
Midori: A Block Cipher for Low Energy
(Extended Version)

Subhadeep Banik1, Andrey Bogdanov1, Takanori Isobe2, Kyoji Shibutani2,
Harunaga Hiwatari2, Toru Akishita2, and Francesco Regazzoni3

1 Technical University of Denmark, Denmark. {subb,anbog}@dtu.dk
2 Sony Corporation, Japan. {Takanori.Isobe,Kyoji.Shibutani,Harunaga.

Hiwatari,Toru.Akishita}@jp.sony.com
3 University of Lugano, Switzerland. regazzoni@alari.ch

Abstract. In the past few years, lightweight cryptography has become
a popular research discipline with a number of ciphers and hash functions
proposed. The designers’ focus has been predominantly to minimize the
hardware area, while other goals such as low latency have been addressed
rather recently only. However, the optimization goal of low energy for
block cipher design has not been explicitly addressed so far. At the same
time, it is a crucial measure of goodness for an algorithm. Indeed, a
cipher optimized with respect to energy has wide applications, especially
in constrained environments running on a tight power/energy budget
such as medical implants.
This paper presents the block cipher Midori 4 that is optimized with
respect to the energy consumed by the circuit per bit in encryption or
decryption operation. We deliberate on the design choices that lead to
low energy consumption in an electrical circuit, and try to optimize each
component of the circuit as well as its entire architecture for energy.
An added motivation is to make both encryption and decryption func-
tionalities available by small tweak in the circuit that would not incur
significant area or energy overheads. We propose two energy-efficient
block ciphers Midori128 and Midori64 with block sizes equal to 128 and
64 bits respectively. These ciphers have the added property that a circuit
that provides both the functionalities of encryption and decryption can
be designed with very little overhead in terms of area and energy. We
compare our results with other ciphers with similar characteristics: it
was found that the energy consumptions of Midori64 and Midori128 are
by far better when compared ciphers like PRINCE and NOEKEON.

Keywords: AES, lightweight block cipher, low energy circuits

1 Introduction

The field of lightweight cryptography has gone into overdrive as evident from
the number of cipher proposals that have emerged in the past few years, like

4 The name of the cipher is the Japanese translation for the word Green.

{subb, anbog}@dtu.dk
{Takanori.Isobe, Kyoji.Shibutani, Harunaga.Hiwatari, Toru.Akishita}@jp.sony.com
{Takanori.Isobe, Kyoji.Shibutani, Harunaga.Hiwatari, Toru.Akishita}@jp.sony.com
regazzoni@alari.ch

CLEFIA [33], KATAN [14], KLEIN [19], LED [20], PRESENT [12], Piccolo [32], PRINCE
[13], SIMON/SPECK [6] to name a few. However, the Advanced Encryption Stan-
dard (AES) [17] still remains the de-facto standard when it comes to practical
lightweight encryption. The past few years have seen several low-power/area ar-
chitectures for AES being reported in literature [28,31,18]. However, there has
been little work that goes on to determine the design choices that lead to the
most energy-efficient architecture. There are many parameters that contribute
to the efficiency of a given lightweight design, with area, power, throughput and
energy being the foremost among them. Power and energy, are correlated param-
eters, as energy is essentially the time integral of power, and power is equivalent
to the energy consumed per unit time or simply the rate of energy consumption.
Energy consumption, thus, is a measure of the total work done by voltage source
during the execution of an operation. Hence, in many ways, energy rather than
power may be a more relevant parameter to measure the efficiency of a design.
Serial architectures of any block cipher that reduce the width of the datapath
and reuse components, have a smaller power footprint than round based imple-
mentations in which the data path is equal to the block length of the cipher.
However, serial implementations usually have high latency, that is, they take
much longer to compute the result of an encryption operation than their round
based counterparts, and as a result may end up consuming more energy. There-
fore, there is no guarantee that low power architectures would necessarily lead
to low energy architectures and vice versa.

In [22,5], an evaluation of several lightweight block ciphers with respect to
various hardware performance metrics, with a particular focus on the energy cost
was done. A formal model for energy consumption in any r-round unrolled block
cipher architecture was proposed in [3]. However these papers do not specifically
outline design choices that lead to energy-efficient designs.

1.1 Our contributions

In this paper, we at first try to identify design choices that are energy-efficient
and the related tradeoffs that are involved as a result of it. We throw some
light at the design considerations that govern low energy circuits, and look at
several factors like clock frequency, architecture, loop unrolling and lay down
some general thumb rules that help in optimizing for energy. Then, we choose
components specifically tailored to meet the requirements of low energy design.
In particular, we develp energy-efficient linear layers and non-linear layers.

We use 4 × 4 almost MDS binary matrices which are more efficient than
4× 4 MDS matrices in the terms of area and signal-delay. Note that the branch
numbers (the smallest nonzero sum of active inputs and outputs of the matrix)
of MDS and almost MDS matrices areare 5 and 4, respectively. However, due
to a smaller branch number, ciphers employing almost MDS matrices are likely
to require the more number of rounds to guarantee its security against several
attacks. To address this issue, we propose optimal cell-permutation layers which
are aimed at improving diffusion speed and increasing the numbers of active

2

S-boxes in each round with low implementation overheads. Our optimal cell-
permutations drastically improve the minimum number of differentially/linearly
active S-boxes in each round, and achieve faster diffusion compared to ShiftRow-
type permutation. We construct a lightweight and small-delay 4-bit S-box by
focusing on the dependency of the computation in S-boxes. The signal delay in
our S-boxes is 1.5 times and twice faster than those of PRINCE and PRESENT,
respectively. Since the S-box layer is one of the most critical and expensive
operations of the cipher, our new S-boxes sufficiently contribute to low energy
consumptions.

Combining those new constructions, we design a family of low energy block
ciphers Midori which is composed of two variants: Midori64 and Midori128. These
provide the functionality for both encryption and decryption with minimal area
and energy overhead. The two variants support a 128-bit secret key and a 64/128-
bit block, respectively. Security wise, Midori64 and Midori128 do not claim re-
lated, known and chosen-key security as it is not relevant in our target appli-
cation. Using the STM 90nm standard cell library, both these ciphers consume
less than 1.89 pJ/bit encrypted, which is by far better when compared ciphers
like PRINCE and NOEKEON. These ciphers are particularly useful for applications
that run on tight energy budget, e.g. active RFID tags, sensor nodes, medical
implants and battery operated portable devices.

1.2 Organization of the Paper

In Section 2, we look at some design considerations that help to minimize energy
consumption in block cipher circuits. In Section 3, we outline the algorithmic
specifications of the Midori128 and Midori64 ciphers. In Section 4, we explain our
design decisions vis-a-vis the observations of Section 2. In Section 5, we outline
the security analysis of the ciphers. Section 6 contains implementation results of
our cipher in hardware using the standard cell library of the STM 90nm logic
process. Section 7 concludes the paper.

2 Design Considerations for Low Energy

For any given block cipher, three factors are likely to play a dominant role in
determining the quantity of energy dissipated in the circuit:

(a) Frequency of the Clock used to drive the circuit,
(b) Architecture of the individual components,
(c) Unrolling round functions in the circuit.

We will try to understand the significance of each of these parameters in the
context of energy consumption. Let us start with clock frequency. Two compo-
nents characterize the amount of energy dissipated in a CMOS circuit :

– Dynamic dissipation due to the charging and discharging of load capacitances
and the short-circuit current,

3

S1xD S2xD S3xD

S1 S2
b b b

Fig. 1: S-boxes placed sequentially

– Static dissipation due to leakage current and other current drawn continu-
ously from the power supply.

The total energy dissipation for a CMOS gate can be written as

Egate = Eload + Esc + Eleakage

The quantity Eload is the energy dissipated for charging and discharging
the capacitive load CL of a gate when output transitions occur. The energy
dissipated per 0→ 1/1→ 0 transition is given as

E =

∫ t

0

vi dt =

∫ t

0

vCL
dv

dt
dt = CL

∫ VDD

0

vdv =
1

2
CLV

2
DD.

The energy due to the short-circuit current, Esc is dissipated in a CMOS gate,
when during a transition both the n and the p-transistors are on for a short
period of time. The energy due to leakage currents Eleakage is rather small,
and is mainly caused due to the sub-threshold leakage current, which is the
drain-source current in a CMOS gate when the transistor is OFF. This figure
is becoming increasingly important as the technology is scaling down making
the sub-threshold leakage more significant. However as pointed out in [3,22], the
effect of the leakage energy at high clock frequencies is minimal. As such, energy
becomes a metric which is a measure of the total switching activity of a circuit
during the process. For sufficiently high frequencies, the energy consumption re-
quired to compute an encryption/decryption operation is essentially independent
of frequency of operation. In our experiments, for circuits implemented using the
standard cell library based on the STM 90nm low leakage process, at frequencies
higher than 1 MHz, leakage energy is usually less than 1% of the the total energy
dissipated in the circuit.

To understand the significance of the other parameters we performed the
following experiments. Consider a case in which two Rijndael S-boxes are placed
one after the other in a circuit as shown in Fig. 1. The signals to the input of
the first S-box, the second S-box, and the output of the 2nd S-box are named
S1xD, S2xD and S3xD respectively. Note that, analyzing this situation is particu-
larly useful for understanding the energy consumption trends of unrolled designs
where logic blocks are placed sequentially one after the other.

Let us assume that the signal S1xD comes from an 8-bit register, so that it
“cleanly” switches between successive byte values, i.e. all the bits of S1xD make
logic transitions at the same point of time which is usually the rising clock edge
for synchronous circuits. The signal S2xD will switch between various values in
a given time interval 0 → τd, before settling down to a stable value. The value

4

0 τd 2τd

Total Time Range: 199742 - 204426 Page 1 of 1

Desig. Signal Value Time: 199742 - 204426 X 1PS (C1: 2017812REF)

200000 201000 202000 203000 204000

SG Group 1

001 Sim S1xD [7:0] 8′hbb 70 bb

002 Sim S2xD [7:0] 8′hea 51 e5 65 ea

003 Sim S3xD [7:0] 8′h87 d1 6d ba 87

Fig. 2: The signals S1xD, S2xD, S3xD

τd which is the delay experienced by the signal S1xD usually depends on the
cell library and the architecture adopted to implement the S-boxes. Another
parameter dependent on the logic process and architecture of the S-box is the
switching activity of S2xD which can be informally defined as the number of
logic transitions made by this signal in the period 0→ τd.

The second S-box S2, sees this signal S2xD, which is switching between var-
ious values in the time interval 0 → τd. Therefore, the switching activity of S2

is actually at least double that of S1, as it would continue switching for another
τd before producing a stable signal. Figure 2 provides an example in which, the
three signals for the pair of Rijndael S-boxes (implemented using the Canright
[15] architecture in the standard cell library of the STM 90nm logic process, at
10 MHz) are shown. The synthesis for each S-box was done separately, so that
the synthesis tool would not group together gates from the first and the second
S-box in order to save area. Since the energy consumption of a logic block de-
pends on the switching activity of all its nodes, the S-box S2 should naturally
consume more energy than S1. Again the exact energy consumed by S2 relative
to S1 depends on factors like

(a) the logic process and hence the value of τd,
(b) the architecture of the S-box and hence the amount of “extra” switching

experienced by S2 and
(c) the algebraic structure of the S-box, i.e. its component Boolean functions.

The extra switching activity would be proportional to the average number of
gates that undergo a 0 → 1/1 → 0 transition during the period τd → 2τd
(the average is typically taken over all possible transitions of the signal S1xD).
Similarly if a third S-box S3 were placed after S2, then too it would experience an
increase in switching activity relative to S2 that would depend on the average
number of gates switched in the period 2τd → 3τd. The increase in switching
activity of S3 over S2 is likely to be roughly the same as that of S2 over S1,
since the number of gates in S2 that switch in τd → 2τd and those in S3 between
2τd → 3τd when averaged over

(
256
2

)
transitions of S1xD, is likely to be same.

And so if it so happens that S1, S2 and S3 drive the same amount of capacitive
load, the difference between the energy consumed between S2 and S1 is likely to
be the same as between S3 and S2.

5

2 4 6 8 10

0

5

10

15

20

25

30

Ei

E
n
er
gy

(p
J
)

Canright
LUT
DSE

Fig. 3: Energy per cycle Ei in ith S-
box Si

2 4 6 8 10

0

20

40

60

80

100

120

140

160

180

Ωn

E
n
er

gy
(p
J

)

Canright
LUT
DSE

Fig. 4: Energy Ωn required to com-
pute S10(x) using n S-boxes

Taking these ideas forward, if we connect a series of n S-boxes sequentially,
the energy consumed by each S-box in a given period of time is likely to be more
than the previous S-box, as the switching activity of the S-boxes are likely to
increase from the first to the last. We tested three different architectures for the
Rijndael S-box. The first is the Canright [15] architecture which is acknowledged
to be smallest known implementation in terms of gate area. The second is the
Look-up Table (LUT) based architecture as synthesized by the Synopsys Design
Compiler. The LUT architecture, while larger than the Canright architecture in
terms of area, is much faster in terms of signal delay from the input to output
port. The third is a Decoder-Switch-Encoder (DSE) based architecture [8], which
is optimal in terms of power/energy consumption. Over the years there has
been much research on low power Rijndael S-boxes [29,36], but the DSE based
architecture is widely believed to be most power/energy-efficient on account of its
unique architecture. The 8-bit input is first decoded to a set of 256 wires. The
S-box functionality is achieved by a shuffling of wires after which the output
is produced by an encoding of the 256 shuffled wires (i.e. the inverse of the
decoding process). The entire circuit can be constructed by AND/NAND gates,
which have very low switching probability and since the S-box functionality is
provided by wire shuffling, all 8-bit S-boxes can be constructed in this manner.
The architecture offers very low switching per change of input bit: a maximum
of 25% of the gates switch when one of the input bits is flipped.

We connected 10 instances of the S-box constructed using the Canright archi-
tecture (using the standard cell library of the STM 90nm logic process) sequen-
tially and used the Synopsys Power Compiler to estimate the energy consumed
per clock cycle Ei in each of the successive S-boxes Si at a clock frequency of 10
MHz. We repeated the same experiment for the LUT and DSE based S-boxes.
The results can be seen in Fig. 3. It can be seen that the successive instances of
the LUT based S-box which has a delay of around 2.1 ns consumes much less
energy as compared to the Canright S-box which has a delay of around 2.9 ns. In
both the LUT and Canright architectures, the switching activity in the circuit is

6

roughly proportional to the signal delay across the input and output ports. This
is however not the case for DSE S-box, which although has a delay of around
2.3 ns, experiences much lower increase in successive values of Ei because the
total switching activity in the delay period is much lower.

The above analysis is particularly relevant due to two reasons. The first per-
tains to the structure of especially SPN based ciphers, in which each round typ-
ically consists of a substitution, a linear layer and a key addition placed sequen-
tially. A substitution layer with low switching activity and signal delay ensures
that the linear layer consumes less energy. Similarly a linear layer with similar
characteristics ensures that any circuit placed after it consumes less energy. The
second pertains to the consideration of round unrolled circuits. An r-round un-
rolled circuit for a block cipher is one in which, the circuit computes the results
of r successive round functions in a single clock cycle. So if the block cipher
specification calls for N executions of the round function, an r-round unrolled
circuit will compute the result of the encryption operation in

⌈
N
r

⌉
cycles. An

r-round unrolled architecture is constructed by placing the circuits for r round
functions sequentially, followed by a register. The above analysis suggests that
any multiple round unrolled circuit is unlikely to be efficient in terms of energy
consumption. In the above example, using the LUT based S-box, computing the
result of two S-box operations (i.e. S(S(x))) over 2 cycles costs 2 ∗ 1.88 = 3.76
pJ . Computing the same over one cycle by sequential placement of 2 S-boxes
will cost 1.88 + 3.91 = 5.79 pJ . Similarly computing three S-box operations
over three cycles takes 5.64 pJ , whereas the same over one cycle would take
1.88 + 3.91 + 6.40 = 12.39 pJ . Figure 4 shows the cumulative energy cost Ωn of
computing S10(x) using a sequence of n S-boxes (i.e. in 10

n cycles), for different
values of n. It can be seen that, irrespective of the architecture of the S-box, the
energy consumption is optimal for n = 1, i.e. computing the operation over 10
cycles using a single S-box, even if this involves updating the register 10 times
in the process.

2.1 M-S vs S-M based round functions

An interesting analysis would be to consider circuits in which the linear layer
(i.e. the MixColumn logic) is placed before the substitution layer (see Figure 5).
We will denote this configuration as M-S based round function, as opposed to S-
M based functions in which the substitution layer precedes the linear layer. The
block cipher Noekeon is an example of an M-S configuration, whereas Prince

uses both S-M and M-S based functions in different rounds. To put things in
perspective, we did the energy evaluation for the M-S and S-M configurations for
AES (with the DSE architecture for S-box), Prince and Noekeon. The results are
given in Table 1. The results suggest that there is not a very significant difference
in M-S and S-M configurations, any advantage gained by one configuration over
the other would depend on the respective designs. However our experiments
suggest that placing the logic block with larger signal delay in the later part of
the circuit would be more energy efficient. For example, in AES the substitution
layer constitutes a bulk of the critical path, for which the M-S configuration

7

Substitution

Layer
MixColumn

RoundKey

128
Bit

Substitution

Layer
MixColumn

RoundKey

128
Bit

Fig. 5: The M-S and S-M architectures

is more efficient. The Noekeon linear layer has nine levels of logic and hence
a larger delay, than the Substitution layer which uses 4-bit S-boxes. For this
cipher, the S-M configuration is found to be slightly better. For a cipher like
Prince, in which both the linear layer and the substitution layer have very little
signal delays the result of the S-M and M-S configurations are almost equally
energy efficient.

Design Delay in M Delay in S Energy per cycle
(ns) (ns) (pJ)

M-S S-M

AES 0.56 2.25 12.09 14.00

Noekeon 1.56 0.38 12.37 11.88

Prince 0.31 0.36 2.30 2.18

Table 1: A comparison of Energy per cycle of M-S/S-M configurations

2.2 S-box: 4-bit vs 8-bit

In light of the above analysis, it is clear that a design using a 4-bit S-box is
more efficient in terms of energy consumed per cycle than a design using an
8-bit S-box. This is primarily due to the fact that a 4-bit S-box will typically
have a lower signal delay as compared to an 8-bit S-box. However 8-bit S-boxes
offer higher non-linearity and lower values of the DP/LP co-efficient, and so in
order to sustain similar security margins, a design using a 4-bit S-box will typi-
cally need more executions of the round function. To put things, in perspective
we performed the energy evaluation of the circuit of the SPN round function
(with blocksize equal to 128 bits) in which we experimented with two differ-
ent substitution layers, one having sixteen 8-bit S-boxes and the other having
thirty two 4-bit S-boxes. The Rijndael MixColumn was used in both cases, and
the STM 90nm cell library was used to synthesize the circuits. For this purpose
four different 8-bit S-boxes were chosen. Apart from the LUT and DSE based
Rijndael S-boxes, we chose the S-boxes used in mCrypton [25] and Whirlpool

[4]. Unlike AES, these S-boxes can be functionally defined in terms of smaller
4-bit S-boxes, and so can be implemented efficiently in hardware. Additionally

8

Table 2: A comparison of energy per cycle for round functions constructed with
(A) 16 8-bit S-boxes, (B) 32 4-bit S-boxes.

S-box Delay in S Energy per cycle
(ns) (pJ)

A DSE (8-bit) 2.25 14.00
Rijndael(LUT) 2.10 38.88

mCrypton 1.59 13.20
Whirlpool 1.33 16.38

B DSE (4-bit) 0.81 7.92
PRINCE 0.36 4.87
PRESENT 0.45 6.18

we chose three 4-bit S-boxes: the generic DSE based S-box (note that since the
S-box functionality is provided by a wire shuffle, all DSE S-boxes will have same
energy consumption), and the S-boxes used in PRINCE [13] and PRESENT [12].

Table 2 reports the energy per cycle figures at a frequency of 10 MHz. It can
be seen that the DSE architecture is not as effective as energy saving measure
for 4-bit S-boxes. It is also interesting to note that from the point of view of
energy 4-bit S-boxes out performs their 8-bit counterparts by a ratio of around
2:1. Thus, the use of 4-bit S-boxes seems to be an efficient configuration even if
the number of rounds in the encryption algorithm has to be increased in order
to maintain security margins.

2.3 Feistel vs SPN and Complex vs Simple Round Function

As far as designing lightweight ciphers is concerned, both SPN and Feistel archi-
tectures have their respective advantages and disadvantages. Feistel structures
(e.g. TWINE [34], Piccolo [32], SIMON [6]) usually apply a round function
to only one half of the state and as such structures can be implemented in
hardware with low average power. Also, implementing the inverse of Feistel con-
structions is not very difficult and hence a circuit that provides functionalities for
both encryption and decryption can be designed with minimal overhead. How-
ever, given the fact that Feistel structures introduce non-linearity in only one
half of the state in every round and hence, to maintain security margins, such
constructions usually require more executions of the round functions as com-
pared to SPN structures. As such Feistel, constructions are not suited for low
latency implementations. Most SPN constructions, on the other hand, usually
apply its transformation function to the entire state and so can be implemented
using fewer rounds. In principle, if n rounds of SPN function and m rounds of
Feistel function (where m > n) have the same security margin and similar energy
expenditure, then using the n round SPN function makes more sense since lesser
energy is consumed to update the state and key register for n rounds. A similar
argument can be used to resolve the choice between (a) Simple round functions
with more rounds (e.g. PRESENT [12]) and (b) Complex round functions with
lesser rounds.

9

2.4 Effect of Key Schedule

Generating separate round keys in each round by means of a key schedule op-
eration can eat into the energy budget as it incurs the added cost of updating
the key register in every round. For example using the STM 90nm standard cell
library, in AES (with DSE S-box), the key schedule consumes a total of 25%
of the total energy consumed. For PRESENT, the key schedule consumes close to
32% of the total energy. So designs meant primarily for low energy consumption,
designers should look to avoid the key schedule operation. This would also be
efficient in terms of area as it would not be necessary to include a key register
in the design.

2.5 Main Conclusion: Low-Energy Design Choices

We can now state some conclusions that will serve as pointers for a good low
energy block cipher design. From the point of view of energy, we know that
a round based architecture is usually optimal. Thus we concentrate on an
efficient round based construction that would with minimal overhead provide
both the functionalities of encryption and decryption. A cipher like PRINCE, al-
though provides both encryption/decryption functionalities with minimal tweak
in the circuit, does not have an equally energy-efficient round based construction
[13], as it needs to accommodate 3 different round functions in the same circuit.
We have also seen that components with low switching and delay tend to per-
form better energy wise. So another requirement is choosing components with
low area and delay. In this context, it makes sense to choose 4-bit S-boxes
over 8-bit S-boxes. We choose SPN architecture over Feistel to minimize the
number of rounds in the design. And since providing the functionalities of both
encryption and decryption is an added motivation, we try to include compo-
nents which in addition to having low area/delay, are also involutions. Having
such components would minimize any additional overhead required for providing
the functionalities of both encryption and decryption. We will now present the
specifications for the proposed block cipher and in Section 4 we will explain the
design decisions in the context of the observations made in this Section.

3 Specification

Midori is a family of two block ciphers: Midori64 and Midori128. Both ciphers
accept 128-bit keys, and have a different block size n (n = 64 for Midori64 and
n = 128 for Midori128). The basic parameters of Midori64 and Midori128 are
shown in Table 3.

Midori is a variant of a Substitution Permutation Network (SPN), which
consists of the S-layer and the P-layer, and uses the following 4× 4 array called

10

Table 3: Parameters for Midori64 and Midori128

block size(n) key size cell size(m) number of rounds

Midori64 64 128 4 16
Midori128 128 128 8 20

Table 4: 4-bit bijective S-boxes Sb0 and Sb1 in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb0[x] c a d 3 e b f 7 8 9 1 5 0 2 4 6

Sb1[x] 1 0 5 3 e 2 f 7 d a 9 b c 8 4 6

state as a data expression:

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 ,
where the sizes of each cell m are 4 and 8 bits for Midori64 and Midori128,
respectively, i.e., si ∈ {0, 1}m, m = 4 for Midori64 and m = 8 for Midori128.
A 64-bit or a 128-bit plaintext P is loaded into the state, and the i-th round
output state is defined as Si, namely S0 = P .

3.1 S-boxes and Matrices

S-box: Midori utilizes two types of bijective 4-bit S-boxes, Sb0 and Sb1, where
Sb0, Sb1 : {0, 1}4 → {0, 1}4 (see Table 4). Sb0 and Sb1 are used in Midori64 and
Midori128, respectively. Note that Sb0 and Sb1 both have the involution property.

Midori128 utilizes four different 8-bit S-boxes SSb0, SSb1, SSb2 and SSb3,
where SSb0, SSb1, SSb2, SSb3 : {0, 1}8 → {0, 1}8 Mathematically, each SSbi
consists of input and output bit permutations and two Sb1’s as shown in Fig. 6.
Each output bit permutation is taken as the inverse of the corresponding input
bit permutation to keep the involution property. Let the input bit permutation
of each SSbi be referred to as pi. Let x[i] denote the i-th bit of x, where x[0] is

the most significant bit (MSB). Then denoting pi(x) = y(i), we have

y
(0)
[0,1,2,3,4,5,6,7] = x[4,1,6,3,0,5,2,7], y

(1)
[0,1,2,3,4,5,6,7] = x[1,6,7,0,5,2,3,4]

y
(2)
[0,1,2,3,4,5,6,7] = x[2,3,4,1,6,7,0,5], y

(3)
[0,1,2,3,4,5,6,7] = x[7,4,1,2,3,0,5,6]

The output permutation used in each SSbi is simply the inverse of the map pi.

11

Sb1

Sb1

SSb0
MSB

LSB

x0

x7

8 8

Sb1

Sb1

SSb1
MSB

LSB

x0

x7

8 8

Sb1

Sb1

SSb2
MSB

LSB

x0

x7

8

Sb1

Sb1

SSb3
MSB

LSB

x0

x7

88 8

Fig. 6: SSb0, SSb1, SSb2 and SSb3

Matrix: Midori utilizes an involutive binary matrix M defined as follows:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

The matrix M updates four m-bit values (x0, x1, x2, x3) as follows:

t(x0, x1, x2, x3)←M · t(x0, x1, x2, x3),

where the operations between a matrix and a vector are performed over GF(2m).

3.2 Round Function

The round function of Midori consists of an S-layer SubCell: {0, 1}n → {0, 1}n,
a P-layer ShuffleCell and MixColumn: {0, 1}n → {0, 1}n and a key-addition layer
KeyAdd: {0, 1}n × {0, 1}n → {0, 1}n. Each layer updates an n-bit state S as
follows.

SubCell (S): Sb0 and SSbi are applied to every 4 and 8-bit cell of the state S
of Midori64 and Midori128 in parallel, respectively. Namely, si ← Sb0[si] for
Midori64 and si ← SSb(i mod 4)[si] for Midori128, where 0 ≤ i ≤ 15.

ShuffleCell (S): Each cell of the state is permuted as follows:
(s0, s1, ..., s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

MixColumn (S): M is applied to every 4m-bit column of the state S, i.e.,
t(si, si+1, si+2, si+3)←M t(si, si+1, si+2, si+3) and i = 0, 4, 8, 12.

KeyAdd(S, RKi): The i-th n-bit round key RKi is XORed to a state S.

3.3 Data Processing Part

The data processing part of Midori for encryption MidoriCore(R) performs as
follows:

MidoriCore(R) :

{
{0, 1}16m × {0, 1}16m × {{0, 1}16m}R−1 → {0, 1}16m
(X,WK,RK0, ..., RKR−2) 7→ Y

12

Algorithm MidoriCore(R)(X,WK,RK0, ..., RKR−2) :
S ← KeyAdd(X,WK)
for i = 0 to R− 2 do

S ← SubCell(S)
S ← ShuffleCell(S)
S ← MixColumn(S)
S ← KeyAdd(S,RKi)

S ← SubCell(S)
Y ← KeyAdd(S,WK)

where R = 16 for Midori64 and R = 20 for Midori128. Similarly, the inverse data
processing part MidoriCore−1(R) operates as follows:

MidoriCore−1(R) :

{
{0, 1}16m × {0, 1}16m × {{0, 1}16m}R−1 → {0, 1}16m
(Y,WK,RKR−2, ..., RK0) 7→ X

Algorithm MidoriCore−1
(R)(Y,WK,RKR−2, ..., RK0) :

S ← KeyAdd(Y,WK)
for i = (R− 2) to 0 do

S ← SubCell(S)
S ← MixColumn(S)
S ← InvShuffleCell(S)
S ← KeyAdd(S,L−1(RKi))

S ← SubCell(S)
X ← KeyAdd(S,WK)

where L−1 (inverse of the linear layer) denotes the composition of the operations
InvShuffleCell ◦ MixColumn, and InvShuffleCell permutes each cell of the state as
follows.

(s0, s1, ..., s15)← (s0, s7, s14, s9, s5, s2, s11, s12, s15, s8, s1, s6, s10, s13, s4, s3).

3.4 Round Key Generation

For Midori64, a 128-bit secret key K is denoted as two 64-bit keys K0 and K1

as K = K0||K1. Then, WK = K0 ⊕ K1 and RKi = K(i mod 2) ⊕ αi, where
0 ≤ i ≤ 14. For Midori128, WK = K and RKi = K ⊕ βi, where 0 ≤ i ≤ 18. The
constants βi are defined in Table 5. It can be seen that the constants are in the
form of 4×4 binary matrices. They are added bitwise to the LSB of every round
key byte in Midori128 and round key nibble in Midori64 respectively. Note that
αi = βi for 0 ≤ i ≤ 14.

3.5 Midori Ciphers

Midori block ciphers are composed of two variants: Midori64 and Midori128 con-
sisting of MidoriCore(16) with m = 4 and MidoriCore(20) with m = 8, respectively.
MidoriCore(16) is depicted in Fig. 7 as an example.

13

Table 5: The Round Constants βi
i βi i βi i βi i βi i βi i βi i βi

0

0 0 1 0
0 1 0 0
0 0 1 1
1 1 1 1

1

0 1 1 0
1 0 1 0
1 0 0 0
1 0 0 0

2

1 0 0 0
0 1 0 1
1 0 1 0
0 0 1 1

3

0 0 0 0
1 0 0 0
1 1 0 1
0 0 1 1

4

0 0 0 1
0 0 1 1
0 0 0 1
1 0 0 1

5

1 0 0 0
1 0 1 0
0 0 1 0
1 1 1 0

6

0 0 0 0
0 0 1 1
0 1 1 1
0 0 0 0

7

0 1 1 1
0 0 1 1
0 1 0 0
0 1 0 0

8

1 0 1 0
0 1 0 0
0 0 0 0
1 0 0 1

9

0 0 1 1
1 0 0 0
0 0 1 0
0 0 1 0

10

0 0 1 0
1 0 0 1
1 0 0 1
1 1 1 1

11

0 0 1 1
0 0 0 1
1 1 0 1
0 0 0 0

12

0 0 0 0
1 0 0 0
0 0 1 0
1 1 1 0

13

1 1 1 1
1 0 1 0
1 0 0 1
1 0 0 0

14

1 1 1 0
1 1 0 0
0 1 0 0
1 1 1 0

15

0 1 1 0
1 1 0 0
1 0 0 0
1 0 0 1

16

0 1 0 0
0 1 0 1
0 0 1 0
1 0 0 0

17

0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 0

18

0 0 1 1
1 0 0 0
1 1 0 1
0 0 0 0

...

WKWK RK0 RK1 RK2 RK13 RK14

K0K0K0 K1K1 K0 ⊕ K1K0 ⊕ K1

α0 α1 α2 α13 α14

S
u
b
C
el
l

S
u
b
C
el
l

S
u
b
C
el
l

S
u
b
C
el
l

S
u
b
C
el
l

S
h
u
ffl
eC

el
l

S
h
u
ffl
eC

el
l

S
h
u
ffl
eC

el
l

S
h
u
ffl
eC

el
l

M
ix
C
o
lu
m
n

M
ix
C
o
lu
m
n

M
ix
C
o
lu
m
n

M
ix
C
o
lu
m
n

Fig. 7: Overview of Midori64

4 Design Decision

Here, we explain our design decisions vis-a-vis the observations of Section 2.

4.1 Linear Layer

Linear layers of the each variant consist of a cell-permutation (ShuffleCell) and
four 4× 4 matrix operations (MixColumn). Those operations are performed over
GF (24) and GF (28) for the 64 and 128-bit variants, respectively.

MDS vs Almost MDS. Using the NanGate 45nm open cell library, Table 6
compares three types of 4 × 4 matrices, involutive MDS (MA), non-involutive
MDS (MB) and involutive almost MDS matrices (MC) from implementation
aspects. These matrices are considered lightweight in each of the three afore-
mentioned criteria [27,32].

MA =


1 2 6 4
2 1 4 6
6 4 1 2
4 6 2 1

 ,MB =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ,MC =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

From Table 6, MC is obviously preferable over the others in terms of the gate
size and the path delay. In fact, circulant-type almost MDS matrices are adopted

14

Table 6: Comparison of three matrices
MA MB MC

Area [GE] 108 104 48

Delay [ns] 0.93 0.68 0.37

Diffusion MDS MDS Almost MDS

Involution yes no yes

Table 7: Comparison of S-boxes
PRESENT PRINCE Sb0 Sb1

Area [GE] 24.33 16 13.3 15.33

Delay [ns] 0.47 0.36 0.24 0.32

Involution No No Yes Yes

in PRINCE [13], PRIDE [1], FIDES [9] and CLOC [21]. Moreover, Khoo et al. showed
that, for a 64-bit block size employing the AES-like structure, the combination of
4 × 4 almost MDS matrices (MC) with ShiftRow and 16 4-bit S-boxes is the most
efficient in both a round-based and a serialized implementation by proposing a
new comparison metric FOAM (figure of adversarial merit), which combines the
inherent security provided by cryptographic structures and components along
with their implementation properties [23].

While MC has efficient implementation properties, its diffusion speed is
slower and the minimum number of active S-boxes in each round is smaller
than those of ciphers employing MDS matrices due to its lower branch number.
It has been known that those properties are directly related to the immunity
against several attacks including impossible differential, saturation, differential
and linear attacks. To improve security of the almost MDS with low implemen-
tation overheads, we adopt optimal cell-permutation layers which are aimed at
improving diffusion speed and increasing the number of active S-boxes in each
round. The diffusion speed is measured by the number of rounds taken to at-
tain full diffusion, which is the property that all output cells are affected by
all input cells. Importantly, changing cell-permutation patterns generally does
not require additional implementation costs in a round-based and an unrolled
hardware implementation.

Approach to Find Optimal Cell-Permutation Layers for Almost MDS.
Since it is computationally hard to exhaustively count the minimum number
of active S-boxes for all possible permutations (= 16! ≈ 244.25) by Matsui’s
search approach [26,10], we take the following two-step approach to reduce the
search space. In the fist step, we restrict the cell-permutations to row-based cell-
permutations which permute four cells in each row, e.g. ShiftRow in AES. The
number of possible row-based cell-permutations is estimated as 218.3 (= (4!)4).
This step is based on the fact that the full diffusion property relies on only row-
based property of the cell-permutation. As a result of our searches, we find that
a class of row-based cell-permutations achieves full diffusion in 3 rounds and its
necessary and sufficient condition is as follows.

Condition 1 (3-round full diffusion) For a 4 × 4 cell-array, after applying a
cell-permutation once and twice, each input cell in a column is mapped into a
cell in the different column.

15

From our search, 576 row-based cell-permutations satisfy Condition 1. Interest-
ingly, ShiftRow-type permutation is not included in this class, i.e. it requires 4
rounds for full diffusion.

In the second step, we add a column-based cell-permutation, which permutes
four cells in each column, after applying the class of permutations satisfying
Condition 1. The target cell permutation consists of the combination of the
row-based and column-based permutations. Note that adding a column-based
cell-permutation to the row-based permutations satisfying Condition 1 does not
affect the full diffusion property. The number of all possible cell-permutations
of this class is estimated as 227.51 (= 576 × (4!)4). Consequently, we find a
class of cell-permutation achieving the largest number of active S-boxes in each
round and the smallest number of rounds to attain full diffusion when satisfying
Condition 1 and the following Condition 2 or 3.

Condition 2 (The number of active S-box) For a 4 × 4 cell-array, after apply-
ing a cell-permutation twice and twice inversely, each input cell in a column is
mapped into a cell in the same row.

Condition 3 (The number of active S-box) For a 4 × 4 cell-array, after apply-
ing a cell-permutation once and three times inversely, each input cell in a column
is mapped into a cell in the same row.

The numbers of cell-permutations satisfying Condition 2 and Condition 3 are
both 576. We define such 1152 cell-permutation as optimal cell-permutations.
Table 8 shows the minimum numbers of differentially/linearly active S-boxes
of the optimal cell-permutations and the ShiftRow-type permutation. Our op-
timal cell-permutations drastically improve the minimum number of differen-
tially/linearly active S-boxes in each round while keeping the 3-round full diffu-
sion property as shown in Fig. 8. Thus, our optimal permutations achieve security
against several attacks such as differential/linear and impossible attacks in the
same number of rounds compared to ShiftRow-type permutation. Midori128 and
Midori64 adopt one of optimal cell permutations satisfying both Conditions 1
and 2 as follows.

(s0, s1, ..., s15)← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

Starting from the state S0, each cell of S0 is mapped to S1, S2, S−11 and S−12

after applying the above cell-permutation once, twice, once inversely and twice
inversely, respectively, as follows.

S0 =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 , S1 =


s0 s14 s9 s7
s10 s4 s3 s13
s5 s11 s12 s2
s15 s1 s6 s8

 , S2 =


s0 s2 s3 s1
s12 s14 s15 s13
s4 s6 s7 s5
s8 s10 s11 s9

 ,

S−11 =


s0 s5 s15 s10
s7 s2 s8 s13
s14 s11 s1 s4
s9 s12 s6 s3

 , S−12 =


s0 s2 s3 s1
s12 s14 s15 s13
s4 s6 s7 s5
s8 s10 s11 s9

 .
16

Table 8: The number of minimum number of differentially/linearly active S-boxes
(AS) of Midori64 and Midori128

Round Number 4 5 6 7 8 9 10 11 12 13 14 15 16

Min. # of AS (Optimal Cell-Permutation) 16 23 30 35 38 41 50 57 62 67 72 75 84

Min. # of AS (ShiftRow-type Permutation) 16 18 20 26 32 34 36 42 48 50 52 58 64

From those mappings, it is clear that the relation among S−12 , S0 and S2 satisfies
Condition 2. Similarly, all of the pairs (S−12 , S−11), (S−11 , S0), (S0, S1), (S1, S2)
satisfy Condition 1.

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Optimal Cell Permutation

Shiftrow

Min. #AS

Round number

Fig. 8: Comparison of the minimum numbers of differentially/linearly active S-
boxes (AS)

4.2 S-box Layer

According to analysis of Section 2.2, 4-bit S-boxes are usually more efficient than
8-bit S-boxes in terms of energy consumption per cycle. Also, the small path
delay and the small gate area lead to low-energy implementation. To optimize
S-layer regarding energy consumption, we aim to develop a small-delay and
lightweight 4-bit S-box which fulfill the following requirements: (1) the maximal
probability of a differential is 2−2, (2) the maximal absolute bias of a linear
approximation is 2−2 and (3) involution. The requirement (3) enables us to
reduce the number of possible S-boxes from 244.25 to 225.5.

17

Approach to Find Small-Delay and Lightweight 4-bit S-box. Our ap-
proach starts with a key observation that the path delay is highly related to the
dependency of the computation. We introduce a metric depth to estimate the
path delay of S-boxes.

Definition 1 (depth): The depth is defined as the sum of sequential path delays
of basic operations AND, OR, NAND, NOR and NOT.

Example. The depth of the computation of (x⊕ y) · z is estimated as the sum of
path delays of XOR and AND, because “·z” operation is feasible only after the
computation of (x⊕ y),

In our search, we assume that depths of XOR, AND/OR, NAND/NOR and
NOT are weighted as 2, 1.5, 1 and 0.5, respectively, based on the number of
the transistors to be sequentially proceeded in the operation. The required gates
of NOT, NAND/NOR, AND/OR and XOR/XNOR are estimated as 0.5, 1, 1.5
and 2 [GEs], respectively. We search all S-boxes whose depth is 1, 1.5, 2, . . . , and
check whether the S-boxes satisfy our security requirements. As a result, we can
find Sb0 (see Table 4) whose depth and gate size are the lowest and the smallest
ones in our search. Sb0 can be expressed as follows, where inputs and outputs
are defined as {a, b, c, d} and {a′, b′, c′, d′}, and a and a′ are the most significant
bits.

a′ =
(
c NAND (a NAND b)

)
NAND (a OR d)

b′ =
(

(a NOR d) NOR (b AND c)
)
NAND

(
(a AND c) NAND d

)
c′ = (b NAND d) NAND

(
(b NOR d) OR a

)
d′ =

(
a NOR (b OR c)

)
NOR

(
(a NAND b) NAND (c OR d)

)
For instance, let us consider the computation of c′. In this computation, (b NAND d)
and (b NOR d) can be done at first. After that, the computation of (b NOR d) OR a
is done. Then, the last operation of NAND is executable. Thus, the depth of c′ is
estimated as 3.5 (= 1 + 1.5 + 1). The depths of the remaining a′, b′ and d′ are
also estimated as 3.0 or 3.5.

Considering additional requirement full diffusion property, we find Sb1 which
has the lowest depth and the smallest gate area among 4-bit bijective S-boxes
satisfying the requirements (1), (2), (3) and the full diffusion property. Sb1 is
expressed as follows :

a′ =
(

(b NAND c) NAND a
)
NAND

(
(a NOR d) NAND b

)
b′ =

(
(a XOR c) NOR b

)
NOR

(
(b NAND c) AND d

)
c′ = (c NAND d) NAND

(
(a XOR b) NAND (b OR d)

)
d′ =

(
(a NAND b) NAND c

)
NAND (b OR d)

18

Note that an S-box satisfies the full diffusion property if and only if any inputs
{a, b, c, d} of the S-box non-linearly affect all outputs {a′, b′, c′, d′}. This full
diffusion property enables us to ensure a 3-round property regarding the diffusion
in Midori128 (we will explain it in the end of this section).

Evaluation. Table 7 shows the comparison of S-boxes of PRESENT, PRINCE, Sb0

and Sb1 using NanGate 45nm open cell library. The path delay of Sb0 is 1.5
times and twice smaller than PRINCE and PRESENT, respectively, and the gate
size is also smaller than the others. Those of Sb1 are comparable to PRINCE’s
S-box. Additionally Sb0 and Sb1 have the involution property.

Table 9: Input-output bit relations of each S-box

SSb0 SSb1 SSb2 SSb3

A (1, 3, 4, 6) (0, 1, 6, 7) (1, 2, 3, 4) (1, 2, 4, 7)

B (0, 2, 5, 7) (2, 3, 4, 5) (0, 5, 6, 7) (0, 3, 5, 6)

8-bit S-boxes based on 4-bit S-boxes. From the observation in Section 2.2,
we adopt 8-bit S-boxes consisting of two 4-bit S-boxes processed in parallel to
minimize the path delay in the round-based implementation. Moreover, in order
to avoid having the unfavorable independent property exploited in the full-round
attack on KLEIN [24], we add properly-chosen bit-permutations to the begin and
the end of 8-bit S-boxes as shown in Fig. 6. As described in Section 3.1, each
output bit-permutation is the inverse of the corresponding input bit-permutation
to keep the involution property. With a property of our P-layer and those bit-
permutations, we claim that no independent property is found after 3 rounds in
Midori128. Since Sb1 has the full diffusion property, any input bit of SSbi affects
the corresponding 4 bits output as shown in Table 9. For example, in SSb1, any
of the i-th input bit affects all of the i-th output bits, where i ∈ {0, 1, 6, 7}. We
choose bit-permutations for SSb0, SSb1, SSb2 and SSb3 so that those satisfy the
following property.

Property 1 Affected 4-bit positions of outputs of an S-box are included in both
of two different input groups of the other three S-boxes.

For example, the group A of SSb1 is {0, 1, 6, 7}. Then, those bit positions are
found in the groups A and B of SSb0. This implies that the {0, 1, 6, 7}-th input
bits of SSb0 affect all 8 bits output. For the matrix operation t(y0, y1, y2, y3)←
M t(x0, x1, x2, x3), we have the following property.

Property 2 Each input cell affects three cells in the different cell positions from
the input.

19

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

P

SubCellSubCellSubCell ShuffleCellShuffleCellShuffleCell MixColumnMixColumnMixColumn

: 1 bit is affected. : 4 bits are affected. : 8 bits are affected.

Fig. 9: Theorem 1 : 3-round full diffusion property

For instance, x0 deterministically affects y1, y2 and y3, and does not affect y0.
From Properties 1 and 2, we obtain the following theorem.

Theorem 1 In Midori128, any input bit nonlinearly affect all 128 bits of the
state after 3 rounds.

Proof. An input bit affects 4 bits in the corresponding cell after the first S-layer
due to the full diffusion property of Sb1. From Property 2, the affected 4 bits
in the cell are diffused to three cells in the same column but the different cell
position after MixColumn. Note that, in the affected three cells, the affected bit
positions are the same. From Property 1, in each affected three cells, the affected
4 bits are spreads over all 8 bits in the cell after the 2nd S-layer. Therefore, all
bits are affected by any input after 3 rounds (see Fig. 9). ut

4.3 Key Scheduling Function

To save energy, Midori128 does not employ any key scheduling function. The
same 128 bit key is used as the whitening key and to generate the round key. To
make an efficient circuit for decryption, the i-th round key is defined as L−1(K)⊕
L−1(β18−i), where L−1 denotes the inverse of the linear layer. Computation of
L−1(K) involves a one-time computation with the key at the beginning at the
decryption function and so does not consume any significant energy. The round
key generation of Midori64, is slightly more complicated, as it involves selecting
K0 and K1, i.e. the most significant and least significant halves of the 128 bit
key in alternate rounds. This can be achieved by the use of a single multiplexer.
For efficient decryption, a one-time computation of L−1(K0) and L−1(K1) can
be done at the beginning of the algorithm, which again does not consume any
significant energy.

4.4 Round Constant

Both Midori128 and Midori64 use 4× 4 binary matrices as round constants. The
constants have been derived from the hexadecimal encoding of the fractional
part of π = 3.243f 6a88 85a3 · · · . For example, the 1st, 2nd, 3rd, 4th rows
of β0 when read as a 4-bit binary constant, are the encoding of the hex values

20

2,4,3,f respectively. Similarly for the other β′is. These are added bitwise to
the LSB of each round key byte in Midori128 and round key nibble in Midori64.
The round constants were chosen in this manner with a view to have an energy-
efficient decryption circuit. Both βi and L−1(βi) are 4× 4 binary matrices, and
so in both Midori128 and Midori64, the round constant addition requires a total
of 16 XOR gates only. The constants βi and L−1(βi) can be stored in lookup
tables and filtered accordingly in each round.

5 Security Evaluation

5.1 Differential/Linear Cryptanalysis

The minimum number of differentially and linearly active S-boxes of each round
is estimated as shown in Table 8. The maximum differential and linear proba-
bilities of Sb0, SSb0, SSb1, SSb2 and SSb3 are 2−2, respectively. Midori64 and
Midori128 have more than 32 and 64 active S-boxes after 7 and 13 rounds.
Thus, we expect that variants of Midori64 and Midori128 reduced to 7 rounds
and 13 rounds do not have any differential and linear trails whose probabilities
are higher than 2−64 and 2−128.

5.2 Boomerang-Type Attack

The boomerang-type attacks first divide the cipher into two sub-ciphers, then
find a boomerang quartet with high probability. The probability of constructing

a boomerang quartet is denoted as p̂2q̂2, where p̂ =
√∑

β Pr2[α→ β], and α

and β are input and output differences for the first sub-cipher, and q̂ for the
second sub-cipher. p̂2 is bounded by the maximum differential trail probability,
i.e., p̂2 ≤ maxβ Pr[α → β], and q̂2 as well. Let p, q be the maximum differential
trail probability for the first and the second sub-ciphers. Then, p, q are bounded
by multiplying the minimum number of active S-boxes in each sub-cipher. From
Table 8, any combination of two sub-ciphers for consisting of Midori64 and Mi-
dori128 after 8 and 14 rounds has at least 32 and 64 active S-boxes in total.
Note that these bounds of boomerang attacks are very conservative ones, i.e., it
requires unrealistic assumptions of p̂2 = p and q̂2 = q. Actually, in our active
S-box search, we did not find such special events. Thus, we expect that much
smaller rounds than 8 and 14 rounds are secure against boomerang-type attacks.

5.3 Impossible Differential Attacks

Midori64 and Midori128 achieve the 3-round full diffusion property. Thus, dif-
ferences of all cells in a state becomes unknown after SubCell of 4 rounds, i.e.,
there is no any probability-one (truncated) differential characteristic. Following
the miss-in-the-middle approach, the maximum number of rounds of impossible
differential characteristics is estimated as 7 rounds.

21

In order to obtain the lower bound of rounds of impossible differential, we
try to find actual impossible differential characteristics. We utilize several deter-
ministic properties of four binary matrices M . This approach was also adopted
in the security evaluation of FIDES [9]. As a result, we find 6-round impossible
differentials such that if only one active cell is input, 6-rounds of Midori64 and
Midori128 never produces only one active cell. We believe that full rounds of
Midori64 and Midori128 have sufficient number of rounds as the security margin.

5.4 Meet-in-the-Middle Attacks

The 3-round full diffusion property with our S-boxes enable us to claim that any
inserted key bit of {K0, K1} or K non-linearly affects all bits of the state after
3 rounds in the forward and the backward directions in Midori64 and Midori128,
respectively. Thus, the number of rounds used for the partial matching (PM) [2] is
upper bounded by 5 (= (3−1)+(3−1)+1). The condition for the initial structure
(IS) [30], also called independent biclique [11], is that key differential trails in
the forward direction and those in the backward direction do not share active
non-linear components. For Midori64 and Midori128, since any key differential
affects all 16 S-boxes after at least 4 rounds in the forward and the backward
directions, there is no such differential which shares active S-box in more than 4
rounds. Thus, the number of rounds used for IS is upper bounded by 3. Assuming
that the splice-and-cut technique allows an attacker to add more 3 rounds in
the worst case, at most 11-round (3 + 3 + 5) MitM attack may be feasible.
However, because of white keys in the begin and the end and the actual constraint
of key orders, we consider that it is difficult to construct 11-round attacks on
Midori64 and Midori128.

Integral Attacks

Integral attacks are likely to be efficient for the SPN ciphers. We define four
states for a set of 2n n-bit cell: A: if ∀i, j i 6= j ⇔ xi 6= xj , C: if ∀i, j i 6= j

⇔ xi = xj , B:
⊕2n−1

i xi, and U: Other. In order to estimate upper bounds
of integral characteristics, we utilize an evaluation method in [35]. At first, we
obtain the required number of rounds NA for the event of (α → β), α is a
state consisting of one A and 15 C, and β is a state consisting of all 16 U.
After that, we estimate the required number of rounds NB for the event of
(α′ → α), where α′ is a state consisting of all 16 A. Then, the round number
of integral characteristic is bounded by the sum of NA and NB . Since NA and
NB of Midori64 and Midori128 are 4 and 2, respectively, we expected that the
maximum number of round of integral characteristics is 7 rounds To obtain lower
bounds, we try to find actual integral characteristics, and obtain a 3.5-round
one. By exploiting several techniques used in the integral attack on Prince, we
can construct 7-round key recovery attacks based on the distinguisher but more
round seems to be infeasible. Thus, full versions of Midori64 and Midori128 are
expected to be enough secure against integral attacks.

22

Slide Attacks

Slide attacks exploit self similarities of round functions. Each round of Mi-
dori64 and Midori128 accept 16-bit round-dependent constants, and each bit is
XORed to all 16 cells. These 16-bit constants make a sufficient difference in each
round function. Actually, differences coming from these 16-bit constants are ex-
panded into more than the half of a state after S-layer, and it can efficiently
break self similarities to be utilized for slide attacks. Thus, we believe that any
slide attacks can not be constructed in Midori64 and Midori128.

Reflection Attacks

Reflection attacks rely on the structure of the Prince-like block cipher, de-
scribed as F−1K ◦M ◦ FK , and exploits the similarity of FK and F−1K , where FK
and F−1K are keyed permutation and its inverse function, respectively, and M is
an involutive function, namely M = M−1. Although Midori64 and Midori128 uti-
lize involutive components of S-boxes and Matrixes, the cell-permutation is not
involution. Thus, Midori64 and Midori128 are not expressed as a function of
F−1K ◦M ◦ FK . In addition, 16-bit round-dependent constants break these sim-
ilarities of the first half and the inverse of last half functions. Thus, we believe
that any reflection attacks is not applicable to Midori64 and Midori128.

6 Implementation

The main design objectives of Midori were first to achieve efficiency in energy
consumption and second to provide both the encryption and decryption (ED)
functionalities with minimal overhead. In this context, it is essential to have a
round based design optimal in terms of energy consumption, since unrolled de-
signs are unlikely to be efficient in terms of energy consumption. The S-box and
the MixColumn layer were specifically chosen for their energy-efficiency and their
involutive property. Both these layers have very small logic depth which makes
the energy consumption per round figure as small as possible. Structurally Mi-
doriCore and MidoriCore−1 differ only in the order of application of ShuffleCell,
MixColumn and InvShuffleCell operations. And so, the circuit for the round based
implementation of the cipher, that accommodates both encryption and decryp-
tion can be realized in Fig. 10.

Since the ShuffleCell operation (Sh) and MixColumn (MC) do not commute,
the linear layer which is basically the composition of MC◦Sh (= L say), must
be inverted during the decryption by L−1 = Sh−1◦MC. In hardware, this can
be achieved in two ways. The first involves filtering the outputs of the L and
L−1 operations through a single multiplexer. This requires two instances of the
MixColumn logic in the circuit, and since this layer is the most expensive in
terms of area and energy consumed, it is not the most efficient way to achieve
this functionality. The second method which is better in terms of both area
and energy is the one shown in Fig. 10. This involves using two multiplexers

23

S.LayerReg
Input

K

Output

Enc: βi

Sh

MC

Sh

Enc: K
Dec: L−1(K)

Dec: L−1(β18−i)

-1

Fig. 10: The round based encryption/decryption (ED) architecture

for filtering the outputs of the Sh and Sh−1 operations and a single instance of
the MixColumn logic. To perform the decryption operation using this circuit, the
round key needs to be changed to L−1(K), and correspondingly the ith round
constant to L−1(β18−i). The first involves a cheap one-time change to the master
key, while keeping the whitening key constant. The round constant functionality
can be achieved by employing two lookup tables, one each for encryption and
decryption and filtering the appropriate round constant through a multiplexer.
The round constants have been chosen in a manner so that both βi and L−1(βi)
are 4×4 binary matrices, and so this layer requires a total of 16 XOR gates only.
The circuit for the 64-bit variant is the same as in Fig. 10, except that it requires
an extra filtering between between K0 and K1 (the most and least significant
halves of the secret key) in alternate rounds. Additionally one can also design
an encryption only (E) variant of the circuit as shown in Figure 11.

S.LayerReg
Input

K

Output

βi

MC

K

Sh

Fig. 11: The round based encryption only (E) architecture

24

6.1 Evaluation

All the designs were initially implemented in VHDL and the functional veri-
fication was done using Mentor Graphics ModelSim SE software. The designs
were then synthesized using the Synopsys Design Compiler for the Standard Cell
library of the STM 90nm Logic Process: CORE90GPHVT v 2.1.a.

Table 10: A comparison of energy consumption of Midori with selected ciphers
for the STM 90nm Logic Process. (Average Power reported at 10 MHz)
Cipher Block Size Architecture Area Energy Energy/bit Average Power Critical Path

(in GE) pJ pJ (µW) (ns)

1 AES 128 ED 21274 769.0 6.01 699.1 4.08
E 12459 350.7 2.74 318.8 3.32

2 NOEKEON 128 ED 3439 331.5 2.59 184.2 3.79
E 2284 338.0 2.64 187.8 3.38

3 SIMON 128/128 128 ED 3480 855.6 6.68 124.0 2.67
E 2420 664.1 5.19 96.2 2.66

4 Midori128 128 ED 3661 228.3 1.78 108.7 2.44
E 2522 187.3 1.46 89.2 2.25

5 PRESENT 64 ED 2186 250.2 3.91 75.8 2.32
E 1440 172.3 2.69 52.2 2.09

6 PRINCE 64 ED 2650 146.3 2.29 112.5 4.09
E 2286 144.7 2.26 111.3 4.06

7 Midori64 64 ED 2450 121.0 1.89 71.2 2.12
E 1542 103.0 1.61 60.6 2.06

The switching activity file was then generated by performing a timing simu-
lation on the synthesized netlist using the Synopsys VCS Software. The energy
was then estimated with the Synopsys Power Compiler by using the switching
activity file. An operating frequency of 10 MHz was used in all the simulations
since the effect of the leakage power is minimal at this frequency, and so the
energy consumed is more or less independent of the clock frequency. The results
of the simulation for the 90nm logic process are presented in Table 10 along
with similar evaluations for AES, NOEKEON, SIMON 128/128, PRESENT, PRINCE.
It can be seen that Midori128/Midori64 performs better than NOEKEON/PRINCE
which were also designed to make the combined functionalities of encryption and
decryption easily available. In Fig. 12 we compare the energy/bit consumption
of the ED architectures all the seven ciphers along with the cumulative latency
figure (calculated as critical path × number of rounds). It can be seen that
Midori128 and Midori64 fare optimally with respect to both parameters.

6.2 Simulations with the STM 65 nm logic process

The design flow was repeated with the standard cell library based on the STM
65 nm logic process: CORE65LPHVT v 5.1. The simulation results are tabulated
in Table 11.

25

1 2 3 4 5 6 7

50

100

150

200

PRINCE AES

NOEKEON

SIMON 128/128

Midori128

PRESENT

Midori64

Energy/bit (pJ)

C
u
m
u
la
ti
v
e
L
a
te
n
cy

(n
s)

Fig. 12: Cumulative Latency vs Energy/bit figures

Table 11: A comparison of energy consumption of Midori with selcted ciphers for
the STM 65nm Logic Process. (Average Power reported at 10 MHz)
Cipher Block Size Architecture Area Energy Energy/bit Average Power Critical Path

(in GE) pJ pJ (µW) (ns)

1 AES 128 ED 24722 449.5 3.51 408.6 7.93
E 14483 225.6 1.76 205.1 5.27

2 Noekeon 128 ED 3640 183.2 1.43 101.8 6.64
E 2448 229.3 1.79 127.4 5.68

3 Simon 128/128 128 ED 3603 564.0 4.40 81.7 3.13
E 2612 443.1 3.46 64.2 3.17

4 Midori128 128 ED 3959 127.8 1.00 60.9 3.51
E 2714 105.8 0.83 50.4 3.87

5 Present 64 ED 2499 171.3 2.68 51.9 4.27
E 1679 114.5 1.79 34.7 3.70

6 Prince 64 ED 3199 83.6 1.31 64.3 6.43
E 2780 81.0 1.27 62.3 6.26

7 Midori64 64 ED 2620 68.5 1.07 40.3 4.09
E 1638 58.5 0.91 34.4 3.92

26

7 Conclusion

In this paper we present the block ciphers Midori128 and Midori64, optimized
with respect to energy consumption. We first identify design choices that make
a given algorithm efficient in terms of energy. Thereafter we propose two design
components i.e. MixColumn matrix and S-box, that help us achieve the objectives
of low energy design. These components are additionally involutive, that makes it
easier to design a circuit with functionalities for both encryption and decryption.
The energy of the proposed design was then found to be optimal in comparison
with state of the art block ciphers available in literature.

References

1. M. Albrecht, B. Driessen, E. Kavun, G. Leander, C. Paar, and T. Yalçin. Block
ciphers - focus on the linear layer (feat. PRIDE). In CRYPTO 2014, LNCS, Vol.
8616, pp. 57–76.

2. K. Aoki and Y. Sasaki. Preimage attacks on One-block MD4, 63-step MD5 and
more. In SAC 2008, LNCS, Vol. 5381, pp. 103–119.

3. S. Banik, A. Bogdanov and F. Regazzoni. Exploring Energy Efficiency of
Lightweight Block Ciphers. To appear in proceedings of SAC 2015.

4. P. Barreto and V. Rijmen. The WHIRLPOOL Hash Function. Available at http:

//www.larc.usp.br/~pbarreto/WhirlpoolPage.html

5. L. Batina, A. Das, B. Ege, E. B. Kavun, N. Mentens, C. Paar, I. Verbauwhede, T.
Yalçin. Dietary Recommendations for Lightweight Block Ciphers: Power, Energy
and Area Analysis of Recently Developed Architectures. In RFIDSec 2013, LNCS,
vol. 8262, pp. 103-112.

6. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers. The SI-
MON and SPECK Families of Lightweight Block Ciphers. In IACR eprint archive.
Available at https://eprint.iacr.org/2013/404.pdf.

7. G. Bertoni, J. Daemen, M. Peeters, G. V. Assche. The Keccak Reference. Available
at http://keccak.noekeon.org/Keccak-reference-3.0.pdf.

8. G. Bertoni, M. Macchetti, L. Negri, P. Fragneto. Power-efficient ASIC synthesis
of cryptographic S-boxes. In 14th ACM Great Lakes Symposium on VLSI, pp.
277-281. ACM (2004).

9. B. Bilgin, A. Bogdanov, M. Knezevic, F. Mendel, and Q. Wang. FIDES:
Lightweight authenticated cipher with side-channel resistance for constrained hard-
ware. In CHES 2013, LNCS, Vol. 8086, pp. 142–158.

10. A. Biryukov and I. Nikolic. Automatic Search for Related-Key Differential Char-
acteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad
and Others. In EUROCRYPT 2010, LNCS, Vol. 6110, pp. 322–344.

11. A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the
full AES. In ASIACRYPT 2011, LNCS, Vol. 7073, pp. 344–371.

12. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y.
Seurin, C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES
2007, LNCS, vol. 4727, pp. 450-466.

13. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knežević, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, T.
Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Appli-
cations - Extended Abstract. In Asiacrypt 2012, LNCS, vol. 7658, pages 208-225.

27

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://eprint.iacr.org/2013/404.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

14. C. De Cannière, O. Dunkelman, M. Knežević. KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In CHES 2009, LNCS, vol.
5747, pp. 272-288.

15. D. Canright. A very compact S-Box for AES. In CHES 2005, LNCS, vol. 3659, pp.
441-455.

16. J. Daemen, M. Peeters, G. V. Assche, V. Rijmen. Nessie Proposal: NOEKEON.
Available at http://gro.noekeon.org/Noekeon-spec.pdf.

17. J. Daemen, V. Rijmen. The design of Rijndael: AES - the Advanced Encryption
Standard. Springer-Verlag.

18. M. Feldhofer, J. Wolkerstorfer, V. Rijmen. AES Implementation on a Grain of
Sand. In IEEE Proceedings of Information Security, vol. 152(1), pages 13-20, 2005.

19. Z. Gong, S. Nikova, Y.W. Law. KLEIN: a new family of lightweight block ciphers.
In RFIDSec 2011, LNCS, vol. 7055, pp. 1-18.

20. J. Guo, T. Peyrin, A. Poschmann, M. J. B. Robshaw. The LED Block Cipher. In
CHES 2011, LNCS, vol. 6917, pp. 326-341.

21. T. Iwata, K. Minematsu, J. Guo, and S. Morioka. CLOC: Authenticated Encryp-
tion for Short Input. In FSE 2014, LNCS, vol. 8540, pp. 149–167.

22. S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, F. X. Standaert. Towards Green
Cryptography: a Comparison of Lightweight Ciphers from the Energy Viewpoint.
In CHES 2012, LNCS, vol. 7428, pp. 390-407.

23. K. Khoo, T. Peyrin, A. Poschmann, and H. Yap. FOAM: Searching for Hardware-
Optimal SPN Structures and Components with a Fair Comparison. In CHES 2014,
LNCS, Vol. 8731, pp. 433–450.

24. V. Lallemand and M. Naya-Plasencia. Cryptanalysis of KLEIN. In FSE 2014,
LNCS, vol. 8540, pp. 451–470.

25. C.H. Lim and T. Korishhko. mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In WISA 2006, LNCS, vol. 3786, pp 243-258.

26. M. Matsui. On Correlation Between the Order of S-boxes and the Strength of DES.
In EUROCRYPT 1994, LNCS, vol. 950, pp. 366–375.

27. S. Meng Sim, K. Khoo, F. Oggier, and T. Peyrin. Lightweight MDS Involution
Matrices. To appear in FSE 2015.

28. A. Moradi, A. Poschmann, S. Ling, C. Paar, H. Wang. Pushing the Limits: A Very
Compact and a Threshold Implementation of AES. In Eurocrypt 2011, LNCS, vol.
6632, pp. 69-88.

29. S. Morioka, A. Satoh. An Optimized S-Box Circuit Architecture for Low Power
AES Design. In CHES 2002, LNCS, vol. 2523, pp. 172-186.

30. Y. Sasaki and K. Aoki. Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In EUROCRYPT 2009, LNCS, vol. 5479, pp. 134-152.

31. A. Satoh, S. Morioka, K. Takano, S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In Asiacrypt 2001, LNCS, vol. 2248, pp.
239-254.

32. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai. Piccolo:
An Ultra-Lightweight Blockcipher. In CHES 2011, LNCS, vol. 6917, pp. 342-357.

33. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata. The 128-bit Block-cipher
CLEFIA (Extended Abstract). In FSE 2007, LNCS, vol. 4593, pp. 181-195.

34. T. Suzaki, K. Minematsu, S. Morioka, E. Kobayashi. TWINE: A Lightweight Block
Cipher for Multiple Platforms. In SAC 2012, LNCS, vol. 7707, pp. 339-354.

35. T. Suzaki, K. Minematsu. Improving the Generalized Feistel. In FSE 2010, LNCS,
vol. 6147, pp. 19-39.

28

http://gro.noekeon.org/Noekeon-spec.pdf

36. S. Tillich, M. Feldhofer, and J. Großschädl. Area, Delay, and Power Characteristics
of Standard-Cell Implementations of the AES S-Box. In SAMOS 2006, LNCS, vol.
4017, pp. 457-466.

Appendix A: Test Vectors

A. Midori128

1.
Plaintext : 00000000000000000000000000000000
Key : 00000000000000000000000000000000
Ciphertext : c055cbb95996d14902b60574d5e728d6

2.
Plaintext : 51084ce6e73a5ca2ec87d7babc297543
Key : 687ded3b3c85b3f35b1009863e2a8cbf
Ciphertext : 1e0ac4fddff71b4c1801b73ee4afc83d

B. Midori64

1.
Plaintext : 0000000000000000
Key : 00000000000000000000000000000000
Ciphertext : 3c9cceda2bbd449a

2.
Plaintext : 42c20fd3b586879e
Key : 687ded3b3c85b3f35b1009863e2a8cbf
Ciphertext : 66bcdc6270d901cd

29

	Midori: A Block Cipher for Low Energy (Extended Version)
	Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni

