
Λ◦λ :
Functional Lattice Cryptography

Eric Crockett* Chris Peikert†

August 17, 2016

Abstract

This work describes the design, implementation, and evaluation of Λ◦λ, a general-purpose software
framework for lattice-based cryptography. The Λ◦λ framework has several novel properties that distinguish
it from prior implementations of lattice cryptosystems, including the following.

Generality, modularity, concision: Λ◦λ defines a collection of general, highly composable interfaces
for mathematical operations used across lattice cryptography, allowing for a wide variety of schemes to
be expressed very naturally and at a high level of abstraction. For example, we implement an advanced
fully homomorphic encryption (FHE) scheme in as few as 2–5 lines of code per feature, via code that
very closely matches the scheme’s mathematical definition.

Theory affinity: Λ◦λ is designed from the ground-up around the specialized ring representations,
fast algorithms, and worst-case hardness proofs that have been developed for the Ring-LWE problem
and its cryptographic applications. In particular, it implements fast algorithms for sampling from theory-
recommended error distributions over arbitrary cyclotomic rings, and provides tools for maintaining tight
control of error growth in cryptographic schemes.

Safety: Λ◦λ has several facilities for reducing code complexity and programming errors, thereby
aiding the correct implementation of lattice cryptosystems. In particular, it uses strong typing to statically
enforce—i.e., at compile time—a wide variety of constraints among the various parameters.

Advanced features: Λ◦λ exposes the rich hierarchy of cyclotomic rings to cryptographic applications.
We use this to give the first-ever implementation of a collection of FHE operations known as “ring
switching,” and also define and analyze a more efficient variant that we call “ring tunneling.”

Lastly, this work defines and analyzes a variety of mathematical objects and algorithms for the
recommended usage of Ring-LWE in cyclotomic rings, which we believe will serve as a useful knowledge
base for future implementations.

*School of Computer Science, Georgia Institute of Technology, and Department of Computer Science and Engineering, University
of Michigan.

†Department of Computer Science and Engineering, University of Michigan. Much of this work was done while the author
was at the Georgia Institute of Technology. This material is based upon work supported by the National Science Foundation under
CAREER Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, by the Alfred P. Sloan Foundation, and
by a Google Research Award. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation, DARPA or the U.S. Government, the
Sloan Foundation, or Google. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

1

Contents

1 Introduction 4
1.1 Contributions . 4

1.1.1 Novel Attributes of Λ◦λ . 4
1.1.2 Other Technical Contributions . 6

1.2 Example: FHE in Λ◦λ . 7
1.3 Limitations and Future Work . 9
1.4 Comparison to Related Work . 10
1.5 Architecture and Paper Organization . 10

2 Integer and Modular Arithmetic 11
2.1 Representing Z and Zq . 12
2.2 Reduce and Lift . 12
2.3 Rescale . 13
2.4 Gadget, Decompose, and Correct . 13
2.5 CRTrans . 15
2.6 Type-Level Cyclotomic Indices . 15

3 Cyclotomic Rings 16
3.1 Mathematical Background . 17

3.1.1 Cyclotomic Rings . 17
3.1.2 Ring-LWE and (Tweaked) Error Distributions . 17
3.1.3 Error Invariant . 18

3.2 Cyclotomic Types: Cyc and UCyc . 19
3.2.1 Instances . 19
3.2.2 Functions . 20

3.3 Implementation . 22
3.3.1 Representations . 22
3.3.2 Operations . 22
3.3.3 Promoting Base-Ring Operations . 23

4 Fully Homomorphic Encryption in Λ◦λ 24
4.1 Keys, Plaintexts, and Ciphertexts . 25
4.2 Encryption and Decryption . 26
4.3 Homomorphic Addition and Multiplication . 27
4.4 Modulus Switching . 27
4.5 Key Switching and Linearization . 28
4.6 Ring Tunneling . 30

A More on Type-Level Cyclotomic Indices 36
A.1 Promoting Factored Naturals . 37
A.2 Applying the Promotions . 37

2

B Sparse Decompositions and Haskell Framework 38
B.1 Sparse Decompositions . 38
B.2 Haskell Framework . 39

C Tensor Interface and Sparse Decompositions 41
C.1 Mathematical Background . 41

C.1.1 Cyclotomic Rings and Powerful Bases . 41
C.1.2 (Tweaked) Trace, Dual Ideal, and Decoding Bases 43
C.1.3 Chinese Remainder Bases . 45

C.2 Single-Index Transforms . 46
C.2.1 Prime-Power Factorization . 46
C.2.2 Embedding Scalars . 46
C.2.3 Converting Between Powerful and Decoding Bases 46
C.2.4 Multiplication by gm . 47
C.2.5 Chinese Remainder and Discrete Fourier Transforms 48
C.2.6 Generating (Tweaked) Gaussians in the Decoding Basis 49
C.2.7 Gram Matrix of Decoding Basis . 50

C.3 Two-Index Transforms and Values . 50
C.3.1 Prime-Power Factorization . 50
C.3.2 Coefficients in Relative Bases . 51
C.3.3 Embed Transforms . 51
C.3.4 Twace Transforms . 52

C.4 CRT Sets . 53
C.4.1 Mathematical Background . 53
C.4.2 Computing CRT Sets . 54

D Tensor Product of Rings 55

E Evaluation 56
E.1 Source Code Analysis . 57

E.1.1 Source Lines of Code . 57
E.1.2 Cyclomatic Complexity and Function Count . 58

E.2 Performance . 58
E.2.1 Cyclotomic Ring Operations . 59
E.2.2 SHE Scheme . 61
E.2.3 Ring Tunneling . 62

F Haskell Background 63
F.1 Types . 63
F.2 Type Classes . 63

3

1 Introduction

Lattice-based cryptography has seen enormous growth over the past decade, and has attractive features like
apparent resistance to quantum attacks; security under worst-case hardness assumptions (e.g., [Ajt96, Reg05]);
efficiency and parallelism, especially via the use of algebraically structured lattices over polynomial rings
(e.g., [HPS98, Mic02, LPR10]); and powerful cryptographic constructions like identity/attribute-based and
fully homomorphic encryption (e.g., [GPV08, Gen09, BGV12, GSW13, GVW13]).

The past few years have seen a broad movement toward the practical implementation of lattice/ring-based
schemes, with an impressive array of results. To date, each such implementation has been specialized to a
particular cryptographic primitive (and sometimes even to a specific computational platform), e.g., collision-
resistant hashing (using SIMD instruction sets) [LMPR08], digital signatures [GLP12, DDLL13], key-
establishment protocols [BCNS15, ADPS16, BCD+16], and fully homomorphic encryption (FHE) [NLV11,
HS] (using GPUs and FPGAs [WHC+12, CGRS14]), to name a few.

However, the state of lattice cryptography implementations is also highly fragmented: they are usually
focused on a single cryptosystem for fixed parameter sets, and have few reusable interfaces, making them hard
to implement other primitives upon. Those interfaces that do exist are quite low-level; e.g., they require the
programmer to explicitly convert between various representations of ring elements, which calls for specialized
expertise and can be error prone. Finally, prior implementations either do not support, or use suboptimal
algorithms for, the important class of arbitrary cyclotomic rings, and thereby lack related classes of FHE
functionality. (See Section 1.4 for a more detailed review of related work.)

With all this in mind, we contend that there is a need for a general-purpose, high-level, and feature-rich
framework that will allow researchers to more easily implement and experiment with the wide variety of
lattice-based cryptographic schemes, particularly more complex ones like FHE.

1.1 Contributions

This work describes the design, implementation, and evaluation of Λ◦λ, a general-purpose framework for
lattice-based cryptography in the compiled, functional, strongly typed programming language Haskell.1,2 Our
primary goals for Λ◦λ include: (1) the ability to implement both basic and advanced lattice cryptosystems
correctly, concisely, and at a high level of abstraction; (2) alignment with the current best theory concerning
security and algorithmic efficiency; and (3) acceptable performance on commodity CPUs, along with the
capacity to integrate specialized backends (e.g., GPUs) without affecting application code.

1.1.1 Novel Attributes of Λ◦λ

The Λ◦λ framework has several novel properties that distinguish it from prior lattice-crypto implementations.

Generality, modularity, and concision: Λ◦λ defines a collection of simple, modular interfaces and
implementations for the lattice cryptography “toolbox,” i.e., the collection of operations that are used across a
wide variety of modern cryptographic constructions. This generality allows cryptographic schemes to be
expressed very naturally and concisely, via code that closely mirrors their mathematical definitions. For
example, we implement a full-featured FHE scheme (which includes never-before-implemented functionality)
in as few as 2–5 lines of code per feature. (See Sections 1.2 and 4 for details.)

1The name Λ◦λ refers to the combination of lattices and functional programming, which are often signified by Λ and λ,
respectively. The recommended pronunciation is “L O L.”

2Λ◦λ is available under the free and open-source GNU GPL2 license. It can be installed from Hackage, the Haskell community’s
central repository, via stack install lol. The source repository is also available at https://github.com/cpeikert/Lol.

4

https://github.com/cpeikert/Lol

While Λ◦λ’s interfaces are general enough to support most modern lattice-based cryptosystems, our main
focus (as with most prior implementations) is on systems defined over cyclotomic rings, because they lie at the
heart of practically efficient lattice-based cryptography (see, e.g., [HPS98, Mic02, LPR10, LPR13]). However,
while almost all prior implementations are limited to the narrow subclass of power-of-two cyclotomics (which
are the algorithmically simplest case), Λ◦λ supports arbitrary cyclotomic rings. Such support is essential in a
general framework, because many advanced techniques in ring-based cryptography, such as “plaintext packing”
and homomorphic SIMD operations [SV10, SV11], inherently require non-power-of-two cyclotomics when
using characteristic-two plaintext spaces (e.g., F2k).

Theory affinity: Λ◦λ is designed from the ground-up around the specialized ring representations, fast
algorithms, and worst-case hardness proofs developed in [LPR10, LPR13] for the design and analysis of
ring-based cryptosystems (over arbitrary cyclotomic rings), particularly those relying on Ring-LWE. To our
knowledge, Λ◦λ is the first-ever implementation of these techniques, which include:

• fast and modular algorithms for converting among the three most useful representations of ring elements,
corresponding to the powerful, decoding, and Chinese Remainder Theorem (CRT) bases;

• fast algorithms for sampling from “theory-recommended” error distributions—i.e., those for which the
Ring-LWE problem has provable worst-case hardness—for use in encryption and related operations;

• proper use of the powerful- and decoding-basis representations to maintain tight control of error growth
under cryptographic operations, and for the best error tolerance in decryption.

We especially emphasize the importance of using appropriate error distributions for Ring-LWE, because ad-
hoc instantiations with narrow error can be completely broken by certain attacks [ELOS15, CLS15, CIV16],
whereas theory-recommended distributions are provably immune to the same class of attacks [Pei16].

In addition, Λ◦λ is the first lattice cryptography implementation to expose the rich hierarchy of cyclotomic
rings, making subring and extension-ring relationships accessible to applications. In particular, Λ◦λ supports
a set of homomorphic operations known as ring-switching [BGV12, GHPS12, AP13], which enables efficient
homomorphic evaluation of certain structured linear transforms. Ring-switching has multiple applications,
such as ciphertext compression [BGV12, GHPS12] and asymptotically efficient “bootstrapping” algorithms
for FHE [AP13].

Safety: Building on its host language Haskell, Λ◦λ has several facilities for reducing programming errors
and code complexity, thereby aiding the correct implementation of lattice cryptosystems. This is particularly
important for advanced constructions like FHE, which involve a host of parameters, mathematical objects,
and algebraic operations that must satisfy a variety of constraints for the scheme to work as intended.

More specifically, Λ◦λ uses advanced features of Haskell’s type system to statically enforce (i.e., at
compile time) a variety of mathematical constraints. This catches many common programming errors early
on, and guarantees that any execution will perform only legal operations.3 For example, Λ◦λ represents
integer moduli and cyclotomic indices as specialized types, which allows it to statically enforce that all inputs
to modular arithmetic operations have the same modulus, and that to embed from one cyclotomic ring to
another, the former must be a subring of the latter. We emphasize that representing moduli and indices as
types does not require fixing their values at compile time; instead, one can (and we often do) reify runtime
values into types, checking any necessary constraints just once at reification.

Additionally, Λ◦λ aids safety by defining high-level abstractions and narrow interfaces for algebraic ob-
jects and cryptographic operations. For example, it provides an abstract data type for cyclotomic rings, which

3A popular joke about Haskell code is “if you can get it to compile, it must be correct.”

5

hides its choice of internal representation (powerful or CRT basis, subring element, etc.), and automatically
performs any necessary conversions. Moreover, it exposes only high-level operations like ring addition and
multiplication, bit decomposition, sampling uniform or Gaussian ring elements, etc.

Finally, Haskell itself also greatly aids safety because computations are by default pure: they cannot
mutate state or otherwise modify their environment. This makes code easier to reason about, test, or even
formally verify, and is a natural fit for algebra-intensive applications like lattice cryptography. We stress
that “effectful” computations like input/output or random number generation are still possible, but must be
embedded in a structure that precisely delineates what effects are allowed.

Multiple backends: Λ◦λ’s architecture sharply separates its interface of cyclotomic ring operations from
the implementations of their corresponding linear transforms. This allows for multiple “backends,” e.g.,
based on specialized hardware like GPUs or FPGAs via tools like [CKL+11], without requiring any changes
to cryptographic application code. (By contrast, prior implementations exhibit rather tight coupling between
their application and backend code.) We have implemented two interchangeable backends, one in the
pure-Haskell Repa array library [KCL+10, LCKJ12], and one in C++.

1.1.2 Other Technical Contributions

Our work on Λ◦λ has also led to several technical novelties of broader interest and applicability.

Abstractions for lattice cryptography. As already mentioned, Λ◦λ defines composable abstractions
and algorithms for widely used lattice operations, such as rounding (or rescaling) Zq to another modulus,
(bit) decomposition, and other operations associated with “gadgets” (including in “Chinese remainder”
representations). Prior works have documented and/or implemented subsets of these operations, but at
lower levels of generality and composability. For example, we derive generic algorithms for all the above
operations on product rings, using any corresponding algorithms for the component rings. And we show how
to generically “promote” these operations on Z or Zq to arbitrary cyclotomic rings. Such modularity makes
our code easier to understand and verify, and is also pedagogically helpful to newcomers to the area.

DSL for sparse decompositions. As shown in [LPR13] and further in this work, most cryptographically
relevant operations on cyclotomic rings correspond to linear transforms having sparse decompositions, i.e.,
factorizations into relatively sparse matrices, or tensor products thereof. Such factorizations directly yield
fast and highly parallel algorithms; e.g., the Cooley-Tukey FFT algorithm arises from a sparse decomposition
of the Discrete Fourier Transform.

To concisely and systematically implement the wide variety of linear transforms associated with general
cyclotomics, Λ◦λ includes an embedded domain-specific language (DSL) for expressing sparse decom-
positions using natural matrix notation, and a “compiler” that produces corresponding fast and parallel
implementations. This compiler includes generic combinators that “lift” any class of transform from the
primitive case of prime cyclotomics, to the prime-power case, and then to arbitrary cyclotomics. (See
Appendix B for details.)

Algorithms for the cyclotomic hierarchy. Recall that Λ◦λ is the first lattice cryptography implementation
to expose the rich hierarchy of cyclotomic rings, i.e., their subring and extension-ring relationships. As the
foundation for this functionality, in Appendix C we derive sparse decompositions for a variety of objects and
linear transforms related to the cyclotomic hierarchy. In particular, we obtain simple linear-time algorithms for
the embed and “tweaked” trace operations in the three main bases of interest (powerful, decoding, and CRT),
and for computing the relative analogues of these bases for cyclotomic extension rings. To our knowledge,

6

almost all of this material is new. (For comparison, the Ring-LWE “toolkit” [LPR13] deals almost entirely
with transforms and algorithms for a single cyclotomic ring, not inter-ring operations.)

FHE with ring tunneling. In Section 4, we define and implement an FHE scheme which refines a variety
of techniques and features from a long series of works on Ring-LWE and FHE [LPR10, BV11a, BV11b,
BGV12, GHPS12, LPR13, AP13]. For example, it allows the plaintext and ciphertext spaces to be defined
over different cyclotomic rings, which permits certain optimizations.

Using Λ◦λ’s support for the cyclotomic hierarchy, we also devise and implement a more efficient variant
of ring-switching for FHE, which we call ring tunneling. While a prior technique [AP13] homomorphically
evaluates a linear function by “hopping” from one ring to another through a common extension ring, our new
approach “tunnels” through a common subring, which makes it more efficient. Moreover, we show that the
linear function can be integrated into the accompanying key-switching step, thus unifying two operations into
a simpler and even more efficient one. (See Section 4.6 for details.)

1.2 Example: FHE in Λ◦λ

For illustration, here we briefly give a flavor of our FHE implementation in Λ◦λ; see Figure 1 for representative
code, and Section 4 for many more details of the scheme’s mathematical definition and implementation.
While we do not expect the reader (especially one who is not conversant with Haskell) to understand all
the details of the code, it should be clear that even complex operations like modulus-switching and key-
switching/relinearization have very concise and natural implementations in terms of Λ◦λ’s interfaces (which
include the functions errorCoset, reduce, embed, twace, liftDec, etc.). Indeed, the implementations of
the FHE functions are often shorter than their type declarations! (For the reader who is new to Haskell,
Appendix F gives a brief tutorial that provides sufficient background to understand the code fragments
appearing in this paper.)

As a reader’s guide to the code from Figure 1, by convention the type variables z, zp, zq always represent
(respectively) the integer ring Z and quotient rings Zp = Z/pZ,Zq = Z/qZ, where p� q are respectively
the plaintext and ciphertext moduli. The types m, m’ respectively represent the indicesm,m′ of the cyclotomic
rings R,R′, where we need m|m′ so that R can be seen as a subring of R′. Combining all this, the types
Cyc m’ z, Cyc m zp, and Cyc m’ zq respectively represent R′, the plaintext ring Rp = R/pR, and the
ciphertext ring R′q = R′/qR′.

The declaration encrypt :: (m `Divides` m’, ...) => ... defines the type of the function encrypt
(and similarly for decrypt, rescaleCT, etc.). Preceding the arrow =>, the text (m `Divides` m’, ...)
lists the constraints that the types must satisfy at compile time; here the first constraint enforces that m|m′.
The text following the arrow => defines the types of the inputs and output. For encrypt, the inputs are a
secret key in R′ and a plaintext in R′p, and the output is a random ciphertext over R′q. Notice that the full
ciphertext type also includes the types m and zp, which indicate that the plaintext is from Rp. This aids
safety: thanks to the type of decrypt, the type system prevents the programmer from incorrectly attempting
to decrypt the ciphertext into a ring other than Rp.

Finally, each function declaration is followed by an implementation, which describes how the output is
computed from the input(s). Because the implementations rely on the mathematical definition of the scheme,
we defer further discussion to Section 4.

7

encrypt :: (m `Divides` m’, MonadRandom rnd, ...)
=> SK (Cyc m’ z) -- secret key ∈ R′
-> PT (Cyc m zp) -- plaintext ∈ Rp
-> rnd (CT m zp (Cyc m’ zq)) -- ciphertext over R′q

encrypt (SK s) mu = do -- in randomness monad
e <- errorCoset (embed mu) -- error ← µ+ pR′

c1 <- getRandom -- uniform from R′q
return $ CT LSD 0 1 [reduce e - c1 * reduce s, c1]

decrypt :: (Lift zq z, Reduce z zp, ...)
=> SK (Cyc m’ z) -- secret key ∈ R′
-> CT m zp (Cyc m’ zq) -- ciphertext over R′q
-> PT (Cyc m zp) -- plaintext in Rp

decrypt (SK s) (CT LSD k l c) =
let e = liftDec $ evaluate c (reduce s)
in l *> twace (iterate divG (reduce e) !! k)

-- homomorphic multiplication
(CT LSD k1 l1 c1) * (CT _ k2 l2 c2) =
CT d2 (k1+k2+1) (l1*l2) (mulG <$> c1 * c2)

-- ciphertext modulus switching
rescaleCT :: (Rescale zq zq’, ...)

=> CT m zp (Cyc m’ zq) -- ciphertext over R′q
-> CT m zp (Cyc m’ zq’) -- to R′q′

rescaleCT (CT MSD k l [c0,c1]) =
CT MSD k l [rescaleDec c0, rescalePow c1]

-- key switching/linearization
keySwitchQuad :: (MonadRandom rnd, ...)

=> SK r’ -> SK r’ -- target, source keys
-> rnd (CT m zp r’q -> CT m zp r’q) -- recrypt function

keySwitchQuad sout sin = do -- in randomness monad
hint <- ksHint sout sin
return $ \(CT MSD k l [c0,c1,c2]) ->

CT MSD k l $ [c0,c1] + switch hint c2

switch hint c =
sum $ zipWith (*>) (reduce <$> decompose c) hint

Figure 1: Representative (and approximate) code from our implementation of an FHE scheme in Λ◦λ.

8

1.3 Limitations and Future Work

Security. While Λ◦λ has many attractive functionality and safety features, we stress that it is still an
early-stage research prototype, and is not yet recommended for production purposes—especially in scenarios
requiring high security assurances. Potential issues include, but may not be limited to:

• Most functions in Λ◦λ are not constant time, and may therefore leak secret information via timing or
other side channels. (Systematically protecting lattice cryptography from side-channel attacks is an
important area of research.)

• While Λ◦λ implements a fast algorithm for sampling from theory-recommended error distributions,
the current implementation is somewhat naı̈ve in terms of precision. By default, some Λ◦λ functions
use double-precision floating-point arithmetic to approximate a sample from a continuous Gaussian,
before rounding. (But one can specify an alternative data type having more precision.) We have not yet
analyzed the associated security implications, if any. We do note, however, that Ring-LWE is robust to
small variations in the error distribution (see, e.g., [LPR10, Section 5]).

Discrete Gaussian sampling. Many lattice-based cryptosytems, such as digital signatures and identity-
based or attribute-based encryption schemes following [GPV08], require sampling from a discrete Gaussian
probability distribution over a given lattice coset, using an appropriate kind of “trapdoor.” Supporting this
operation in Λ◦λ is left to future work, for the following reasons. While it is straightforward to give a clean
interface for discrete Gaussian sampling (similar to the Decompose classdescribed in Section 2.4), providing
a secure and practical implementation is very subtle, especially for arbitrary cyclotomic rings: one needs to
account for the non-orthogonality of the standard bases, use practically efficient algorithms, and ensure high
statistical fidelity to the desired distribution using finite precision. Although there has been good progress
in addressing these issues at the theoretical level (see, e.g., [DN12, LPR13, DP15b, DP15a]), a complete
practical solution still requires further research.

Applications. As our focus here is mainly on the Λ◦λ framework itself, we leave the implementation of
additional lattice-based cryptosystems to future work. While digital signatures and identity/attribute-based
encryption use discrete Gaussian sampling, many other primitives should be straightforward to implement
using Λ◦λ’s existing functionality. These include standard Ring-LWE-based [LPR10, LPR13] and NTRU-
style encryption [HPS98, SS11], public-key encryption with security under chosen-ciphertext attacks [MP12],
and pseudorandom functions (PRFs) [BPR12, BLMR13, BP14]. It should also be possible to implement the
homomorphic evaluation of a lattice-based PRF under our FHE scheme, in the same spirit as homomorphic
evaluations of the AES block cipher [GHS12, CLT14]; we have promising preliminary work in this direction.

Language layer. Rich lattice-based cryptosystems, especially homomorphic encryption, involve a large
number of tunable parameters and different routes to the user’s end goal. In current implementations, merely
expressing a homomorphic computation requires expertise in the intricacies of the homomorphic encryption
scheme and its particular implementation. For future work, we envision domain-specific languages (DSLs)
that allow the programmer to express a plaintext computation at a level above the “native instruction set” of
the homomorphic encryption scheme. A specialized compiler would then translate the user’s description into
a homomorphic computation (on ciphertexts) using the cryptosystem’s instruction set, and possibly even
instantiate secure parameters for it. Because Haskell is an excellent host language for embedded DSLs, we
believe that Λ◦λ will serve as a strong foundation for such tools.

9

1.4 Comparison to Related Work

As mentioned above, there are many implementations of various lattice- and ring-based cryptographic
schemes, such as NTRU (Prime) encryption [HPS98, BCLvV16], the SWIFFT hash function [LMPR08],
digital signature schemes like [GLP12] and BLISS [DDLL13], key-exchange protocols [BCNS15, ADPS16,
BCD+16], and FHE libraries like HElib [HS]. In addition, there are some high-performance backends
for power-of-two cyclotomics, like NFLlib [MBG+16] and [WHC+12], which can potentially be plugged
into these other systems. Also, in a Masters thesis developed concurrently with this work, Mayer [May16]
implemented the “toolkit” algorithms from [LPR13] for arbitrary cyclotomic rings (though not the inter-ring
operations that Λ◦λ supports).

On the whole, the prior works each implement just one cryptographic primitive (sometimes even on
a specific computational platform), and typically opt for performance over generality and modularity. In
particular, none of them provide any abstract data types for cyclotomic rings, but instead require the
programmer to explicitly manage the representations of ring elements (e.g., as polynomials) and ensure that
operations on them are mathematically meaningful. Moreover, with the exception of [May16], they do not
support general cyclotomic rings using the current best theory for cryptographic purposes.

HElib. Our work compares most closely to HElib [HS], which is an “assembly language” for BGV-
style FHE over cyclotomic rings [BGV12]. It holds speed records for a variety of FHE benchmarks (e.g.,
homomorphic AES computation [GHS12]), and appears to be the sole public implementation of many
advanced FHE features, like bootstrapping for “packed” ciphertexts [HS15].

On the downside, HElib does not use the best known algorithms for cryptographic operations in general
(non-power-of-two) cyclotomics. Most significantly, it uses the univariate representation modulo cyclotomic
polynomials, rather than the multivariate/tensored representations from [LPR13], which results in more
complex and less efficient algorithms, and suboptimal noise growth in cryptographic schemes. The practical
effects of this can be seen in our performance evaluation (Appendix E.2), which shows that Λ◦λ’s C++
backend is about nine times slower than HElib for power-of-two cyclotomics, but is significantly faster (by
factors of two or more) for indices involving two or more small primes. Finally, HELib is targeted toward
just one class of cryptographic construction (FHE), so it lacks functionality necessary to implement a broader
selection of lattice schemes (e.g., CCA-secure encryption).

Computational algebra systems. Algebra packages like Sage and Magma provide very general-purpose
support for computational number theory. While these systems do offer higher-level abstractions and
operations for cyclotomic rings, they are not a suitable platform for attaining our goals. First, their existing
implementations of cyclotomic rings do not use the “tensored” representations (i.e., powerful and decoding
bases, and CRT bases over Zq) and associated fast algorithms that are preferred for cryptographic purposes.
Nor do they include support for special lattice operations like bit decomposition and other “gadget” operations,
so to use such systems we would have to reimplement essentially all the mathematical algorithms from
scratch. Perhaps more significantly, the programming languages of these systems are relatively weakly and
dynamically (not statically) typed, so all type-checking is deferred to runtime, where errors can be much
harder to debug.

1.5 Architecture and Paper Organization

The components of Λ◦λ are arranged in a few main layers, and the remainder of the paper is organized
correspondingly. From the bottom up, the layers are:

10

Integer layer (Section 2and Appendix A): This layer contains abstract interfaces and implementations
for domains like the integers Z and its quotient rings Zq = Z/qZ, including specialized operations like
rescaling and “(bit) decomposition.” It also contains tools for working with moduli and cyclotomic indices at
the type level, which enables static enforcement of mathematical constraints.

Tensor layer (Appendix B and C): This layer’s main abstract interface, called Tensor, defines all the
linear transformations and special values needed for working efficiently in cyclotomic rings (building on
the framework developed in [LPR13]), and permits multiple implementations. Because the tensor layer
is completely hidden from typical cryptographic applications, we defer to Appendix C the details of its
design and our implementations. This material includes the definitions and analysis of several linear
transforms and algorithms that, to our knowledge, have not previously appeared in the literature. Additionally,
Appendix B describes the “sparse decomposition” DSL and compiler that underlie our pure-Haskell Tensor
implementation.

Cyclotomic layer (Section 3): This layer defines data types and high-level interfaces for cyclotomic rings
and their cryptographically relevant operations. Our implementations are relatively thin wrappers which
modularly combine the integer and tensor layers, and automatically manage the internal representations of
ring elements for more efficient operations.

Cryptography layer (Section 4): This layer consists of implementations of cryptographic schemes. As
a detailed example, we define an advanced FHE scheme that incorporates and refines a wide collection of
features from a long series of works [LPR10, BV11a, BV11b, BGV12, GHS12, GHPS12, LPR13, AP13].
We also show how its implementation in Λ◦λ very closely and concisely matches its mathematical definition.

Finally, in Appendix E we evaluate Λ◦λ in terms of code quality and runtime performance, and give a
comparison to HElib [HS].

Acknowledgments. We thank Tancrède Lepoint for providing HElib benchmark code, Victor Shoup for
helpful discussions regarding HElib performance, and the anonymous CCS’16 reviewers for many useful
comments.

2 Integer and Modular Arithmetic

At its core, lattice-based cryptography is built around arithmetic in the ring of integers Z and quotient rings
Zq = Z/qZ of integers modulo q, i.e., the cosets x+ qZ with the usual addition and multiplication operations.
In addition, a variety of specialized operations are also widely used, e.g., lifting a coset in Zq to its smallest
representative in Z, rescaling (or rounding) one quotient ring Zq to another, and decomposing a Zq-element
as a vector of small Z-elements with respect to a “gadget” vector.

Here we recall the relevant mathematical background for all these domains and operations, and describe
how they are represented and implemented in Λ◦λ. This will provide a foundation for the next section,
where we show how all these operations are very easily “promoted” from base rings like Z and Zq to
cyclotomic rings, to support ring-based cryptosystems. (Similar promotions can also easily be done to support
cryptosystems based on plain-LWE/SIS, but we elect not to do so in Λ◦λ, mainly because those systems are
not as practically efficient.)

11

2.1 Representing Z and Zq
We exclusively use fixed-precision primitive Haskell types like Int and Int64 to represent the integers Z, and
define our own specialized types like ZqBasic q z to represent Zq. Here the q parameter is a “phantom” type
that represents the value of the modulus q, while z is an integer type (like Int64) specifying the underlying
representation of the integer residues modulo q.

This approach has many advantages: by defining ZqBasic q z as an instance of Ring, we can use the (+)
and (*) operators without any explicit modular reductions. More importantly, at compile time the type system
disallows operations on incompatible types—e.g., attempting to add a ZqBasic q1 z to a ZqBasic q2 z for
distinct q1, q2—with no runtime overhead. Finally, we implement ZqBasic q z as a newtype for z, which
means that they have identical runtime representations, with no additional overhead.

CRT/RNS representation. Some applications, like homomorphic encryption, can require moduli q that
are too large for standard fixed-precision integer types. Many languages have support for unbounded integers
(e.g., Haskell’s Integer type), but the operations are relatively slow. Moreover, the values have varying
sizes, which means they cannot be stored efficiently in “unboxed” form in arrays. A standard solution is to
use the Chinese Remainder Theorem (CRT), also known as Residue Number System (RNS), representation:
choose q to be the product of several pairwise coprime and sufficiently small q1, . . . , qt, and use the natural
ring isomorphism from Zq to the product ring Zq1 × · · · × Zqt , where addition and multiplication are both
component-wise.

In Haskell, using the CRT representation—and more generally, working in product rings—is very natural
using the generic pair type (,): whenever types a and b respectively represent rings A and B, the pair type
(a,b) represents the product ring A×B. This just requires defining the obvious instances of Additive and
Ring for (a,b)—which in fact has already been done for us by the numeric prelude. Products of more than
two rings are immediately supported by nesting pairs, e.g., ((a,b),c), or by using higher-arity tuples like
(a,b,c). A final nice feature is that a pair (or tuple) has fixed representation size if all its components do, so
arrays of pairs can be stored directly in “unboxed” form, without requiring any layer of indirection.

2.2 Reduce and Lift

Two basic, widely used operations are reducing a Z-element to its residue class in Zq, and lifting a Zq-
element to its smallest integer representative, i.e., in Z ∩ [− q

2 ,
q
2). These operations are examples of the

natural homomorphism, and canonical representative map, for arbitrary quotient groups. Therefore, we
define class (Additive a, Additive b) => Reduce a b to represent that b is a quotient group of a,
and class Reduce a b => Lift b a for computing canonical representatives.4 These classes respectively
introduce the functions

reduce :: Reduce a b => a -> b
lift :: Lift b a => b -> a

where reduce ◦ lift should be the identity function.
Instances of these classes are straightforward. We define an instance Reduce z (ZqBasic q z) for any

suitable integer type z and q representing a modulus that fits within the precision of z, and a corresponding
instance for Lift. For product groups (pairs) used for CRT representation, we define the natural instance
Reduce a (b1,b2) whenever we have instances Reduce a b1 and Reduce a b2. However, we do not have

4Precision issues prevent us from merging Lift and Reduce into one class. For example, we can reduce an Int into Zq1 ×Zq2 if
both components can be represented by Int, but lifting may cause overflow.

12

(nor do we need) a corresponding Lift instance, because there is no sufficiently generic algorithm to combine
canonical representatives from two quotient groups.

2.3 Rescale

Another operation commonly used in lattice cryptography is rescaling (sometimes also called rounding) Zq
to a different modulus. Mathematically, the rescaling operation b·eq′ : Zq → Zq′ is defined as

bx+ qZeq′ :=
⌊
q′

q · (x+ qZ)
⌉

=
⌊
q′

q · x
⌉

+ q′Z ∈ Zq′ , (2.1)

where b·e denotes rounding to the nearest integer. (Notice that the choice of representative x ∈ Z has no
effect on the result.) In terms of the additive groups, this operation is at least an “approximate” homo-
morphism: bx + yeq′ ≈ bxeq′ + byeq′ , with equality when q|q′. We represent the rescaling operation via
class (Additive a, Additive b) => Rescale a b, which introduces the function

rescale :: Rescale a b => a -> b

Instances. A straightforward instance, whose implementation just follows the mathematical definition, is
Rescale (ZqBasic q1 z) (ZqBasic q2 z) for any integer type z and types q1, q2 representing moduli
that fit within the precision of z.

More interesting are the instances involving product groups (pairs) used for CRT representation. A
naı̈ve implementation would apply Equation (2.1) to the canonical representative of x+ qZ, but for large q
this would require unbounded-integer arithmetic. Instead, following ideas from [GHS12], here we describe
algorithms that avoid this drawback.

To “scale up” x ∈ Zq1 to Zq1q2 ∼= Zq1 × Zq2 where q1 and q2 are coprime, i.e., to multiply by q2, simply
output (x · q2 mod q1, 0). This translates easily into code that implements the instance Rescale a (a,b).
Notice, though, that the algorithm uses the value of the modulus q2 associated with b. We therefore require b
to be an instance of class Mod, which exposes the modulus value associated with the instance type. The
instance Rescale b (a,b) works symmetrically.

To “scale down” x = (x1, x2) ∈ Zq1×Zq2 ∼= Zq1q2 to Zq1 , we essentially need to divide by q2, discarding
the (signed) remainder. To do this,

1. Compute the canonical representative x̄2 ∈ Z of x2.

(Observe that (x′1 = x1 − (x̄2 mod q1), 0) ∈ Zq1 × Zq2 is the multiple of q2 closest to x = (x1, x2).)

2. Divide by q2, outputting q−1
2 · x′1 ∈ Zq1 .

The above easily translates into code that implements the instance Rescale (a,b) a, using the Lift and
Reduce classes described above. The instance Rescale (a,b) b works symmetrically.

2.4 Gadget, Decompose, and Correct

Many advanced lattice cryptosystems use special objects called gadgets [MP12], which support certain
operations as described below. For the purposes of this work, a gadget is a tuple over a quotient ring
Rq = R/qR, where R is a ring that admits a meaningful “geometry.” For concreteness, one can think of R
as merely being the integers Z, but later on we generalize to cyclotomic rings.

Perhaps the simplest gadget is the powers-of-two vector g = (1, 2, 4, 8, . . . , 2`−1) over Zq, where
` = dlg qe. There are many other ways of constructing gadgets, either “from scratch” or by combining

13

gadgets. For example, one may use powers of integers other than two, mixed products, the Chinese Remainder
Theorem, etc. The salient property of a gadget g is that it admits efficient algorithms for the following tasks:

1. Decomposition: given u ∈ Rq, output a short vector x over R such that 〈g,x〉 = gt · x = u (mod q).

2. Error correction: given a “noisy encoding” of the gadget bt = s · gt + et mod q, where s ∈ Rq and e
is a sufficiently short error vector over R, output s and e.

A key property is that decomposition and error-tolerant encoding relate in the following way (where the
notation is as above, and ≈ hides a short error vector over R):

s · u = (s · gt) · x ≈ bt · x (mod q).

We represent gadget vectors and their associated operations via the following classes:

class Ring u => Gadget gad u where
gadget :: Tagged gad [u]
encode :: u -> Tagged gad [u]

class (Gadget gad u, Reduce r u) => Decompose gad u r where
decompose :: u -> Tagged gad [r]

class Gadget gad u => Correct gad u where
correct :: Tagged gad [u] -> (u, [LiftOf u])

The class Gadget gad u says that the ring u supports a gadget vector indexed by the type gad; the gadget
vector itself is given by the term gadget. Note that its type is actually Tagged gad [u]: this is a newtype
for [u], with the additional type-level context Tagged gad indicating which gadget the vector represents
(recall that there are many possible gadgets over a given ring). This tagging aids safety, by preventing
the nonsensical mixing of values associated with different kinds of gadgets. In addition, Haskell provides
generic ways of “promoting” ordinary operations to work within this extra context. (Formally, this is because
Tagged gad is an instance of the Functor class.)

The class Decompose gad u r says that a u-element can be decomposed into a vector of r-elements
(with respect to the gadget index by gad), via the decompose method.5 The class Correct gad u says that a
noisy encoding of a u-element (with respect to the gadget) can be error-corrected, via the correct method.

Note that we split the above functionality into three separate classes, both because their arguments are
slightly different (e.g., Correct has no need for the r type), and because in some cases we have meaningful
instances for some classes but not others.

Instances. For our type ZqBasic q z representing Zq, we give a straightforward instantiation of the “base-
b” gadget g = (1, b, b2, . . .) and error correction and decomposition algorithms, for any positive integer b
(which is represented as a parameter to the gadget type). In addition, we implement the trivial gadget
g = (1) ∈ Z1

q , where the decomposition algorithm merely outputs the canonical Z-representative of its
Zq-input. This gadget turns out to be useful for building nontrivial gadgets and algorithms for product rings,
as described next.

5For simplicity, here we have depicted r as an additional parameter of the Decompose class. Our actual code adopts the more
idiomatic practice of using a type family DecompOf u, which is defined by each instance of Decompose.

14

For the pair type (which, to recall, we use to represent product rings in CRT representation), we give
instances of Gadget and Decompose that work as follows. Suppose we have gadget vectors g1,g2 over
Rq1 , Rq2 , respectively. Then the gadget for the product ring Rq1 × Rq2 is essentially the concatenation
of g1 and g2, where we first attach 0 ∈ Rq2 components to the entries of g1, and similarly for g2. The
decomposition of (u1, u2) ∈ Rq1×Rq2 with respect to this gadget is the concatenation of the decompositions
of u1, u2. All this translates easily to the implementations

gadget = (++) <$> (map (,zero) <$> gadget) <*> (map (zero,) <$> gadget)
decompose (a,b) = (++) <$> decompose a <*> decompose b

In the definition of gadget, the two calls to map attach zero components to the entries of g1,g2, and (++)
appends the two lists. (The syntax <$>, <*> is standard applicative notation, which promotes normal functions
into the Tagged gad context.)

2.5 CRTrans

Fast multiplication in cyclotomic rings is made possible by converting ring elements to the Chinese remainder
representation, using the Chinese Remainder Transform (CRT) over the base ring. This is an invertible
linear transform akin to the Discrete Fourier Transform (over C) or the Number Theoretic Transform (over
appropriate Zq), which has a fast algorithm corresponding to its “sparse decomposition” (see Appendix C.2.5
and [LPR13, Section 3] for further details).

Applying the CRT and its inverse requires knowledge of certain roots of unity, and the inverse of a certain
integer, in the base ring. So we define the synonym type CRTInfo r = (Int -> r, r), where the two
components are (1) a function that takes an integer i to the ith power of a certain principal6 mth root of
unity ωm in r, and (2) the multiplicative inverse of m̂ in r, where m̂ = m/2 if m is even, else m̂ = m. We
also define the class CRTrans, which exposes the CRT information:

class (Monad mon, Ring r) => CRTrans mon r where
crtInfo :: Int -> mon (CRTInfo r)

Note that the output of crtInfo is embedded in a Monad mon, the choice of which can reflect the fact that
the CRT might not exist for certain m. For example, the CRTrans instance for the complex numbers C
uses the trivial Identity monad, because the complex CRT exists for every m, whereas the instance for
ZqBasic q z uses the Maybe monad to reflect the fact that the CRT may not exist for certain combinations
of m and moduli q.

We give nontrivial instances of CRTrans for ZqBasic q z (representing Zq) for prime q, and for
Complex Double (representing C). In addition, because we use tensors and cyclotomic rings over base
rings like Z and Q, we must also define trivial instances of CRTrans for Int, Int64, Double, etc., for which
crtInfo always returns Nothing.

2.6 Type-Level Cyclotomic Indices

As discussed in Section 3 below, there is one cyclotomic ring for every positive integer m, which we call the
index. (It is also sometimes called the conductor.) The index m, and in particular its factorization, plays a
major role in the definitions of the ring operations. For example, the index-m “Chinese remainder transform”

6A principal mth root of unity in r is an element ωm such that ωm
m = 1, and ωm/t

m − 1 is not a zero divisor for every prime t
dividing m. Along with the invertibility of m̂ in r, these are sufficient conditions for the index-m CRT over r to be invertible.

15

is similar to a mixed-radix FFT, where the radices are the prime divisors of m. In addition, cyclotomic rings
can sometimes be related to each other based on their indices. For example, the mth cyclotomic can be seen
as a subring of the m′th cyclotomic if and only if m|m′; the largest common subring of the m1th and m2th
cyclotomics is the gcd(m1,m2)th cyclotomic, etc.

In Λ◦λ, a cyclotomic index m is specified by an appropriate type m, and the data types representing
cyclotomic rings (and their underlying coefficient tensors) are parameterized by such an m. Based on this
parameter, Λ◦λ generically derives algorithms for all the relevant operations in the corresponding cyclotomic.
In addition, for operations that involve more than one cyclotomic, Λ◦λ expresses and statically enforces (at
compile time) the laws governing when these operations are well defined.

We achieve the above properties using Haskell’s type system, with the help of the powerful data kinds
extension [YWC+12] and the singletons library [EW12, ES14]. Essentially, these tools enable the “promotion”
of ordinary values and functions from the data level to the type level. More specifically, they promote every
value to a corresponding type, and promote every function to a corresponding type family, i.e., a function on
the promoted types. We stress that all type-level computations are performed at compile time, yielding the
dual benefits of static safety guarantees and no runtime overhead.

Implementation. Concretely, Λ◦λ defines a special data type Factored that represents positive integers
by their factorizations, along with several functions on such values. Singletons then promotes all of this to the
type level. This yields concrete “factored types” Fm for various useful values of m, e.g., F1, . . . , F100, F128,
F256, F512, etc. In addition, it yields the following type families, where m1, m2 are variables representing any
factored types:

• FMul m1 m2 (synonym: m1 * m2) and FDiv m1 m2 (synonym: m1 / m2) respectively yield the
factored types representing m1 ·m2 and m1/m2 (if it is an integer; else it yields a compile-time error);

• FGCD m1 m2 and FLCM m1 m2 respectively yield the factored types representing gcd(m1,m2) and
lcm(m1,m2);

• FDivides m1 m2 yields the (promoted) boolean type True or False, depending on whether m1|m2.
In addition, m1 `Divides` m2 is a convenient synonym for the constraint True ˜ Divides m1 m2.
(This constraint is used Section 3 below.)

Finally, Λ◦λ also provides several entailments representing number-theoretic laws that the compiler itself
cannot derive from our data-level code. For example, transitivity of the “divides” relation is represented by
the entailment

(k `Divides` l, l `Divides` m) :- (k `Divides` m)

which allows the programmer to satisfy the constraint k|m in any context where the constraints k|` and `|m
are satisfied.

Further details on type-level indices and arithmetic, and how they are used to derive algorithms for
cyclotomic ring operations, may be found in Appendix A.

3 Cyclotomic Rings

In this section we summarize Λ◦λ’s interfaces and implementations for cyclotomic rings. In Section 3.1 we
review the relevant mathematical background. In Section 3.2 we describe the interfaces of the two data types,
Cyc and UCyc, that represent cyclotomic rings: Cyc completely hides and transparently manages the internal

16

representation of ring elements (i.e., the choice of basis in which they are represented), whereas UCyc is a
lower-level type that safely exposes and allows explicit control over the choice of representation. Lastly, in
Section 3.3 we describe key aspects of the implementations, such as Cyc’s subring optimizations, and how
we generically “promote” base-ring operations to cyclotomic rings.

3.1 Mathematical Background

To appreciate the material in this section, one only needs the following high-level background; see Ap-
pendix C.1 and [LPR10, LPR13] for many more mathematical and computational details.

3.1.1 Cyclotomic Rings

For a positive integer m, the mth cyclotomic ring is R = Z[ζm], the ring extension of the integers Z obtained
by adjoining an element ζm having multiplicative order m. The ring R is contained in the mth cyclotomic
number field K = Q(ζm). The minimal polynomial (over the rationals) of ζm has degree n = ϕ(m), so
deg(K/Q) = deg(R/Z) = n. We endow K, and thereby R, with a geometry via a function σ : K → Cn
called the canonical embedding. E.g., we define the `2 norm on K as ‖x‖2 = ‖σ(x)‖2, and use this to
define Gaussian-like distributions over R and (discretizations of) K. The complex coordinates of σ come in
conjugate pairs, and addition and multiplication are coordinate-wise under σ.

For cryptographic purposes, there are two particularly important Z-bases of R: the powerful basis ~pm ∈
Rn and the decoding basis ~dm ∈ Rn. That is, every r ∈ R can be uniquely represented as r = ~ptm · r for
some integral vector r ∈ Zn, and similarly for ~dm. In particular, there are invertible Z-linear transformations
that switch from one of these representations to the other. For geometric reasons, certain cryptographic
operations are best defined in terms of a particular one of these bases, e.g., decryption uses the decoding
basis, whereas decomposition uses the powerful basis.

There are special ring elements gm, tm ∈ R whose product is gm ·tm = m̂, which is defined as m̂ := m/2
when m is even, and m̂ := m otherwise. The elements gm, tm are used in the generation and management of
error terms in cryptographic applications, as described below.

The mth cyclotomic ring R = Z[ζm] can be seen as a subring of the m′th cyclotomic ring R′ = Z[ζm′] if
and only if m|m′, and in such a case we can embed R into R′ by identifying ζm with ζm

′/m
m′ . In the reverse

direction, we can twace from R′ to R, which is a certain R-linear function that fixes R pointwise. (The name
is short for “tweaked trace,” because the function is a variant of the true trace function to our “tweaked”
setting, described next.) The relative powerful basis ~pm′,m is an R-basis of R′ that is obtained by “factoring
out” (in a formal sense) the powerful basis of R from that of R′, and similarly for the relative decoding
basis ~dm′,m.

3.1.2 Ring-LWE and (Tweaked) Error Distributions

Ring-LWE is a family of computational problems that was defined and analyzed in [LPR10, LPR13]. Those
works deal with a form of Ring-LWE that involves a special (fractional) ideal R∨, which is in a formal sense
dual to R. More specifically, the Ring-LWE problem relates to “noisy” products

bi = ai · s+ ei mod qR∨,

where ai ∈ R/qR, s ∈ R∨/qR∨ (so ai · s ∈ R∨/qR∨), and ei is drawn from some error distribution ψ.
In one of the worst-case hardness theorems for Ring-LWE, the distribution ψ corresponds to a spherical

17

Gaussian Dr of parameter r = αq ≈ n1/4 in the canonical embedding.7 Such spherical distributions also
behave very well in cryptographic applications, as described in further detail below.

For cryptographic purposes, it is convenient to use a form of Ring-LWE that does not involve R∨. As first
suggested in [AP13], this can be done with no loss in security or efficiency by working with an equivalent
“tweaked” form of the problem, which is obtained by multiplying the noisy products bi by a “tweak” factor
t = tm = m̂/gm ∈ R, which satisfies t ·R∨ = R. Doing so yields new noisy products

b′i := t · bi = ai · (t · s) + (t · ei) = ai · s′ + e′i mod qR,

where both ai and s′ = t · s reside in R/qR, and the error terms e′i = t · ei come from the “tweaked”
distribution t · ψ. Note that when ψ corresponds to a spherical Gaussian (in the canonical embedding), its
tweaked form t · ψ may be highly non-spherical, but this is not a problem: the tweaked form of Ring-LWE is
entirely equivalent to the above one involving R∨, because the tweak is reversible.

We remark that the decoding basis ~dm of R mentioned above is merely the “tweaked”—i.e., multiplied
by tm—decoding basis of R∨, as defined in [LPR13]. Therefore, all the efficient algorithms from [LPR13]
involving R∨ and its decoding basis—e.g., for sampling from spherical Gaussians, converting between bases
of R∨, etc.—carry over to the tweaked setting without any modification.

3.1.3 Error Invariant

In cryptographic applications, error terms are combined in various ways, and thereby grow in size. To obtain
the best concrete parameters and security levels, the accumulated error should be kept as small as possible.
More precisely, its coefficients with respect to some choice of Z-basis should have magnitudes that are as
small as possible.

As shown in [LPR13, Section 6], errors e whose coordinates σi(e) in the canonical embedding are small
and (nearly) independent have correspondingly small coefficients with respect to the decoding basis of R∨.
In the tweaked setting, where errors e′ and the decoding basis both carry an extra tm = m̂/gm factor, an
equivalent hypothesis is the following, which we codify as an invariant that applications should maintain:

Invariant 3.1 (Error Invariant). For an error e′ ∈ R, every coordinate

σi(e
′/tm) = m̂−1 · σi(e′ · gm) ∈ C

should be nearly independent (up to conjugate symmetry) and have relatively “light” (e.g., subgaussian or
subexponential) tails.

As already mentioned, the invariant is satisfied for fresh errors drawn from tweaked Gaussians, as well as
for small linear combinations of such terms. In general, the invariant is not preserved under multiplication,
because the product of two tweaked error terms e′i = tm · ei carries a t2m factor. Fortunately, this is easily
fixed by introducing an extra gm factor:

gm · e′1 · e′2 = tm · (m̂ · e1 · e2)

satisfies the invariant, because multiplication is coordinate-wise under σ. We use this technique in our FHE
scheme of Section 4.

7Moreover, no subexponential (in n) attacks are known when r ≥ 1 and q = poly(n).

18

3.2 Cyclotomic Types: Cyc and UCyc

In this subsection we describe the interfaces of the two data types, Cyc and UCyc, that represent cyclotomic
rings.

• Cyc t m r represents the mth cyclotomic ring over a base ring r—typically, one of Q, Z, or Zq—
backed by an underlying Tensor type t (see Appendix C for details on Tensor). The interface for Cyc
completely hides the internal representations of ring elements (e.g., the choice of basis) from the client,
and automatically manages the choice of representation so that the various ring operations are usually
as efficient as possible. Therefore, most cryptographic applications can and should use Cyc.

• UCyc t m rep r represents the same cyclotomic ring as Cyc t m r, but as a coefficient vector
relative to the basis indicated by rep. This argument is one of the four valueless types P, D, C, E,
which respectively denote the powerful basis, decoding basis, CRT r-basis (if it exists), and CRT
basis over an appropriate extension ring of r. Exposing the representation at the type level in this
way allows—indeed, requires—the client to manage the choice of representation. (Cyc is one such
client.) This can lead to more efficient computations in certain cases where Cyc’s management may be
suboptimal. More importantly, it safely enables a wide class of operations on the underlying coefficient
vector, via category-theoretic classes like Functor; see Sections 3.2.1 and 3.3.3 for further details.

Clients can easily switch between Cyc and UCyc as needed. Indeed, Cyc is just a relatively thin wrapper
around UCyc, which mainly just manages the choice of representation, and provides some other optimizations
related to subrings (see Section 3.3 for details).

3.2.1 Instances

The Cyc and UCyc types are instances of many classes, which comprise a large portion of their interfaces.

Algebraic classes. As one might expect, Cyc t m r and UCyc t m rep r are instances of Eq, Additive,
Ring, and various other algebraic classes for any appropriate choices of t, m, rep, and r. Therefore, the
standard operators (==), (+), (*), etc. are well-defined for Cyc and UCyc values, with semantics matching
the mathematical definitions.

We remark that UCyc t m rep r is an instance of Ring only for the CRT representations rep = C, E,
where multiplication is coefficient-wise. In the other representations, multiplication is algorithmically more
complicated and less efficient, so we simply do not implement it. This means that clients of UCyc must
explicitly convert values to a CRT representation before multiplying them, whereas Cyc performs such
conversions automatically.

Category-theoretic classes. Because UCyc t m rep r for rep = P, D, C (but not rep = E) is represented
as a vector of r-coefficients with respect to the basis indicated by rep, we define the partially applied
types UCyc t m rep (note the missing base type r) to be instances of the classes Functor, Applicative,
Foldable, and Traversable. For example, our instantiation of Functor for f = UCyc t m rep defines
fmap :: (r -> r’) -> f r -> f r’ to apply the given r -> r’ function independently on each of the
r-coefficients.

By contrast, Cyc t m is not an instance of any category-theoretic classes. This is because by design, Cyc
hides the choice of representation from the client, so it is unclear how (say) fmap should be defined: using the
current internal representation (whatever it happens to be) would lead to unpredictable and often unintended
behavior, whereas always using a particular representation (e.g., the powerful basis) would not be flexible
enough to support operations that ought to be performed in a different representation.

19

Lattice cryptography classes. Lastly, we “promote” instances of our specialized lattice cryptography
classes like Reduce, Lift, Rescale, Gadget, etc. from base types to UCyc and/or Cyc, as appropriate. For
example, the instance Reduce z zq, which represents modular reduction from Z to Zq, induces the instance
Reduce (Cyc t m z) (Cyc t m zq), which represents reduction from R to Rq. All these instances have
very concise and generic implementations using the just-described category-theoretic instances for UCyc; see
Section 3.3.3 for further details.

3.2.2 Functions

scalarCyc :: (Fact m, CElt t r) => r -> Cyc t m r
mulG :: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r
divG :: (Fact m, CElt t r) => Cyc t m r -> Maybe (Cyc t m r)
liftPow, liftDec

:: (Fact m, Lift b a, ...) => Cyc t m b -> Cyc t m a
advisePow, adviseDec, adviseCRT

:: (Fact m, CElt t r) => Cyc t m r -> Cyc t m r

-- error sampling
tGaussian :: (OrdFloat q, ToRational v, MonadRandom rnd, CElt t q, ...)

=> v -> rnd (Cyc t m q)
errorRounded :: (ToInteger z, ...) => v -> rnd (Cyc t m z)
errorCoset :: (ToInteger z, ...) => v -> Cyc t m zp -> rnd (Cyc t m z)

-- inter-ring operations
embed :: (m `Divides` m’, CElt t r) => Cyc t m r -> Cyc t m’ r
twace :: (m `Divides` m’, CElt t r) => Cyc t m’ r -> Cyc t m r
coeffsPow, coeffsDec

:: (m `Divides` m’, CElt t r) => Cyc t m’ r -> [Cyc t m r]
powBasis :: (m `Divides` m’, CElt t r) => Tagged m [Cyc t m’ r]
crtSet :: (m `Divides` m’, CElt t r, ...) => Tagged m [Cyc t m’ r]

Figure 2: Representative functions for the Cyc data type. (The CElt t r constraint is a synonym for a
collection of constraints that include Tensor t, along with various constraints on the base type r.)

We now describe the remaining functions that define the interface for Cyc; see Figure 2 for their type
signatures. (UCyc admits a very similar collection of functions, which we omit from the discussion.) We start
with functions that involve a single cyclotomic index m.

scalarCyc embeds a scalar element from the base ring r into the mth cyclotomic ring over r.

mulG, divG respectively multiply and divide by the special element gm in the mth cyclotomic ring. These
operations are commonly used in applications, and have efficient algorithms in all our representations,
which is why we define them as special functions (rather than, say, just exposing a value represent-
ing gm). Note that because the input may not always be divisible by gm, the output type of divG is a
Maybe.

20

liftB for B = Pow, Dec lifts a cyclotomic ring element coordinate-wise with respect to the specified basis
(powerful or decoding).

adviseB for B = Pow, Dec, CRT returns an equivalent ring element whose internal representation might be
with respect to (respectively) the powerful, decoding, or a Chinese Remainder Theorem basis. These
functions have no externally visible effect on the results of any computations, but they can serve as
useful optimization hints. E.g., if one needs to compute v * w1, v * w2, etc., then advising that v be
in CRT representation can speed up these operations by avoiding duplicate CRT conversions across the
operations.

The following functions relate to sampling error terms from cryptographically relevant distributions:

tGaussian samples an element of the number field K from the “tweaked” continuous Gaussian distribution
t · Dr, given v = r2. (See Section 3.1 above for background on, and the relevance of, tweaked
Gaussians. The input is v = r2 because that is more convenient for implementation.) Because the
output is random, its type must be monadic: rnd (Cyc t m r) for MonadRandom rnd.

errorRounded is a discretized version of tGaussian, which samples from the tweaked Gaussian and rounds
each decoding-basis coefficient to the nearest integer, thereby producing an output in R.

errorCoset samples an error term from a (discretized) tweaked Gaussian of parameter p · r over a given
coset of Rp = R/pR. This operation is often used in encryption schemes when encrypting a desired
message from the plaintext space Rp.8

Finally, the following functions involve Cyc data types for two indices m|m’; recall that this means the mth
cyclotomic ring can be viewed as a subring of the m’th one. Notice that in the type signatures, the divisibility
constraint is expressed as m `Divides` m’, and recall from Section 2.6 that this constraint is statically
checked by the compiler and carries no runtime overhead.

embed, twace are respectively the embedding and “tweaked trace” functions between the mth and m’th
cyclotomic rings.

coeffsB for B = Pow, Dec expresses an element of the m’th cyclotomic ring with respect to the relative
powerful or decoding basis (~pm′,m and ~dm′,m, respectively), as a list of coefficients from the mth
cyclotomic.

powBasis is the relative powerful basis ~pm′,m of the m’th cyclotomic over the mth one.9 Note that the
Tagged m type annotation is needed to specify which subring the basis is relative to.

crtSet is the relative CRT set ~cm′,m of the m’th cyclotomic ring over the mth one, modulo a prime power.
(See Appendix C.4 for its formal definition and a novel algorithm for computing it.) We have elided
some constraints which say that the base type r must represent Zpe for a prime p.

8The extra factor of p in the Gaussian parameter reflects the connection between coset sampling as used in cryptosystems, and the
underlying Ring-LWE error distribution actually used in their security proofs. This scaling gives the input v a consistent meaning
across all the error-sampling functions.

9We also could have defined decBasis, but it is slightly more complicated to implement, and we have not needed it in any of our
applications.

21

We emphasize that both powBasis and crtSet are values (of type Tagged m [Cyc t m’ r]), not
functions. Due to Haskell’s laziness, only those values that are actually used in a computation are ever
computed; moreover, the compiler usually ensures that they are computed only once each and then memoized.

In addition to the above, we also could have included functions that apply automorphisms of cyclotomic
rings, which would be straightforward to implement in our framework. We leave this for future work, merely
because we have not yet needed automorphisms in any of our applications.

3.3 Implementation

We now describe some notable aspects of the Cyc and UCyc implementations. As previously mentioned, Cyc
is mainly a thin wrapper around UCyc that automatically manages the choice of representation rep, and also
includes some important optimizations for ring elements that are known to reside in cyclotomic subrings. In
turn, UCyc is a thin wrapper around an instance of the Tensor class. (Recall that Tensor encapsulates the
cryptographically relevant linear transforms on coefficient vectors for cyclotomic rings; see Appendix C for
details.)

3.3.1 Representations

Cyc t m r can represent an element of the mth cyclotomic ring over base ring r in a few possible ways:

• as a UCyc t m rep r for some rep = P, D, C, E;

• when applicable, as a scalar from the base ring r, or more generally, as an element of the kth cyclotomic
subring for some k|m, i.e., as a Cyc t k r.

The latter subring representations enable some very useful optimizations in memory and running time:
while cryptographic applications often need to treat scalars and subring elements as residing in some larger
cyclotomic ring, Cyc can exploit knowledge of their “true” domains to operate more efficiently, as described
in Section 3.3.2 below.

UCyc represents a cyclotomic ring element by its coefficients tensor with respect to the basis indicated
by rep. That is, for rep = P, D, C, a value of type UCyc t m rep r is simply a value of type (t m r). How-
ever, a CRT basis over r does not always exist, e.g., if r represents the integers Z, or Zq for a modulus q that
does not meet certain criteria. To handle such cases we use rep = E, which indicates that the representation
is relative to a CRT basis over a certain extension ring CRTExt r that always admits such a basis, e.g., the
complex numbers C. That is, a UCyc t m E r is a value of type (t m (CRTExt r)).

We emphasize that the extension ring CRTExt r is determined by r itself, and UCyc is entirely agnostic to
it. For example, ZqBasic uses the complex numbers, whereas the pair type (a,b) (which, to recall, represents
a product ring) uses the product ring (CRTExt a, CRTExt b).

3.3.2 Operations

Most of the Cyc functions shown in Figure 2 (e.g., mulG, divG, the error-sampling functions, coeffsB,
powBasis, crtSet) simply call their UCyc counterparts for an appropriate representation rep (after converting
any subring inputs to the full ring). Similarly, most of the UCyc operations for a given representation just call
the appropriate Tensor method. In what follows we describe some operations that depart from these patterns.

The algebraic instances for Cyc implement operations like (==), (+), and (*) in the following way: first
they convert the inputs to “compatible” representations in the most efficient way possible, then they compute
the output in an associated representation. A few representative rules for how this is done are as follows:

22

• For two scalars from the base ring r, the result is just computed and stored as a scalar, thus making the
operation very fast.

• Inputs from (possibly different) subrings of indices k1, k2|m are converted to the compositum of the two
subrings, i.e., the cyclotomic of index k = lcm(k1, k2) (which divides m), then the result is computed
there and stored as a subring element.

• For (+), the inputs are converted to a common representation and added entry-wise.

• For (*), if one of the inputs is a scalar from the base ring r, it is simply multiplied by the coefficients
of the other input (this works for any r-basis representation). Otherwise, the two inputs are converted
to the same CRT representation and multiplied entry-wise.

The implementation of the inter-ring operations embed and twace for Cyc is as follows: embed is “lazy,”
merely storing its input as a subring element and returning instantly. For twace from index m’ to m, there are
two cases: if the input is represented as a UCyc value (i.e., not as a subring element), then we just invoke the
appropriate representation-specific twace function on that value (which in turn just invokes a method from
Tensor). Otherwise, the input is represented as an element of the k’th cyclotomic for some k’|m’, in which
case we apply twace from index k’ to index k = gcd(m, k’), which is the smallest index where the result is
guaranteed to reside, and store the result as a subring element.

3.3.3 Promoting Base-Ring Operations

Many cryptographic operations on cyclotomic rings are defined as working entry-wise on the ring element’s
coefficient vector with respect to some basis (either a particular or arbitrary one). For example, reducing
from R to Rq is equivalent to reducing the coefficients from Z to Zq in any basis, while “decoding” Rq to R
(as used in decryption) is defined as lifting the Zq-coefficients, relative to the decoding basis, to their smallest
representatives in Z. To implement these and many other operations, we generically “promote” operations
on the base ring to corresponding operations on cyclotomic rings, using the fact that UCyc t m rep is an
instance of the category-theoretic classes Functor, Applicative, Traversable, etc.

As a first example, consider the Functor class, which introduces the method

fmap :: Functor f => (a -> b) -> f a -> f b

Our Functor instance for UCyc t m rep defines fmap g c to apply g to each of c’s coefficients (in the basis
indicated by rep). This lets us easily promote our specialized lattice operations from Section 2. For example,
an instance Reduce z zq can be promoted to an instance Reduce (UCyc t m P z) (UCyc t m P zq)
simply by defining reduce = fmap reduce. We similarly promote other base-ring operations, including
lifting from Zq to Z, rescaling from Zq to Zq′ , discretization of Q to either Z or to a desired coset of Zp, and
more.

As a richer example, consider gadgets and decomposition (Section 2.4) for a cyclotomic ring Rq over
base ring Zq. For any gadget vector over Zq, there is a corresponding gadget vector over Rq, obtained simply
by embedding Zq into Rq. This lets us promote a Gadget instance for zq to one for UCyc t m rep zq:10,11

10The double calls to fmap are needed because there are two Functor layers around the zq-entries of
gadget :: Tagged gad [zq]: the list [], and the Tagged gad context.

11Technically, we only instantiate the gadget-related classes for Cyc t m zq, not UCyc t m rep zq. This is because Gadget has
Ring as a superclass, which is instantiated by UCyc only for the CRT representations rep = C, E; however, for geometric reasons the
gadget operations on cyclotomic rings must be defined in terms of the P or D representations. This does not affect the essential nature
of the present discussion.

23

gadget = fmap (fmap scalarCyc) gadget

Mathematically, decomposing an Rq-element into a short vector over R is defined coefficient-wise with
respect to the powerful basis. That is, we decompose each Zq-coefficient into a short vector over Z, then
collect the corresponding entries of these vectors to yield a vector of short R-elements. To implement this
strategy, one might try to promote the function (here with slightly simplified signature)

decompose :: Decompose zq z => zq -> [z]

to Cyc t m zq using fmap, as we did with reduce and lift above. However, a moment’s thought reveals
that this does not work: it yields output of type Cyc t m [z], whereas we want [Cyc t m z]. The solution
is to use the Traversable class, which introduces the method

traverse :: (Traversable v, Applicative f) => (a -> f b) -> v a -> f (v b)

In our setting, v is UCyc t m P, and f is the list type [], which is indeed an instance of Applicative.12 We
can therefore easily promote an instance of Decompose from zq to UCyc t m P zq, essentially via:

decompose v = traverse decompose v

We similarly promote the error-correction operation correct :: Correct zq z => [zq] -> (zq, [z]).

Rescaling. Mathematically, rescaling Rq to Rq′ is defined as applying b·eq′ : Zq → Zq′ (represented by the
function rescale :: Rescale a b => a -> b; see Section 2.3) coefficient-wise in either the powerful or
decoding basis (for geometrical reasons). However, there are at least two distinct algorithms that implement
this operation, depending on the representation of the ring element and of Zq and Zq′ . The generic algorithm
simply converts the input to the required basis and then rescales coefficient-wise. But there is also a more
efficient, specialized algorithm [GHS12] for rescaling a product ring Rq = Rq1 ×Rq2 to Rq1 . For the typical
case of rescaling an input in the CRT representation to an output in the CRT representation, the algorithm
requires only one CRT transformation for each of Rq1 and Rq2 , as opposed to two and one (respectively) for
the generic algorithm. In applications like FHE where Rq1 itself can be a product of multiple component
rings, this reduces the work by nearly a factor of two.

In more detail, the specialized algorithm is analogous to the one for product rings Zq1 × Zq2 described at
the end of Section 2.3. To rescale a = (a1, a2) ∈ Rq1 × Rq2 to Rq1 , we lift a2 ∈ Rq2 to a relatively short
representative ā2 ∈ R using the powerful or decoding basis, which involves an inverse-CRT for Rq2 . We
then compute ā′2 = ā2 mod q1R and output q−1

2 · (a1 − ā′2) ∈ Rq1 , which involves a CRT for Rq1 on ā′2.
To capture the polymorphism represented by the above algorithms, we define a class called RescaleCyc,

which introduces the method rescaleCyc. We give two distinct instances of RescaleCyc for the generic and
specialized algorithms, and the compiler automatically chooses the appropriate one based on the concrete
types representing the base ring.

4 Fully Homomorphic Encryption in Λ◦λ

In this section we describe a full-featured fully homomorphic encryption and its implementation in Λ◦λ,
using the interfaces described in the previous sections. At the mathematical level, the system refines a variety
of techniques and features from a long series of works [LPR10, BV11a, BV11b, BGV12, GHPS12, LPR13,

12Actually, the Applicative instance for [] models nondeterminism, not the entry-wise operations we need. Fortunately, there is
a costless newtype wrapper around [], called ZipList, that instantiates Applicative in the desired way.

24

AP13]. In addition, we describe some important generalizations and new operations, such as “ring-tunneling,”
that have not yet appeared in the literature. Along with the mathematical description of each main component,
we present the corresponding Haskell code, showing how the two forms match very closely.

4.1 Keys, Plaintexts, and Ciphertexts

The cryptosystem is parameterized by two cyclotomic rings: R = Om andR′ = Om′ wherem|m′, makingR
a subring of R′. The spaces of keys, plaintexts, and ciphertexts are derived from these rings as follows:

• A secret key is an element s ∈ R′. Some operations require s to be “small;” more precisely, we need
s · gm′ to have small coordinates in the canonical embedding of R′ (Invariant 3.1). Recall that this is
the case for “tweaked” spherical Gaussian distributions.

• The plaintext ring is Rp = R/pR, where p is a (typically small) positive integer, e.g., p = 2. For
technical reasons, p must be coprime with every odd prime dividing m′. A plaintext is simply an
element µ ∈ Rp.

• The ciphertext ring is R′q = R′/qR′ for some integer modulus q ≥ p that is coprime with p. A
ciphertext is essentially just a polynomial c(S) ∈ R′q[S], i.e., one with coefficients from R′q in an
indeterminant S, which represents the (unknown) secret key. We often identify c(S) with its vector of
coefficients (c0, c1, . . . , cd) ∈ (R′q)

d+1, where d is the degree of c(S).

In addition, a ciphertext carries a nonnegative integer k ≥ 0 and a factor l ∈ Zp as auxiliary information.
These values are affected by certain operations on ciphertexts, as described below.

Data types. Following the above definitions, our data types for plaintexts, keys, and ciphertexts as follows.
The plaintext type PT rp is merely a synonym for its argument type rp representing the plaintext ring Rp.

The data type SK representing secret keys is defined as follows:

data SK r’ where SK :: ToRational v => v -> r’ -> SK r’

Notice that a value of type SK r’ consists of an element from the secret key ring R′, and in addition it
carries a rational value (of “hidden” type v) representing the parameter v = r2 for the (tweaked) Gaussian
distribution from which the key was sampled. Binding the parameter to the secret key in this way allows us to
automatically generate ciphertexts and other key-dependent information using consistent error distributions,
thereby relieving the client of the responsibility for managing error parameters across multiple functions.

The data type CT representing ciphertexts is defined as follows:

data Encoding = MSD | LSD
data CT m zp r’q = CT Encoding Int zp (Polynomial r’q)

The CT type is parameterized by three arguments: a cyclotomic index m and a Zp-representation zp defining
the plaintext ring Rp, and a representation r’q of the ciphertext ring R′q. A CT value has four components:
a flag indicating the “encoding” of the ciphertext (MSD or LSD; see below); the auxiliary integer k and
factor l ∈ Zp (as mentioned above); and a polynomial c(S) over R′q.

25

Decryption relations. A ciphertext c(S) (with auxiliary values k ∈ Z, l ∈ Zp) encrypting a plaintext
µ ∈ Rp under secret key s ∈ R′ satisfies the relation

c(s) = c0 + c1s+ · · ·+ cds
d = e (mod qR′) (4.1)

for some sufficiently “small” error term e ∈ R′ such that

e = l−1 · gkm′ · µ (mod pR′). (4.2)

By “small” we mean that the error satisfies Invariant 3.1, so that all the coefficients of e with respect to the
decoding basis have magnitudes smaller than q/2. This will allow us to correctly recover e′ ∈ R′ from its
value modulo q, by “lifting” the latter using the decoding basis.

We say that a ciphertext satisfying Equations (4.1) and (4.2) is in “least significant digit” (LSD) form,
because the message µ is encoded as the error term modulo p. An alternative form, which is more convenient
for certain homomorphic operations, is the “most significant digit” (MSD) form. Here the relation is

c(s) ≈ q
p · (l

−1 · gkm′ · µ) (mod qR′), (4.3)

where the approximation hides a small fractional error term (in 1
pR
′) that satisfies Invariant 3.1. Notice that

the message is represented as a multiple of qp modulo q, hence the name “MSD.” One can losslessly transform
between LSD and MSD forms in linear time, just by multiplying by appropriate Zq-elements (see [AP13,
Appendix A]). Each such transformation implicitly multiplies the plaintext by some fixed element of Zp,
which is why a ciphertext carries an auxiliary factor l ∈ Zp that must be accounted for upon decryption.

4.2 Encryption and Decryption

To encrypt a message µ ∈ Rp under a key s ∈ R′, one does the following:

1. sample an error term e ∈ µ+ pR′ (from a distribution that should be a p factor wider than that of the
secret key);

2. sample a uniformly random c1 ← R′q;

3. output the LSD-form ciphertext c(S) = (e− c1 · s) + c1 · S ∈ R′q[S], with k = 0, l = 1 ∈ Zp.
(Observe that c(s) = e (mod qR′), as desired.)

This translates directly into just a few lines of Haskell code, which is monadic due to its use of randomness:

encrypt :: (m `Divides` m’, MonadRandom rnd, ...)
=> SK (Cyc m’ z) -> PT (Cyc m zp) -> rnd (CT m zp (Cyc m’ zq))

encrypt (SK v s) mu = do
e <- errorCoset v (embed mu) -- error from µ+ pR′

c1 <- getRandom -- uniform from R′q
return $ CT LSD zero one $ fromCoeffs [reduce e - c1 * reduce s, c1]

To decrypt an LSD-form ciphertext c(S) ∈ R′q[S] under secret key s ∈ R′, we first evaluate c(s) ∈ R′q
and then lift the result to R′ (using the decoding basis) to recover the error term e, as follows:

errorTerm :: (Lift zq z, m `Divides` m’, ...)
=> SK (Cyc m’ z) -> CT m zp (Cyc m’ zq) -> Cyc m’ z

errorTerm (SK _ s) (CT LSD _ _ c) = liftDec (evaluate c (reduce s))

26

Following Equation (4.2), we then compute l · g−km′ · e mod pR′. This yields the embedding of the message µ
into R′p, so we finally take the twace to recover µ ∈ Rp itself:

decrypt :: (Lift zq z, Reduce z zp, ...)
=> SK (Cyc m’ z) -> CT m zp (Cyc m’ zq) -> PT (Cyc m zp)

decrypt sk ct@(CT LSD k l _) =
let e = reduce (errorTerm sk ct)
in (scalarCyc l) * twace (iterate divG e !! k)

4.3 Homomorphic Addition and Multiplication

Homomorphic addition of ciphertexts with the same values of k and l is simple: convert the ciphertexts to the
same form (MSD or LSD), then add their polynomials. It is also possible adjust the values of k, l as needed
by multiplying the polynomial by an appropriate factor, which only slightly enlarges the error. Accordingly,
we define CT m zp (Cyc m’ zq) to be an instance of Additive, for appropriate argument types.

Now consider homomorphic multiplication: suppose ciphertexts c1(S), c2(S) encrypt messages µ1, µ2

in LSD form, with auxiliary values k1, l1 and k2, l2 respectively. Then

gm′ · c1(s) · c2(s) = gm′ · e1 · e2 (mod qR′),

gm′ · e1 · e2 = (l1l2)−1 · gk1+k2+1
m′ · (µ1µ2) (mod pR′),

and the error term e = gm′ · e1 · e2 satisfies Invariant 3.1, because e1, e2 do (see Section 3.1.3). Therefore,
the LSD-form ciphertext

c(S) := gm′ · c1(S) · c2(S) ∈ R′q[S]

encrypts µ1µ2 ∈ Rp with auxiliary values k = k1 + k2 + 1 and l = l1l2 ∈ Zp. Notice that the degree of the
output polynomial is the sum of the degrees of the input polynomials.

More generally, it turns out that we only need one of c1(S), c2(S) to be in LSD form; the product c(S)
then has the same form as the other ciphertext.13 All this translates immediately to an instance of Ring for
CT m zp (Cyc m’ zq), with the interesting case of multiplication having the one-line implementation

(CT LSD k1 l1 c1) * (CT d2 k2 l2 c2) =
CT d2 (k1+k2+1) (l1*l2) (mulG <$> c1 * c2)

(The other cases just swap the arguments or convert one ciphertext to LSD form, thus reducing to the case
above.)

4.4 Modulus Switching

Switching the ciphertext modulus is a form of rescaling typically used for decreasing the modulus, which
commensurately reduces the absolute magnitude of the error in a ciphertext—though the error rate relative
to the modulus stays essentially the same. Because homomorphic multiplication implicitly multiplies the
error terms, keeping their absolute magnitudes small can yield major benefits in controlling the error growth.
Modulus switching is also sometimes useful to temporarily increase the modulus, as explained in the next
subsection.

13If both ciphertexts are in MSD form, then it is possible to use the “scale free” homomorphic multiplication method of [Bra12],
but we have not implemented it because it appears to be significantly less efficient than just converting one ciphertext to LSD form.

27

Modulus switching is easiest to describe and implement for ciphertexts in MSD form (Equation (4.3))
that have degree at most one. Suppose we have a ciphertext c(S) = c0 + c1S under secret key s ∈ R′, where

c0 + c1s = d ≈ q
p · γ (mod qR′)

for γ = l−1 · gkm′ · µ ∈ Rp. Switching to a modulus q′ is just a suitable rescaling of each ci ∈ R′q′ to some
c′i ∈ R′q′ such that c′i ≈ (q′/q) · ci; note that the right-hand sides here are fractional, so they need to be
discretized using an appropriate basis (see the next paragraph). Observe that

c′0 + c′1s ≈
q′

q (c0 + c1s) = q′

q · d ≈
q′

p · γ (mod q′R′),

so the message is unchanged but the absolute error is essentially scaled by a q′/q factor.
Note that the first approximation above hides the extra discretization error e0 + e1s where ei = c′i −

q′

q ci,
so the main question is what bases of R′ to use for the discretization, to best maintain Invariant 3.1.
We want both e0 and e1s to satisfy the invariant, which means we want the entries of σ(e0 · gm′) and
σ(e1s · gm′) = σ(e1)� σ(s · gm′) to be essentially independent and as small as possible; because s ∈ R′
itself satisfies the invariant (i.e., the entries of σ(s · gm′) are small), we want the entries of σ(e1) to be as
small as possible. It turns out that these goals are best achieved by rescaling c0 using the decoding basis ~d,
and c1 using the powerful basis ~p. This is because gm′ · ~d and ~p respectively have nearly optimal spectral
norms over all bases of gm′R′ and R′, as shown in [LPR13].

Our Haskell implementation is therefore simply

rescaleLinearCT :: (Rescale zq zq’, ...)
=> CT m zp (Cyc m’ zq) -> CT m zp (Cyc m’ zq’)

rescaleLinearCT (CT MSD k l (Poly [c0,c1])) =
let c’0 = rescaleDec c0

c’1 = rescalePow c1
in CT MSD k l $ Poly [c’0, c’1]

4.5 Key Switching and Linearization

Recall that homomorphic multiplication causes the degree of the ciphertext polynomial to increase. Key
switching is a technique for reducing the degree, typically back to linear. More generally, key switching is a
mechanism for proxy re-encryption: given two secret keys sin and sout (which may or may not be different),
one can construct a “hint” that lets an untrusted party convert an encryption under sin to one under sout, while
preserving the secrecy of the message and the keys.

Key switching uses a gadget ~g ∈ (R′q)
` and associated decomposition function g−1 : R′q → (R′)` (both

typically promoted from Zq; see Sections 2.4 and 3.3.3). Recall that g−1(c) outputs a short vector over R′

such that ~gt · g−1(c) = c (mod qR′).

The core operations. Let sin, sout ∈ R′ denote some arbitrary secret values. A key-switching hint for sin
under sout is a matrix H ∈ (R′q)

2×`, where each column can be seen as a linear polynomial over R′q, such that

(1, sout) ·H ≈ sin · ~gt (mod qR′). (4.4)

Such an H is constructed simply by letting the columns be Ring-LWE samples with secret sout, and adding
sin ·~gt to the top row. In essence, such an H is pseudorandom by the Ring-LWE assumption, and hence hides
the secrets.

28

The core key-switching step takes a hint H and some c ∈ R′q, and simply outputs

c′ = H · g−1(c) ∈ (R′q)
2, (4.5)

which can be viewed as a linear polynomial c′(S). Notice that by Equation (4.4),

c′(sout) = (1, sout) · c′ = ((1, sout) ·H) · g−1(c) ≈ sin · ~gt · g−1(c) = sin · c (mod qR′), (4.6)

where the approximation holds because g−1(c) is short. More precisely, because the error terms in Equa-
tion (4.4) satisfy Invariant 3.1, we want all the elements of the decomposition g−1(c) to have small entries in
the canonical embedding, so it is best to decompose relative to the powerful basis.

Following Equation (4.5), our Haskell code for the core key-switching step is simply as follows (here
knapsack computes the inner product of a list of polynomials over R′q and a list of R′q-elements):

switch :: (Decompose gad zq z, r’q ˜ Cyc m’ zq, ...)
=> Tagged gad [Polynomial r’q] -> r’q -> Polynomial r’q

switch hint c = untag $ knapsack <$> hint <*> (fmap reduce <$> decompose c)

Switching ciphertexts. The above tools can be used to switch MSD-form ciphertexts of degree up to d
under sin as follows: first publish a hint Hi for each power siin, i = 1, . . . , d, all under the same sout. Then to
switch a ciphertext c(S):

• For each i = 1, . . . , d, apply the core step to coefficient ci ∈ R′q using the corresponding hint Hi, to
get a linear polynomial c′i = Hi · g−1(ci). Also let c′0 = c0.

• Sum the c′i to get a linear polynomial c′(S), which is the output.

Then c′(sout) ≈ c(sin) (mod qR′) by Equation (4.6) above, so the two ciphertexts encrypt the same message.
Notice that the error rate in c′(S) is essentially the sum of two separate quantities: the error rate in the

original c(S), and the error rate in H times a factor corresponding to the norm of the output of g−1. We
typically set the latter error rate to be much smaller than the former, so that key-switching incurs essentially
no error growth. This can be done by constructing H over a modulus q′ � q, and scaling up c(S) to this
modulus before decomposing.

Haskell functions. Our implementation includes a variety of key-switching functions, whose types all
roughly follow this general form:

keySwitchFoo :: (MonadRandom rnd, ...) => SK r’ -> SK r’
-> Tagged (gad, zq’) (rnd (CT m zp r’q -> CT m zp r’q))

Unpacking this, the inputs are the two secret keys sout, sin ∈ R′, and the output is essentially a re-encryption
function that maps one ciphertext to another. The extra Tagged (gad,zq’) context indicates what gadget
and modulus are used to construct the hint, while the rnd wrapper indicates that randomness is used in
constructing (but not applying) the function; this is because constructing the hint requires randomness.

Outputting a re-encryption function—rather than just a hint itself, which would need to be fed into a
separate function that actually does the switching—has advantages in terms of simplicity and safety. First, it
reflects the abstract re-encryption functionality provided by key switching. Second, we implement a variety
of key-switching functions that each operate slightly differently, and may even involve different types of
hints (e.g., see the next subsection). With our approach, the hint is abstracted away entirely, and each style

29

of key-switching can be implemented by a single client-visible function, instead of requiring two separate
functions and a specialized data type.

A prototypical implementation of a key-switching function is as follows (here ksHint is a function that
constructs a key-switching hint for sin under sout, as described above):

-- switch a linear ciphertext from one key to another
keySwitchLinear sout sin = tag $ do -- rnd monad
hint :: Tagged gad [Polynomial (Cyc m’ zq’)] <- ksHint sout sin
return $ \ (CT MSD k l (Poly [c0,c1])) ->

CT MSD k l $ Poly [c0] + switch hint c1

4.6 Ring Tunneling

The term “ring switching” encompasses a collection of techniques, introduced in [BGV12, GHPS12, AP13],
that allow one to change the ciphertext ring for various purposes. These techniques can also induce a
corresponding change in the plaintext ring, at the same time applying a desired linear function to the
underlying plaintext.

Here we describe a novel method of ring switching, which we call ring tunneling, that is more efficient
than the functionally equivalent method of [AP13], which for comparison we call ring hopping. The
difference between the two methods is that hopping goes “up and then down” through the compositum of
the source and target rings, while tunneling goes “down and then up” through their intersection (the largest
common subring). Essentially, tunneling is more efficient because it uses an intermediate ring that is smaller
than, instead of larger than, the source and target rings. In addition, we show how the linear function that is
homomorphically applied to the plaintext can be integrated into the key-switching hint, thus combining two
separate steps into a simpler and more efficient operation overall. We provide a simple implementation of
ring tunneling in Λ◦λ, which to our knowledge is the first realization of ring-switching of any kind.

Linear functions. We will need some basic theory of linear functions on rings. Let E be a common subring
of some rings R,S. A function L : R→ S is E-linear if for all r, r′ ∈ R and e ∈ E,

L(r + r′) = L(r) + L(r′) and L(e · r) = e · L(r).

From this it follows that for any E-basis ~b of R, an E-linear function L is uniquely determined by its
values yj = L(bj) ∈ S. Specifically, if r = ~bt · ~e ∈ R for some ~e over E, then L(r) = L(~b)t · ~e = ~yt · ~e.

Accordingly, we introduce a useful abstract data type to represent linear functions on cyclotomic rings:

newtype Linear z e r s = D [Cyc s z]

The parameters z represents the base type, while the parameters e, r, s represent the indices of the cyclotomic
rings E, R, S. For example, Cyc s z represents the ring S. An E-linear function L is internally represented
by its list ~y = L(~dr,e) of values on the relative decoding basis ~dr,e of R/E, hence the constructor named D.
(We could also represent linear functions via the relative powerful basis, but so far we have not needed to do
so.) Using our interface for cyclotomic rings (Section 3), evaluating a linear function is straightforward:

evalLin :: (e `Divides` r, e `Divides` s, ...)
=> Linear t z e r s -> Cyc r z -> Cyc s z

evalLin (D ys) r = dotprod ys (fmap embed (coeffsCyc Dec r :: [Cyc e z]))

30

Extending linear functions. Now let E′, R′, S′ respectively be cyclotomic extension rings of E,R, S
satisfying certain conditions described below. As part of ring switching we will need to extend an E-linear
function L : R → S to an E′-linear function L′ : R′ → S′ that agrees with L on R, i.e., L′(r) = L(r) for
every r ∈ R. The following lemma gives a sufficient condition for when and how this is possible. (It is a
restatement of Lemma D.1, whose proof appears in Appendix D).

Lemma 4.1. Let e, r, s, e′, r′, s′ respectively be the indices of cyclotomic rings E,R, S,E′, R′, S′, and
suppose e = gcd(r, e′), r′ = lcm(r, e′), and lcm(s, e′)|s′. Then:

1. The relative decoding bases ~dr,e of R/E and ~dr′,e′ of R′/E′ are identical.

2. For any E-linear function L : R → S, the function L′ : R′ → S′ defined by L′(~dr′,e′) = L(~dr,e) is
E′-linear and agrees with L on R.

The above lemma leads to the following very simple Haskell function to extend a linear function; notice
that the constraints use the type-level arithmetic described in Section 2.6 to enforce the hypotheses of
Lemma 4.1.

extendLin :: (e ˜ FGCD r e’, r’ ˜ FLCM r e’, (FLCM s e’) `Divides` s’)
=> Linear t z e r s -> Linear t z e’ r’ s’

extendLin (Dec ys) = Dec (fmap embed ys)

Ring tunneling as key switching. Abstractly, ring tunneling is an operation that homomorphically evalu-
ates a desired Ep-linear function Lp : Rp → Sp on a plaintext, by converting its ciphertext over R′q to one
over S′q. Operationally, it can be implemented simply as a form of key switching.

Ring tunneling involves two phases: a preprocessing phase where we use the desired linear function Lp
and the secret keys to produce appropriate hints, and an online phase where we apply the tunneling operation
to a given ciphertext using the hint. The preprocessing phase is as follows:

1. Extend Lp to an E′p-linear function L′p : R′p → S′p that agrees with Lp on Rp, as described above.

2. Lift L′p to a “small” E′-linear function L′ : R′ → S′ that induces L′p. Specifically, define L′ by
L′(~dr′,e′) = ~y, where ~y (over S′) is obtained by lifting ~yp = L′p(

~dr′,e′) using the powerful basis.

The above lifting procedure is justified by the following considerations. We want L′ to map ciphertext
errors in R′ to errors in S′, maintaining Invariant 3.1 in the respective rings. In the relative decoding
basis ~dr′,e′ , ciphertext error e = ~dtr′,e′ · ~e ∈ R′ has E′-coefficients ~e that satisfy the invariant for E′,
and hence for S′ as well. Because we want

L′(e) = L′(~dtr′,e′ · ~e) = ~yt · ~e ∈ S′

to satisfy the invariant for S′, it is therefore best to lift ~yp from S′p to S′ using the powerful basis, for
the same reasons that apply to modulus switching when rescaling the c1 component of a ciphertext.14

3. Prepare an appropriate key-switching hint using keys sin ∈ R′ and sout ∈ S′. Let ~b be an arbitrary
E′-basis ofR′ (which we also use in the online phase below). Using a gadget vector ~g over S′q, generate
key-switching hints Hj for the components of L′(sin ·~bt), such that

(1, sout) ·Hj ≈ L′(sin · bj) · ~gt (mod qS′). (4.7)

14The very observant reader may notice that because L′p(~dr′,e′) = Lp(~dr,e) is over Sp, the order in which we extend and lift does
not matter.

31

(As usual, the approximation hides appropriate Ring-LWE errors that satisfy Invariant 3.1.) Recall that
we can interpret the columns of Hj as linear polynomials.

The online phase proceeds as follows. As input we are given an MSD-form, linear ciphertext c(S) =
c0 + c1S (over R′q) with associated integer k = 0 and arbitrary l ∈ Zp, encrypting a message µ ∈ Rp under
secret key sin.

1. Express c1 uniquely as c1 = ~bt · ~e for some ~e over E′q (where ~b is the same E′-basis of R′ used in
Step 3 above).

2. Compute L′(c0) ∈ S′q, apply the core key-switching operation to each ej with hint Hj , and sum the
results. Formally, output a ciphertext having k = 0, the same l ∈ Zp as the input, and the linear
polynomial

c′(S) = L′(c0) +
∑
j

Hj · g−1(ej) (mod qS′). (4.8)

For correctness, notice that we have

c0 + sin · c1 ≈ q
p · l
−1 · µ (mod qR′)

=⇒ L′(c0 + sin · c1) ≈ q
p · l
−1 · L(µ) (mod qS′), (4.9)

where the error in the second approximation is L′ applied to the error in the first approximation, and therefore
satisfies Invariant 3.1 by design of L′. Then we have

c′(sout) ≈ L′(c0) +
∑
j

L′(sin · bj) · ~gt · g−1(ej) (Equations (4.8), (4.7))

= L′(c0 + sin ·~bt · ~e) (E′-linearity of L′)

= L′(c0 + sin · c1) (definition of ~e)

≈ q
p · l
−1 · L(µ) (mod qS′) (Equation (4.9))

as desired, where the error in the first approximation comes from the hints Hj .

Comparison to ring hopping. We now describe the efficiency advantages of ring tunneling versus ring
hopping. We analyze the most natural setting where both the input and output ciphertexts are in CRT
representation; in particular, this allows the process to be iterated as in [AP13].

Both ring tunneling and ring hopping convert a ciphertext over R′q to one over S′q, either via the greatest
common subring E′q (in tunneling) or the compositum T ′q (in hopping). In both cases, the bottleneck is
key-switching, where we compute one or more values H · g−1(c) for some hint H and ring element c (which
may be over different rings). This proceeds in two main steps:

1. We convert c from CRT to powerful representation for g−1-decomposition, and then convert each
entry of g−1(c) to CRT representation. Each such conversion takes Θ(n log n) = Θ̃(n) time in the
dimension n of the ring that c resides in.

2. We multiply each column of H by the appropriate entry of g−1(c), and sum. Because both terms are in
CRT representation, this takes linear Θ(n) time in the dimension n of the ring that H is over.

32

The total number of components of g−1(c) is the same in both tunneling and hopping, so we do not consider
it further in this comparison.

In ring tunneling, we switch dim(R′/E′) elements ej ∈ E′q (see Equation (4.8)) using the same number
of hints over S′q. Thus the total cost is

dim(R′/E′) · (Θ̃(dim(E′)) + Θ(dim(S′))) = Θ̃(dim(R′)) + Θ(dim(T ′)).

By contrast, in ring hopping we first embed the ciphertext into the compositum T ′q and key-switch there.
Because the compositum has dimension dim(T ′) = dim(R′/E′) · dim(S′), the total cost is

Θ̃(dim(T ′)) + Θ(dim(T ′)).

The second (linear) terms of the above expressions, corresponding to Step 2, are essentially identical. For
the first (superlinear) terms, we see that Step 1 for tunneling is at least a dim(T ′/R′) = dim(S′/E′) factor
faster than for hopping. In typical instantiations, this factor is a small prime between, say, 3 and 11, so the
savings can be quite significant in practice.

References

[ADPS16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - a new hope.
In USENIX Security Symposium, pages ??–?? 2016.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32,
2004. Preliminary version in STOC 1996.

[AP13] J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In CRYPTO,
pages 1–20. 2013.

[BCD+16] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE.
Cryptology ePrint Archive, Report 2016/659, 2016. http://eprint.iacr.org/2016/659.

[BCLvV16] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU prime. Cryptology
ePrint Archive, Report 2016/461, 2016. http://eprint.iacr.org/2016/461.

[BCNS15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. In IEEE Symposium on Security and
Privacy, pages 553–570. 2015.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. TOCT, 6(3):13, 2014. Preliminary version in ITCS 2012.

[Bla14] Black Duck Software. Ohcount, 2014. https://github.com/blackducksoftware/ohcount,
last retrieved May 2016.

[BLMR13] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic PRFs and
their applications. In CRYPTO, pages 410–428. 2013.

[BP14] A. Banerjee and C. Peikert. New and improved key-homomorphic pseudorandom functions. In
CRYPTO, pages 353–370. 2014.

33

http://eprint.iacr.org/2016/659
http://eprint.iacr.org/2016/461
https://github.com/blackducksoftware/ohcount

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In EUROCRYPT,
pages 719–737. 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
In CRYPTO, pages 868–886. 2012.

[BV11a] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and
security for key dependent messages. In CRYPTO, pages 505–524. 2011.

[BV11b] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. SIAM J. Comput., 43(2):831–871, 2014. Preliminary version in FOCS 2011.

[CGRS14] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok. An FPGA co-processor implementation
of homomorphic encryption. In HPEC 2014, pages 1–6. 2014.

[CIV16] W. Castryck, I. Iliashenko, and F. Vercauteren. Provably weak instances of Ring-LWE revisited.
In EUROCRYPT, pages 147–167. 2016.

[CKL+11] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover. Accelerating haskell
array codes with multicore GPUs. In DAMP 2011, pages 3–14. 2011.

[CLS15] H. Chen, K. Lauter, and K. E. Stange. Attacks on search RLWE. Cryptology ePrint Archive,
Report 2015/971, 2015. http://eprint.iacr.org/.

[CLT14] J. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic encryption over the
integers. In PKC, pages 311–328. 2014.

[CP16] E. Crockett and C. Peikert. Λ ◦ λ: Functional lattice cryptography. In ACM CCS, pages ??–??
2016. Full version at http://eprint.iacr.org/2015/1134.

[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal
gaussians. In CRYPTO, pages 40–56. 2013.

[DN12] L. Ducas and P. Q. Nguyen. Faster Gaussian lattice sampling using lazy floating-point arithmetic.
In ASIACRYPT, pages 415–432. 2012.

[DP15a] L. Ducas and T. Prest. Fast fourier orthogonalization. Cryptology ePrint Archive, Report
2015/1014, 2015. http://eprint.iacr.org/.

[DP15b] L. Ducas and T. Prest. A hybrid Gaussian sampler for lattices over rings. Cryptology ePrint
Archive, Report 2015/660, 2015. http://eprint.iacr.org/.

[ELOS15] Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange. Provably weak instances of Ring-LWE. In
CRYPTO, pages 63–92. 2015.

[ES14] R. A. Eisenberg and J. Stolarek. Promoting functions to type families in haskell. In Haskell
2014, pages 95–106. 2014.

[EW12] R. A. Eisenberg and S. Weirich. Dependently typed programming with singletons. In Haskell
2012, pages 117–130. 2012.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

34

http://eprint.iacr.org/
http://eprint.iacr.org/2015/1134
http://eprint.iacr.org/
http://eprint.iacr.org/

[GHPS12] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-style homomorphic
encryption. Journal of Computer Security, 21(5):663–684, 2013. Preliminary version in
SCN 2012.

[GHS12] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO,
pages 850–867. 2012.

[GLP12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES, pages 530–547. 2012.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–92. 2013.

[GVW13] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In STOC,
pages 545–554. 2013.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
ANTS, pages 267–288. 1998.

[HS] S. Halevi and V. Shoup. HElib: an implementation of homomorphic encryption. https:
//github.com/shaih/HElib, last retrieved August 2016.

[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT, pages 641–670. 2015.

[KCL+10] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. P. Jones, and B. Lippmeier. Regular,
shape-polymorphic, parallel arrays in haskell. In ICFP 2010, pages 261–272. 2010.

[KW11] U. Kunz and J. Weder. Metriculator. https://github.com/ideadapt/metriculator, 2011.
Version 0.0.1.201310061341.

[LCKJ12] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and S. L. P. Jones. Guiding parallel array fusion
with indexed types. In Haskell 2012, pages 25–36. 2012.

[Lip11] M. Lipovac̆a. Learn You a Haskell for Great Good! No Starch Press, 2011. Available free
online at http://learnyouahaskell.com/.

[LMPR08] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest proposal for
FFT hashing. In FSE, pages 54–72. 2008.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
Journal of the ACM, 60(6):43:1–43:35, November 2013. Preliminary version in Eurocrypt 2010.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT, pages 35–54. 2013.

[May16] C. M. Mayer. Implementing a toolkit for ring-lwe based cryptography in arbitrary cyclotomic
number fields. Cryptology ePrint Archive, Report 2016/049, 2016. http://eprint.iacr.
org/2016/049.

35

https://github.com/shaih/HElib
https://github.com/shaih/HElib
https://github.com/ideadapt/metriculator
http://learnyouahaskell.com/
http://eprint.iacr.org/2016/049
http://eprint.iacr.org/2016/049

[MBG+16] C. A. Melchor, J. Barrier, S. Guelton, A. Guinet, M. Killijian, and T. Lepoint. NFLlib: NTT-
based fast lattice library. In CT-RSA, pages 341–356. 2016.

[McC76] T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–320, July 1976.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Computational Complexity, 16(4):365–411, 2007. Preliminary version in FOCS 2002.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012.

[NLV11] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In
CCSW, pages 113–124. 2011.

[O’S14] B. O’Sullivan. Criterion, 2014. https://hackage.haskell.org/package/criterion, ver-
sion 1.1.1.0.

[Pei16] C. Peikert. How (not) to instantiate Ring-LWE. In SCN, pages ??–?? 2016.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005.

[Sho06] V. Shoup. A library for doing number theory, 2006. http://www.shoup.net/ntl/, version
9.8.1.

[SS11] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In EUROCRYPT, pages 27–47. 2011.

[SV10] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography, pages 420–443. 2010.

[SV11] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and
Cryptography, 71(1):57–81, 2014. Preliminary version in ePrint Report 2011/133.

[TTJ15] D. Thurston, H. Thielemann, and M. Johansson. Haskell numeric prelude, 2015. https:
//hackage.haskell.org/package/numeric-prelude.

[WHC+12] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Accelerating fully homomorphic encryption
using GPU. In HPEC 2012, pages 1–5. 2012.

[YWC+12] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and J. P. Magalhães. Giving
Haskell a promotion. In TLDI 2012, pages 53–66. 2012.

A More on Type-Level Cyclotomic Indices

Picking up from Section 2.6, in Appendix A.1 below we give more details on how cyclotomic indices are
represented and operated upon at the type level. Then in Appendix A.2 we describe how all this is used to
generically derive algorithms for arbitrary cyclotomics.

36

https://hackage.haskell.org/package/criterion
http://www.shoup.net/ntl/
https://hackage.haskell.org/package/numeric-prelude
https://hackage.haskell.org/package/numeric-prelude

A.1 Promoting Factored Naturals

Operations in a cyclotomic ring are governed by the prime-power factorization of its index. Therefore, we
define the data types PrimeBin, PrimePower, and Factored to represent factored positive integers (here the
types Pos and Bin are standard Peano and binary encodings, respectively, of the natural numbers):

-- Invariant: argument is prime
newtype PrimeBin = P Bin
-- (prime, exponent) pair
newtype PrimePower = PP (PrimeBin, Pos)
-- List invariant: primes appear in strictly increasing order (no duplicates).
newtype Factored = F [PrimePower]

To enforce the invariants, we hide the P, PP, and F constructors from clients, and instead only export operations
that verify and maintain the invariants. In particular, we provide functions that construct valid PrimeBin,
PrimePower, and Factored values for any appropriate positive integer, and we define the following arithmetic
operations, whose implementations are straightforward:

fDivides :: Factored -> Factored -> Bool
fMul, fGCD, fLCM :: Factored -> Factored -> Factored

We use data kinds and singletons to mechanically promote the above data-level definitions to the type
level. Specifically, data kinds defines an (uninhabited) Factored type corresponding to each Factored value,
while singletons produces type families FDivides, FMul, etc. that operate on these promoted types. We also
provide compile-time “macros” that define Fm as a synonym for the Factored type corresponding to positive
integer m, and similarly for PrimeBin and PrimePower types. Combining all this, e.g., FMul F2 F2 yields
the type F4, as does FGCD F12 F8. Similarly, FDivides F5 F30 yields the promoted type True.

In addition, for each Factored type m, singletons defines a type Sing m that is inhabited by a single
value, which can be obtained as sing :: Sing m. This value has an internal structure mirroring that of the
corresponding Factored value, i.e., it is essentially a list of singleton values corresponding to the appropriate
PrimePower types. (The same goes for the singletons for PrimePower and PrimeBin types.) Lastly, the
withSingI function lets us go in the reverse direction, i.e., it lets us “elevate” a particular singleton value to
instantiate a corresponding type variable in a polymorphic expression.

A.2 Applying the Promotions

Here we summarize how we use the promoted types and singletons to generically derive algorithms for oper-
ations in arbitrary cyclotomics. We rely on the “sparse decomposition” framework described in Appendix B
below; for our purposes here, we only need that a value of type Trans r represents a linear transform over a
base ring r via some sparse decomposition.

A detailed example will illustrate our approach. Consider the polymorphic function

crt :: (Fact m, CRTrans r, ...) => Tagged m (Trans r)

which represents the index-m Chinese Remainder Transform (CRT) over a base ring r (e.g., Zq or C).
Equation (C.7) gives a sparse decomposition of CRT in terms of prime-power indices, and Equations (C.8)
and (C.9) give sparse decompositions for the prime-power case in terms of the CRT and DFT for prime
indices, and the “twiddle” transforms for prime-power indices.

Following these decompositions, our implementation of crt works as follows:

37

1. It first obtains the singleton corresponding to the Factored type m, using sing :: Sing m, and
extracts the list of singletons for its PrimePower factors. It then takes the Kronecker product of the
corresponding specializations of the prime power-index CRT function

crtPP :: (PPow pp, CRTrans r, ...) => Tagged pp (Trans r)

The specializations are obtained by “elevating” the PrimePower singletons to instantiate the pp type
variable using withSingI, as described above.

(The above-described transformation from Factored to PrimePower types applies equally well to all
our transforms of interest. Therefore, we implement a generic combinator that builds a transform
indexed by Factored types from any given one indexed by PrimePower types.)

2. Similarly, crtPP obtains the singleton corresponding to the PrimePower type pp, extracts the singletons
for its PrimeBin (base) and Pos (exponent) types, and composes the appropriate specializations of the
prime-index CRT and DFT functions

crtP, dftP :: (Prim p, CRTrans r, ...) => Tagged p (Trans r)

along with prime power-indexed transforms that apply the appropriate “twiddle” factors.

3. Finally, crtP and dftP obtain the singleton corresponding to the PrimeBin type p, and apply the
CRT/DFT transformations indexed by this value, using naı̈ve matrix-vector multiplication. This
requires the pth roots of unity in r, which are obtained via the CRTrans interface.

B Sparse Decompositions and Haskell Framework

As shown in Appendix C, the structure of the powerful, decoding, and CRT bases yield sparse decompositions,
and thereby efficient algorithms, for cryptographically important linear transforms relating to these bases. Here
we explain the principles of sparse decompositions, and summarize our Haskell framework for expressing
and evaluating them.

B.1 Sparse Decompositions

A sparse decomposition of a matrix (or the linear transform it represents) is a factorization into sparser or
more “structured” matrices, such as diagonal matrices or Kronecker products. Recall that the Kronecker
(or tensor) product A⊗B of two matrices or vectors A ∈ Rm1×n1 , B ∈ Rm2×n2 over a ringR is a matrix
in Rm1m2×n1n2 . Specifically, it is the m1-by-n1 block matrix (or vector) made up of m2-by-n2 blocks,
whose (i, j)th block is ai,j ·B ∈ Rm2×n2 , where A = (ai,j). The Kronecker product satisfies the properties

(A⊗B)t = (At ⊗Bt)

(A⊗B)−1 = (A−1 ⊗B−1)

and the mixed-product property

(A⊗B) · (C ⊗D) = (AC)⊗ (BD),

which we use extensively in what follows.

38

A sparse decomposition of a matrix A naturally yields an algorithm for multiplication by A, which can
be much more efficient and parallel than the naı̈ve algorithm. For example, multiplication by In ⊗A can be
done using n parallel multiplications by A on appropriate chunks of the input, and similarly for A⊗ In and
Il ⊗ A⊗ Ir. More generally, the Kronecker product of any two matrices can be expressed in terms of the
previous cases, as follows:

A⊗B = (A⊗ Iheight(B)) · (Iwidth(A) ⊗B) = (Iheight(A) ⊗B) · (A⊗ Iwidth(B)).

If the matrices A,B themselves have sparse decompositions, then these rules can be applied further to yield a
“fully expanded” decomposition. All the decompositions we consider in this work can be fully expanded as
products of terms of the form Il ⊗ A ⊗ Ir, where multiplication by A is relatively fast, e.g., because A is
diagonal or has small dimensions.

B.2 Haskell Framework

We now describe a simple, deeply embedded domain-specific language for expressing and evaluating sparse
decompositions in Haskell. It allows the programmer to write such factorizations recursively in natural
mathematical notation, and it automatically yields fast evaluation algorithms corresponding to fully expanded
decompositions. For simplicity, our implementation is restricted to square matrices (which suffices for our
purposes), but it could easily be generalized to rectangular ones.

As a usage example, to express the decompositions

A = B ⊗ C
B = (In ⊗D) · E

where C, D, and E are “atomic,” one simply writes

transA = transB @* transC -- B ⊗ C
transB = (Id n @* transD) .* transE -- (In ⊗D) · E
transC = trans functionC -- similarly for transD, transE

where functionC is (essentially) an ordinary Haskell function that left-multiplies its input vector by C. The
above code causes transA to be internally represented as the fully expanded decomposition

A = (In ⊗D ⊗ Idim(C)) · (E ⊗ Idim(C)) · (Idim(E) ⊗ C).

Finally, one simply writes eval transA to get an ordinary Haskell function that left-multiplies by A
according to the above decomposition.

Data types. We first define the data types that represent transforms and their decompositions (here Array r
stands for some arbitrary array type that holds elements of type r)

-- (dim(f), f) such that (f l r) applies Il ⊗ f ⊗ Ir
type Tensorable r = (Int, Int -> Int -> Array r -> Array r)

-- transform component: a Tensorable with particular Il, Ir
type TransC r = (Tensorable r, Int, Int)

-- full transform: a sequence of zero or more components
data Trans r = Id Int -- identity sentinel

| TSnoc (Trans r) (TransC r)

39

• The client-visible type alias Tensorable r represents an “atomic” transform (over the base type r)
that can be augmented (tensored) on the left and right by identity transforms of any dimension. It
has two components: the dimension d of the atomic transform f itself, and a function that, given any
dimensions l, r, applies the ldr-dimensional transform Il ⊗ f ⊗ Ir to an array of r-elements. (Such a
function could use parallelism internally, as already described.)

• The type alias TransC r represents a transform component, namely, a Tensorable r with particular
values for l, r. TransC is only used internally; it is not visible to external clients.

• The client-visible type Trans r represents a full transform, as a sequence of zero or more components
terminated by a sentinel representing the identity transform. For such a sequence to be well-formed, all
the components (including the sentinel) must have the same dimension. Therefore, we export the Id
constructor, but not TSnoc, so the only way for a client to construct a nontrivial Trans r is to use the
functions described below (which maintain the appropriate invariant).

Evaluation. Evaluating a transform is straightforward. Simply evaluate each component in sequence:

evalC :: TransC r -> Array r -> Array r
evalC ((_,f), l, r) = f l r

eval :: Trans r -> Array r -> Array r
eval (Id _) = id -- identity function
eval (TSnoc rest f) = eval rest . evalC f

Constructing transforms. We now explain how transforms of type Trans r are constructed. The function
trans wraps a Tensorable as a full-fledged transform:

trans :: Tensorable r -> Trans r
trans f@(d,_) = TSnoc (Id d) (f, 1, 1) -- Id · f

More interesting are the functions for composing and tensoring transforms, respectively denoted by the oper-
ators (.*), (@*) :: Trans r -> Trans r -> Trans r. Composition just appends the two sequences of
components, after checking that their dimensions match; we omit its straightforward implementation. The
Kronecker-product operator (@*) simply applies the appropriate rules to get a fully expanded decomposition:

-- Im ⊗ In = Imn
(Id m) @* (Id n) = Id (m*n)

-- In ⊗ (A ·B) = (In ⊗A) · (In ⊗B), and similarly
i@(Id n) @* (TSnoc a (b, l, r)) = TSnoc (i @* a) (b, (n*l), r)
(TSnoc a (b, l, r)) @* i@(Id n) = TSnoc (a @* i) (b, l, (r*n))

-- (A⊗B) = (A⊗ I) · (I ⊗B)
a @* b = (a @* Id (dim b)) .* (Id (dim a) @* b)

(The dim function simply returns the dimension of a transform, via the expected implementation.)

40

C Tensor Interface and Sparse Decompositions

In this section we detail the “backend” representations and algorithms for computing in cyclotomic rings. We
implement these algorithms using the sparse decomposition framework outlined in Appendix B.

An element of the mth cyclotomic ring over a base ring r (e.g., Q, Z, or Zq) can be represented as a
vector of n = ϕ(m) coefficients from r, with respect to a particular r-basis of the cyclotomic ring. We call
such a vector a (coefficient) tensor to emphasize its implicit multidimensional nature, which arises from the
tensor-product structure of the bases we use.

The class Tensor (see Figure 3) represents the cryptographically relevant operations on coefficient tensors
with respect to the powerful, decoding, and CRT bases. An instance of Tensor is a data type t that itself
takes two type parameters: an m representing the cyclotomic index, and an r representing the base ring. So
the fully applied type t m r represents an index-m cyclotomic tensor over r.

The Tensor class introduces a variety of methods representing linear transformations that either convert
between two particular bases (e.g., lInv, crt), or perform operations with respect to certain bases (e.g.,
mulGPow, embedDec). It also exposes some important fixed values related to cyclotomic ring extensions
(e.g., powBasisPow, crtSetDec). An instance t of Tensor must implement all these methods and values for
arbitrary (legal) cyclotomic indices.

C.1 Mathematical Background

Here we recall the relevant mathematical background on cyclotomic rings, largely following [LPR13, AP13]
(with some slight modifications for convenience of implementation).

C.1.1 Cyclotomic Rings and Powerful Bases

Prime cyclotomics. The first cyclotomic ring is O1 = Z. For a prime p, the pth cyclotomic ring is
Op = Z[ζp], where ζp denotes a primitive pth root of unity, i.e., ζp has multiplicative order p. The minimal
polynomial over Z of ζp is Φp(X) = 1 +X +X2 + · · ·+Xp−1, so Op has degree ϕ(p) = p− 1 over Z,
and we have the ring isomorphism Op ∼= Z[X]/Φp(X) by identifying ζp with X . The power basis ~pp of Op
is the Z-basis consisting of the first p− 1 powers of ζp, i.e.,

~pp := (1, ζp, ζ
2
p , . . . , ζ

p−2
p).

Prime-power cyclotomics. Now let m = pe for e ≥ 2 be a power of a prime p. Then we can inductively
define Om = Om/p[ζm], where ζm denotes a primitive pth root of ζm/p. Its minimal polynomial over Om/p
is Xp − ζm/p, so Om has degree p over Om/p, and hence has degree ϕ(m) = (p− 1)pe−1 over Z.

The above naturally yields the relative power basis of the extension Om/Om/p, which is the Om/p-basis

~pm,m/p := (1, ζm, . . . , ζ
p−1
m).

More generally, for any powersm,m′ of p wherem|m′, we define the relative power basis ~pm′,m ofOm′/Om
to be the Om-basis obtained as the Kronecker product of the relative power bases for each level of the tower:

~pm′,m := ~pm′,m′/p ⊗ ~pm′/p,m′/p2 ⊗ · · · ⊗ ~pmp,m. (C.1)

Notice that because ζpi = ζ
m′/pi

m′ for pi ≤ m′, the relative power basis ~pm′,m consists of all the powers
0, . . . , ϕ(m′)/ϕ(m)− 1 of ζm′ , but in “base-p digit-reversed” order (which turns out to be more convenient
for implementation). Finally, we also define ~pm := ~pm,1 and simply call it the powerful basis of Om.

41

class Tensor t where
-- single-index transforms

scalarPow :: (Ring r, Fact m) => r -> t m r
scalarCRT :: (CRTrans mon r, Fact m) => mon (r -> t m r)

l, lInv :: (Ring r, Fact m) => t m r -> t m r

mulGPow, mulGDec :: (Ring r, Fact m) => t m r -> t m r
divGPow, divGDec :: (IntegralDomain r, Fact m) => t m r -> Maybe (t m r)

crt, crtInv, mulGCRT, divGCRT :: (CRTrans mon r, Fact m) => mon (t m r -> t m r)

tGaussianDec :: (OrdFloat q, Fact m, MonadRandom rnd, ...) => v -> rnd (t m q)

gSqNormDec :: (Ring r, Fact m) => t m r -> r

-- two-index transforms and values

embedPow, embedDec :: (Ring r, m `Divides` m’) => t m r -> t m’ r
twacePowDec :: (Ring r, m `Divides` m’) => t m’ r -> t m r

embedCRT :: (CRTrans mon r, m `Divides` m’) => mon (t m r -> t m’ r)
twaceCRT :: (CRTrans mon r, m `Divides` m’) => mon (t m’ r -> t m r)

coeffs :: (Ring r, m `Divides` m’) => t m’ r -> [t m r]

powBasisPow :: (Ring r, m `Divides` m’) => Tagged m [t m’ r]

crtSetDec :: (PrimeField fp, m `Divides` m’, ...) => Tagged m [t m’ fp]

Figure 3: Representative methods from the Tensor class. For the sake of concision, the constraint TElt t r
is omitted from every method.

42

Arbitrary cyclotomics. Now let m be any positive integer, and let m =
∏t
`=1m` be its factorization into

maximal prime-power divisors m` (in some canonical order). Then we can define

Om := Z[ζm1 , ζm2 , . . . , ζmt].
15

It is known that the rings Z[ζ`] are linearly disjoint over Z, i.e., for any Z-bases of the individual rings, their
Kronecker product is a Z-basis of Om. In particular, the powerful basis of Om is defined as the Kronecker
product of the component powerful bases:

~pm :=
⊗
`

~pm`
. (C.2)

Similarly, for m|m′ having factorizations m =
∏
`m`, m′ =

∏
`m
′
`, where each m`,m

′
` is a power of a

distinct prime p` (so some m` may be 1), the relative powerful basis of Om′/Om is

~pm′,m :=
⊗
`

~pm′`,m`
. (C.3)

Notice that for m|m′|m′′, we have that ~pm′′,m and ~pm′′,m′ ⊗ ~pm′,m are equivalent up to order, because they
are tensor products of the same components, but possibly in different orders.

Canonical embedding. The mth cyclotomic ring R has n = ϕ(m) distinct ring embeddings (i.e., injective
ring homomorphisms) into the complex numbers C. Concretely, if m has prime-power factorization m =∏
`m`, then these embeddings are defined by mapping each ζm`

to each of the primitive m`th roots of unity
in C, in all combinations. The canonical embedding σ : R→ Cn is defined as the concatenation of all these
embeddings, in some standard order. (Notice that the embeddings come in conjugate pairs, so σ actually
maps into an n-dimensional real subspace H ⊆ Cn.) The canonical embedding endows the ring (and its
ambient number field) with a canonical geometry, i.e., all geometric quantities on R are defined in terms of
the canonical embedding. E.g., we have the Euclidean norm ‖x‖ := ‖σ(x)‖2. A key property is that both
addition and multiplication in the ring are coordinate-wise in the canonical embedding:

σ(a+ b) = σ(a) + σ(b)

σ(a · b) = σ(a)� σ(b).

This property aids analysis and allows for sharp bounds on the growth of errors in cryptographic applications.

C.1.2 (Tweaked) Trace, Dual Ideal, and Decoding Bases

In what follows let R = Om, R′ = Om′ for m|m′, so we have the ring extension R′/R. The trace function
TrR′/R : R′ → R is the R-linear function defined as follows: fixing any R-basis of R′, multiplication by an
x ∈ R′ can be represented as a matrix Mx over R with respect to the basis, which acts on the multiplicand’s
vector of R-coefficients. Then TrR′/R(x) is simply the trace of Mx, i.e., the sum of its diagonal entries. (This
is invariant under the choice of basis.) Because R′/R is Galois, the trace can also be defined as the sum of the
automorphisms of R′ that fix R pointwise. All of this extends to the field of fractions of R′ (i.e., its ambient
number field) in the same way.

Notice that the trace does not fix R (except when R′ = R), but rather TrR′/R(x) = deg(R′/R) · x for
all x ∈ R. For a tower R′′/R′/R of ring extensions, the trace satisfies the composition property

TrR′′/R = TrR′/R ◦TrR′′/R′ .

15Equivalently, Om =
⊗

`Om` is the ring tensor product over Z of all the m`th cyclotomic rings.

43

The dual ideal, and a “tweak.” There is a special fractional ideal R∨ of R, called the codifferent or dual
ideal, which is defined as the dual of R under the trace, i.e.,

R∨ := {fractional a : TrR/Z(a ·R) ⊆ Z}.

By the composition property of the trace, (R′)∨ is the set of all fractional a such that TrR′/R(a ·R′) ⊆ R∨.
In particular, we have TrR′/R((R′)∨) = R∨.

Concretely, the dual ideal is the principal fractional ideal R∨ = (gm/m̂)R, where m̂ = m/2 if m is even
and m̂ = m otherwise, and the special element gm ∈ R is as follows:

• for m = pe for prime p and e ≥ 1, we have gm = gp := 1− ζp if p is odd, and gm = gp := 1 if p = 2;

• for m =
∏
`m` where the m` are powers of distinct primes, we have gm =

∏
` gm`

.

The dual ideal R∨ plays a very important role in the definition, hardness proofs, and cryptographic
applications of Ring-LWE (see [LPR10, LPR13] for details). However, for implementations it seems
preferable to work entirely in R, so that we do not to have to contend with fractional values or the dual
ideal explicitly. Following [AP13] and the discussion in Section 3.1, we achieve this by multiplying all
values related to R∨ by the “tweak” factor tm = m̂/gm ∈ R; recall that tmR∨ = R. To compensate for
this implicit tweak factor, we replace the trace by what we call the twace (for “tweaked trace”) function
Twm′,m = TwR′/R : R′ → R, defined as

TwR′/R(x) := tm · TrR′/R(x/tm′) = (m̂/m̂′) · TrR′/R(x · gm′/gm). (C.4)

A nice feature of the twace is that it fixes the base ring pointwise, i.e., TwR′/R(x) = x for every x ∈ R. It is
also easy to verify that it satisfies the same composition property that the trace does.

We stress that this “tweaked” perspective is mathematically and computationally equivalent to using R∨,
and all the results from [LPR10, LPR13] can translate to this setting without any loss.

(Tweaked) decoding basis. The work of [LPR13] defines a certain Z-basis ~bm = (bj) of R∨, called the
decoding basis. It is defined as the dual of the conjugated powerful basis ~pm = (pj) under the trace:

TrR/Z(bj · p−1
j′) = δj,j′

for all j, j′. The key geometric property of the decoding basis is, informally, that the Z-coefficients of any
e ∈ R∨ with respect to~bm are optimally small in relation to σ(x), the canonical embedding of e. In other
words, short elements like Gaussian errors have small decoding-basis coefficients.

With the above-described “tweak” that replaces R∨ by R, we get the Z-basis

~dm = (dj) := tm ·~bm ,

which we call the (tweaked) decoding basis of R. By definition, this basis is dual to the conjugated powerful
basis ~pm under the twace:

TwR/Z(dj · p−1
j′) = δj,j′ .

Because gm · tm = m̂, it follows that the coefficients of any e ∈ R with respect to ~dm are identical to those
of gm · e ∈ gmR = m̂R∨ with respect to the Z-basis gm · ~dm = m̂ ·~bm of gmR. Hence, they are optimally
small in relation to σ(gm · e).16

16This is why Invariant 3.1 of our fully homomorphic encryption scheme (Section 4) requires σ(e · gm) to be short, where e is the
error in the ciphertext.

44

Relative decoding basis. Generalizing the above, the relative decoding basis ~dm′,m of R′/R is dual to the
(conjugated) relative powerful basis ~pm′,m under TwR′/R. As such, ~dm′,m (and in particular, ~dm′ itself) has a
Kronecker-product structure mirroring that of ~pm′,m from Equations (C.1) and (C.3). Furthermore, by the
results of [LPR13, Section 6], for a positive power m of a prime p we have

~dtm,m/p =

{
~ptm,m/p · Lp if m = p

~ptm,m/p otherwise,
(C.5)

where Lp is the lower-triangular matrix with 1s throughout its lower triangle.

C.1.3 Chinese Remainder Bases

Let m be the index of cyclotomic ring R = Om, let q = 1 (mod m) be a prime integer, and consider the
quotient ring Rq = R/qR, i.e., the mth cyclotomic over base ring Zq. This ring has a Chinese remainder
(or CRT) Zq-basis ~c = ~cm ∈ Rϕ(m)

q , whose entries are indexed by Z∗m. The key property satisfied by this
basis is

ci · ci′ = δi,i′ · ci (C.6)

for all i, i′ ∈ Z∗m. Therefore, multiplication of ring elements represented in the CRT basis is coefficient-wise
(and hence linear time): for any coefficient vectors a,b ∈ Zϕ(m)

q , we have

(~ct · a) · (~ct · b) = ~ct · (a� b).

Also by Equation (C.6), the matrix corresponding to multiplication by ci (with respect to the CRT basis) has
one in the ith diagonal entry and zeros everywhere else, so the trace of every CRT basis element is unity:
TrR/Z(~c) = 1 (mod q). For completeness, in what follows we describe the explicit construction of the CRT
basis.

Arbitrary cyclotomics. For an arbitrary index m, the CRT basis is defined in terms of the prime-power
factorization m =

∏t
`=1m`. Recall that Rq = Zq[ζm1 , . . . , ζmt], and that the natural homomorphism

φ : Z∗m →
∏
` Z∗m`

is a group isomorphism. Using this, we can equivalently index the CRT basis by
∏
` Z∗m`

.
With this indexing, the CRT basis ~cm of Rq is the Kronecker product of the CRT bases ~cm`

of Zq[ζm`
]:

~cm =
⊗
`

~cm`
,

i.e., the φ(i)th entry of ~cm is the product of the φ(i)`th entry of ~cm`
, taken over all `. It is easy to verify that

Equation (C.6) holds for ~cm, because it does for all the ~cm`
.

Prime-power cyclotomics. Now let m be a positive power of a prime p, and let ωm ∈ Z∗q be an element of
order m (i.e., a primitive mth root of unity), which exists because Z∗q is a cyclic group of order q − 1, which
is divisible by m. We rely on two standard facts:

1. the Kummer-Dedekind Theorem, which implies that the ideal qR =
∏
i∈Z∗m qi factors into the product

of ϕ(m) distinct prime ideals qi = (ζm − ωim)R+ qR ⊂ R; and

2. the Chinese Remainder Theorem (CRT), which implies that the natural homomorphism from Rq to the
product ring

∏
i∈Z∗m R/qi is a ring isomorphism.

45

Using this isomorphism, the basis ~cm is defined so that its ith entry ci ∈ Rq satisfies ci = δi,i′ (mod qi′) for
all i, i′ ∈ Z∗m. Observe that this definition clearly satisfies Equation (C.6).

Like the powerful and decoding bases, for any extension R′q/Rq where R′ = Om′ , R = Om for powers
m|m′ of p, there is a relative CRT Rq-basis ~cm′,m of R′q, which has a Kronecker-product factorization
mirroring the one in Equation (C.1). The elements of this Rq-basis satisfy Equation (C.6), and hence their
traces into Rq are all unity. We defer a full treatment to Appendix C.4, where we consider a more general
setting (where possibly q 6= 1 (mod m)) and define and compute relative CRT sets.

C.2 Single-Index Transforms

In this and the next subsection we describe sparse decompositions for all the Tensor operations. We start
here with the dimension-preserving transforms involving a single index m, i.e., they take an index-m tensor
as input and produce one as output.

C.2.1 Prime-Power Factorization

For an arbitrary index m, every transform of interest factors into the tensor product of the corresponding
transforms for prime-power indices. More specifically, let Tm denote the matrix for any of the linear
transforms on index-m tensors that we consider below. Then letting m =

∏
`m` be the factorization of m

into its maximal prime-power divisors m` (in some canonical order), we have the factorization

Tm =
⊗
`

Tm`
. (C.7)

This follows directly from the Kronecker-product factorizations of the powerful, decoding, and CRT bases
(e.g., Equation (C.2)), and the mixed-product property. Therefore, for the remainder of this subsection we
only deal with prime-power indices m = pe for a prime p and positive integer e.

C.2.2 Embedding Scalars

Consider a scalar element a from the base ring, represented relative to the powerful basis ~pm. Because the
first element of ~pm is unity, we have

a = ~ptm · (a · e1),

where e1 = (1, 0, . . . , 0). Similarly, in the CRT basis ~cm (when it exists), unity has the all-ones coefficient
vector 1. Therefore,

a = ~ctm · (a · 1).

The Tensor methods scalarPow and scalarCRT use the above equations to represent a scalar from the
base ring as a coefficient vector relative to the powerful and CRT bases, respectively. Note that scalarCRT
itself is wrapped by Maybe, so that it can be defined as Nothing if there is no CRT basis over the base ring.

C.2.3 Converting Between Powerful and Decoding Bases

Let Lm denote the matrix of the linear transform that converts from the decoding basis to the powerful basis:

~dtm = ~ptm · Lm ,

46

i.e., a ring element with coefficient vector v in the decoding basis has coefficient vector Lm ·v in the powerful
basis. Because ~dm = ~pm,p ⊗ ~dp,1 and ~dtp,1 = ~ptp,1 · Lp (both by Equation (C.5)), we have

~dtm = (~ptm,p · Im/p)⊗ (~ptp · Lp)
= ~ptm · (Im/p ⊗ Lp)︸ ︷︷ ︸

Lm

.

Recall that Lp is the square ϕ(p)-dimensional lower-triangular matrix with 1s throughout its lower-left
triangle, and L−1

p is the lower-triangular matrix with 1s on the diagonal, −1s on the subdiagonal, and 0s
elsewhere. We can apply both Lp and L−1

p using just p− 1 additions, by taking partial sums and successive
differences, respectively.

The Tensor methods l and lInv represent multiplication by Lm and L−1
m , respectively.

C.2.4 Multiplication by gm

Let Gpow
m denote the matrix of the linear transform representing multiplication by gm in the powerful basis,

i.e.,
gm · ~ptm = ~ptm ·Gpow

m .

Because gm = gp ∈ Op and ~pm = ~pm,p ⊗ ~pp, we have

gm · ~pm = ~pm,p ⊗ (gp · ~pp)
= (~pm,p · Im/p)⊗ (~pp ·Gpow

p)

= ~pm · (Im/p ⊗Gpow
p)︸ ︷︷ ︸

G
pow
m

,

where Gpow
p and its inverse (which represents division by gp in the powerful basis) are the square (p− 1)-

dimensional matrices

Gpow
p =


1 1

−1
. . . 1
. . . 1

...
−1 1 1

−1 2

 , (Gpow
p)−1 = p−1 ·


p− 1 · · · −1 −1 −1

...
. . .

...
...

...
3 · · · 3 3− p 3− p
2 · · · 2 2 2− p
1 · · · 1 1 1

 .

Identical decompositions hold for Gdec
m and Gcrt

m (which represent multiplication by gm in the decoding
and CRT bases, respectively), where

Gdec
p =


2 1 · · · 1
−1 1

.
−1 1

−1 1

 , (Gdec
p)−1 = p−1 ·


1 2− p 3− p · · · −1
1 2 3− p · · · −1
1 2 3 · · · −1
...

...
...

. . .
...

1 2 3 · · · p− 1

 ,

and Gcrt
p is the diagonal matrix with 1− ωip in the ith diagonal entry (indexed from 1 to p− 1), where ωp is

the same primitive pth root of unity in the base ring used to define the CRT basis.

47

The linear transforms represented by the above matrices can be applied in time linear in the dimension.
For Gpow

p , Gdec
p , and Gcrt

p and its inverse this is obvious, due to their sparsity. For (Gdec
p)−1, this follows

from the fact that every row (apart from the top one) differs from the preceding one by a single entry. For
(G

pow
p)−1, we can compute the entries of the output vector from the bottom up, by computing the sum of all

the input entries and their partial sums from the bottom up.
The Tensor methods mulGPow and mulGDec represent multiplication by Gpow

m and Gdec
m , respectively.

Similarly, the methods divGPow and divGDec represent division by these matrices; note that their outputs are
wrapped by Maybe, so that the output can be Nothing when division fails. Finally, mulGCRT and divGCRT
represent multiplication and division by Gcrt

m ; note that these methods themselves are wrapped by Maybe,
because Gcrt

m and its inverse are well-defined over the base ring exactly when a CRT basis exists. (In this case,
division always succeeds, hence no Maybe is needed for the output of divGCRT.)

C.2.5 Chinese Remainder and Discrete Fourier Transforms

Consider a base ring, like Zq or C, that admits an invertible index-m Chinese Remainder Transform CRTm,
defined by a principal mth root of unity ωm. Then as shown in [LPR13, Section 3], this transform converts
from the powerful basis to the CRT basis (defined by the same ωm), i.e.,

~ptm = ~ctm · CRTm .

Also as shown in [LPR13, Section 3], CRTm admits the following sparse decompositions for m > p:17

CRTm = (DFTm/p ⊗ Ip−1) · T̂m · (Im/p ⊗ CRTp) (C.8)

DFTm = (DFTm/p ⊗ Ip) · Tm · (Im/p ⊗DFTp) . (C.9)

(These decompositions can be applied recursively until all the CRT and DFT terms have subscript p.) Here
DFTp is a square p-dimensional matrix with rows and columns indexed from zero, and CRTp is its lower-left
(p− 1)-dimensional square submatrix, with rows indexed from one and columns indexed from zero. The
(i, j)th entry of each matrix is ωijp , where ωp = ω

m/p
m . Finally, T̂m, Tm are diagonal “twiddle” matrices

whose diagonal entries are certain powers of ωm.
For the inverses CRT−1

m and DFT−1
m , by standard properties of matrix and Kronecker products, we have

sparse decompositions mirroring those in Equations (C.8) and (C.9). Note that DFTp is invertible if and
only if p is invertible in the base ring, and the same goes for CRTp, except that CRT2 (which is just unity)
is always invertible. More specifically, DFT−1

p = p−1 ·DFT∗p, the (scaled) conjugate transpose of DFTp,
whose (i, j)th entry is ω−ijp . For CRT−1

p , it can be verified that for p > 2,

CRT−1
p = p−1 ·

(
X − 1 · (ω1

p, ω
2
p, . . . , ω

p−1
p)t

)
,

where X is the upper-right (p− 1)-dimensional square submatrix of DFT∗p. Finally, note that in the sparse
decomposition for CRT−1

m (for aribtrary m), we can collect all the individual p−1 factors from the CRT−1
p

and DFT−1
p terms into a single m̂−1 factor. (This factor is exposed by the CRTrans interface; see Section 2.5.)

The Tensor methods crt and crtInv respectively represent multiplication by CRTm and its inverse.
These methods themselves are wrapped by Maybe, so that they can be Nothing when there is no CRT basis
over the base ring.

17In these decompositions, the order of arguments to the Kronecker products is swapped as compared with those appearing
in [LPR13]. This is due to our corresponding reversal of the factors in the Kronecker-product decompositions of the powerful
and CRT bases. The ordering here is more convenient for implementation, but note that it yields bases and twiddle factors in
“digit-reversed” order. In particular, the twiddle matrices T̂m, Tm here are permuted versions of the ones defined in [LPR13].

48

C.2.6 Generating (Tweaked) Gaussians in the Decoding Basis

Cryptographic applications often need to sample secret error terms from a prescribed distribution. For the
original definition of Ring-LWE involving the dual ideal R∨ (see Sections C.1.2 and 3.1), it is particularly
useful to use distributionsDr that correspond to (continuous) spherical Gaussians in the canonical embedding.
For sufficiently large r, these distributions are supported by worst-case hardness proofs [LPR10]. Note that
the error can be discretized in a variety of ways, with no loss in hardness.

With the “tweaked” perspective that replaces R∨ by R via the tweak factor tm ∈ R, we are interested in
sampling from tweaked distributions tm ·Dr. More precisely, we want a randomized algorithm that samples
a coefficient vector over R, with respect to one of the standard bases of R, of a random element that is
distributed as tm ·Dr. This is not entirely trivial because (except in the power-of-two case) R does not have
an orthogonal basis, so the output coefficients will not be independent.

The material in [LPR13, Section 6.3] yields a specialized, fast algorithm for sampling from Dr with
output represented in the decoding basis ~bm of R∨. Equivalently, the very same algorithm samples from
the tweaked Gaussian tm · Dr relative to the decoding basis ~dm = tm ·~bm of R. The algorithm is faster
(often much moreso) than the naı̈ve one that applies a full CRT∗m (over C) to a Gaussian in the canonical
embedding. The efficiency comes from skipping several layers of orthogonal transforms (namely, scaled
DFTs and twiddle matrices), which is possible due to the rotation-invariance of spherical Gaussians. The
algorithm also avoids complex numbers entirely, instead using only reals.

The algorithm. The sampling algorithm simply applies a certain linear transform over R, whose matrixEm
has a sparse decomposition as described below, to a vector of i.i.d. real Gaussian samples with parameter r,
and outputs the resulting vector. The Tensor method tGaussianDec implements the algorithm, given v = r2.
(Note that its output type rnd (t m q) for MonadRandom rnd is necessarily monadic, because the algorithm
is randomized.)

As with all the transforms considered above, we describe the sparse decomposition of Em where m is a
power of a prime p, which then generalizes to arbitrary m as described in Appendix C.2.1. For m > p, we
have

Em =
√
m/p · (Im/p ⊗ Ep),

where E2 is unity and Ep for p > 2 is

Ep = 1√
2
· CRT∗p ·

(
I −

√
−1J

J
√
−1I

)
∈ R(p−1)×(p−1) ,

where CRTp is over C, and J is the “reversal” matrix obtained by reversing the columns of the identity
matrix.18 Expanding the above product, Ep has rows indexed from zero and columns indexed from one, and
its (i, j)th entry is

√
2 ·

{
cos θi·j for 1 ≤ j < p/2

sin θi·j for p/2 < j ≤ p− 1
, θk = 2πk/p.

Finally, note that in the sampling algorithm, when applying Em for arbitrary m with prime-power
factorization m` =

∏
`m`, we can apply all the

√
m`/p` scaling factors (from the Em`

terms) to the
parameter r of the Gaussian input vector, i.e., use parameter r

√
m/ rad(m) instead.

18We remark that the signs of the rightmost block of the above matrix (containing −
√
−1J and

√
−1I) is swapped as compared

with what appears in [LPR13, Section 6.3]. The choice of sign is arbitrary, because any orthonormal basis of the subspace spanned
by the columns works equally well.

49

C.2.7 Gram Matrix of Decoding Basis

Certain cryptographic applications need to obtain the Euclidean norm, under the canonical embedding σ, of
cyclotomic ring elements (usually, error terms). Let~b denote any Q-basis of the ambient number field and
let τ denote conjugation, which maps any root of unity to its inverse. Then the squared norm of σ(e), where
e = ~bt · e for some rational coefficient vector e, is

‖σ(e)‖2 = 〈σ(e), σ(e)〉 = TrR/Z(e · τ(e)) = et · TrR/Z(~b · τ(~bt)) · e = 〈e, Ge〉 ,

where G = TrR/Z(~b · τ(~bt)) denotes the Gram matrix of the basis~b. So computing the squared norm mainly
involves multiplication by the Gram matrix.

As shown below, the Gram matrix of the decoding basis ~bm of R∨ has a particularly simple sparse
decomposition. Now, because the tweaked decoding basis ~dm = tm ·~bm of R satisfies gm · ~dm = m̂ ·~bm,
the same Gram matrix also yields ‖σ(gm · e)‖2 (up to a m̂2 scaling factor) from the coefficient tensor of e
with respect to ~dm. This is exactly what is needed when using tweaked Gaussian errors e ∈ R, because the
“untweaked” error gm ·e is short and (near-)spherical in the canonical embedding (see, e.g., Invariant 3.1). The
Tensor method gSqNormDec maps the coefficient tensor of e (with respect to ~dm) to m̂−1 · ‖σ(gm · e)‖2.19

Recall that~bm is defined as the dual, under TrR/Z, of the conjugate powerful basis τ(~pm). From this it
can be verified that

~bp = p−1 ·
(
ζjp − ζ−1

p

)
j=0,...,p−2

~bm,p = (m/p)−1 · ~pm,p .

Using the above, an elementary calculation shows that

p · Trp,1(~bp · τ(~bp)) = Ip−1 + 1

(m/p) · Trm,p(~bm,p · τ(~bm,p)) = Im/p ,

where 1 denotes the all-1s matrix. (Note that for p = 2, the Gram matrix of ~bp is just unity.) Combining
these, we have

m · TrR/Z(~bm · τ(~bm)t) = p · Trp,1((m/p) · Trm,p(~bm,p · τ(~btm,p))⊗ (~bp · τ(~btp)))

= Im/p ⊗ p · Trp,1(~bp ·~btp)
= Im/p ⊗ (Ip−1 + 1) .

C.3 Two-Index Transforms and Values

We now consider transforms and special values relating the mth and m′th cyclotomic rings, for m|m′. These
are used for computing the embed and twace functions, the relative powerful basis, and the relative CRT set.

C.3.1 Prime-Power Factorization

As in the Appendix C.2, every transform of interest for arbitrary m|m′ factors into the tensor product of
the corresponding transforms for prime-power indices having the same prime base. More specifically, let

19The m̂−1 factor compensates for the implicit scaling between~bm and gm · ~dm, and is the smallest such factor that guarantees an
integer output when the input coefficients are integral.

50

Tm,m′ denote the matrix of any of the linear transforms we consider below. Suppose we have factorization
m =

∏
`m`, m′ =

∏
`m
′
` where each m`,m

′
` is a power of a distinct prime p` (so some m` may be 1).

Then we have the factorization
Tm,m′ =

⊗
`

Tm`,m
′
`
,

which follows directly from the Kronecker-product factorizations of the powerful and decoding bases, and the
mixed-product property. Therefore, from this point onward we deal only with prime-power indices m = pe,
m′ = pe

′
for a prime p and integers e′ > e ≥ 0.

We mention that for the transforms we consider below, the fully expanded matrices Tm,m′ have very
compact representations and can be applied directly to the input vector, without computing a sequence of
intermediate vectors via the sparse decomposition. For efficiency, our implementation does exactly this.

C.3.2 Coefficients in Relative Bases

We start with transforms that let us represent elements with respect to relative bases, i.e., to represent an
element of the m′th cyclotomic as a vector of elements in the mth cyclotomic, with respect to a relative basis.
Due to the Kronecker-product structure of the powerful, decoding, and CRT bases, it turns out that the same
transformation works for all of them. The coeffs method of Tensor implements this transformation.

One can verify the identity (~x⊗ ~y)t · a = ~xt ·A · ~y, where A is the “matricization” of the vector a, whose
rows are (the transposes of) the consecutive dim(~y)-dimensional blocks of a. Letting~b` denote either the
powerful, decoding, or CRT basis in the `th cyclotomic, which has factorization~bm′ = ~bm′,m ⊗~bm, we have

~btm′ · a = ~btm′,m · (A ·~bm).

Therefore, A ·~bm is the desired vector of R-coefficients of a = ~btm′ · a ∈ R′. In other words, the ϕ(m)-
dimensional blocks of a are the coefficient vectors (with respect to basis~bm) of the R-coefficients of a with
respect to the relative basis~bm′,m.

C.3.3 Embed Transforms

We now consider transforms that convert from a basis in the mth cyclotomic to the same type of basis in the
m′th cyclotomic. That is, for particular bases~bm′ ,~bm of the m′th and mth cyclotomics (respectively), we
write

~btm = ~btm′ · T

for some integer matrix T . So embedding a ring element from the mth to the m′th cyclotomic (with
respect to these bases) corresponds to left-multiplication by T . The embedB methods of Tensor, for B ∈
{Pow, Dec, CRT}, implement these transforms.

We start with the powerful basis. Because ~pm′ = ~pm′,m ⊗ ~pm and the first entry of ~pm′,m is unity,

~ptm = (~ptm′,m · e1)⊗ (~ptm · Iϕ(m))

= ~ptm′ · (e1 ⊗ Iϕ(m)) ,

where e1 = (1, 0, . . . , 0) ∈ Zϕ(m′)/ϕ(m). Note that (e1 ⊗ Iϕ(m)) is the identity matrix stacked on top of an
all-zeros matrix, so left-multiplication by it simply pads the input vector by zeros.

51

For the decoding bases ~dm′ , ~dm, an identical derivation holds when m > 1, because ~dm′ = ~pm′,m ⊗ ~dm.
Otherwise, we have ~dm′ = ~pm′,p ⊗ ~dp and ~dtm = (1) = ~dtp · v, where v = (1,−1, 0, . . . , 0) ∈ Zϕ(p).
Combining these cases, we have

~dtm = ~dtm′ ·

{
e1 ⊗ Iϕ(m) if m > 1

e1 ⊗ v if m = 1.

For the CRT bases ~cm′ , ~cm, because ~cm = ~cm′,m ⊗ ~cm and the sum of the elements of any (relative) CRT
basis is unity, we have

~ctm = (~ctm′,m · 1)⊗ (~ctm · Iϕ(m))

= ~ctm′ · (1⊗ Iϕ(m)) .

Notice that (1⊗ Iϕ(m)) is just a stack of identity matrices, so left-multiplication by it just stacks up several
copies of the input vector.

Finally, we express the relative powerful basis ~pm′,m with respect to the powerful basis ~pm′ ; this is used
in the powBasisPow method of Tensor. We simply have

~ptm′,m = (~ptm′,m · Iϕ(m′)/ϕ(m))⊗ (~pm · e1)

= ~ptm′ · (Iϕ(m′)/ϕ(m) ⊗ e1) .

C.3.4 Twace Transforms

We now consider transforms that represent the twace function from the m′th to the mth cyclotomic for
the three basis types of interest. That is, for particular bases ~bm′ ,~bm of the m′th and mth cyclotomics
(respectively), we write

Twm′,m(~btm′) = ~btm · T

for some integer matrix T , which by linearity of twace implies

Twm′,m(~btm′ · v) = ~btm · (T · v).

In other words, the twace function (relative to the these bases) corresponds to left-multiplication by T . The
twacePowDec and twaceCRT methods of Tensor implement these transforms.

To start, we claim that

Twm′,m(~pm′,m) = Twm′,m(~dm′,m) = e1 ∈ Zϕ(m′)/ϕ(m). (C.10)

This holds for ~dm′,m because it is dual to (conjugated) ~pm′,m under Twm′,m, and the first entry of ~pm′,m is
unity. It holds for ~pm′,m because ~pm′,m = ~dm′,m for m > 1, and for m = 1 one can verify that

Twm′,1(~pm′,1) = Twp,1(Twm′,p(~pm′,p)⊗ ~pp,1) = (1, 0, . . . , 0)⊗ Twp,1(~pp,1) = e1.

Now for the powerful basis, by linearity of twace and Equation (C.10) we have

Twm′,m(~ptm′) = Twm′,m(~ptm′,m)⊗ ~ptm
= (1 · et1)⊗ (~ptm · Iϕ(m))

= ~ptm · (et1 ⊗ Iϕ(m)) .

52

An identical derivation holds for the decoding basis as well. Notice that left-multiplication by the matrix
(et1 ⊗ Iϕ(m)) just returns the first ϕ(m′)/ϕ(m) entries of the input vector.

Finally, we consider the CRT basis. Because gm′ = gp (recall that m′ ≥ p), by definition of twace in
terms of trace we have

Twm′,m(x) = (m̂/m̂′) · g−1
m · Trm′,m(gp · x). (C.11)

Also recall that the traces of all relative CRT set elements are unity: Trm′,`(~cm′,`) = 1ϕ(m′)/ϕ(`) for any `|m′.
We now need to consider two cases. For m > 1, we have gm = gp, so by Equation (C.11) and linearity of
trace,

Twm′,m(~cm′,m) = (m̂/m̂′) · 1ϕ(m′)/ϕ(m) .

For m = 1, we have gm = 1, so by ~cm′,1 = ~cm′,p ⊗ ~cp,1 and linearity of trace we have

Twm′,1(~cm′,1) = (m̂/m̂′) · Trp,1
(
Trm′,p(~cm′,p)⊗ (gp · ~cp,1)

)
= (m̂/m̂′) · 1ϕ(m′)/ϕ(p) ⊗ Trp,1(gp · ~cp,1) .

Applying the two cases, we finally have

Twm′,m(~ctm′) = (1 · Twm′,m(~ctm′,m))⊗ (~ctm · Iϕ(m))

= ~ctm · (m̂/m̂′) ·

{
1tϕ(m′)/ϕ(m) ⊗ Iϕ(m) if m > 1

1tϕ(m′)/ϕ(p) ⊗ Trp,1(gp · ~ctp,1) if m = 1.

Again because Trp,1(~cp,1) = 1ϕ(p), the entries of Trp,1(gp · ~cp,1) are merely the CRT coefficients of gp. That

is, the ith entry (indexed from one) is 1− ωip, where ωp = ω
m′/p
m′ for the value of ωm′ used to define the CRT

set of the m′th cyclotomic.

C.4 CRT Sets

In this final subsection we describe an algorithm for computing a representation of the relative CRT set ~cm′,m
modulo a prime-power integer. CRT sets are a generalization of CRT bases to the case where the prime
modulus may not be 1 modulo the cyclotomic index (i.e., it does not split completely), and therefore the
cardinality of the set may be less than the dimension of the ring. CRT sets are used for homomorphic SIMD
operations [SV11] and in the bootstrapping algorithm of [AP13].

C.4.1 Mathematical Background

For a positive integer q and cyclotomic ring R, let qR =
∏
i q
ei
i be the factorization of qR into powers of

distinct prime ideals qi ⊂ R. Recall that the Chinese Remainder Theorem says that the natural homomorphism
from Rq = R/qR to the product ring

∏
i(R/q

ei
i) is a ring isomorphism.

Definition C.1. The CRT set of Rq is the vector ~c over Rq such that ci = δi,i′ (mod q
ei′
i′) for all i, i′.

For a prime integer p, the prime-ideal factorization of pR is as follows. For the moment assume that
p - m, and let d be the order of p modulo m, i.e., the smallest positive integer such that pd = 1 (mod m).
Then pR factors into the product of ϕ(m)/d distinct prime ideals pi, as described below:

pR =
∏
i

pi .

53

Observe that the finite field Fpd has a principal mth root of unity ωm, because F∗
pd

is cyclic and has order
pd − 1 = 0 (mod m). Therefore, there are ϕ(m) distinct ring homomorphisms ρi : R → Fpd indexed by
i ∈ Z∗m, where ρi is defined by mapping ζm to ωim.

The prime ideal divisors of pR are indexed by the quotient group G = Z∗m/〈p〉, i.e., the multiplicative
group of cosets i〈p〉 of the subgroup 〈p〉 = {1, p, p2, . . . , pd−1} of Z∗m. For each coset i = ı̄〈p〉 ∈ G, the
ideal pi is simply the kernel of the ring homomorphism ρı̄, for some arbitrary choice of representative ı̄ ∈ i.
It is easy to verify that this is an ideal, and that it is invariant under the choice of representative, because
ρı̄p(r) = ρı̄(r)

p for any r ∈ R. (This follows from (a+ b)p = ap + bp for any a, b ∈ Fpd .)
Because pi is the kernel of ρı̄, the induced ring homomorphisms ρı̄ : R/pi → Fpd are in fact isomorphisms.

In combination with the Chinese Remainder Theorem, their concatenation yields a ring isomorphism
ρ : Rp → (Fpd)ϕ(m)/d. In particular, for the CRT set ~c of Rp, for any z ∈ Rp we have

TrRp/Zp
(z · ~c) = TrF

pd
/Fp

(ρ(z)). (C.12)

Finally, consider the general case where p may divide m. It turns out that this case easily reduces to the
one where p does not divide m, as follows. Let m = pk · m̄ for p - m̄, and let R̄ = Om̄ and pR̄ =

∏
i p̄i be

the prime-ideal factorization of pR̄ as described above. Then the ideals p̄i ⊂ R̄ are totally ramified in R, i.e.,
we have p̄iR = p

ϕ(m)/ϕ(m̄)
i for some distinct prime ideals pi ⊂ R. This implies that the CRT set for Rp is

exactly the CRT set for R̄p, embedded into Rp. Therefore, in what follows we restrict our attention to the
case where p does not divide m.

C.4.2 Computing CRT Sets

We start with an easy calculation that, for a prime integer p, “lifts” the mod-p CRT set to the mod-pe CRT set.

Lemma C.2. For R = Om, a prime integer p where p - m, and a positive integer e, let (ci)i be the CRT set
of Rpe , and let c̄i ∈ R be any representative of ci. Then (c̄pi mod pe+1R)i is the CRT set of Rpe+1 .

Corollary C.3. If c̄i ∈ R are representatives for the mod-p CRT set (ci)i of Rp, then (c̄p
e−1

i mod peR)i is
the CRT set of Rpe .

Proof of Lemma C.2. Let pR =
∏
i pi be the factorization of pR into distinct prime ideals pi ⊂ R. By

hypothesis, we have c̄i ∈ δi,i′ + pei′ for all i, i′. Then

c̄pi ∈ δi,i′ + p · pei′ + pepi′ ⊆ δi,i′ + pe+1
i′ ,

because p divides the binomial coefficient
(
p
k

)
for 0 < k < p, because pR ⊆ pi′ , and because pepi′ ⊆ pe+1

i′ .

CRT sets modulo a prime. We now describe the mod-p CRT set for a prime integer p, and an efficient
algorithm for computing representations of its elements. To motivate the approach, notice that the coefficient
vector of x ∈ Rp with respect to some arbitrary Zp-basis~b of Rp can be obtained via the twace and the dual
Zp-basis~b∨ (under the twace):

x = ~bt · TwRp/Zp
(x ·~b∨).

In what follows we let~b be the decoding basis, because its dual basis is the conjugated powerful basis, which
has a particularly simple form. The following lemma is a direct consequence of Equation (C.12) and the
definition of twace (Equation (C.4)).

54

Lemma C.4. For R = Om and a prime integer p - m, let ~c = (ci) be the CRT set of Rp, let ~d = ~dm denote
the decoding Zp-basis of Rp, and let τ(~p) = (p−1

j) denote its dual, the conjugate powerful basis. Then

~ct = ~dt · TwRp/Zp
(τ(~p) · ~ct) = ~dt · m̂−1 · TrF

pd
/Fp

(C),

where C is the matrix over Fqd whose (j, ı̄)th element is ρı̄(gm) · ρı̄(p−1
j).

Notice that ρı̄(p−1
j) is merely the inverse of the (̄ı, j)th entry of the matrix CRTm over Fpd , which is the

Kronecker product of CRTm`
over all maximal prime-power divisors of m. In turn, the entries of CRTm`

are
all just appropriate powers of ωm`

∈ Fpd . Similarly, ρı̄(gm) is the product of all ρı̄ mod m`
(gm`

) = 1− ωı̄m`
.

So we can straightforwardly compute the entries of the matrix C and takes their traces into Fp, yielding the
decoding-basis coefficient vectors for the CRT set elements.

Relative CRT sets. We conclude by describing the relative CRT set ~cm′,m modulo a prime p, where
R = Om, R′ = Om′ for m|m′ and p - m′. The key property of ~cm′,m is that the CRT sets ~cm′ ,~cm for Rp, R′p
(respectively) satisfy the Kronecker-product factorization

~cm′ = ~cm′,m ⊗ ~cm . (C.13)

The definition of ~cm′,m arises from the splitting of the prime ideal divisors pi (of pR) in R′, as described next.
Recall from above that the prime ideal divisors p′i′ ⊂ R′ of pR′ and the CRT set ~cm′ = (c′i′) are indexed

by i′ ∈ G′ = Z∗m′/〈p〉, and similarly for pi ⊂ R and ~cm = (ci). For each i ∈ G = Z∗m/〈p〉, the ideal piR′

factors as the product of those p′i′ such that i′ = i (mod m), i.e., those i′ ∈ φ−1(i) where φ : G′ → G is the
natural mod-m homomorphism. Therefore,

ci =
∑

i′∈φ−1(i)

c′i′ . (C.14)

To define ~cm′,m, we partition G′ into a collection I ′ of |G′|/|G| equal-sized subsets I ′, such that φ(I ′) =
G for every I ′ ∈ I ′. In other words, φ is a bijection between each I ′ and G. This induces a bijection
ψ : G′ → I ′ × G, where the projection of ψ onto its second component is φ. We index the relative CRT
set ~cm′,m = (cI′) by I ′ ∈ I ′, defining

cI′ :=
∑
i′∈I′

c′i′ .

By Equation (C.14) and the fact that (c′i′) is the CRT set of R′p, it can be verified that ci′ = cI′ · ci for
ψ(i′) = (I ′, i), thus confirming Equation (C.13).

D Tensor Product of Rings

Here we restate and prove Lemma 4.1, using the concept of a tensor product of rings.
Let R,S be arbitrary rings with common subring E ⊆ R,S. The ring tensor product of R and S over

E, denoted R ⊗E S, is the set of E-linear combinations of pure tensors r ⊗ s for r ∈ R, s ∈ S, with ring
operations defined by E-bilinearity, i.e.,

(r1 ⊗ s) + (r2 ⊗ s) = (r1 + r2)⊗ s
(r ⊗ s1) + (r ⊗ s2) = r ⊗ (s1 + s2)

e(r ⊗ s) = (er)⊗ s = r ⊗ (es)

55

for any e ∈ E, and the mixed-product property

(r1 ⊗ s1) · (r2 ⊗ s2) = (r1r2)⊗ (s1s2).

We need the following facts about tensor products of cyclotomic rings. Let R = Om1 and S = Om2 .
Their largest common subring and smallest common extension ring (called the compositum) are, respectively,

E = Om1 ∩ Om2 = Ogcd(m1,m2)

T = Om1 +Om2 = Olcm(m1,m2).

Moreover, the ring tensor product R⊗E S is isomorphic to T , via the E-linear map defined by sending r⊗ s
to r · s ∈ T . In particular, for coprime m1,m2, we have Om1 ⊗Z Om2

∼= Om1m2 .
Now let E′, R′, S′ with E′ ⊆ R′ ∩ S′ respectively be cyclotomic extensions of E,R, S. As part of ring

tunneling we need to extend an E-linear function L : R → S to an E′-linear function L′ : R′ → S′ that
agrees with L on R, i.e., L′(r) = L(r) for every x ∈ R. The following lemma gives sufficient conditions for
when and how this is possible.

Lemma D.1. Adopt the above notation, and suppose E = R∩E′ and R′ = R+E′ (so that R′ ∼= R⊗E E′),
and (S + E′) ⊆ S′. Then:

1. The relative decoding bases of R/E and of R′/E′ are identical.

2. For any E-linear function L : R → S, the E-linear function L′ : R′ → S′ defined by L′(r ⊗ e′) :=
L(r) · e′ is E′-linear and agrees with L on R.

Proof. First observe that L′ is indeed well-defined and is E-linear, by definition of the ring operations of
R′ ∼= R⊗EE′. Now observe that L′ is in fact E′-linear: any e′ ∈ E′ embeds into R′ as 1⊗e′, so E′-linearity
follows directly from the definition of L′ and the mixed-product property. Also, any r ∈ R embeds into R′ as
r ⊗ 1, and L′(r ⊗ 1) = L(r) · 1, so L′ agrees with L on R.

Finally, observe that because R′ ∼= R⊗E E′, the index of E is the gcd of the indices of R,E′, and the
index of R′ is their lcm. Then by the Kronecker-product factorization of decoding bases, the relative decoding
bases of R/E and of R′/E′ are the Kronecker products of the exact same components, in the same order.
(This can be seen by considering each prime divisor of the index of R′ in turn.)

E Evaluation

Recall that Λ◦λ primarily aims to be a general, modular, and safe framework for lattice cryptography, while
also achieving acceptable performance. While Λ◦λ’s modularity and static safety properties are described
in the other sections of the paper, here we evaluate two of its lower-level characteristics: code quality and
runtime performance.

For comparison, we also give a similar analysis for HElib [HS], which is Λ◦λ’s closest analogue in terms
of scope and features. (Recall that HElib is a leading implementation of fully homomorphic encryption.)
We emphasize two main caveats regarding such a comparison: first, while Λ◦λ and HElib support many
common operations and features, they are not functionally equivalent—e.g., Λ◦λ supports ring-switching,
error sampling, and certain gadget operations that HElib lacks, while HElib supports ring automorphisms
and sophisticated plaintext “shuffling” operations that Λ◦λ lacks. Second, Λ◦λ’s host language (Haskell)
is somewhat higher-level than HElib’s (C++), so any comparisons of code quality or performance will
necessarily be “apples to oranges.” Nevertheless, we believe that such a comparison is still meaningful and
informative, as it quantifies the relative trade-offs of the two approaches in terms of software engineering
values like simplicity, maintainability, and performance.

56

Summary. Our analysis shows that Λ ◦λ offers high code quality, with respect to both the size and
complexity. In particular, Λ◦λ’s code base is about 7–8 times smaller than HElib’s. Also, Λ◦λ currently offers
good performance, always within an order of magnitude of HElib’s, and we expect that it can substantially
improve with focused optimization. Notably, Λ◦λ’s C++ backend is already faster than HElib in Chinese
Remainder Transforms for non-power-of-two cyclotomic indices with small prime divisors, due to the use of
better algorithms associated with the “tensored” representations. For example, a CRT for index m = 2633 (of
dimension n = 576) takes about 99 µs in Λ◦λ, and 153 µs in HElib on our benchmark machine (and the
performance gap grows when more primes are included).

E.1 Source Code Analysis

We analyzed the source code of all “core” functions from Λ◦λ and HElib, and calculated a few metrics that
are indicative of code quality and complexity: actual lines of code, number of functions, and cyclotomatic
complexity [McC76]. “Core” functions are any that are called (directly or indirectly) by the libraries’ intended
public interfaces. These include, e.g., algebraic, number-theoretic, and cryptographic operations, but not unit
tests, benchmarks, etc. Note that HElib relies on NTL [Sho06] for the bulk of its algebraic operations (e.g.,
cyclotomic and finite-field arithmetic), so to give a fair comparison we include only the relevant portions of
NTL with HElib, referring to their combination as HElib+NTL. Similarly, Λ◦λ includes a Tensor backend
written in C++ (along with a pure Haskell one), which we identify separately in our analysis.

E.1.1 Source Lines of Code

A very basic metric of code complexity is program size as measured by source lines of code (SLOC). We
measured SLOC for Λ◦λ and HElib+NTL using Ohcount [Bla14] for Haskell code and metriculator [KW11]
for C/C++ code. Metriculator measures logical source lines of code, which approximates the number of
“executable statements.” By contrast, Ohcount counts physical lines of code. Both metrics exclude comments
and empty lines, so they do not penalize for documentation or extra whitespace. While the two metrics are
not identical, they provide a rough comparison between Haskell and C/C++ code.

Figure 4 shows the SLOC counts for Λ◦λ and HElib+NTL. Overall, Λ◦λ consists of only about 5,000
lines of code, or 4,200 if we omit the C++ portion (whose functionality is redundant with the Haskell code).
By contrast, HElib+NTL consists of about 7–8 times as much code.

Codebase SLOC Total

Λ◦λ
Haskell C++

4,257 734 4,991

HElib+NTL
HElib NTL

14,709 20,073 34,782

Figure 4: Source lines of code for Λ◦λ and HElib+NTL.

57

E.1.2 Cyclomatic Complexity and Function Count

McCabe’s cyclomatic complexity (CC) [McC76] counts the number of “linearly independent” execution paths
through a piece of code (usually, a single function), using the control-flow graph. The theory behind this
metric is that smaller cyclomatic complexity typically corresponds to simpler code that is easier to understand
and test thoroughly. McCabe suggests limiting the CC of functions to ten or less.

Results. Figure 5 gives a summary of cyclomatic complexities in Λ◦λ and HElib+NTL. A more detailed
breakdown is provided in Figure 6. In both codebases, more than 80 % of the functions have a cyclomatic
complexity of 1, corresponding to straight-line code having no control-flow statements; these are omitted
from Figure 6.

Codebase A B C Total

Λ◦λ 1,234 14 5 1,253
HElib+NTL 6,850 159 69 7,078

Figure 5: Number of functions per argon grade: cyclomatic complexities of 1–5 earn an ‘A,’ 6–10 a ‘B,’ and
11 or more a ‘C.’

Only three Haskell functions and two C++ functions in Λ◦λ received a grade of ‘C.’ The Haskell functions
are: adding Cyc elements (CC=23); multiplying Cyc elements (CC=14); and comparing binary representations
of positive integers, for promotion to the type level (CC=13). In each of these, the complexity is simply due
to the many combinations of cases for the representations of the inputs (see Section 3.3.2). The two C++
functions are the inner loops of the CRT and DFT transforms, with CC 16 and 18, respectively. This is due
to a case statement that chooses the appropriate unrolled code for a particular dimension, which we do for
performance reasons.

For comparison, HElib+NTL has many more functions than Λ◦λ (see Figure 5), and those functions tend
to be more complex, with 68 functions earning a grade of ‘C’ (i.e., CC more than 10).

E.2 Performance

Here we report on the runtime performance of Λ◦λ. As a general-purpose library, we do not expect it
to be competitive with highly optimized (but inflexible) C implementations like SWIFFT [LMPR08] and
BLISS [DDLL13], but we aim for performance in the same league as higher-level libraries like HElib.

Here we give microbenchmark data for various common operations and parameter sets, to show that
performance is reasonable and to establish a baseline for future work. All benchmarks were run by the
standard Haskell benchmarking tool criterion [O’S14] on a mid-2012 model Asus N56V laptop with 2.3GHz
Core i7-3610QM CPU and 6 GB 1600MHz DDR3 RAM, using GHC 8.0.1. All moduli in our benchmarks
are smaller than 32 bits, so that all mod-q arithmetic can be performed naı̈vely in 64-bit registers.

We benchmarked the two Tensor backends currently included in Λ◦λ: the “CT” backend is sequential and
written in relatively unoptimized C++. The “RT” backend uses the Repa array library [KCL+10, LCKJ12].
For operations that Λ◦λ and HElib have in common, we also include HElib benchmarks.

Most of our optimization efforts have been devoted to the CT backend, which partially explains the
poor performance of the Repa backend; we believe that similarly tuning RT could speed up benchmarks
considerably. However, RT performance is currently limited by the architecture of our tensor DSL, which
is blocking many compiler optimizations. Specifically, the higher-rank types that make the DSL work for

58

2 3 4 5 6 7 8 9 10 11 12 13 14+
0

100

200

300

400

137

32 28
19

5 3 4 2 0 0 0 1 5

Cyclomatic Complexity

N
um

be
ro

ff
un

ct
io

ns
385

147

100

65 58
42

22 22 15 9 8 10

41

Cyclomatic Complexity

N
um

be
ro

ff
un

ct
io

ns
Λ◦λ: Haskell
Λ◦λ: C++
HElib
NTL

Figure 6: Cyclomatic complexity (CC) of functions in Λ◦λ and HElib+NTL. The case CC=1 accounts for
more than 80% of the functions in each codebase, and is suppressed.

arbitrary cyclotomic indices also make specialization, inlining, and fusion opportunities much more difficult
for the compiler to discover. Addressing this issue to obtain a fast and general pure-Haskell implementation
is an important problem for future work.

E.2.1 Cyclotomic Ring Operations

Figure 7, Figure 8, and Figure 9 show runtimes for the main cyclotomic ring operations. We compare Λ◦λ’s
C++ (CT) and Repa (RT) Tensor backends, and HElib whenever it supports analogous functionality. For CT
and RT, operations scale approximately linearly in the number of moduli in the RNS representation, so all the
runtimes are shown for a single modulus. For a cyclotomic ring Om, we consider only “good” prime moduli
q = 1 mod m, so that the CRT exists over Zq. Benchmarks are reported for the UCyc interface; times for
analogous operations in the Cyc interface are essentially identical, except where noted. All times are reported
in microseconds (µs).

59

Index m ϕ(m) UCyc P→C UCyc C→P UCyc D→P UCyc P→D

HElib CT RT HElib CT RT CT RT CT RT

210 = 1,024 512 15.9 139 2,344 38.3 142 2,623 0.7 0.02 0.7 0.02
211 = 2,048 1,024 32.4 307 5,211 74.4 314 5,618 1.3 0.02 1.2 0.02

2633 = 1,728 576 153 99 3,088 361 122 3,284 4.0 80.3 4.0 64.2
2634 = 5,184 1,728 638 364 10,400 1,136 426 11,030 11.8 226 11.7 186

263252 = 14,400 3,840 2,756 1,011 24,330 5,659 1,258 25,170 65.8 1,199 61.5 938

Figure 7: Runtimes (in microseconds) for conversion between the powerful (P) and CRT (C) bases, and
between the decoding (D) and powerful bases (P). For comparison with our P↔C conversions, we include
HElib’s conversions between its “polynomial” and “Double CRT” (with one modulus) representations. Note
that HElib is primarily used with many (small) moduli, where the conversion from Double CRT to polynomial
representation is closer in speed to the other direction.

Index m (*) for UCyc C (*g) for UCyc P (*g) for UCyc C (/g) for UCyc P (/g) for UCyc D lift UCyc P

HElib CT RT CT RT CT RT CT RT CT RT CT RT

1,024 1.8 7.8 73.0 0.7 0.02 5.4 72.0 5.9 56.8 5.9 56.7 1.0 39.8
2,048 4.4 15.6 142 1.2 0.02 11.4 140 11.6 110 11.6 108 2.0 77.0
1,728 2.6 9.3 82.1 10.5 107 6.1 84.0 52.6 390 33.4 385 1.2 45.8
5,184 6.2 26.3 248 30.4 333 18.1 245 155 1,148 102 1,115 3.4 128

14,400 11.6 58.9 589 134 1,515 39.6 575 663 4,679 400 5,283 13.3 297

Figure 8: Runtimes (in microseconds) for multiplication by g in the powerful (P) and CRT (C) bases, division
by g in the powerful and decoding (D) bases, lifting from Rq to R in the powerful basis, and multiplication of
ring elements in the CRT basis. (Multiplication by g in the decoding and powerful bases takes about the same
amount of time, and multiplication and division by g in the CRT basis take about the same amount of time.)

60

m m′ twace UCyc P twace UCyc C embed UCyc P embed UCyc D embed UCyc C

CT RT CT RT CT RT CT RT CT RT

728 2,912 0.7 25.9 22.7 305 3.8 57.2 4.9 58.3 38.7 92.9
728 3,640 0.7 27.1 22.9 258 3.8 56.8 8.5 83.6 39.6 95.5
128 11,648 0.2 7.0 92.5 967 10.8 164 19.7 189 166 393

Figure 9: Runtimes (in microseconds) of twace and embed for UCyc. (For both CT and RT, twace UCyc D
has essentially the same performance as twace UCyc P.) Due to an unresolved compiler issue, embed (in any
basis) with the Cyc interface is considerably slower than the analagous UCyc operation benchmarked here.

E.2.2 SHE Scheme

Figure 10 and Figure 11 show runtimes for certain main operations of the SHE scheme described in Section 4.
All times are reported in milliseconds (ms). We stress that unlike for our cyclotomic operations above,
we have not yet designed appropriate “hints” to assist the compiler’s optimizations, and we expect that
performance can be significantly improved by such an effort.

m′ ϕ(m′) encrypt decrypt ciphertext (*) addPublic mulPublic

CT RT CT RT CT RT CT RT CT RT

2,048 1,024 371 392 2.3 20.5 1.4 2.9 1.3 10.1 1.4 3.1

14,400 3,840 1,395 1,454 12.8 81.6 13.8 18.1 6.5 35.0 4.6 7.0

Figure 10: Runtimes (in milliseconds) for encrypt, decrypt, ciphertext multiplication, addPublic, and
mulPublic. All ciphertext operations were performed on freshly encrypted values. The plaintext index
for both parameter sets is m = 16. For encrypt, the bottleneck is in Gaussian sampling and randomness
generation, which was done using the HashDRBG pseudorandom generator with SHA512.

m′ ϕ(m′) rescaleCT keySwitch

CT RT CT RT

2,048 1,024 2.3 17.9 7.4 53.4

14,400 3,840 15.2 65.2 37.0 308

Figure 11: Runtimes (in milliseconds) for rescaleCT and keySwitch (relinearization) from a quadratic
ciphertext, with a circular hint. The rescaleCT benchmark scales from (the product of) two moduli to one.
The keySwitch benchmark uses a single ciphertext modulus and a hint with two moduli, and a two-element
gadget for decomposition (Section 2.4).

61

E.2.3 Ring Tunneling

In the ring-tunneling algorithm (Section 4.6), we convert a ciphertext in a cyclotomic ring R′ to one in a
different cyclotomic ring S′ which has the side effect of evaluating a desired E-linear function, where E =
R ∩ S is the intersection of the corresponding plaintext rings. The performance of this algorithm depends on
the dimension dim(R′/E′) because the procedure performs dim(R′/E′) key switches. Since ring switching
can only apply an E-linear function on the plaintexts, there is a tradeoff between performance and the class of
functions that can be evaluated during ring switching. In particular, when dim(R′/E′) = dim(R/E) is small,
ring switching is fast but the plaintext function is highly restricted because E is large. When dim(R′/E′) is
large, we can apply a wider class of functions to the plaintexts, at the cost of many more (expensive) key
switches. Indeed, in many applications it is convenient to switch between rings with a small common subring,
e.g. E = O1.

As shown in [AP13], we can get both performance and a wide class of linear functions by performing a
sequence of switches through adjacent hybrid rings, where the intersection between adjacent hybrid rings is
large. Figure 12 gives a sequence of hybrid rings from R = H0 = O128 to S = H5 = O4,095. It also gives
the corresponding ciphertext superring, which needs to be larger than small plaintext rings for security. Such
a sequence of hybrid rings could be used for bootstrapping ([AP13]) or for the homomorphic evaluation of
the PRF in [BP14].

O128

R = H0

R′ = H ′0
O128·7·13

O64·7
H1

H ′1
O64·7·13

O32·7·13

H2

H ′2
O32·7·13

O8·5·7·13

H3

H ′3
O8·5·7·13

O4·3·5·7·13

H4

H ′4
O4·3·5·7·13

O9·5·7·13

H5 = S

H ′5 = S′

O9·5·7·13

Figure 12: A real-world example of hybrid plaintext/ciphertext rings that could be used to efficiently tunnel
from R = O128 to S = O4,095.

Figure 13 includes timing data for each ring tunnel in Figure 12, using only good moduli as above. As
with other operations, ring tunneling scales linearly in the number of moduli, so the numbers below are
reported for a single modulus.

Tunnel CT RT

H0 → H1 46.4 185
H1 → H2 32.3 127
H2 → H3 50.0 128
H3 → H4 32.9 84.2
H4 → H5 33.2 96.4

Figure 13: Runtimes (in milliseconds) for ring tunneling, using one ciphertext modulus and TrivGad for
constructing key-switch hints.

62

F Haskell Background

In this section we give a brief primer on the basic syntax, concepts, and features of Haskell needed to
understand the material in the rest of the paper. For further details, see the excellent tutorial [Lip11].

F.1 Types

Every well-formed Haskell expression has a particular type, which is known statically (i.e., at compile time).
An expression’s type can be explicitly specified by a type signature using the :: symbol, e.g., 3 :: Integer
or True :: Bool. However, such low-level type annotations are usually not necessary, because Haskell has
very powerful type inference, which can automatically determine the types of arbitrarily complex expressions
(or declare that they are ill-typed).

Every function, being a legal expression, has a type, which is written by separating the types of the
input(s) and the output with the arrow -> symbol, e.g., xor :: Bool -> Bool -> Bool. Functions can be
either fully or only partially applied to arguments having the appropriate types, e.g., we have the expressions
xor False False :: Bool and xor True :: Bool -> Bool, but not the ill-typed xor 3. Partial applica-
tion works because -> is right-associative, so the “true” type of xor is Bool -> (Bool -> Bool), i.e., it
takes a boolean as input and outputs a function that itself maps a boolean to a boolean. Functions can also
take functions as inputs, e.g.,

selfCompose :: (Integer -> Integer) -> (Integer -> Integer)

takes any f :: Integer -> Integer as input and outputs another function (presumably representing f ◦ f).
The names of concrete types, such as Integer or Bool, are always capitalized. This is in contrast with

lower-case type variables, which can stand for any type (possibly subject to some constraints; see the next
subsection). For example, the function alwaysTrue :: a -> Bool takes a value of any type, and outputs a
boolean value (presumably True). More interestingly, cons :: a -> [a] -> [a] takes a value of any type,
and a list of values all having that same type, and outputs a list of values of that type.

Types can be parameterized by other types. For example:

• The type [] seen just above is the generic “(ordered) list” type, whose single argument is the type
of the listed values, e.g., [Bool] is the “list of booleans” type. (Note that [a] is just syntactic sugar
for [] a.)

• The type Maybe represents “either a value (of a particular type), or nothing at all;” the latter is typically
used to signify an exception. Its single argument is the underlying type, e.g., Maybe Integer.

• The generic “pair” type (,) takes two arguments that specify the types being paired together, e.g.,
(Integer,Bool).

Only fully applied types can admit values, e.g., there are no values of type [], Maybe, or (Integer,).

F.2 Type Classes

Type classes, or just classes, define abstract interfaces that types can implement, and are therefore a pri-
mary mechanism for obtaining polymorphism. For example, the Additive class (from the numeric pre-
lude [TTJ15]) represents types that form abelian additive groups. As such, it introduces the terms20

20Operators like +, -, *, /, and == are merely functions introduced by various type classes. Function names consisting solely of
special characters can be used in infix form in the expected way, but in all other contexts they must be surrounded by parentheses.

63

zero :: Additive a => a
negate :: Additive a => a -> a
(+), (-) :: Additive a => a -> a -> a

In type signatures like the ones above, the text preceding the => symbol specifies the class constraint(s) on
the type variable(s). The constraints Additive a seen above simply mean that the type represented by a
must be an instance of the Additive class. A type is made an instance of a class via an instance declaration,
which simply defines the actual behavior of the class’s terms for that particular type. For example, Integer
and Double are instances of Additive. While Bool is not, it could be made one via the instance declaration

instance Additive Bool where
zero = False
negate = id
(+) = xor -- same for (-)

Using class constraints, one can write polymorphic expressions using the terms associated with the corre-
sponding classes. For example, we can define double :: Additive a => a -> a as double x = x + x.
The use of (+) here is legal because the input x has type a, which is constrained to be an instance of Additive
by the type of double. As a slightly richer example, we can define

isZero :: (Eq a, Additive a) => a -> Bool
isZero x = x == zero

where the class Eq introduces the function (==) :: Eq a => a -> a -> Bool to represent types whose
values can be tested for equality.21

The definition of a class C can declare other classes as superclasses, which means that any type that is
an instance of C must also be an instance of each superclass. For example, the class Ring from numeric
prelude, which represents types that form rings with identity, has Additive as a superclass; this is done
by writing class Additive r => Ring r in the class definition.22 One advantage of superclasses is that
they help reduce the complexity of class constraints. For example, we can define f :: Ring r => r -> r
as f x = one + double x, where the term one :: Ring r => r is introduced by Ring, and double is as
defined above. The use of (+) and double is legal here, because f’s input x has type r, which (by the class
constraint on f) is an instance of Ring and hence also of Additive.

So far, the discussion has been limited to single-parameter classes: a type either is, or is not, an instance
of the class. In other words, such a class can be seen as merely the set of its instance types. More generally,
multi-parameter classes express relations among types. For example, the two-argument class definition
class (Ring r, Additive a) => Module r a represents that the additive group a is a module over the
ring r, via the scalar multiplication function (*>) :: Module r a => r -> a -> a.

21Notice the type inference here: the use of (==) means that x and zero must have the same type a (which must be an instance of
Additive), so there is no ambiguity about which implementation of zero to use.

22It is generally agreed that the arrow points in the wrong direction, but for historical reasons we are stuck with this syntax.

64

	Introduction
	Contributions
	Novel Attributes of
	Other Technical Contributions

	Example: FHE in
	Limitations and Future Work
	Comparison to Related Work
	Architecture and Paper Organization

	Integer and Modular Arithmetic
	Representing Z and Zq
	Reduce and Lift
	Rescale
	Gadget, Decompose, and Correct
	CRTrans
	Type-Level Cyclotomic Indices

	Cyclotomic Rings
	Mathematical Background
	Cyclotomic Rings
	Ring-LWE and (Tweaked) Error Distributions
	Error Invariant

	Cyclotomic Types: Cyc and UCyc
	Instances
	Functions

	Implementation
	Representations
	Operations
	Promoting Base-Ring Operations

	Fully Homomorphic Encryption in
	Keys, Plaintexts, and Ciphertexts
	Encryption and Decryption
	Homomorphic Addition and Multiplication
	Modulus Switching
	Key Switching and Linearization
	Ring Tunneling

	More on Type-Level Cyclotomic Indices
	Promoting Factored Naturals
	Applying the Promotions

	Sparse Decompositions and Haskell Framework
	Sparse Decompositions
	Haskell Framework

	Tensor Interface and Sparse Decompositions
	Mathematical Background
	Cyclotomic Rings and Powerful Bases
	(Tweaked) Trace, Dual Ideal, and Decoding Bases
	Chinese Remainder Bases

	Single-Index Transforms
	Prime-Power Factorization
	Embedding Scalars
	Converting Between Powerful and Decoding Bases
	Multiplication by gm
	Chinese Remainder and Discrete Fourier Transforms
	Generating (Tweaked) Gaussians in the Decoding Basis
	Gram Matrix of Decoding Basis

	Two-Index Transforms and Values
	Prime-Power Factorization
	Coefficients in Relative Bases
	Embed Transforms
	Twace Transforms

	CRT Sets
	Mathematical Background
	Computing CRT Sets

	Tensor Product of Rings
	Evaluation
	Source Code Analysis
	Source Lines of Code
	Cyclomatic Complexity and Function Count

	Performance
	Cyclotomic Ring Operations
	SHE Scheme
	Ring Tunneling

	Haskell Background
	Types
	Type Classes

