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ABSTRACT 

The efficiency of fully homomorphic encryption is a big question at present. To improve efficiency of fully homomorphic encryption, 

we use the technique of packed ciphertext to construct a multi-bit fully homomorphic encryption based on Learning with Errors 

problem. Our scheme has a short public key. Since our fully homomorphic encryption scheme builds on the basic encryption scheme 

that choose Learning with Errors samples from Gaussian distribution and add Gaussian error to it, which result in that the number of 

Learning with Errors samples decrease from 2nlogq to n+1. We prove that our fully homomorphic encryption scheme is feasible and 

its security relies on the hardness of Learning with Errors problem. In addition we adapt the optimization for the process of key 

switching from GHS13 and formal this new process of key switching for multi-bit fully homomorphic encryption. At last, we analyze 

the concert parameters and compare these parameters between our scheme and GHS13 scheme. The data show that our scheme has 

public key smaller by a factor of about logq than it in GHS13 scheme. 
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1. INTRODUCTION 

Fully homomorphic encryption (FHE) supports arbitrarily computation on encrypted data without using secret key. FHE has a 

number of potential applications such as private cloud computing. The first FHE scheme was proposed by Gentry in 2009 [1]. Then 

numerous schemes based on different hardness assumptions have been proposed [1, 2, 3, 4, 5, 6, 7] and some techniques have been 

developed to improve efficiency [8, 9,10,11]. 

FHE is still quite expensive following its invention, which hinder application of FHE in practical. Specially, the ciphertext contain 

noise due to security consideration so that each homomorphic operation will increase the noise in ciphertext. In particularly, 



2 

 

homomorphic multiplication increases the noise significantly. When the noise exceeds the bound of correct decryption, 

homomorphic operation cannot be performed.  

To perform more homomorphic operations, we must set large parameters so that the ciphertext has enough space to accommodate 

noise, which lead to large ciphertext size. To improve efficiency of FHE, there is a technique named packed ciphertext proposed in 

[12], which can pack some plaintext values into one ciphertext. Performing once homomorphic operation for a packed ciphertext is 

equivalent to performing the same operation for these plaintext values simultaneously. The technique of packed ciphertext is 

originally based on polynomial Chinese reminder theorem (CRT) [12], which can be applied in the FHE based on ring Learning with 

Errors so as to achieve a nearly optimal homomorphic evaluation in [8]. In addition, Brakerski et al. describe how to apply the 

technique of packed ciphertext in FHE based on Learning with Errors (LWE) [9], and we refer their scheme as GHS13. However, 

GHS13 scheme is only a symmetric FHE and they don’t describe how to achieve FHE in detail. 

The goal of this paper is to construct a multi-bit FHE with short public key using packed ciphertext. Note that our FHE scheme is not 

the asymmetric version of GHS13, since both build on the different basic encryption schemes that results in different size of 

parameters in both FHE schemes. In GHS13 scheme, Brakerski et al. use Regev-type cryptosystem to construct FHE. In this paper 

our scheme build on the Linder and Peikert’s encryption scheme (LP10) proposed in [13], which is different with GHS13. In our 

basic encryption scheme, we choose LWE samples from Gaussian distribution and add Gaussian error to it, which result in that the 

number of LWE samples decrease from 2nlogq to n+1. The smaller public key comes from the different style of the basic encryption 

scheme.  

Furthermore, it is well known that key switching is a critical technique to achieve LWE-based FHE. However, using key switching to 

construct FHE is expensive. To improve the efficiency of key switching, we optimize the process of key switching as in [9], and we 

formal this new process of key switching in term of multi-bit FHE. For example, a key switching matrix for a multi-bit FHE is 

(n+t)2 log q  ×(n+t)matrix in the traditional process of key switching, where t is the length of message. In our scheme, a key 

switching matrix is only (n+t)2×(n+t) matrix. Since key switching needs to be performed after each homomorphic multiplication, 

thus this optimization for key switching is important to improve efficiency of FHE. 

For application of FHE, it is also very important to analyze how to estimate parameters of a FHE scheme to ensure correctness and 

security against lattice attacks. Given a security level required by a real-world application, we analyze the concert parameters for 

fully homomorphic encryption based on Learning with Error problem. We obtain concert parameters of our scheme and GHS13 

scheme by this method. The data shows our scheme has a better public key size than the asymmetric version of GHS13 scheme. 

This paper is organized as follows. Section 2 introduces the LWE assumption and defines homomorphic encryption and its related 

terms. Section 3 describes the basic encryption scheme. Section 4 defines homomorphic addition and homomorphic multiplication. 

The new key switching process is introduced in this section. Section 5 describes a FHE scheme. Section 6 analyzes the noise growth 
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in homomorphic addition and homomorphic multiplication, which show it is possible to achieve a leveled FHE scheme. Section 7 

gives the parameters property and concert parameters. 

2. PRELIMINARIES  

2.1 Basic Notation 

We use x   to indicate rounding x to the nearest integer, and x   , x   (for x≥0)to indicate rounding down or up. When q is not a 

power of two, we will use log q   to denote 1+ log q   . For an integer q, we define the set q = (-q/2, q/2]∩ . For any x , let 

y=[x]q denote the unique value y∈(-q/2, q/2]. x←D means that x is a sample from a distribution D .We define B-bounded 

distributions as ones whose magnitudes never exceed B. 

2.2 Learning with Errors 

The LWE problem was introduced by Regev in [14] as a generalization of the well-known “learning parity with noise” problem, to 

larger moduli. This problem was later generalized as the ring LWE problem by Lyubaskevsky, Peikert and Regev in [15].  

The LWE problem is parameterized by a dimension n≥1 and integer modulus q≥2, as well as a probability distribution   over 

  or q . For a vector s∈ n
q , the LWE distribution , χS  is obtained by choosing a vector a from n

q   uniformly at random 

and a noise term e←  ，and outputting (a, b = <a, s> + e mod q) ∈ n
q q  . The search-LWE problem is, given an arbitrary 

number of independent samples (ai, bi) ← , χS , to find s. We are primarily interested in the decision-LWE (DLWE) problem for 

cryptographic applications. The decision-LWE problem is to distinguish with some non-negligible advantage between the two cases. 

One case is any desired number of independent samples (ai, bi) ← , χS . Another case is the same number of independent samples 

drawn from the uniform distribution over n
q q  .  

There are two kinds of reductions such as quantum reduction [14] and classical reduction [16, 17] from worst-case lattice problems to 

the LWE problem. In addition, if the vector s is sampled from the distribution  , then the LWE problem is still hard.  

For a lattice Λ and a positive real r > 0, we denote Λ,rD as the discrete Gaussian distribution over Λ and parameter r, which is the 

probability distribution that assigns mass proportional to exp(
2 2/π s x ) to each point Λx . For Λ n  , the discrete Gaussian 

,n r
D


 is simply the product distribution of n independent copies of ,rD .  

2.3 Leveled Homomorphic Encryption 

A homomorphic encryption scheme HE=(Keygen, Enc, Dec, Eval) includes a quadruple of PPT algorithms. For the definition of full 

homomorphic encryption in detail, readers refer to these papers [1, 5]. 
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There are two types of fully homomorphic encryption schemes. One is the leveled fully homomorphic encryption scheme, in which 

the parameters of a scheme depend on the multiplication depth that the scheme can evaluate. In this case, any circuit with a 

polynomial depth can be evaluated. The other one is pure fully homomorphic encryption schemes, which can be built by using 

bootstrapping method from a leveled fully homomorphic encryption scheme with the assumption of circular security. A pure fully 

homomorphic encryption scheme can evaluate the circuit whose depth is not limited. The following definitions are taken from [5]. 

Definition 1 (L-homomorphism). A scheme HE is L-homomorphic, for L=L( λ ), if for any depth L arithmetic circuit f (over GF(2)) 

and any set of inputs m1,…,ml, it holds that  

Pr[HE.Decsk (HE.Evalevk(f,c1,…,cl))≠f(m1,…,ml)] = negl( λ ) , 

where (pk, evk, sk)←HE.Keygen(1λ ) and ci← HE.Encpk(mi). 

Definition 2 (compactness, full homomorphism and leveled full homomorphism). A homomorphic scheme is compact if its 

decryption circuit is independent of the evaluated function. A compact scheme is fully homomorphic if it is L-homomorphism for any 

polynomial L. The scheme is leveled fully homomorphic scheme if it takes 1L as additional input in key generation. 

3. THE BASIC ENCRYPTION SCHEME 

At present all of FHE schemes are built on some basic encryption scheme. Our FHE scheme is built on the cryptosystem proposed by 

Lindner and Peikert [13]. Below we describe this cryptosystem and then analyze encryption noise and decryption noise of this 

cryptosystem, which is important to construct FHE scheme later. An integer modulus q ≥ 2, integer dimension n1, n2 and a Gaussian 

distribution ,rD denoted as  , which relate to the underlying LWE problem. In order for the smallest public keys, a uniformly 

random public matrix A 1 2n n
q
 can be generated by a trusted source, and is used by all parties in the system. If the trusted source is not 

got in the system, A may be generated in the step of key generation and as part of public key. 

SecretKeygen( 21n ): Choose a matrix S← 2t nχ .Output sk = S′←(I | -S), where I is the t×t identity matrix. Thus the secret key sk 

is a t×(t+n2) matrix in which each row can be viewed as a secret key that can recover one bit of multi-bit message.  

PublicKeygen(A, sk): Choose E← 1n tχ ,and let B = AST +E 1n t
q
 . Set the public key pk = B. 

Enc(A, pk, m)：To encrypt a multi-bit message m∈ 2
t ，sample e1 ←

1nχ , e2 ←
tχ, and e3 ←

2nχ , and output c←(
2

q 
 
 

m + 

Bt  e1 +e2 , A
t  e1 + e3) 

2n t
q
 . 

Dec(sk, c)：Compute v ←S′c mod q and output m ←
2

mod 2
q
  v . 

For security purpose the noise is added at encryption and correct decryption depend on the noise magnitude. Next we analyze the 

noise magnitude at encryption and decryption. 
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Lemma 3.1 (encryption noise). Let q, n2, A,  ≤ B be parameters in above encryption scheme. The secret key S′ and public key B are 

generated from SecretKeygen(1n) and PublicKeygen(A, S′). Set c←Enc(A, B, m). Then for some e with 


e ≤E < (n1+n2)B
2+ B, it 

holds that 

S′c =
2

q 
 
 

m + e （mod q）. 

Proof. By definition   

S′c =
2

q 
 
 

m + Bt  e1 +e2 -SAt  e1 - Se3（mod q） 

=
2

q 
 
 

m + (Bt-SAt)  e1- Se3 +e2（mod q） 

=
2

q 
 
 

m +ET  e1- Se3 +e2（mod q）. 

Since  ≤ B, we have T
1 3 2 
 E Se e e ≤(n1+n2)B

2+ B and the lemma follows. 

We refer to e as the noise in ciphertext. The above Lemma give the bound of noise magnitude in “fresh ciphertext” that is the result 

of encryption and not the result of homomorphic operations on encrypted data. 

Lemma 3.2 (decryption noise). Choose a matrix S← 2t n  . Let c 2n t
q
  be a vector such that 

S′c =
2

q 
 
 

m + e（mod q）, 

where m∈ 2
t  and S′←(I | -S). If 


e <

4

q 
 
 

, then we have m← E.Dec(S′, c). 

The decryption is as same as Regev’s encryption scheme in [14]. We omit the proof of above Lemma. In order to recover message, |e 

/
2

q 
 
 

| should be less than 1/2. Thus the condition for correct decryption is |e|<
2

q 
 
 

/2. Since
4

q 
 
 

≤
2

q 
 
 

/2, we can also take the bound 

of noise magnitude as 
4

q 
 
 

. 

4. HOMOMORPHIC OPERATION 

Suppose c1 and c2 encrypt m1 and m2 under the secret key S′ respectively; that is, S′ci =
2

q 
 
 

mi + ei（mod q）with small ei for i={1,2}. 

If the ciphertext c resulted from addition or multiplication of two ciphertext c1 and c2 can hold S′c = 
2

q 
 
 

 (m1+m2 )+ e（mod q）or 
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S′c = 
2

q 
 
 

 (m1 m2 )+ e（mod q）for small e, where m1 m2 means the bitwise product, we say that additive or multiplicative 

homomorphism could be achieved. 

The above basic encryption scheme has additive homomorphic property itself. To obtain multiplicative homomorphic property, we 

define the ciphertext for multiplication as 1 2

2

q
    c c  like definition in paper [5]. However, the secret key is the matrix and is 

not the vector in the above basic encryption scheme, what is the form of the secret key corresponding to the multiplication of two 

ciphertexts? In fact, each row in the secret key matrix can be used to recover a bit of message. If the length of message is t, the secret 

key matrix is viewed as t row vectors. We refer to si as the i-th row in the secret key matrix S′. According to the above explain, 

decrypting the ciphertext 1 2

2

q
    c c  by the tensor vector si si will result in a product of the i-th bit of two messages with 

respect to two ciphertexts c1, c2. We store the tensor vector si si as the rows of the matrix ST that is the secret key matrix relative to 

ciphertext 1 2

2

q
    c c .             

Thus the secret key matrix ST is a t×(t+n2)
2 matrix. We next analyze the condition of correct decryption for homomorphic operation. 

4.1 Homomorphic Addition 

By definition 

S′(c1+c2) = S′c1 + S′c2 =
2

q 
 
 

•(m1+ m2)+ e1+e2 (mod q). 

The noise increase a little in homomorphic addition. If the noise magnitude is small, namely, 
1 2e + e <

4

q 
 
 

, the ciphertext c1+c2 

can be decrypted correctly. It means the sum of ciphertexts encrypts the sum of messages. 

4.2 Homomorphic Multiplication 

Let an error r = 1 2

2

q
    c c –

2

q
 (c1  c2). Recall that the secret key is the matrix ST relative to the ciphertext vector 

1 2

2

q
    c c . By definition, we have  

ST  1 2

2

q
    c c  = ST 

2

q
 (c1 c2) + ST  r  (mod q) 

 = 
2

q 
 
 

 (m1 m2 )+ 1
multe  + ST  r   (mod q)   (4.1) 

= 
2

q 
 
 

 (m1 m2 ) + 1
multe + 2

multe  (mod q) 
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where 1
multe is the noise in the ciphertext 

2

q
 (c1 c2) and 2

multe = ST  r. 

If 1 2
mult mult


e + e <

4

q 
 
 

, the tensored ciphertext for multiplication 1 2

2

q
    c c  can be decrypted correctly under the secret key 

ST. 

4.3 Key Switching 

Even though the tensored ciphertext for multiplication enable  to achieve the property of homomorphic multiplication, it leads to the 

expansion of dimension of ciphertext and secret key. Thus key switching technique was introduced in [3, 4], which can convert one 

ciphertext of high dimension under the secret key of high dimension into another ciphertext of normal dimension under the secret key 

of normal dimension. However the key switching described in [3, 4] is not efficient. Since the secret key need to be represented as 

binary bit in order to reduce the noise in the process of key switching, which result in expansion of the dimension of ciphertext and 

secret key. Here we apply the technique proposed by Gentry et al. in [18] to improve efficient of key switching and formal this new 

key switching for multi-bit FHE.  

In addition, if it only put key switching matrixes corresponding to the rows in the secret key matrix ST together to form a new key 

switching matrix, the result of key switching will be the collection of ciphertexts of normal dimension. To get only a single ciphertext 

resulted from key switching, we apply the method of multi-bit encryption in key switching as same as in [9] to yield key switching 

matrix that lets us convert the single ciphertext of high dimension into a single ciphertext of normal dimension. The process of key 

switching is described as below. 

SwitchKeyGen(S1←
st n 
,S2←

tt n 
)：The parameters is described below, which allow to switch ciphertext under the secret key 

S1 into the ciphertext under the secret key [I|S2], where I is the identity matrix and  [I|S2] means the  horizontal concatenation of 

the matrix I and S2. Let l= log q   , and let  be an error distribution for which the decision-LWE problem with modulus P=2lq is 

hard. 

Choose a uniform matrix A t sn n
P
 .Sample E← st n 

. 

Set B←S2A+E+2lS1
st n

P
 . Output W=   

B
A

 2-l ( )t st n n  , where   
B
A

means the vertical concatenation of the matrix A and B. 

SwitchKey (W ( )t st n n  , c1
sn

q  )：Output  c2← 1 Wc mod q tt n
q


 
. 

We call W as key switching matrix. The process of key switching is essentially the product of an (t+nt)×ns key switching matrix and 

an ns-dimensional ciphertext vector. Next, we describe the correctness of key switching, namely the decryption of the resulting 

ciphertext after key switching can preserve correctness.  
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Lemma 4.1 Let S1, S2, q,A,W be parameters as described in SwitchKeyGen. Let c1
sn  and c2 ← SwitchKey(W, c1) . Then, 

[I|S2]  c2 =et+S1c1  (mod q), where et= 2-l  Ec1 +[I|S2]ew is the noise in the ciphertext c2.  

Proof.  Let ew= 1 Wc - Wc1. By definition 

[I|S2]  c2 = [I|S2]  1 Wc  (mod q) 

= [I|S2]  Wc1+ [I|S2]ew  (mod q) 

      = [I|S2]   
B
A

 2-l  c1+ [I|S2]ew  (mod q) 

 = 2-l  Ec1 +[I|S2]ew+S1c1  (mod q) 

= et+S1c1  (mod q). 

Note that since E, 2-lc1 and [I|S2]ew is small, et is also small. The above Lemma tell us that the noise magnitude in the resulting 

ciphertext c2 increase a little, but the resulting ciphertext still can be decrypted correctly as long as the noise in the source ciphertext 

is small. Next we consider the security for the key switching. 

Lemma 4.2 Let S1←
st n 

, S2←SecretKeygen(1 tn
) and W←SwitchKeyGen(S1, S2). Then W is computationally indistinguishable 

from uniform over ( )t st n n  assuming decision-LWE problem is hardness. 

Proof.  We have W=   
B
A

 2-l ( )t st n n  from above key switching, where A is a uniform matrix and B←S2A+E+2lS1. Because B 

is a matrix whose entries are the ciphertext of Regev’s scheme, B is computationally indistinguishable from uniform over st n
P
 . 

Therefore W is computationally indistinguishable from uniform over ( )t st n n  .  

5. A HOMOMORPHIC ENCRYPTION SCHEME 

A leveled homomorphic encryption scheme we describe as below. For a leveled homomorphic encryption scheme, the circuit depth L 

is first be given before homomorphic evaluation. Each level in circuit has a different secret key. Homomorphic operations are just to 

be performed from level L to 1. The first level is level L, and the last level is level 0. The level 0 is only used to switch key. After 

each homomorphic operation, we need to transform the result to enter into the next level of circuit. Before each homomorphic 

operation, it requires that the two ciphertext have the same secret key (namely, the same level). Otherwise, we need transform the 

higher level ciphertext into lower level. The function of FHE.RefreshNextLevel is to do it. We note the key switching is just used 

for tensored ciphertext. Thus the ciphertext of normal dimension need to tensor with a trivial ciphertext (1,0,…,0) before using key 

switching.   

FHE.Setup( λ , L ): Input the security parameter λ  and the circuit level L, output the noise distribution χwith Bχ , and the 

dimension n1, n2. Let l= log q   , and the noise distribution χensure that the decision-LWE problem with modulus P=2lq is hard. If 
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there is a trusted source in the system, all parties in the system would the trusted source to generate a uniformly random public matrix 

A 1 2n n
q
 . If not, A may be generated in the step of key generation and as part of public key.  

FHE.KeyGen(n1, n2, L )：For i =L down to 0, do the following:： 

(1) Run S′i←SecretKeygen( 21n )  where S′i =[I|Si]. Let sk={ S′i }. 

(2) When i =L do this step. Run BL←PublicKeygen(A, S′L). Let pk1={ BL }. 

(3) Let sj be the j-th row of the secret key matrix S′i. Let STi be the matrix that store the tensor vector sj sj as its rows.（Omit this 

step when i=0.） 

(4) Run 1i i W ← SwitchKeyGen(S′i, Si-1).（Omit this step when i=0.）Let pk2={ 1i i W } . 

Then output sk={ S′i } and pk={pk1，pk2} for i∈{0,…L}. 

FHE.Enc(pk1, m)：Take a message m∈ 2
t . Run Enc(pk1, m). 

FHE.Dec(sk, ci)：Assume that ci is a ciphertext under the secret key S′i. Run Dec(sk, ci). 

FHE.Add(pk2, c1, c2)：Do the following steps. 

(1) If ciphertexts c1, c2 has the same secret key S′i, first compute c3←c1+c2. In order to provide an output that corresponds to the next 

level key S′i-1 and rather than S′i, we call FHE.RefreshNextLevel to do it. Output cadd ← FHE.RefreshNextLevel(i, c3, 

1i i W ) 2n t
q
 . 

(2) If ciphertexts c1, c2 has the different secret key, we choose the ciphertext with higher level and input into FHE.RefreshNextLevel 

such that the two ciphertexts have the same secret key. We can repeat to call FHE.RefreshNextLevel until the output from 

FHE.RefreshNextLevel has the same secret key with another ciphertext of lower level. Then go to step (1). 

FHE.Mult(pk2, c1, c2)：Do the following steps. 

(1) If ciphertexts c1, c2 has the same secret key S′i , first compute c3← 1 2

2
( )

q
   c c under the secret key STi. Then output cmult← 

SwitchKey ( 1i i W , c3).  

(2) If ciphertexts c1, c2 has the different secret key, what we do as same as the step (2) in FHE.Add(pk2, c1, c2). 

FHE.RefreshNextLevel(i, c, 1i i W ): First compute c′= c (1,0,…,0), then output SwitchKey( 1i i W ,c′). 

The below lemma 5.1 illustrate the security of the above FHE scheme. 
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Lemma 5.1 (security). Let n1, n2, q,  be some parameters such that decision-LWE problem is hardness. Let L be polynomial depth. 

Then for any message m∈ 2
t , if (pk1, pk2, sk)←FHE.KeyGen(n1, n2, L), c←FHE.Enc(pk1, m), it holds that the joint distribution (pk1, 

pk2, c) is computationally indistinguishable from uniform. 

Proof. Since pk2={ 1 1 2 1 0, , ,L L L L     W W W } and pk1={ BL }, we consider the distribution (BL, 1 1 2 1 0, , ,L L L L     W W W , c)  

and apply a hybrid argument as in paper [3]. First, 1 0W  is indistinguishable from uniform according to the Lemma 4.2. Then all 

1i i W  can be replaced with uniform in ascending order according to the same argument. At last, the remainder are (BL, c). Since 

(BL, c) are a public key and ciphertext of the basic encryption described in section 3, (BL, c) are indistinguishable from uniform. 

Therefore we have that the joint distribution (pk1, pk2, c) is computationally indistinguishable from uniform.  

6. NOISE ANALYSIS 

Homomorphic addition and multiplication increase the noise in ciphertexts. In particularly, homomorphic multiplication increases the 

noise significantly. The analysis for homomorphic addition is simple. That is only the sum of the noise in two ciphertexts. We next 

analyze the noise growth in homomorphic multiplication.   

Suppose ciphertext ci under the secret key S′L is a fresh ciphertext for i∈{1,2}, namely, ci←FHE.Enc(pk1, mi). By lemma 3.1, we 

have S′L ci =
2

q 
 
 

m + e （mod q）, where 


e ≤E<(n1+n2)B
2+B. Let cmult be the output of FHE.Mult(pk2, c1, c2) under the secret 

key S′L-1. According to the result in section 4.2 and Lemma 4.1, we have 

S′L-1  cmult = S′L  c3 +et  (mod q) 

         =
2

q 
  

 (m1 m2 ) + 1
multe + 2

multe + et  (mod q). 

According to the analysis in [20,21,22,23], we get 1
mult


e < 5(n2+t)BE, 2

mult


e < (1/2)(n2+t)2B2 and t 

e <(n2+t)2B+ (1/2)n2B. 

Putting these together, we get the bound of noise magnitude after once homomorphic multiplication between two fresh ciphertexts 

such as   

1 2
mult mult

t 
e + e e <5(n2+t)BE + (1/2)(n2+t)2B2 + (n2+t)2B+ (1/2)n2B < 5(n2+t)BE + 2(n2+t)2B2. 

After we evaluate a circuit of depth L, the upper bound on the noise magnitude in resulting ciphertext is 1
1 1 2
L Lt E L t t    , where 

t1=5(n2+t)B, t2=2(n2+t)2B2. As long as the parameters of this scheme satisfy 

1
1 1 2
L Lt E L t t    <

4

q 
 
 

,         (6.1)   

we can evaluate homomorphic operation in circuit of depth L. For appropriate parameters, we obtain a leveled fully homomorphic 

encryption scheme. 
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7. PARAMETERS SETTING 

In this section, we estimate the concert parameters for our scheme. These parameters include circuit depth L, dimension n, modulus q 

and Gaussian parameter r. By these parameters, we can obtain concert public key size, secret key size and ciphertext size. Since 

GHS13 scheme is also a multi-bit FHE scheme and similar with our scheme, we compare these parameters between our scheme and 

GHS13 scheme. 

7.1 Parameters Property 

Some properties of our scheme and GHS13 scheme are listed in Table 1. All sizes are in bits. The number of LWE sample is 

N=2nlogq in GHS13 scheme and is n1 in our scheme. We assume the circuit depth is L. Thus there is L+1 private keys and L+1 key 

switching matrixes. Note that key switching matrixes is viewed as a kind of public key, namely evaluation keys, for evaluation on 

ciphertext. If one assume circular security, the number of evaluation keys is one rather than L+1. But we here do not assume circular 

security. 

We set parameter as n1= n2 = n and t=n in our scheme so that the two LWE hardness assumptions is equivalent. It is obvious that our 

public key size is better than it in GHS13 scheme. Specially, our public key size improves a factor logq. 

7.2 Concert parameters 

It is a general method to use distinguishing attack to estimate concert parameters of cryptosystem based on LWE. The distinguishing 

attack means that the adversary distinguishes an LWE instance from uniformly random with some noticeable advantage. The 

essential of distinguishing attack is to find a short nonzero integral vector in ( ) A . According to the result in [19], if one wants to 

find a short vector of length  using state of the art lattice reduction algorithms, the required root-Hermite factor is
2(log )/(4 log )2 n q  . 

The time (in seconds) that it takes to compute a reduced basis with root-Hermite factor  for a random LWE instance was estimated 

in [13] to be at least log(time) ≥1.8/log( )–110. Thus a lower-bound on the dimension n required to get any given security level 

was derived in [18] as 

         n ≥ log(q/r)(  +110)/7.2.           (7.1) 

Given security level, modulus q and Gaussian parameter r, we obtain the minimal values of dimension n to ensure the corresponding 

security level from inequation (7.1). Some values are presented in Table 2 for  =80 and r=8 . 

 

Table 1. Some properties of our scheme and Bra12 scheme 

 Message 

Bit 

Public Key 

B 

Full Public key 

B & A 

Secret keys Evaluation keys Ciphertext 

Our scheme t n1tlogq n1(n2+t) logq t(L+1)(n2+t) (L+1)(n2+t)3logq (n2+t)logq 

BGH13 t 2ntlog2q 2n(n+t)log2q t(L+1)(n+t)logq (L+1)(n+t)3log2q  (n+t)logq 
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Table 2. Minimal values of dimension n to ensure  =80 with r=8 

log q 8 13 22 42 81 

n  132 264 501 1029 2058 

 

Table 3. The sizes of parameters in our scheme and GHS13 scheme. 

(a)  Our scheme 

               

 

 

 

(b)  GHS13 scheme 

 

 

 

 

For a leveled FHE, the circuit depth L has to be specified before performing homomorphic operations. In order to evaluate 

homomorphic operations in circuit of depth L, we need to take appropriate modulus q according to inequation (6.1) so that noise 

growth cannot exceed the bound of correct decryption. For GHS13 scheme, even though their scheme is symmetric encryption, it is 

easy to translate their scheme to asymmetric encryption. In the asymmetric version of GHS13, the modulus q needs to satisfy 

1
3 3 4'L Lt E L t t    <

4

q 
 
 

 where t3=4(n+t)logq, t4=2(n+t)2Blog3q and the noise of fresh ciphertext E’= 2nBlogq.  

In Table 3, when the security level is 80 bit, we provide some values for modulus q and dimension n under the different circuit depth 

L=0, 1, 5, 10. Note that the size of public key, secret key and ciphertext is kilobyte. The data in Table 3 shows that the concert sizes 

of all parameters in our scheme are smaller than in GHS13 scheme.  

8. CONCLUSION 

The goal of this paper is to construct a multi-bit FHE scheme with short public key from Learning with Errors. The short public key 

comes from the different style of the basic encryption scheme. We analyze the correctness and give the proof of the security of our 

scheme. In addition, we optimize the process of key switching and formal this new process of key switching in term of multi-bit FHE. 

At last, we estimate the concert parameters for our scheme. We compare these parameters between our scheme and BHS13 scheme. 

Our scheme have public key smaller by a factor of about logq than in GHS13 scheme.  

L n logq Public Key Full Public Key Evaluation Keys Secret keys Ciphertext 

0 554 24 900 1799 3988710 1799 3.25 

1 1082 44 6287 12575 108842272 25150 11.6 

5 3351 130 21240 42479 834013416 127438 26 

10 6333 243 1189819 2379639 663125976563 26176025 376 

L n logq Public Key Full Public Key Evaluation Keys Secret key Ciphertext 

0 528 23 35975 71950 75946719 1564 3 

1 1188 48 793212 1586425 7535522461 33051 14 

5 3800 147 76180166 152360332 6947631140625 3109395 136 

10 11004 420 5214983658 10429967316 3672739157425943 198666044 1128 



13 

 

9. REFERENCES 

[1] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices [M]. Proceedings of the 41st annual ACM symposium on 

Theory of computing. Bethesda, MD, USA; ACM. 2009: 169-178. 

[2] Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers 

[M]//GILBERT H. Advances in Cryptology – Eurocrypt 2010. Springer Berlin / Heidelberg. 2010: 24-43. 

[3] Z. Brakerski, V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard) LWE [M]//OSTROVSKY R. IEEE 

52nd Annual Symposium on Foundations of Computer Science. Los Alamitos; IEEE Computer Society. 2011: 97-106. 

[4] Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. (Leveled) Fully Homomorphic Encryption without Bootstrapping [M]. 

Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. Cambridge, Massachusetts; ACM. 2012: 

309-325. 

[5] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical Gapsvp [M]//SAFAVI-NAINI R, 

CANETTI R. Advances in Cryptology – Crypto 2012. Springer Berlin Heidelberg. 2012: 868-886. 

[6] Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan. On-the-Fly Multiparty Computation on the Cloud Via Multikey Fully 

Homomorphic Encryption [M]. Proceedings of the 44th symposium on Theory of Computing. New York, New York, USA; 

ACM. 2012: 1219-1234. 

[7] Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, 

Asymptotically-Faster, Attribute-Based [M]//CANETTI R, GARAY J. Advances in Cryptology – Crypto 2013. Springer Berlin 

Heidelberg. 2013: 75-92. 

[8] Craig Gentry, Shai Halevi, Nigel Smart. Fully Homomorphic Encryption with Polylog Overhead [M]//POINTCHEVAL D, 

JOHANSSON T. Advances in Cryptology– Eurocrypt 2012. Springer Berlin / Heidelberg. 2012: 465-482. 

[9] Zvika Brakerski, Craig Gentry, Shai Halevi. Packed Ciphertexts in Lwe-Based Homomorphic Encryption [M]//KUROSAWA K, 

HANAOKA G. Public-Key Cryptography – PKC 2013. Springer Berlin Heidelberg. 2013: 1-13. 

[10] Jacob Alperin-Sheriff, Chris Peikert. Faster Bootstrapping with Polynomial Error [M]//GARAY J, GENNARO R. Advances in 

Cryptology – CRYPTO 2014. Springer Berlin Heidelberg. 2014: 297-314. 

[11] Ryo Hiromasa, Masayuki Abe, Tatsuaki Okamoto. Packing Messages and Optimizing Bootstrapping in GSW-FHE [M]//KATZ 

J. Public-Key Cryptography -- PKC 2015. Springer Berlin Heidelberg. 2015: 699-715. 

[12] N. P. Smart, F. Vercauteren. Fully homomorphic SIMD operations [J]. Designs, Codes and Cryptography, 2012, 1-25. 

[13] Richard Lindner, Chris Peikert. Better Key Sizes (and Attacks) for Lwe-Based Encryption [M]//KIAYIAS A. Topics in 

Cryptology – CT-RSA 2011. Springer Berlin Heidelberg. 2011: 319-339. 



14 

 

[14] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography [M]. Proceedings of the 

thirty-seventh annual ACM symposium on Theory of computing. Baltimore, MD, USA; ACM. 2005: 84-93. 

[15] Vadim Lyubashevsky, Chris Peikert, Oded Regev. On Ideal Lattices and Learning with Errors over Rings [M]//GILBERT H. 

Advances in Cryptology – Eurocrypt 2010. Springer Berlin Heidelberg. 2010: 1-23. 

[16] Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem: Extended Abstract [M]. Proceedings 

of the 41st annual ACM symposium on Theory of computing. Bethesda, MD, USA; ACM. 2009: 333-342. 

[17] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, Damien Stehl. Classical hardness of learning with errors [M]. 

Proceedings of the 45th annual ACM symposium on Symposium on theory of computing. Palo Alto, California, USA; ACM. 

2013: 575-584. 

[18] Craig Gentry, Shai Halevi, NigelP Smart. Homomorphic Evaluation of the AES Circuit [M]//SAFAVI-NAINI R, CANETTI R. 

Advances in Cryptology – CRYPTO 2012. Springer Berlin Heidelberg. 2012: 850-867. 

[19] Daniele Micciancio, Oded Regev. Lattice-Based Cryptography [M]//BERNSTEIN D, BUCHMANN J, DAHMEN E. 

Post-Quantum Cryptography. Springer Berlin Heidelberg. 2009: 147-191. 

[20] Zhigang Chen, Jian Wang, ZengNian Zhang, Xinxia Song. A Fully Homomorphic Encryption Scheme with Better Key Size [J]. 

China Communications, 2014, 11(9): 82-92. 

[21] Zhigang Chen, Xinxia Song, Yanhong Zhang. A fully homomorphic encryption scheme based on binary-LWE and analysis of 

security parameters [J]. Journal of Sichuan University (Engineering Science Edition), 2015, (2): 75-81. 

[22] Zhigang Chen, Jian Wang, Liqun Chen, Xinxia Song. Review of how to construct a fully homomorphic encryption scheme [J]. 

International Journal of Security and its Applications, 2014, 8(2): 221-230. 

[23] Zhigang Chen, Jian Wang, Liqun Chen, Xinxia Song. A Regev-Type Fully Homomorphic Encryption Scheme Using Modulus 

Switching [J]. Scientific World Journal, 2014. 

 


