianDec :: (OrdFloat q, Fact m, MonadRandom rnd, ...)
=> v -> rnd (t m q)

-- two-index transforms and values

embedPow, embedDec :: (Ring r, m `Divides` m’) => t m r -> t m’ r
twacePowDec :: (Ring r, m `Divides` m’) => t m’ r -> t m r

embedCRT :: (CRTrans r, IDZT r, m `Divides` m’) => Maybe (t m r -> t m’ r)
twaceCRT :: (CRTrans r, IDZT r, m `Divides` m’) => Maybe (t m’ r -> t m r)

coeffs :: (Ring r, m `Divides` m’) => t m’ r -> [t m r]

powBasisPow :: (Ring r, m `Divides` m’) => Tagged m [t m’ r]

crtSetDec :: (PrimeField fp, m `Divides` m’, ...) => Tagged m [t m’ fp]

Figure 3: Representative methods from the Tensor class. For the sake of concision, the constraint TElt t r is
omitted from every method. The constraint IDZT r is a synonym for IntegralDomain r, ZeroTestable r.

39

polynomial over Z of ζp is Φp(X) = 1 +X +X2 + · · ·+Xp−1, so Op has degree ϕ(p) = p− 1 over Z,
and we have the ring isomorphism Op ∼= Z[X]/Φp(X) by identifying ζp with X . The power basis pp of Op
is the Z-basis consisting of the first p− 1 powers of ζp, i.e.,

pp := (1, ζp, ζ
2
p , . . . , ζ

p−2
p).

Prime-power cyclotomics. Now let m = pe for e ≥ 2 be a power of a prime p. Then we can inductively
define Om = Om/p[ζm], where ζm denotes a primitive pth root of ζm/p. Its minimal polynomial over Om/p
is Xp − ζm/p, so Om has degree p over Om/p, and hence has degree ϕ(m) = (p− 1)pe−1 over Z.

The above naturally yields the relative power basis of the extension Om/Om/p, which is the Om/p-basis

pm,m/p := (1, ζm, . . . , ζ
p−1
m).

More generally, for any powersm,m′ of p wherem|m′, we define the relative power basis pm′,m ofOm′/Om
to be the Om-basis obtained as the Kronecker product of the relative power bases for each level of the tower:

pm′,m := pm′,m′/p ⊗ pm′/p,m′/p2 ⊗ · · · ⊗ pmp,m. (D.1)

Notice that because ζpi = ζ
m′/pi

m′ for pi ≤ m′, the relative power basis pm′,m consists of all the powers
0, . . . , ϕ(m′)/ϕ(m)− 1 of ζm′ , but in “base-p digit-reversed” order (which turns out to be more convenient
for implementation). Finally, we also define pm := pm,1 and simply call it the powerful basis of Om.

Arbitrary cyclotomics. Now let m be any positive integer, and let m =
∏t
`=1m` be its factorization into

maximal prime-power divisors m` (in some canonical order). Then we can define

Om := Z[ζm1 , ζm2 , . . . , ζmt].
17

It is known that the rings Z[ζ`] are linearly disjoint over Z, i.e., for any Z-bases of the individual rings, their
Kronecker product is a Z-basis of Om. In particular, the powerful basis of Om is defined as the Kronecker
product of the component powerful bases:

pm :=
⊗
`

pm`
. (D.2)

Similarly, for m|m′ having factorizations m =
∏
`m`, m′ =

∏
`m
′
`, where each m`,m

′
` is a power of a

distinct prime p` (so some m` may be 1), the relative powerful basis of Om′/Om is

pm′,m :=
⊗
`

pm′`,m`
. (D.3)

Notice that for m|m′|m′′, we have that pm′′,m and pm′′,m′ ⊗ pm′,m are equivalent up to order, because they
are tensor products of the same components, but possibly in different orders.

17Equivalently, Om =
⊗

`Om` is the ring tensor product over Z of all the m`th cyclotomic rings; see Appendix E.

40

Canonical embedding. The mth cyclotomic ring R has n = ϕ(m) distinct ring embeddings (i.e., injective
ring homomorphisms) into the complex numbers C. Concretely, if m has prime-power factorization m =∏
`m`, then these embeddings are defined by mapping each ζm`

to each of the primitive m`th roots of unity
in C, in all combinations. The canonical embedding σ : R→ Cn is defined as the concatenation of all these
embeddings, in some standard order. (Notice that the embeddings come in conjugate pairs, so σ actually
maps into an n-dimensional real subspace H ⊆ Cn.) The canonical embedding endows the ring (and its
ambient number field) with a canonical geometry, i.e., all geometric quantities on R are defined in terms of
the canonical embedding. E.g., we have the Euclidean norm ‖x‖ := ‖σ(x)‖2. A key property is that both
addition and multiplication in the ring are coordinate-wise in the canonical embedding:

σ(a+ b) = σ(a) + σ(b)

σ(a · b) = σ(a)� σ(b).

This property aids analysis and allows for sharp bounds on the growth of errors in cryptographic applications.

D.1.2 (Tweaked) Trace, Dual Ideal, and Decoding Bases

In what follows let R = Om, R′ = Om′ for m|m′, so we have the ring extension R′/R. The trace function
TrR′/R : R′ → R is the R-linear function defined as follows: fixing any R-basis of R′, multiplication by an
x ∈ R′ can be represented as a matrix Mx over R with respect to the basis, which acts on the multiplicand’s
vector of R-coefficients. Then TrR′/R(x) is simply the trace of Mx, i.e., the sum of its diagonal entries. (This
is invariant under the choice of basis.) Because R′/R is Galois, the trace can also be defined as the sum of the
automorphisms of R′ that fix R pointwise. All of this extends to the field of fractions of R′ (i.e., its ambient
number field) in the same way.

Notice that the trace does not fix R (except when R′ = R), but rather TrR′/R(x) = deg(R′/R) · x for
all x ∈ R. For a tower R′′/R′/R of ring extensions, the trace satisfies the composition property

TrR′′/R = TrR′/R ◦TrR′′/R′ .

The dual ideal, and a “tweak.” There is a special fractional ideal R∨ of R, called the codifferent or dual
ideal, which is defined as the dual of R under the trace, i.e.,

R∨ := {fractional a : TrR/Z(a ·R) ⊆ Z}.

By the composition property of the trace, (R′)∨ is the set of all fractional a such that TrR′/R(a ·R′) ⊆ R∨.
In particular, we have TrR′/R((R′)∨) = R∨.

Concretely, the dual ideal is the principal fractional ideal R∨ = (gm/m̂)R, where m̂ = m/2 if m is even
and m̂ = m otherwise, and the special element gm ∈ R is as follows:

• for m = pe for prime p and e ≥ 1, we have gm = gp := 1− ζp if p is odd, and gm = gp := 1 if p = 2;

• for m =
∏
`m` where the m` are powers of distinct primes, we have gm =

∏
` gm`

.

The dual ideal R∨ plays a very important role in the definition, hardness proofs, and cryptographic
applications of Ring-LWE (see [LPR10, LPR13] for details). However, for implementations it seems
preferable to work entirely in R, so that we do not to have to contend with fractional values or the dual
ideal explicitly. Following [AP13] and the discussion in Section 3.1, we achieve this by multiplying all

41

values related to R∨ by the “tweak” factor tm = m̂/gm ∈ R; recall that tmR∨ = R. To compensate for
this implicit tweak factor, we replace the trace by what we call the twace (for “tweaked trace”) function
Twm′,m = TwR′/R : R′ → R, defined as

TwR′/R(x) := tm · TrR′/R(x/tm′) = (m̂/m̂′) · TrR′/R(x · gm′/gm). (D.4)

A nice feature of the twace is that it fixes the base ring pointwise, i.e., TwR′/R(x) = x for every x ∈ R. It is
also easy to verify that it satisfies the same composition property that the trace does.

We stress that this “tweaked” perspective is mathematically and computationally equivalent to using R∨,
and all the results from [LPR10, LPR13] can translate to this setting without any loss.

(Tweaked) decoding basis. The work of [LPR13] defines a certain Z-basis bm = (bj) of R∨, called the
decoding basis. It is defined as the dual of the conjugated powerful basis pm = (pj) under the trace:

TrR/Z(bj · p−1
j′) = δj,j′

for all j, j′. The key geometric property of the decoding basis is, informally, that the Z-coefficients of any
e ∈ R∨ with respect to bm are optimally small in relation to σ(x), the canonical embedding of e. In other
words, short elements like Gaussian errors have small decoding-basis coefficients.

With the above-described “tweak” that replaces R∨ by R, we get the Z-basis

dm = (dj) := tm · bm ,

which we call the (tweaked) decoding basis of R. By definition, this basis is dual to the conjugated powerful
basis pm under the twace:

TwR/Z(dj · p−1
j′) = δj,j′ .

Because gm · tm = m̂, it follows that the coefficients of any e ∈ R with respect to dm are identical to those
of gm · e ∈ gmR = m̂R∨ with respect to the Z-basis gm · dm = m̂ · bm of gmR. Hence, they are optimally
small in relation to σ(gm · e).18

Relative decoding basis. Generalizing the above, the relative decoding basis dm′,m of R′/R is dual to the
(conjugated) relative powerful basis pm′,m under TwR′/R. As such, dm′,m (and in particular, dm′ itself) has a
Kronecker-product structure mirroring that of pm′,m from Equations (D.1) and (D.3). Furthermore, by the
results of [LPR13, Section 6], for a positive power m of a prime p we have

dtm,m/p =

{
ptm,m/p · Lp if m = p

ptm,m/p otherwise,
(D.5)

where Lp is the lower-triangular matrix with 1s throughout its lower triangle.

18This is why Invariant 4.1 of our fully homomorphic encryption scheme (Section 4) requires σ(e · gm) to be short, where e is the
error in the ciphertext.

42

D.1.3 Chinese Remainder Bases

Let m be the index of cyclotomic ring R = Om, let q = 1 (mod m) be a prime integer, and consider the
quotient ring Rq = R/qR, i.e., the mth cyclotomic over base ring Zq. This ring has a Chinese remainder
(or CRT) Zq-basis c = cm ∈ Rϕ(m)

q , whose entries are indexed by Z∗m. The key property satisfied by this
basis is

ci · ci′ = δi,i′ · ci (D.6)

for all i, i′ ∈ Z∗m. Therefore, multiplication of ring elements represented in the CRT basis is coefficient-wise
(and hence linear time): for any coefficient vectors a,b ∈ Zϕ(m)

q , we have

(ct · a) · (ct · b) = ct · (a� b).

Also by Equation (D.6), the matrix corresponding to multiplication by ci (with respect to the CRT basis) has
one in the ith diagonal entry and zeros everywhere else, so the trace of every CRT basis element is unity:
TrR/Z(c) = 1 (mod q). For completeness, in what follows we describe the explicit construction of the CRT
basis.

Arbitrary cyclotomics. For an arbitrary index m, the CRT basis is defined in terms of the prime-power
factorization m =

∏t
`=1m`. Recall that Rq = Zq[ζm1 , . . . , ζmt], and that the natural homomorphism

φ : Z∗m →
∏
` Z∗m`

is a group isomorphism. Using this, we can equivalently index the CRT basis by
∏
` Z∗m`

.
With this indexing, the CRT basis cm of Rq is the Kronecker product of the CRT bases cm`

of Zq[ζm`
]:

cm =
⊗
`

cm`
,

i.e., the φ(i)th entry of cm is the product of the φ(i)`th entry of cm`
, taken over all `. It is easy to verify that

Equation (D.6) holds for cm, because it does for all the cm`
.

Prime-power cyclotomics. Now let m be a positive power of a prime p, and let ωm ∈ Z∗q be an element of
order m (i.e., a primitive mth root of unity), which exists because Z∗q is a cyclic group of order q − 1, which
is divisible by m. We rely on two standard facts:

1. the Kummer-Dedekind Theorem, which implies that the ideal qR =
∏
i∈Z∗m qi factors into the product

of ϕ(m) distinct prime ideals qi = (ζm − ωim)R+ qR ⊂ R; and

2. the Chinese Remainder Theorem (CRT), which implies that the natural homomorphism from Rq to the
product ring

∏
i∈Z∗m R/qi is a ring isomorphism.

Using this isomorphism, the basis cm is defined so that its ith entry ci ∈ Rq satisfies ci = δi,i′ (mod qi′) for
all i, i′ ∈ Z∗m. Observe that this definition clearly satisfies Equation (D.6).

Like the powerful and decoding bases, for any extension R′q/Rq where R′ = Om′ , R = Om for powers
m|m′ of p, there is a relative CRT Rq-basis cm′,m of R′q, which has a Kronecker-product factorization
mirroring the one in Equation (D.1). The elements of this Rq-basis satisfy Equation (D.6), and hence their
traces into Rq are all unity. We defer a full treatment to Section D.4, where we consider a more general
setting (where possibly q 6= 1 (mod m)) and define and compute relative CRT sets.

43

D.2 Single-Index Transforms

In this and the next subsection we describe sparse decompositions for all the Tensor operations. We start
here with the dimension-preserving transforms involving a single index m, i.e., they take an index-m tensor
as input and produce one as output.

D.2.1 Prime-Power Factorization

For an arbitrary index m, every transform of interest factors into the tensor product of the corresponding
transforms for prime-power indices. More specifically, let Tm denote the matrix for any of the linear
transforms on index-m tensors that we consider below. Then letting m =

∏
`m` be the factorization of m

into its maximal prime-power divisors m` (in some canonical order), we have the factorization

Tm =
⊗
`

Tm`
. (D.7)

This follows directly from the Kronecker-product factorizations of the powerful, decoding, and CRT bases
(e.g., Equation (D.2)), and the mixed-product property. Therefore, for the remainder of this subsection we
only deal with prime-power indices m = pe for a prime p and positive integer e.

D.2.2 Embedding Scalars

Consider a scalar element a from the base ring, represented relative to the powerful basis pm. Because the
first element of pm is unity, we have

a = ptm · (a · e1),

where e1 = (1, 0, . . . , 0). Similarly, in the CRT basis cm (when it exists), unity has the all-ones coefficient
vector 1. Therefore,

a = ctm · (a · 1).

The Tensor methods scalarPow and scalarCRT use the above equations to represent a scalar from the
base ring as a coefficient vector relative to the powerful and CRT bases, respectively. Note that scalarCRT
itself is wrapped by Maybe, so that it can be defined as Nothing if there is no CRT basis over the base ring.

D.2.3 Converting Between Powerful and Decoding Bases

Let Lm denote the matrix of the linear transform that converts from the decoding basis to the powerful basis:

dtm = ptm · Lm ,

i.e., a ring element with coefficient vector v in the decoding basis has coefficient vector Lm ·v in the powerful
basis. Because dm = pm,p ⊗ dp,1 and dtp,1 = ptp,1 · Lp (both by Equation (D.5)), we have

dtm = (ptm,p · Im/p)⊗ (ptp · Lp)
= ptm · (Im/p ⊗ Lp)︸ ︷︷ ︸

Lm

.

44

Recall that Lp is the square ϕ(p)-dimensional lower-triangular matrix with 1s throughout its lower-left
triangle, and L−1

p is the lower-triangular matrix with 1s on the diagonal, −1s on the subdiagonal, and 0s
elsewhere. We can apply both Lp and L−1

p using just p− 1 additions, by taking partial sums and successive
differences, respectively.

The Tensor methods l and lInv represent multiplication by Lm and L−1
m , respectively.

D.2.4 Multiplication by gm

Let Gpow
m denote the matrix of the linear transform representing multiplication by gm in the powerful basis,

i.e.,
gm · ptm = ptm ·Gpow

m .

Because gm = gp ∈ Op and pm = pm,p ⊗ pp, we have

gm · pm = pm,p ⊗ (gp · pp)
= (pm,p · Im/p)⊗ (pp ·Gpow

p)

= pm · (Im/p ⊗Gpow
p)︸ ︷︷ ︸

G
pow
m

,

where Gpow
p and its inverse (which represents division by gp in the powerful basis) are the square (p− 1)-

dimensional matrices

Gpow
p =


1 1

−1
. . . 1
. . . 1

...
−1 1 1

−1 2

 , (Gpow
p)−1 = p−1 ·


p− 1 · · · −1 −1 −1

...
. . .

...
...

...
3 · · · 3 3− p 3− p
2 · · · 2 2 2− p
1 · · · 1 1 1

 .

Identical decompositions hold for Gdec
m and Gcrt

m (which represent multiplication by gm in the decoding
and CRT bases, respectively), where

Gdec
p =


2 1 · · · 1
−1 1

.
−1 1

−1 1

 , (Gdec
p)−1 = p−1 ·


1 2− p 3− p · · · −1
1 2 3− p · · · −1
1 2 3 · · · −1
...

...
...

. . .
...

1 2 3 · · · p− 1

 ,

and Gcrt
p is the diagonal matrix with 1− ωip in the ith diagonal entry (indexed from 1 to p− 1), where ωp is

the same primitive pth root of unity in the base ring used to define the CRT basis.
The linear transforms represented by the above matrices can be applied in time linear in the dimension.

For Gpow
p , Gdec

p , and Gcrt
p and its inverse this is obvious, due to their sparsity. For (Gdec

p)−1, this follows
from the fact that every row (apart from the top one) differs from the preceding one by a single entry. For
(G

pow
p)−1, we can compute the entries of the output vector from the bottom up, by computing the sum of all

the input entries and their partial sums from the bottom up.
The Tensor methods mulGPow and mulGDec represent multiplication by Gpow

m and Gdec
m , respectively.

Similarly, the methods divGPow and divGDec represent division by these matrices; note that their outputs are

45

wrapped by Maybe, so that the output can be Nothing when division fails. Finally, mulGCRT and divGCRT
represent multiplication and division by Gcrt

m ; note that these methods themselves are wrapped by Maybe,
because Gcrt

m and its inverse are well-defined over the base ring exactly when a CRT basis exists. (In this case,
division always succeeds, hence no Maybe is needed for the output of divGCRT.)

D.2.5 Chinese Remainder and Discrete Fourier Transforms

Consider a base ring, like Zq or C, that admits an invertible index-m Chinese Remainder Transform CRTm,
defined by a principal mth root of unity ωm. Then as shown in [LPR13, Section 3], this transform converts
from the powerful basis to the CRT basis (defined by the same ωm), i.e.,

ptm = ctm · CRTm .

Also as shown in [LPR13, Section 3], CRTm admits the following sparse decompositions for m > p:19

CRTm = (DFTm/p ⊗ Ip−1) · T̂m · (Im/p ⊗ CRTp) (D.8)

DFTm = (DFTm/p ⊗ Ip) · Tm · (Im/p ⊗DFTp) . (D.9)

(These decompositions can be applied recursively until all the CRT and DFT terms have subscript p.) Here
DFTp is a square p-dimensional matrix with rows and columns indexed from zero, and CRTp is its lower-left
(p− 1)-dimensional square submatrix, with rows indexed from one and columns indexed from zero. The
(i, j)th entry of each matrix is ωijp , where ωp = ω

m/p
m . Finally, T̂m, Tm are diagonal “twiddle” matrices

whose diagonal entries are certain powers of ωm.
For the inverses CRT−1

m and DFT−1
m , by standard properties of matrix and Kronecker products, we have

sparse decompositions mirroring those in Equations (D.8) and (D.9). Note that DFTp is invertible if and
only if p is invertible in the base ring, and the same goes for CRTp, except that CRT2 (which is just unity)
is always invertible. More specifically, DFT−1

p = p−1 ·DFT∗p, the (scaled) conjugate transpose of DFTp,
whose (i, j)th entry is ω−ijp . For CRT−1

p , it can be verified that for p > 2,

CRT−1
p = p−1 ·

(
X − 1 · (ω1

p, ω
2
p, . . . , ω

p−1
p)t

)
,

where X is the upper-right (p− 1)-dimensional square submatrix of DFT∗p. Finally, note that in the sparse
decomposition for CRT−1

m (for aribtrary m), we can collect all the individual p−1 factors from the CRT−1
p

and DFT−1
p terms into a single m̂−1 factor. (This factor is exposed by the CRTrans interface; see Section 2.4.)

The Tensor methods crt and crtInv respectively represent multiplication by CRTm and its inverse.
These methods themselves are wrapped by Maybe, so that they can be Nothing when there is no CRT basis
over the base ring.

D.2.6 Generating (Tweaked) Gaussians in the Decoding Basis

Cryptographic applications often need to sample secret error terms from a prescribed distribution. For Ring-
LWE, error distributions Dr that correspond to (continuous) spherical Gaussians in the canonical embedding

19In these decompositions, the order of arguments to the Kronecker products is swapped as compared with those appearing
in [LPR13]. This is due to our corresponding reversal of the factors in the Kronecker-product decompositions of the powerful
and CRT bases. The ordering here is more convenient for implementation, but note that it yields bases and twiddle factors in
“digit-reversed” order. In particular, the twiddle matrices T̂m, Tm here are permuted versions of the ones defined in [LPR13].

46

are particularly useful, and for sufficiently large r are supported by worst-case hardness proofs [LPR10].
(The error can then be discretized in a variety of ways, with no loss in hardness.) Note, however, that all this
is for the original definition of Ring-LWE involving the dual ideal R∨ (see Sections D.1.2 and 3.1).

With the “tweaked” perspective that replaces R∨ by R via the tweak factor tm ∈ R, we are interested in
sampling from tweaked distributions tm ·Dr. More precisely, we want a randomized algorithm that samples
a coefficient vector over R, with respect to one of the standard bases of R, of a random element that is
distributed as tm ·Dr. This is not entirely trivial, because except in the power-of-two case, R does not have
an orthogonal basis, and so the output coefficients will not be independent.

The material in [LPR13, Section 6.3] yields a specialized, fast algorithm for sampling from Dr with
output represented in the decoding basis bm of R∨. Equivalently, the very same algorithm samples from
the tweaked Gaussian tm · Dr relative to the decoding basis dm = tm · bm of R. The algorithm is faster
(often much moreso) than the naïve one that applies a full CRT∗m (over C) to a Gaussian in the canonical
embedding. The efficiency comes from skipping several layers of orthogonal transforms (namely, scaled
DFTs and twiddle matrices), which is possible due to the rotation-invariance of spherical Gaussians. The
algorithm also avoids complex numbers entirely, instead using only reals.

The algorithm. The sampling algorithm simply applies a certain linear transform over R, whose matrixEm
has a sparse decomposition as described below, to a vector of i.i.d. real Gaussian samples with parameter r,
and outputs the resulting vector. The Tensor method tGaussianDec implements the algorithm, given v = r2.
(Note that its output type rnd (t m q) for MonadRandom rnd is necessarily monadic, because the algorithm
is randomized.)

As with all the transforms considered above, we describe the sparse decomposition of Em where m is a
power of a prime p, which then generalizes to arbitrary m as described in Section D.2.1. For m > p, we have

Em =
√
m/p · (Im/p ⊗ Ep),

where E2 is unity and Ep for p > 2 is

Ep = 1√
2
· CRT∗p ·

(
I −

√
−1J

J
√
−1I

)
∈ R(p−1)×(p−1) ,

where CRTp is over C, and J is the “reversal” matrix obtained by reversing the columns of the identity
matrix.20 Expanding the above product, Ep has rows indexed from zero and columns indexed from one, and
its (i, j)th entry is

√
2 ·

{
cos θi·j for 1 ≤ j < p/2

sin θi·j for p/2 < j ≤ p− 1
, θk = 2πk/p.

Finally, note that in the sampling algorithm, when applying Em for arbitrary m with prime-power
factorization m` =

∏
`m`, we can apply all the

√
m`/p` scaling factors (from the Em`

terms) to the
parameter r of the Gaussian input vector, i.e., use parameter r

√
m/ rad(m) instead.

20We remark that the signs of the rightmost block of the above matrix (containing −
√
−1J and

√
−1I) is swapped as compared

with what appears in [LPR13, Section 6.3]. The choice of sign is arbitrary, because any orthonormal basis of the subspace spanned
by the columns works equally well.

47

D.3 Two-Index Transforms and Values

We now consider transforms and special values relating the mth and m′th cyclotomic rings, for m|m′. These
are used for computing the embed and twace functions, the relative powerful basis, and the relative CRT set.

D.3.1 Prime-Power Factorization

As in the Section D.2, every transform of interest for arbitrary m|m′ factors into the tensor product of
the corresponding transforms for prime-power indices having the same prime base. More specifically, let
Tm,m′ denote the matrix of any of the linear transforms we consider below. Suppose we have factorization
m =

∏
`m`, m′ =

∏
`m
′
` where each m`,m

′
` is a power of a distinct prime p` (so some m` may be 1).

Then we have the factorization
Tm,m′ =

⊗
`

Tm`,m
′
`
,

which follows directly from the Kronecker-product factorizations of the powerful and decoding bases, and the
mixed-product property. Therefore, from this point onward we deal only with prime-power indices m = pe,
m′ = pe

′
for a prime p and integers e′ > e ≥ 0.

We mention that for the transforms we consider below, the fully expanded matrices Tm,m′ have very
compact representations and can be applied directly to the input vector, without computing a sequence of
intermediate vectors via the sparse decomposition. For efficiency, our implementation does exactly this.

D.3.2 Coefficients in Relative Bases

We start with transforms that let us represent elements with respect to relative bases, i.e., to represent an
element of the m′th cyclotomic as a vector of elements in the mth cyclotomic, with respect to a relative basis.
Due to the Kronecker-product structure of the powerful, decoding, and CRT bases, it turns out that the same
transformation works for all of them. The coeffs method of Tensor implements this transformation.

One can verify the identity (x⊗ y)t · a = xt ·A · y, where A is the “matricization” of the vector a, whose
rows are (the transposes of) the consecutive dim(y)-dimensional blocks of a. Letting b` denote either the
powerful, decoding, or CRT basis in the `th cyclotomic, which has factorization bm′ = bm′,m ⊗ bm, we have

btm′ · a = btm′,m · (A · bm).

Therefore, A · bm is the desired vector of R-coefficients of a = btm′ · a ∈ R′. In other words, the ϕ(m)-
dimensional blocks of a are the coefficient vectors (with respect to basis bm) of the R-coefficients of a with
respect to the relative basis bm′,m.

D.3.3 Embed Transforms

We now consider transforms that convert from a basis in the mth cyclotomic to the same type of basis in the
m′th cyclotomic. That is, for particular bases bm′ , bm of the m′th and mth cyclotomics (respectively), we
write

btm = btm′ · T

for some integer matrix T . So embedding a ring element from the mth to the m′th cyclotomic (with
respect to these bases) corresponds to left-multiplication by T . The embedB methods of Tensor, for B ∈
{Pow, Dec, CRT}, implement these transforms.

48

We start with the powerful basis. Because pm′ = pm′,m ⊗ pm and the first entry of pm′,m is unity,

ptm = (ptm′,m · e1)⊗ (ptm · Iϕ(m))

= ptm′ · (e1 ⊗ Iϕ(m)) ,

where e1 = (1, 0, . . . , 0) ∈ Zϕ(m′)/ϕ(m). Note that (e1 ⊗ Iϕ(m)) is the identity matrix stacked on top of an
all-zeros matrix, so left-multiplication by it simply pads the input vector by zeros.

For the decoding bases dm′ , dm, an identical derivation holds when m > 1, because dm′ = pm′,m ⊗ dm.
Otherwise, we have dm′ = pm′,p ⊗ dp and dtm = (1) = dtp · v, where v = (1,−1, 0, . . . , 0) ∈ Zϕ(p).
Combining these cases, we have

dtm = dtm′ ·

{
e1 ⊗ Iϕ(m) if m > 1

e1 ⊗ v if m = 1.

For the CRT bases cm′ , cm, because cm = cm′,m ⊗ cm and the sum of the elements of any (relative) CRT
basis is unity, we have

ctm = (ctm′,m · 1)⊗ (ctm · Iϕ(m))

= ctm′ · (1⊗ Iϕ(m)) .

Notice that (1⊗ Iϕ(m)) is just a stack of identity matrices, so left-multiplication by it just stacks up several
copies of the input vector.

Finally, we express the relative powerful basis pm′,m with respect to the powerful basis pm′ ; this is used
in the powBasisPow method of Tensor. We simply have

ptm′,m = (ptm′,m · Iϕ(m′)/ϕ(m))⊗ (pm · e1)

= ptm′ · (Iϕ(m′)/ϕ(m) ⊗ e1) .

D.3.4 Twace Transforms

We now consider transforms that represent the twace function from the m′th to the mth cyclotomic for
the three basis types of interest. That is, for particular bases bm′ , bm of the m′th and mth cyclotomics
(respectively), we write

Twm′,m(btm′) = btm · T

for some integer matrix T , which by linearity of twace implies

Twm′,m(btm′ · v) = btm · (T · v).

In other words, the twace function (relative to the these bases) corresponds to left-multiplication by T . The
twacePowDec and twaceCRT methods of Tensor implement these transforms.

To start, we claim that

Twm′,m(pm′,m) = Twm′,m(dm′,m) = e1 ∈ Zϕ(m′)/ϕ(m). (D.10)

This holds for dm′,m because it is dual to (conjugated) pm′,m under Twm′,m, and the first entry of pm′,m is
unity. It holds for pm′,m because pm′,m = dm′,m for m > 1, and for m = 1 one can verify that

Twm′,1(pm′,1) = Twp,1(Twm′,p(pm′,p)⊗ pp,1) = (1, 0, . . . , 0)⊗ Twp,1(pp,1) = e1.

49

Now for the powerful basis, by linearity of twace and Equation (D.10) we have

Twm′,m(ptm′) = Twm′,m(ptm′,m)⊗ ptm
= (1 · et1)⊗ (ptm · Iϕ(m))

= ptm · (et1 ⊗ Iϕ(m)) .

An identical derivation holds for the decoding basis as well. Notice that left-multiplication by the matrix
(et1 ⊗ Iϕ(m)) just returns the first ϕ(m′)/ϕ(m) entries of the input vector.

Finally, we consider the CRT basis. Because gm′ = gp (recall that m′ ≥ p), by definition of twace in
terms of trace we have

Twm′,m(x) = (m̂/m̂′) · g−1
m · Trm′,m(gp · x). (D.11)

Also recall that the traces of all relative CRT set elements are unity: Trm′,`(cm′,`) = 1ϕ(m′)/ϕ(`) for any `|m′.
We now need to consider two cases. For m > 1, we have gm = gp, so by Equation (D.11) and linearity of
trace,

Twm′,m(cm′,m) = (m̂/m̂′) · 1ϕ(m′)/ϕ(m) .

For m = 1, we have gm = 1, so by cm′,1 = cm′,p ⊗ cp,1 and linearity of trace we have

Twm′,1(cm′,1) = (m̂/m̂′) · Trp,1
(
Trm′,p(cm′,p)⊗ (gp · cp,1)

)
= (m̂/m̂′) · 1ϕ(m′)/ϕ(p) ⊗ Trp,1(gp · cp,1) .

Applying the two cases, we finally have

Twm′,m(ctm′) = (1 · Twm′,m(ctm′,m))⊗ (ctm · Iϕ(m))

= ctm · (m̂/m̂′) ·

{
1tϕ(m′)/ϕ(m) ⊗ Iϕ(m) if m > 1

1tϕ(m′)/ϕ(p) ⊗ Trp,1(gp · ctp,1) if m = 1.

Again because Trp,1(cp,1) = 1ϕ(p), the entries of Trp,1(gp · cp,1) are merely the CRT coefficients of gp. That

is, the ith entry (indexed from one) is 1− ωip, where ωp = ω
m′/p
m′ for the value of ωm′ used to define the CRT

set of the m′th cyclotomic.

D.4 CRT Sets

In this final subsection we describe an algorithm for computing a representation of the relative CRT set cm′,m
modulo a prime-power integer. CRT sets are a generalization of CRT bases to the case where the prime
modulus may not be 1 modulo the cyclotomic index (i.e., it does not split completely), and therefore the
cardinality of the set may be less than the dimension of the ring. CRT sets are used for homomorphic SIMD
operations [SV11] and in the bootstrapping algorithm of [AP13].

D.4.1 Mathematical Background

For a positive integer q and cyclotomic ring R, let qR =
∏
i q
ei
i be the factorization of qR into powers of

distinct prime ideals qi ⊂ R. Recall that the Chinese Remainder Theorem says that the natural homomorphism
from Rq = R/qR to the product ring

∏
i(R/q

ei
i) is a ring isomorphism.

Definition D.1. The CRT set of Rq is the vector c over Rq such that ci = δi,i′ (mod q
ei′
i′) for all i, i′.

50

For a prime integer p, the prime-ideal factorization of pR is as follows. For the moment assume that
p - m, and let d be the order of p modulo m, i.e., the smallest positive integer such that pd = 1 (mod m).
Then pR factors into the product of ϕ(m)/d distinct prime ideals pi, as described below:

pR =
∏
i

pi .

Observe that the finite field Fpd has a principal mth root of unity ωm, because F∗
pd

is cyclic and has order
pd − 1 = 0 (mod m). Therefore, there are ϕ(m) distinct ring homomorphisms ρi : R → Fpd indexed by
i ∈ Z∗m, where ρi is defined by mapping ζm to ωim.

The prime ideal divisors of pR are indexed by the quotient group G = Z∗m/〈p〉, i.e., the multiplicative
group of cosets i〈p〉 of the subgroup 〈p〉 = {1, p, p2, . . . , pd−1} of Z∗m. For each coset i = ı̄〈p〉 ∈ G, the
ideal pi is simply the kernel of the ring homomorphism ρı̄, for some arbitrary choice of representative ı̄ ∈ i.
It is easy to verify that this is an ideal, and that it is invariant under the choice of representative, because
ρı̄p(r) = ρı̄(r)

p for any r ∈ R. (This follows from (a+ b)p = ap + bp for any a, b ∈ Fpd .)
Because pi is the kernel of ρı̄, the induced ring homomorphisms ρı̄ : R/pi → Fpd are in fact isomorphisms.

In combination with the Chinese Remainder Theorem, their concatenation yields a ring isomorphism
ρ : Rp → (Fpd)ϕ(m)/d. In particular, for the CRT set c of Rp, for any z ∈ Rp we have

TrRp/Zp
(z · c) = TrF

pd
/Fp

(ρ(z)). (D.12)

Finally, consider the general case where p may divide m. It turns out that this case easily reduces to the
one where p does not divide m, as follows. Let m = pk · m̄ for p - m̄, and let R̄ = Om̄ and pR̄ =

∏
i p̄i be

the prime-ideal factorization of pR̄ as described above. Then the ideals p̄i ⊂ R̄ are totally ramified in R, i.e.,
we have p̄iR = p

ϕ(m)/ϕ(m̄)
i for some distinct prime ideals pi ⊂ R. This implies that the CRT set for Rp is

exactly the CRT set for R̄p, embedded into Rp. Therefore, in what follows we restrict our attention to the
case where p does not divide m.

D.4.2 Computing CRT Sets

We start with an easy calculation that, for a prime integer p, “lifts” the mod-p CRT set to the mod-pe CRT set.

Lemma D.2. For R = Om, a prime integer p where p - m, and a positive integer e, let (ci)i be the CRT set
of Rpe , and let c̄i ∈ R be any representative of ci. Then (c̄pi mod pe+1R)i is the CRT set of Rpe+1 .

Corollary D.3. If c̄i ∈ R are representatives for the mod-p CRT set (ci)i of Rp, then (c̄p
e−1

i mod peR)i is
the CRT set of Rpe .

Proof of Lemma D.2. Let pR =
∏
i pi be the factorization of pR into distinct prime ideals pi ⊂ R. By

hypothesis, we have c̄i ∈ δi,i′ + pei′ for all i, i′. Then

c̄pi ∈ δi,i′ + p · pei′ + pepi′ ⊆ δi,i′ + pe+1
i′ ,

because p divides the binomial coefficient
(
p
k

)
for 0 < k < p, because pR ⊆ pi′ , and because pepi′ ⊆ pe+1

i′ .

51

CRT sets modulo a prime. We now describe the mod-p CRT set for a prime integer p, and an efficient
algorithm for computing representations of its elements. To motivate the approach, notice that the coefficient
vector of x ∈ Rp with respect to some arbitrary Zp-basis b of Rp can be obtained via the twace and the dual
Zp-basis b∨ (under the twace):

x = bt · TwRp/Zp
(x · b∨).

In what follows we let b be the decoding basis, because its dual basis is the conjugated powerful basis, which
has a particularly simple form. The following lemma is a direct consequence of Equation (D.12) and the
definition of twace (Equation (D.4)).

Lemma D.4. For R = Om and a prime integer p - m, let c = (ci) be the CRT set of Rp, let d = dm denote
the decoding Zp-basis of Rp, and let τ(p) = (p−1

j) denote its dual, the conjugate powerful basis. Then

ct = dt · TwRp/Zp
(τ(p) · ct) = dt · m̂−1 · TrF

pd
/Fp

(C),

where C is the matrix over Fqd whose (j, ı̄)th element is ρı̄(gm) · ρı̄(p−1
j).

Notice that ρı̄(p−1
j) is merely the inverse of the (̄ı, j)th entry of the matrix CRTm over Fpd , which is the

Kronecker product of CRTm`
over all maximal prime-power divisors of m. In turn, the entries of CRTm`

are
all just appropriate powers of ωm`

∈ Fpd . Similarly, ρı̄(gm) is the product of all ρı̄ mod m`
(gm`

) = 1− ωı̄m`
.

So we can straightforwardly compute the entries of the matrix C and takes their traces into Fp, yielding the
decoding-basis coefficient vectors for the CRT set elements.

Relative CRT sets. We conclude by describing the relative CRT set cm′,m modulo a prime p, where
R = Om, R′ = Om′ for m|m′ and p - m′. The key property of cm′,m is that the CRT sets cm′ , cm for Rp, R′p
(respectively) satisfy the Kronecker-product factorization

cm′ = cm′,m ⊗ cm . (D.13)

The definition of cm′,m arises from the splitting of the prime ideal divisors pi (of pR) in R′, as described next.
Recall from above that the prime ideal divisors p′i′ ⊂ R′ of pR′ and the CRT set cm′ = (c′i′) are indexed

by i′ ∈ G′ = Z∗m′/〈p〉, and similarly for pi ⊂ R and cm = (ci). For each i ∈ G = Z∗m/〈p〉, the ideal piR′

factors as the product of those p′i′ such that i′ = i (mod m), i.e., those i′ ∈ φ−1(i) where φ : G′ → G is the
natural mod-m homomorphism. Therefore,

ci =
∑

i′∈φ−1(i)

c′i′ . (D.14)

To define cm′,m, we partition G′ into a collection I ′ of |G′|/|G| equal-sized subsets I ′, such that φ(I ′) =
G for every I ′ ∈ I ′. In other words, φ is a bijection between each I ′ and G. This induces a bijection
ψ : G′ → I ′ × G, where the projection of ψ onto its second component is φ. We index the relative CRT
set cm′,m = (cI′) by I ′ ∈ I ′, defining

cI′ :=
∑
i′∈I′

c′i′ .

By Equation (D.14) and the fact that (c′i′) is the CRT set of R′p, it can be verified that ci′ = cI′ · ci for
ψ(i′) = (I ′, i), thus confirming Equation (D.13).

52

E Tensor Product of Rings

Here we restate and prove Lemma 4.2, using the concept of a tensor product of rings.
Let R,S be arbitrary rings with common subring E ⊆ R,S. The ring tensor product of R and S over

E, denoted R ⊗E S, is the set of E-linear combinations of pure tensors r ⊗ s for r ∈ R, s ∈ S, with ring
operations defined by E-bilinearity, i.e.,

(r1 ⊗ s) + (r2 ⊗ s) = (r1 + r2)⊗ s
(r ⊗ s1) + (r ⊗ s2) = r ⊗ (s1 + s2)

e(r ⊗ s) = (er)⊗ s = r ⊗ (es)

for any e ∈ E, and the mixed-product property

(r1 ⊗ s1) · (r2 ⊗ s2) = (r1r2)⊗ (s1s2).

We need the following facts about tensor products of cyclotomic rings. Let R = Om1 and S = Om2 .
Their largest common subring and smallest common extension ring (called the compositum) are, respectively,

E = Om1 ∩ Om2 = Ogcd(m1,m2)

T = Om1 +Om2 = Olcm(m1,m2).

Moreover, the ring tensor product R⊗E S is isomorphic to T , via the E-linear map defined by sending r⊗ s
to r · s ∈ T . In particular, for coprime m1,m2, we have Om1 ⊗Z Om2

∼= Om1m2 .
Now let E′, R′, S′ with E′ ⊆ R′ ∩ S′ respectively be cyclotomic extensions of E,R, S. As part of ring

tunneling we need to extend an E-linear function L : R → S to an E′-linear function L′ : R′ → S′ that
agrees with L on R, i.e., L′(r) = L(r) for every x ∈ R. The following lemma gives sufficient conditions for
when and how this is possible.

Lemma E.1. Adopt the above notation, and suppose E = R∩E′ and R′ = R+E′ (so that R′ ∼= R⊗E E′),
and (S + E′) ⊆ S′. Then:

1. The relative decoding bases of R/E and of R′/E′ are identical.

2. For any E-linear function L : R → S, the E-linear function L′ : R′ → S′ defined by L′(r ⊗ e′) :=
L(r) · e′ is E′-linear and agrees with L on R.

Proof. First observe that L′ is indeed well-defined and is E-linear, by definition of the ring operations of
R′ ∼= R⊗EE′. Now observe that L′ is in fact E′-linear: any e′ ∈ E′ embeds into R′ as 1⊗e′, so E′-linearity
follows directly from the definition of L′ and the mixed-product property. Also, any r ∈ R embeds into R′ as
r ⊗ 1, and L′(r ⊗ 1) = L(r) · 1, so L′ agrees with L on R.

Finally, observe that because R′ ∼= R⊗E E′, the index of E is the gcd of the indices of R,E′, and the
index of R′ is their lcm. Then by the Kronecker-product factorization of decoding bases, the relative decoding
bases of R/E and of R′/E′ are the Kronecker products of the exact same components, in the same order.
(This can be seen by considering each prime divisor of the index of R′ in turn.)

53

	Introduction
	Introducing
	Why Haskell?
	Overview and Paper Organization
	Limitations and Future Work

	Integer and Modular Arithmetic
	Representing Z and Zq
	Reduce and Lift
	Rescale
	CRTrans
	Gadgets
	Type-Level Arithmetic for Cyclotomic Indices

	Cyclotomic Rings
	Mathematical Background
	Safe Interface: Cyc
	Unsafe Interface: UCyc
	UCyc Implementation
	Representations
	Arithmetic Operations
	Promoting from Base Ring to Cyclotomics

	Homomorphic Encryption in
	Keys, Plaintexts, and Ciphertexts
	Encryption and Decryption
	Homomorphic Addition and Multiplication
	Modulus Switching
	Key Switching and Linearization
	Ring Tunneling

	Haskell Background
	Types
	Type Classes

	More on Type-Level Cyclotomic Indices
	Promoting Factored Naturals
	Applying the Promotions

	Sparse Decompositions and Haskell Framework
	Sparse Decompositions
	Haskell Framework

	Tensor Interface and Implementation
	Mathematical Background
	Cyclotomic Rings and Powerful Bases
	(Tweaked) Trace, Dual Ideal, and Decoding Bases
	Chinese Remainder Bases

	Single-Index Transforms
	Prime-Power Factorization
	Embedding Scalars
	Converting Between Powerful and Decoding Bases
	Multiplication by gm
	Chinese Remainder and Discrete Fourier Transforms
	Generating (Tweaked) Gaussians in the Decoding Basis

	Two-Index Transforms and Values
	Prime-Power Factorization
	Coefficients in Relative Bases
	Embed Transforms
	Twace Transforms

	CRT Sets
	Mathematical Background
	Computing CRT Sets

	Tensor Product of Rings

