
Modular Inversion Hidden Number Problem-

A Lattice Approach

Pranjal Dutta
pranjal@cmi.ac.in

Chennai Mathematical Institute
Chennai, India

November 23, 2015

Abstract

The Modular Inversion Hidden Number Problem (MIHNP) was introduced by
Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001 (BHH’01). They provided
two heuristics - in Method I, two-third of the output bits are required to solve the
problem, whereas the more efficient heuristic (Method II) requires only one-third of
the bits of the output. After more than a decade, here Sarkar in [28] identified that
the claim in Method II is actually not correct and a detailed calculation justified that
this method too requires two-third of the bits of the output, contrary to the claim in
BHH’01. He reconstructed the lattice and give a bound which heuristically solve with
half of the output bits. Although J.Xu et al in [29] solved it with only one-third of the
output bits asymptotically but that technique is difficult to understand and implement.
Here we essentially use similar idea of [28] but in a clever way such that it is a better
bound although we solve the problem heuristically with only half of the output bits in
asymptotic sense. This is better method and a lot easier to understand and implement.
Also experimental results support the claim corresponding to our heuristics. In the last
section we actually talk about a variant of this which seems to be hard to solve under
lattice attack.

Keywords : Coppersmith’s techniques · Hidden Number Problem · LLL algorithm ·
Modular Inversion.

1

mailto :pranjal@cmi.ac.in
<http://www.cmi.ac.in/>

1 Introduction

Background: In recent years many attempts have been taken to construct efficient
cryptosystems several new complexity assumptions. One of them was The Decision Diffie-
Hellman assumption (DDH) which is essentially harder than Computational DiffieHellman
assumption . It was used to construct chosen cipher text secure encryption.It was also used
to generate number theoretic pseudo random functions and message authentication codes.
Likewise the Strong RSA assumption was used to construct efficient signature scheme. Fur-
ther, security of the public key encryption schemes proposed in are based on Pailliers Deci-
sion Composite Residuosity (DCR) and Quadratic Residuosity (QR) assumptions. [22]

Hidden Number Problems(HNPs) were first introduced by Boneh and Venkatesan in
1996 [5] . Using this they actually showed that computing the most significant bits of the
secret key from the public keys of participants, in a Diffe-Hellman Key exchange Protocol is
as much hard as computing the key itslef. Also it opened a broader section of open problems
related (and unrelated) to cryptography. In fact this leads to practically feasible side channel
attack on certain implementations of DSA(e.g. OpenSSL) [17] which emphasizes the security
risk which is caused by a hidden side channel in the design of Pentium 4HTT processor like
SSH. The problem is as follows:

Let α ∈ Zp be the (hidden) secret. Now consider n elements x1, . . . , xn ∈ Z∗p indepen-

dently and uniformly at random. The attacker is given n pairs
(
xi,MSBk(αxi mod p)

)
for

i = 1, . . . , n and for some k > 0 (here MSBk(z mod p) refers to the k most significant bits
of z mod p). The target is to obtain α efficiently.

Modular Inversion Hidden Number Problem (MIHNP) MIHNPs are closely
related to HNP. Assuming hardness of some variants of this MIHNP problems they actually
constructed very efficient algebraic PRNGs and MACs. The basic step in evaluating the
MAC and the PRNG is one modular inversion modulo a moderate size prime. The general
idea of MIHNPs is as follows:

Let α ∈ Zp be the (hidden) secret where p is a m-bit prime. Now consider n elements
x1, . . . , xn ∈ Z∗p chosen independently and uniformly at random. The attacker is given n
pairs (xi,MSBk((α+xi)

−1 mod p)) for some k > 0 . The question is whether we can obtain
α efficiently. There is a basic assumption called δ-MIHNP assumption that is there is no
polynomial time algorithm for the Basic-MIHNP problem whenever k < δm

In their paper [6] they proposed a lattice-based algorithm which eventually solves this
problem when k > m

3 . They also explained why this algorithm does not extend to solve it
for k < m

3 . Most Importantly they conjectured that such techniques cannot be used beyond
the m

3 bound. More generally, they conjectured that the δ-MIHNP assumption holds for
any δ < 1

3 .
The basic MIHNP can also be viewed as an analog of the famous Discrete-Log Problem

(DLP) which is as follows:

Given gα mod p find the hidden number α.

We have various MIHNP problems, we also do not have reductions between the various
Discrete-Log problems, yet the only algorithms that we know for solving any of them involve
solving Discrete-Log. In [6], authors presented two polynomial time heuristics to solve
MIHNP, provided that k is sufficiently large. Their first heuristic was a linear approach
that we refer here as Method I works only if more than 2

3 portion of most significant bits of
(α + xi)

−1 mod p are given, i.e., k > 2m
3 . Now most importantly, the second heuristic was

2

better in some sense as it claimed knowledge of significantly fewer bits which is k > m
3 only.

In the second heuristic, multipliers were used which we will refer as method II. Recently, the
work of probabilistic polynomial time algorithm for MIHNP provided by Ling, Shiparlinski,
Steinfeld and Wang [20] could match one of the heuristics (Method I) of Boneh et al. [6],
where one requires at least (2

3 + ε)m for a fixed ε > 0 to solve the problem.
Very recently, Sarkar in [28] has studied MIHP and proved a flaw in the analysis of

Method II of Boneh et al. He has mentioned that

“More precisely, we show that the approach of [6] only works when k > 2m
3 and

does not work in the range of m
3 < k < 2m

3 .”

In [28], two approaches are given. In the first approach, one can find α if

Theorem 1 ([28]). Let p be an m-bit prime. Let α ∈ Zp be hidden. Consider that n + 1
pairs (xi,MSBk(α+ xi)

−1 mod p) are given for random x0, x1, . . . , xn ∈ Zp.

1. One can find α in polynomial time if k >
(
1
2 + 3n+1

2(n+1)2

)
m

2. One can find α in time polynomial in m but exponential in n if k > m

(
1
2+ 1

(n+1)(n+2)

)
.

Polynomials generation in [6, 28]: Suppose attacker knows p, xi and
bi = MSBk((α+ xi)

−1 mod p) for 0 ≤ i ≤ n. Hence we can write:

(α+ xi)(bi + εi) = 1 mod p,

for 0 ≤ i ≤ n. It is clear that if any εi is known, one can easily find α as α = (bi + εi)
−1 −

xi mod p. Also note that εi ≈ 2m−k, since p is an m-bit integer and k many MSBs of bi and
(α+ xi)

−1 mod p are the same. Now eliminating α from (α+ x0)(b0 + ε0) = 1 mod p and
(α+ xi)(bi + εi) = 1 mod p, for some i, we have(

xi − x0
)
ε0εi +

(
b0(xi − x0) + 1

)
εi +

(
bi(xi − x0)− 1

)
ε0

+b0bi(xi − x0) + bi − b0 ≡ 0 mod p,

for 1 ≤ i ≤ n. Here ε0 and εi are unknowns. Hence we need to solve fi(ε0, εi) = 0 mod p,
where fi(ε0, εi) = Aiε0εi + Biεi + Ciε0 + Di, Ai = xi − x0, Bi = b0(xi − x0) + 1, Ci =
bi(xi − x0)− 1 and Di = b0bi(xi − x0) + bi − b0 for 1 ≤ i ≤ n. Thus n many relations have
been used to solve the problem. These relations were used in [6].

Sarkar generates for more relations for an improved attack. Consider two relations
(α + xi)(bi + εi) = 1 mod p and (α + xj)(bj + εj) = 1 mod p for 0 ≤ i < j ≤ n. Now
eliminating α from these two relations, we obtain

(xi − xj)εiεj + (xibj − xjbj + 1)εi + (xibi − xjbi − 1)εj

+(xibibj − xjbibj + bi − bj) ≡ 0 mod p.

Hence we have total
(
n+1
2

)
relations of the form

fij = Aijεiεj +Bijεi + Cijεj +Dij ≡ 0 mod p,

where Aij = xi − xj , Bij = xibj − xjbj + 1, Cij = xibi − xjbi − 1 and Dij = xibibj −
xjbibj + bi − bj . From fij we obtain the relations of the form gi,j = A−1ij fij mod p, where

3

the coefficient of εiεj in gi,j is 1. It is immediate that gi,j(εi, εj) ≡ 0 mod p. Thus Sarkar
generates

(
n+1
2

)
relations.

Our Contribution. In this paper we improve the attack bound. We prove that one
can find α in time polynomial in m but exponential in n if

k > m

(
1

2
+

1

(n+ 2)!

)
which is a slight improvement of [28] previous theorem as (1

2 + 1
(n+1)(n+2)) > (1

2 + 1
(n+2)!)

although both asymptotically turn out to be m
2 for large enough n. We believe that im-

proving our technique we can actually improve the bound to 1
3 or close to that which will

actually be the result achieved by J.Xu et al in [29]. Here the technique is lot easier to
understand , verify and implement.

2 Preliminaries

Consider w many linearly independent vectors b1, ..., bw ∈ Rn. The set

L = {z : z = a1b1 + ...+ awbw, a1, .., aw ∈ Z}

is called an w dimensional lattice with basis B = {b1, .., bw}. A full rank lattice when w = n.
The determinant of L is defined as det(L) = det(B) where B is a w ×w matrix. When bi’s
are in Zn , the lattice is called integer lattice.

In 1982, Lenstra, Lenstra and Lovasz defined LLL reduced basis of a lattice and
proposed a polynomial time algorithm (famous as LLL algorithm) to obtain such a basis.
Given a basis b1, ..., bw of a lattice L, LLL algorithm can find a reduced basis u1, ..., uw with

‖u1‖ ≤ ‖u2‖ ≤‖ui‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i for i = 1(1)w

.
Coppersmith formulated ideas to find small roots of a modular polynomial in a single

variable and also for polynomials in two variables over the integers later which was pioneered
in many of the related papers leading nice results in cryptography and related fields. Not
to forget, Coron’s work was also seminal in the context. The idea of Coppersmith can also
be extended to more than two variables, but the method becomes a heuristic in such cases.
The following ground-breaking result due to Howgrave-Graham gives a sufficient condition
under which modular roots become the roots over integers for polynomials over two or more
variables.

Theorem 2 (Howgrave-Graham). Let h(x1, ..., xt)be a polynomial with integer-coefficients
which is a sum of w many monomials. Suppose that

1. h(y1, .., yt) ≡ 0 mod R for some positive integer R such that |yi| < Yi for each i =
1(1)t

2. ‖h(y1Y1,, ytYt)‖ < R√
w

.

Then h(x1, ..., xn) = 0 hold over integers.

Assumption 1 : In this work, the lattice based constructions yield algebraically indepen-
dent polynomials and the common roots of the polynomials involved can be computed using
Grobner basis technique.

4

3 Algorithm and attack bound

We use same polynomials as in [28]. However our lattice construction is construction is
different from [28]. Let us start with the Algorithm 1.

[H]

Input: A = [r0, . . . , rn].
Input: Zero sequence

{
s0,1, . . . , sn−1,n

}
=
{

0, . . . , 0
}
, s = 0.

Output:
{
s0,1, . . . , sn−1,n

}
and s

1 Sort A in the descending order ;
2 while A[0] > 0&A[1] > 0 do
3 A[0] = A[0]− 1 ;
4 A[1] = A[1]− 1 ;
5 s = s+ 1 ;
6 Sort A in the descending order ;

end

Algorithm 1

Lemma 1.

s =

n∑
i=0

ri

2 , for maxi ri ≤
∑n
i=0 ri

n∑
i=0

ri −max
i
ri, otherwise

Proof. Suppose initially we have A = [r0, . . . , rn] with r0 ≥ r1 ≥ . . . ≥ rn. At each step we
are decreasing the first two elements (if sorted) and suppose after k-th step our list is like
[rk0 , . . . , r

k
n] with sorted i.e. rk0 ≥ rk1 ≥ . . . ≥ rkn. Also at the last stage when the process

ends A must look like [0, 0, . . . , r] where r ≥ 0.
Now consider the first case. Initially at 0-th stage we have already 2r0 ≤

∑n
i=0 ri. Here

we can have possible two cases -

I)this kind of max structure like the first case is maintained through the end

II)there is a minimal N such that we have 2rN0 ≤
n∑
i=1

rNi i.e. the first term is less than or

equal to remaining sum and 2rN+1
0 >

n∑
i=1

rN+1
i

If I) happens then at the last stage the A must look like [0, 0, ..., 0]. At each step the sum
in A decreases by 2 hence

s =

n∑
i=0

ri

2

5

If II) happens then at N th stage we have the list sorted like [rN0 , . . . , r
N
n] , so at the very

next step it should be like [rN−10 , rN−11 , . . . , rNn−1, r
N
n] (Unsorted).

We can easily understand the fact that in this situation rN−10 can not be maximum.
Hence we must have rN−11 ≤ rN−10 < rN2 ≤ rN1 ≤ rN0 . From here we can conclude that
rN0 = rN1 = rN2 at N -th stage we had the inequality rN0 ≤ rN1 + . . .+ rNn and the very next
step we have this inequality violated. So we have rN2 > rN−10 + rN−11 + rN3 + . . .+ rNn .
Combining this we can easily get that rN0 = 1. So the list at N -th step must look like
[1, 1, 1, 0, 0, . . . , 0] and the step where the inequality was violated must be [1, 0, 0, . . . , 0].

See at each step total summation in s is decreasing by 2. Total sum at the very first is∑n
i=0 ri hence s =

∑n
i=0 ri−1

2 . So basically we have

s =

⌊ n∑
i=0

ri

2

⌋
.

Like wise we can check the formula for the second case in the same manner.

Now define A = {[r0, . . . , rn]|0 ≤ ri ≤ x, r′is are integers.}. Let us also define B =
{[r0, . . . , rn]|0 ≤ ri ≤ x, r′is are integers and 2 max ri ≤

∑n
i=0 ri}.

There are (x+ 1)n+1 many elements in A and the maximum value of s can be b (n+1)x
2 c.

Hence maximum power of x in
∑
A∈A

s can be n + 2 . We will in fact show the following

lemma which will serve us sufficiently.

Lemma 2. ∑
A∈A

s =

(
n+ 1

4
− n+ 1

2(n+ 2)!

)
xn+2 + ε(x),

where ε(x) is a polynomial of degree n+ 1.

Proof. First assume new function g(A) = min

{ n∑
i=0

ri

2 ,

n∑
i=0

ri − max ri

}
. Now we have

bg(A)c = s(A). It is easy to see that the co-efficient of xn+2 in
∑
A∈A

g(A) will be same as in∑
A∈A

s(A) because there are (x+ 1)n+1 many elements in A and s(A) differ from g(A) by at

most 1
2 .

Hence
∑
A∈A

s(A) differ from
∑
A∈A

g(A) by at most 1
2 (x + 1)n+1 . Hence it suffices to

find the co-efficient of xn+2 in
∑
A∈A

g(A).

Now 2
∑
A∈A

g(A) =
∑
A∈A

min{p(A), q(A)}, where p(A) =

n∑
i=0

ri , q(A) = 2

n∑
i=0

ri−2 max ri.

It is also true that when A ∈ B, 2g(A) = p(A). So we have

2
∑
A∈A

g(A) =
∑
A∈B

p(A) +
∑

A∈A\B

q(A) =
∑
A∈A

p(A)−
∑

A∈A\B

(p(A)− q(A)).

6

Also ∑
A∈A

p(A) =
∑

0≤ri≤x

(r0 + . . .+ rn)

= (n+ 1)
∑

0≤ri≤x

r0

= (n+ 1)(x+ 1)n
x∑
k=0

k

= (n+ 1)(x+ 1)nx(x+ 1)/2.

So coefficient of xn+2 in the expression
∑
A∈A

p(A) =n+1
2 .

Also p(A)−q(A) = 2 max ai−
n∑
i=0

ai. Fix max ai = m with x ≥ m as we are interested to

sum this p(A)−q(A) over A\B , we consider

n∑
i=0

ri = m+k with m > k i.e. k = 0 . . . ,m−1.

Hence 2 max ri −
n∑
i=0

ri = m − k. Now if rt = m for some t ∈ {0, . . . , n}, we can easily see

that no other ri can be m as it will contradict that A ∈ A \ B. Now if rt = m we have
the following equality r0 + . . .+ rt−1 + rt+1 + . . .+ rn = k with each ri ≥ 0. Obviously we
want all r′is less than or equal to x. But the interesting part is obviously as x ≥ m > k all
ai’s must be less than x . Hence we do not have to worry about over-counting. Number of
non-negative solutions of is

(
n+k−1
n−1

)
. Hence the number of such lists [r0, . . . , rn] is nothing

but (n+ 1)
(
n+k−1
n−1

)
with max ri = m and [r0, . . . , rn] ∈ A \ B. Hence actually we have

∑
A∈A\B

(p(A)− q(A)) =

x∑
m=1

m−1∑
k=0

(m− k)(n+ 1)

(
n+ k − 1

n− 1

)
.

Using this identity that

s∑
t=0

(
t+ r

r

)
=

(
s+ r + 1

r + 1

)
we get that

x∑
m=1

m−1∑
k=0

m

(
n+ k − 1

n− 1

)
=

x∑
m=1

m

(
m+ n− 1

n

)
= (n+ 1)

(
x+ n

n+ 2

)
+

(
x+ n− 1

n+ 1

)

Contribution of xn+2 in

x∑
m=1

m−1∑
k=0

m

(
n+ k − 1

n− 1

)
is = n+1

(n+2)! .

Likewise we have

x∑
m=1

m−1∑
k=0

k

(
n+ k − 1

n− 1

)
=

x∑
m=1

n

(
m+ n− 1

n+ 1

)

Now we can check that
(
m+n−1
n+1

)
= mn+1

(n+1)! + (. . .)mn + Hence the coefficient of xn+2 in

the later sum is n
(n+2)! .

7

So co-efficient of xn+2 in the original sum

x∑
m=1

m−1∑
k=0

(m − k)(n + 1)

(
n+ k − 1

n− 1

)
is (n +

1)(n+1
(n+2)! −

n
(n+2)!) = n+1

(n+2)! . Hence the co-efficient of xn+2 in 2
∑
A∈A

g(A) is (n+1
2 −

n+1
(n+2)!).

So in
∑
A∈A

g(A) rather in
∑
A∈A

s(A) coefficient of xn+2 is actually (n+1
4 − n+1

2(n+2)!). Hence

finally we have ∑
A∈A

s(A) = (
n+ 1

4
− n+ 1

2(n+ 2)!
)xn+2 + ε(x),

where ε(x) is a polynomial of degree n+ 1.

Theorem 3. Let p be a m-bit prime number. Let α be in Zp be hidden number. Consider
n + 1 pairs (xi,MSBk(xi + α)−1 mod p) where xi are are random in Zp. Then Then one
can find α under Assumption 1 in time polynomial in m but exponential in n if k > m(1

2 +
1

(n+2)! + o(1))

Proof. We use the same strategy used by Sarkar in [28] in his paper and construct the
polynomials and the lattice . Now I will present another method which improves the bound
k > m(1

2 + 1
(n+2)! + o(1)) by using the broad idea of [11] with a set of polynomials. Solving

such a system of equations using Coppersmiths method is a non-trivial task, as discussed
thoroughly in [23]. Hence we will somehow cleverly generate polynomials for constructing
lattice from the original polynomials gi,j as discussed above. The generated polynomials

satisfy certain conditions and are divisible by the polynomials of the form
∏
i,j

g
si,j
i,j . The

values of si,j are chosen in a cleaver way to reduce the size of the determinant of the lattice
constructed .

Now we look at one combinatorial problem. Suppose we are given n + 1 non-negative
integers (r0, ..., rn). Consider

(
n+1
2

)
many monomials εi,j = εiεj for 0 ≤ i < j ≤ n . Our

problem is to find non-negative integers si,j such that

1)
∏

0≤i<j≤n

g
si,j
i,j divides

n∏
i=0

εi
si

(2)
∑

0≤i<j≤n

si,j is maximized (to make det large as much as possible).

In this sense it is a purely optimization problem and solved in a combinatorial way .
So actually we generate ri’s according to the algorithm I so that it is guaranteed to be
maximized . Here we have εi ≤ 2m−k and take Z = 2m−k. Now for 0 ≤ r0 ≤ .. ≤ rn ≤ X
(X a large positive integer we can assume X = nd for some positive integer d too) define
the polynomials

hr0,r1,....,rn = g
s0,1
0,1 g

s1,2
1,2g

sn−1,n

n−1,n

n∏
k=0

ε

rk−

k−1∑
l=0

sl,k −
n∑

l=k+1

sk,l

k pd(
n+1
2)−s

where si,j and s are obtained by Algorithm 1 on input [r0, ..., rn] In the lexicographic ordering
of subscript (r0, ..., rn), where each component ri ∈ [0, X]. The matrix corresponding to

8

these polynomials will be lower-triangular and hence the matrix will be non-singular. Note
that

hr0,...,rn(ε0, ..., εn) ≡ 0 mod pd(
n+1
2).

Construct a lattice L using the coefficient vectors of hr0,...,rn(ε0Z, ..., εnZ). The dimension
of the lattice is w = (X + 1)n+1. Now the determinant of L is

det(L) =

X∏
r0=0

...

X∏
rn=0

Zr0+....+rnp

wd(n+1
2)−

X∑
r0=0

...

X∑
rn=0

s

So we need to satisfy the following 2
w(w−1)
4(w−n) det(L)

1
w−n < 1√

w
pd(

n+1
2). Ignoring w(w−1)

4(w−n)
and 1√

w
and simplifying we have the result that

k > m(
1

2
+

1

(n+ 2)!
)

.
So when k > m(1

2 + 1
(n+2)! + o(1)) after lattice reduction we have n + 1 polynomials

f1, ..., fn+1 such that fi(0, ..., n) = 0 for 1 ≤ i ≤ n + 1 . Now under Assumption 1, we can
find ε0, ..., εn from f1, ..., fn+1 .

The running time of our algorithm is dominated by the runtime of the LLL algorithm,
which is polynomial in the dimension of the lattice and in the bitsize of the entries. Since
the lattice dimension in our case is exponential in n, the running time of our strategy is
polynomial in m but exponential in n. Also as previously said this is a better bound than
[28] although asymptotically it is (≈ m

2) .

4 Experimental Results

We have implemented the code in SAGE 5.13 on a Linux Mint 12 on a laptop with Intel(R)
Core(TM) i5-4200U CPU @ 1.60GHz, 3 GB RAM and 3 MB Cache. In all our experiments,
the polynomials obtained (after lattice reduction) satisfy the desired root over integers, we
could successfully collect the root using Grobner basis technique.

Experimental results of our method is presented in tabular form in Table 1. We cannot
perform the experiments for our Method for large values of n due to very high lattice
dimensions. Anyhow it shows slight improvement than experimental results in [28].

n d Lower bound of Lower bound of Lattice Time in Seconds

k (theory) k (expt.) Dimension LLL Algorithm Gröbner basis

2 1 541 620 27 3.28 < 1

2 2 541 600 125 9392.584 6803.95

Table 1: Experimental results for 1000-bit p.

9

5 Conclusion and A variant of MIHNP

In this paper, we have studied the Modular Inversion Hidden Number Problem (MIHNP).
This problem was studied in [6] and two heuristics were presented. In [28] additional
relations to solve the problem heuristically with only half of the output bits in asymptotic
sense were explored. Here we extend the idea to give a better bound although asymptotically
it is half of the bits . In [29] J. Xu et al actually showed that it can be done heuristically
with only one-third of the output bits . But here the technique is easier to understand ,
implement and believed to achieve the same bound if applied more cleverly. Still there is
scope to work with the problem to find whether the bound can be further improved or not .

In fact if we actually work with two or more hidden elements then it seems to be harder
to break. The problem can be stated as follows :

Suppose we have an oracle and two hidden numbers α, β ∈ Zp . xi’s are chosen uniformly
from the same field . Each time we send one xi to the oracle it sends back either MSBk((α+
xi)
−1 mod p) or MSBk((β+xi)

−1 mod p) non-deterministically. Suppose some one knows p
and he knows n pairs of (xi, X) where X is either MSBk((α+xi)

−1 mod p) or MSBk((β+
xi)
−1 mod p) whcih he does not know . What should be the least number of bits to be

output by the oracle to recover α and β efficiently ?
One important point is that it seems that usual lattice approach will not work because

we don’t know for some xi what the oracle returns MSBk((α+xi)
−1 mod p) or MSBk((β+

xi)
−1 mod p) . In fact experimentally we try to randomly choose α and β for that of MSB

and try lattice attack . But it seems to deviate a lot (Which seems to be fair enough) from
the actual numbers α and β . So it might be an interesting problem to solve ! . In fact we
can try with l ≥ 2 number of hidden numbers and extend the same idea . This seems to be
harder to break as well as secure enough to use in many cryptographic fields.

Acknowledgments: I am a sincerely thankful to my Prof. Santanu Sarkar, Indian
Institute of Technology, Madras for introducing me the problem and invaluable feedback,
kind suggestions who constantly encouraged me to solve this problem.

References

[1] A. Akavia. Solving Hidden Number Problem with One Bit Oracle and Advice. Crypto
2009, LNCS 5677, pp. 337–354, 2009.

[2] A. Bauer, D. Vergnaud and J-C Zapalowicz. Inferring Sequences Produced by Nonlinear
Pseudorandom Number Generators Using Coppersmith’s Methods. PKC 2012, LNCS
7293, pp. 609–626, 2012.

[3] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of security
for public-key encryption schemes. Crypto 1998, LNCS 1462, pp. 26–46, 1998.

[4] S. R. Blackburn, D. Gómez-Pérez, J. Gutierrez and I. Shparlinski. Reconstructing noisy
polynomial evaluation in residue rings. J. Algorithms, 61(2):47–59, 2006.

[5] D. Boneh and R. Venkatesan. Hardness of Computing the Most Significant Bits of Secret
Keys in Diffie-Hellman and Related Schemes. Crypto 1996, LNCS 1109, pp. 129–142,
1996.

10

https://mat.iitm.ac.in/home/santu/santanu.htm

[6] D. Boneh, S. Halevi and N. Howgrave-Graham. The Modular Inversion Hidden Number
Problem. Asiacrypt 2001, LNCS 2248, pp. 36–51, 2001.

[7] J. Boyar. Inferring sequences produced by pseudo-random number generators. J. ACM,
36(1):129–141, 1989.

[8] J-S Coron. Finding Small Roots of Bivariate Integer Polynomial Equations Revisited.
Eurocrypt 2004, LNCS 3027, pp. 492–505, 2004.

[9] J-S Coron. Finding Small Roots of Bivariate Integer Polynomial Equations: A Direct
Approach.
Crypto 2007, LNCS 4622, pp. 379–394, 2007.

[10] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. Eurocrypt 2002, LNCS 2332, pp. 45–64, 2002.

[11] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulner-
abilities. Journal of Cryptology, 10(4):223–260, 1997.

[12] M. Ernst, E. Jochemsz, A. May, and B. de Weger. Partial key exposure attacks on RSA
up to full size exponents. Eurocrypt 2005, LNCS 3494, pp. 371–386, 2005.

[13] R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signature Without the
Random Oracle. Eurocrypt 1999, LNCS 1592, pp. 123–139, 1999.

[14] D. Gómez-Pérez, J. Gutierrez and A. Ibeas. Attacking the Pollard Generator. IEEE
Transactions on Information Theory, 52(12):5518–5523,2006.

[15] M. Herrmann and A. May. Attacking Power Generators Using Unravelled Linearization:
When Do We Output Too Much? Asiacrypt 2009, LNCS 5912, pp. 487–504, 2008.

[16] N. Howgrave-Graham. Finding small roots of univariate modular equations revisited.
In Proceedings of IMA International Conference on Cryptography and Coding, LNCS
1355, pp. 131–142, 1997.

[17] N. Howgrave-Graham and N. P. Smart. Lattice Attacks on Digital Signature Schemes.
Des. Codes Cryptography, vol. 23(3), pp. 283-290, 2001.

[18] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. FOCS 1989, pp.
248–253, 1989.

[19] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982.

[20] S. Ling, I.E. Shparlinski, R. Steinfeld, and H. Wang. On the Modular Inversion Hidden
Number Problem. Journal of Symbolic Computation, 47(4):358–367, 2012.

[21] M. Naor and O. Reingold. Number theoretic constructions of efficient pseudo random
functions. FOCS 1997, pp. 458–467, 1997.

[22] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.
Eurocrypt 1999. pp. 223-238, LNCS 1592, 1999.

11

[23] M. Ritzenhofen. On Efficiently Calculating Small Solutions of Systems of Polynomial
Equations. PhD thesis, Ruhr-University of Bochum, Germany, 2010. Available at http:
//www.cits.rub.de/personen/maike.html.

[24] I. E. Shparlinski. Playing Hide-and-Seek with Numbers: the Hidden Number Problem,
Lattices and Exponential Sums. Proc. Symp. in Appl. Math., vol. 62. Amer. Math. Soc.,
pp. 153-177, 2005.

[25] R. Steinfeld, J. Pieprzyk and H. Wang. On the Provable Security of an Efficient RSA-
Based Pseudorandom Generator. Asiacrypt 2006. pp. 194-209, LNCS 4284, 2006.

[26] J. Stren. Secret Linear Congruential Generators Are Not Cryptographically Secure.
FOCS 1987, pp. 421–426, 1987.

[27] A. Ta-Shma, D. Zuckerman and S. Safra. Extractors from Reed-Muller Codes. FOCS
2001, pp. 638–647, 2001.

[28] S. Sarkar. Modular Inversion Hidden Number Problem Correction and Improvements,
Cryptology ePrint Archive: Report 2015/778

[29] J. Xu, L. Hu, Z. Huang and L. Peng. Modular Inversion Hidden Number Problem
Revisited. ISPEC 2014, pp. 537–551, LNCS 8434, 2014.

12

http://www.cits.rub.de/personen/maike.html
http://www.cits.rub.de/personen/maike.html

	Introduction
	Preliminaries
	Algorithm and attack bound
	Experimental Results
	Conclusion and A variant of MIHNP

