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Abstract

We give a new method to turn identification schemes into signature schemes with two advan-
tages over the Fiat-Shamir transform: (1) Security is proven with tight reductions to standard
assumptions, and (2) We obtain not just ordinary signatures, but ones with extra properties,
specifically double-authentication prevention. The method consists of defining a new goal for
identification called security against constrained impersonation that, unlike standard goals, can
be shown via tight reductions from standard assumptions, and then using a double-hashing
transform to turn identification schemes that meet this notion, and have an additional syntac-
tic property we call being trapdoor, into double-authentication-preventing signature (DAPS)
schemes, again with a tight reduction. Our implementations, using OpenSSL’s crypto library
on an Intel Core i7, show that our DAPS schemes are not only significantly more efficient than
prior ones, but competitive with in-use signature schemes that lack the double authentication
preventing property. DAPS are of potential interest in deterring mass surveillance.
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1 Introduction

Identification-based signatures are attractive because they are efficient. This paper offers a new
way to obtain them that (1) Unlike the Fiat-Shamir transform, has a tight reduction to standard
underlying algebraic problems, so that security is justified for smaller parameter sizes, thereby
increasing speed, and (2) Yields not just ordinary signatures but ones with extra properties. The
key is to rely on a new, weak notion of security of identification against constrained impersonation
that is established with a tight reduction.

Background. By an identification scheme we mean a three-move Sigma protocol1 in which the
prover sends a commitment Y computed using private randomness y, the verifier sends a random
challenge c, the prover returns a response z computed using y and its secret key isk, and the verifier
computes a boolean decision from the conversation transcript Y ‖c‖z and public key ivk (see Fig. 3).
The most basic goal is security against impersonation under passive attack (imp) which requires
that an adversary given transcripts of honest protocol executions still fails to make the honest
verifier accept in an interaction where it plays the role of the prover, itself picking Y any way it
likes, receiving a random c, and then producing z. Imp-security can be established by reduction
to the hardness of the algebraic problem underlying the identification scheme (eg. one-wayness of
RSA for GQ [17], factoring for FS [14], discrete log for Schnorr [26], ...). However a given imp
adversary with advantage εimp must be twice successful in order to extract the secret key, so, via
the reset lemma of [6], εimp ≈

√
εalg where εalg is the advantage in breaking the algebraic problem,

meaning the reduction is very loose.
The Fiat-Shamir transform [14] derives from an identification scheme the signature scheme in

which a signature of a message m is a pair (Y, z) such that the transcript Y ‖c‖z is accepting
for c = H(Y ‖m). AABN [1] reduce security of the signature scheme to the imp security of the
identification scheme, with the hash function H modeled as a random oracle [7]. A q-query forger
will have advantage εsig ≈ q εimp against the signature scheme, which, combined with the above,
means εsig ≈ q

√
εalg. There are thus two sources of loss in the reduction, namely the square-root

and the factor of q. We aim to do away with both. Our approach relies crucially on some (new)
definitions.

Constrained impersonation. We return to the identification scheme and provide an alternative
definition of security. We continue, as with imp, to allow a passive attack in which the adversary
against the identification scheme can obtain transcripts Y1‖c1‖z1, Y2‖c2‖z2 . . . of interactions be-
tween the honest prover and verifier. Recall that in imp, this is followed by letting the adversary
play the role of cheating prover, where it can send a commitment Y of its choice to the verifier,
and succeeds if it finds a correct response to the random challenge it receives. In constrained im-
personation (cimp), there are two changes. First, the adversary may not select its own Y . It must
use (is constrained to use) a commitment from one of the transcripts it received in its passive at-
tack. Second, it is allowed multiple impersonation attempts. Each one consists of pointing at some
transcript i, receiving a (fresh) random challenge c, and then, providing a response z, with success
meaning that the transcript Yi‖c‖z is accepting for at least one of the impersonation attempts.2

Relations between cimp, imp and the algebraic problem alg are depicted in Fig. 1. (Ignore kr
for now.) A dotted line is a loose reduction and a full line is a tight reduction. We see that the

1 This means it is honest-verifier zero knowledge, and from two accepting transcripts with the same commitment
but different challenges, one can extract the secret key.

2 One might note that cimp is quite useless from the point of view of the use in practice of the identification
scheme for actual identification, because in that setting we may not be able to constrain the adversary to use only
prior commitments. However we are interested in identification only as a tool, not as an end goal. Cimp will work
well for us in the former regard.
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ALG

CIMP

KR

IMP

ALG : Algebraic assumption underlying ID scheme
IMP : Impersonation under passive attack

CIMP : Constrained impersonation under passive attack
KR : Key recovery

Transform Signature Where ID.Vf(ivk, Y ‖c‖z) and ID security Reduction

FS (Y, z) c = H(Y ‖m) imp loose

Swap (c, z) Y = H(c‖m) N/A tight

H2 (z, s) Y = H1(m), c = H2(m‖s) cimp tight

Transform DAPS Where ID.Vf(ivk, Y ‖c‖z) and ID security Reduction

H2+ (z, s) Y = H1(a), c = H2(a‖p‖s) cimp, kr tight

Figure 1: Top: Relations between notions of security for an identification scheme ID. Dotted lines
denote loose reductions and full lines denote tight reductions. Middle: Transforms of identification
schemes into signature schemes. A signature as shown in the 2nd column defines an accepting
transcript Y ‖c‖z with quantities as determined in the third column where H,H1,H2 are random
oracles and where s for H2 is a randomly-chosen seed. The 4th column shows the assumption made
on the identification scheme to prove security of the signature scheme. The last column indicates
tightness of the signature reduction all the way down to the underlying algebraic assumption.
The Swap and H2 transforms require the identification scheme to be trapdoor. Bottom: Our
transform generalized to yield DAPS rather than ordinary signatures.

reduction from the algebraic problem to cimp, unlike the one to imp, is tight. Imp does imply
cimp, but there is a factor of loss equal to the number of impersonation attempts, so this reduction
is loose. Besides being tight, the reduction of cimp to the algebraic problem has the advantage of
being easy and direct to establish. Theorems 4 and 5 detail instances of it, showing smaller terms
we have omitted in this discussion.

Now the question we pose is, can we take advantage of this by devising a transform of iden-
tification into signatures that relies only on the cimp security of the identification? Furthermore,
we must ensure that our transform itself incurs no losses, meaning security of the signature re-
duces tightly to cimp. If so, we would get signatures tightly from the algebraic problem. Our H2
transform does this. First we need another definition.

Trapdoor identification. Recall that in an identification scheme, the prover uses private
randomness y to generate its commitment Y . The H2 transform will not work with an arbitrary
identification scheme. It requires the latter to be trapdoor. This means the prover can pick the
commitment Y directly at random from the space of commitments and then compute the associated
private randomness y using its secret key via a prescribed algorithm. A formal definition is in
Section 3.

Many existing identification schemes will meet our definition of being trapdoor modulo possibly
some changes to the key structure. Thus the GQ-ID of [17] is trapdoor if we add the decryption
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exponent d to the secret key. With similar changes to the keys, the Fiat-Shamir [14] and Ong-
Schnorr [22] identification schemes are trapdoor. The MR-ID factoring-based identification scheme
of [20] is trivially trapdoor. We also define and work with a trapdoor identification scheme CF-ID
based on claw-free permutations that generalizes MR-ID. But not all identification schemes are
trapdoor. A prominent one that is not is Schnorr’s (discrete-log based) scheme [26].

Basic double-hash transform H2. The construction and its attributes are summarized in the
3rd row of the first table in Fig. 1. The signer specifies the commitment as a hash Y = H1(m)
of the message under a hash function H1. Then it picks a random seed s, of some seed length sl
associated to the scheme, and obtains a challenge c = H2(m‖s) by hashing the message and seed
under another hash function H2. Using the trapdoor property of the identification scheme and
the secret key, it computes a response z, returning (z, s) as the signature. Verification consists
of checking that the transcript Y ‖c‖z is accepting with Y, c specified as above. Theorem 1 shows
unforgeability with a tight reduction to the cimp security of the identification scheme, meaning
εsig ≈ εcimp. This, by the above fact that cimp is itself obtained tightly from the algebraic problem,
results in a tight reduction of unforgeability to the latter, meaning εsig ≈ εalg.

We stress that the algebraic assumptions we use are the same standard and classical ones
used historically to show imp of the identification scheme and security of the FS-derived signature
scheme. For example, when the base identification scheme is GQ-ID, the assumption is one-wayness
of RSA. When it is the Fiat-Shamir or MR-ID, it is factoring, and so on.

DAPS. Double-authentication-preventing signature (DAPS) schemes were introduced by Poetter-
ing and Stebila (PS) [23]. In such a signature scheme, the message being signed is a pair m = (a, p)
consisting of an “address” a and a “payload” p. Let us say that messages (a0, p0), (a1, p1) are
colliding if a0 = a1 but p0 6= p1. The double-authentication prevention requirement is that there is
an efficient extraction algorithm that given a public key PK and valid signatures σ0, σ1 on colliding
messages (a, p0), (a, p1), respectively, returns the secret signing key SK underlying PK . Additon-
ally, the scheme must satisfy standard unforgeability under a chosen-message attack [16], but in
light of the first property we must make the restriction that the address components of all messages
signed in the attack are different.

Why DAPS? PS [23] discuss several potential applications. For completeness, let us briefly recall
one. The Snowden revelations have shown that the NSA may coerce corporations into measures that
compromise security. PS [23] consider, in this light, the subversion of certificate authorities (CAs)
and the use of DAPS as a deterrent. Thus, suppose example.com has a (legitimate) certificate
cert1 = (example.com,pk1, σ1) from a particular CA such as Comodo, where pk1 is the public key
of example.com and σ1 is the CA’s signature on the pair (example.com, pk1), computed under
the secret key SK of the CA. Big brother induces the CA to issue another certificate cert0 =
(example.com,pk0, σ0) in the name of example.com where pk0 is a public key supplied by big
brother, so that it knows the corresponding secret key sk0, and σ0 is the CA’s signature on the pair
(example.com,pk0), again computed under the secret key SK of the CA. With this rogue certificate
in hand, big brother could impersonate example.com in a TLS session with a client, compromising
security of the latter. But if the CAs signatures are produced with a DAPS, then σ1, σ2 are valid
signatures on the colliding messages (example.com,pk0), (example.com, pk1), respectively, which
means that anyone can extract the CA’s signing key SK . This would lead to public loss of reputation
and business for the CA, increasing the CA’s incentive, or giving it an argument, to not comply
with big brother’s request to create the rogue certificate.

Prior schemes. PS [23] give a factoring-based DAPS that we call PS-DAPS. Its signature
contains n+ 1 elements in the group Z∗N , where n is the length of a hash of the address and N is
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the modulus in the public key. Specifically, for 80-bit security (1024-bit modulus, 160-bit hash), a
signature contains 161 group elements, for a length of 164,864 bits or about 20 Kbytes. This is a
factor 161 times longer than a 1024 bit RSA PKCS#1 signature, more than enough to preclude use
of the scheme in practice. Furthermore, signing and verifying times are significantly greater than
for signature schemes currently used for certificates such as RSA PKCS#1 (cf. Fig. 17.)

If we want DAPS to be a viable practical option, we need DAPS schemes that are competitive
with current non-DAPS schemes on all cost parameters, meaning signature size, key size, signing
time and verifying time. This is what we deliver. We will show that H2 naturally and easily
extends to obtain DAPS schemes that are secure and efficient.

Extended double-hash transform H2+. We obtain a DAPS from a trapdoor identification
scheme via H2+ as summarized in the last table in Fig. 1. The signer specifies the commitment
as a hash Y = H1(a) of the address, picks a random seed s of length sl, obtains a challenge
c = H2(a‖p‖s), uses the trapdoor property of the identification scheme and the secret key to com-
pute a response z, and returns (z, s) as the signature. Additionally the public key is enhanced so
that recovery of the secret identification key allows recovery of the full DAPS secret key (cf. Fig. 10).
Theorem 2 establishes the double-authentication prevention property via the extractability prop-
erty of the identification Sigma protocol. For unforgeability we need to consider the additionally
property kr that the identification scheme is secure against recovery of the secret key under passive
attack. As Fig. 1 and Theorems 4, 5 indicate, however, this is also easily and tightly established un-
der the algebraic problem. Theorem 3 shows unforgeability with a tight reduction to the cimp+kr
security of the identification scheme, meaning εsig ≈ εcimp + εkr. This results in a tight reduction
of unforgeability of the DAPS to the algebraic problem, meaning εsig ≈ 2εalg.

GQ-DAPS. As an example, applying our extended H2+ transform to the GQ identification scheme
results in the following GQ-DAPS scheme. The public key is (N, e,X,TK ) and the secret key is (x, d)
where N = pq is an RSA modulus, e is an encryption exponent, d is the corresponding decryption
exponent, x,X ∈ Z∗N satisfy X = xe mod N , and TK = H3(x)⊕d. The keys are thus as in the GQ
identification scheme [17] except that we add d to the secret key and TK to the public key. To
sign message (a, p), pick a random sl-bit s —the seed length sl is a parameter of the scheme— let
Y = H1(a) —the commitment is not picked at random but determined uniquely by the address—
let y = Y d mod N , let c = H2(a‖p‖s) ∈ {0, 1}l —the challenge— let z = yxc mod N and return
(z, s) as the signature. We omit describing verification; see Fig. 15 for a full description of the
scheme. Given valid signatures (z0, p0), (z1, p1) on colliding messages (a, p0), (a, p1), respectively,
one has GQ [17] conversation transcripts with the same commitment and different challenges —this
is why we set the commitment to a hash of the address— and can use the GQ-ID Sigma protocol
extractability property to extract x. This is not quite enough for double-authentication-prevention
because we must also extract d. It was for this that TK was put in the public key: from x we can
recover d = H3(x)⊕TK . We prove unforgeability tightly under one-wayness of RSA, and efficiency
is again good on all fronts (cf. Fig. 17). Many other DAPS can be similarly obtained.

Implementation. In theoretical cryptography, “efficient” often just means “polynomial time,”
which is quite divorced from efficiency in practice. Some works measure “efficiency” by counting
modular exponentiations or hash operations. Even these estimates can, in our experience, be moot.
Implementation is key to gauge and show efficiency. We implement GQ-DAPS,MR-DAPS and the
prior PS-DAPS using OpenSSL’s BIGNUM library on an Intel Core i7 machine for both 1024-bit and
2048-bit modulii. (The latter is what commercial CA’s currently use.) Fig. 17 shows the signing
time, verifying time, signature size and key sizes for all schemes. GQ-DAPS,MR-DAPS emerge
as around 150 times faster than PS-DAPS for signing and verifying while also having signatures
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about 140 times shorter. In fact the Figure shows that GQ-DAPS,MR-DAPS are close to RSA
PKCS #1v1.5 in all parameters and runtimes. This means that DAPS can replace the signatures
currently used for certificates with minimal loss in performance.

Necessity of our assumption. Trapdoor identification schemes may seem a very particular
assumption from which to obtain DAPS. However we show in Section 8 that from any DAPS satis-
fying double-authentication-prevention and unforgeability, one can build a trapdoor identification
scheme that is mimp-secure and satisfies the Sigma protocol extractability property. This shows
that the assumption we make is effectively necessary for DAPS.

Applicability of DAPS. As a reader may justifiably point out, various issues must be addressed
for PS’s application of DAPS to the deterrence of certificate subversion, that we sketched above, to
be a full solution. For example, there may be legitimate reasons for a CA to issue a new certificate
in the name of example.com (the old one may have expired or been revoked) which at first glance
is precluded by DAPS. Or, big brother might approach a different CA. (Indeed, the DAPS idea is
inherently restricted to a single CA environment.) There are various answers to these questions
which in particular are discussed to some extent by PS [23]. One might also ask why a CA would
want, or agree, to use DAPS. Recently, we have seen Internet corporations taking steps to make
subversion harder. Google’s push for end-to-end encryption following the Snowden revelations is
one instance. In another, Apple “reworked its encryption in a way that prevents the company ...
from getting access to the ... user data stored on smartphones and tablet computers” [27]. A CA
might similarly see espousing DAPS. We will not however attempt to address application issues
in full here. Our motivation for this work has been theoretical interest (we find the primitive and
problem technically intriguing) and the perspective that efficient, secure schemes are a necessary,
even if not sufficient, condition for application. Whether DAPS as a concept has true practical
utility remains to be seen, but, if it does, our schemes are better choices than prior ones.

Swap. Micali and Reyzin [20] give a signature scheme with a tight reduction to factoring. It is
obtained from their MR-ID identification scheme via a method they call “swap.” ABN [2] say that
the method generalizes to other factoring-based schemes. However, “swap” has never been stated
as a general transform of an identification scheme into a signature scheme; it appears rather as an
ad hoc technique to go directly and tightly from the algebraic problem to the signature. This lack of
abstraction is perhaps due in part to a lack of definitions, and our notion of a trapdoor identification
scheme allows us to partially fill the gap. We claim —formalizing discussion in ABN [2]— that
this is the syntactic condition allowing swap to operate. The 2nd row of the first table of Fig. 1
summarizes what we now call the Swap transform to turn a trapdoor identification scheme into
a signature scheme. However, it continues to be that security is reduced directly to the algebraic
problem rather than to a goal of the identification scheme, explaining the “N/A” entry in the table.

How do Swap and H2 compare? They apply to the same class of identification schemes
(trapdoor) and both result in tight reductions of the signature to the underlying algebraic problem.
However, H2 answers what we believe is the compelling question we posed above, namely to
obtain a signature scheme whose security reduces tightly to the cimp security of an underlying
identification scheme, motivated by the fact that this notion, unlike classical imp, is easily and
tightly established in turn under the algebraic assumption. Swap does not do this: cimp security
of the identification scheme demonstrably does not suffice to establish security of Swap signatures.
The other difference is that, unlike either the FS or the Swap transforms, H2 extends easily to
yield DAPS, and we obtain thereby the most efficient such signatures to date, as discussed above.

Further related work and open questions. ABP [2] show a tight reduction of FS-derived
GQ signatures to the Φ-hiding assumption of [10]. In contrast, both H2-derived and Swap-derived
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GQ signatures have a tight reduction to the standard one-wayness of RSA. AFLT [3] use a slight
variant of the Fiat-Shamir transform to turn lossy identification schemes into signature schemes
with security based tightly on key indistinguishability, resulting in signature schemes with tight
reductions to the decisional short discrete logarithm problem, the shortest vector problem in ideal
lattices and subset sum.

The first proofs of unforgeability for FS-derived signatures [24] were direct, meaning they
reduced security of the signature scheme directly to the hardness of the algebraic problem underlying
the identification scheme. This was done using forking lemmas [24, 5, 4]. Indirect proofs begin
with [21, 1]. As indicated above, AABN [1] reduce security of the signature scheme to the imp
security of the identification scheme. However, both the direct and the indirect approach result in
reductions of the same looseness we discussed above. The advantage of working with cimp and H2
as opposed to imp and FS is to remove this looseness while retaining the modular structure of the
AABN approach. The benefits of the latter are that the identification schemes can be analyzed
separately, and the use of random oracles is confined to the transform.

Both our DAPS and that of PS [23] are proven in the random oracle model. This raises the
foundational question of what are the minimal assumptions under which DAPS can be built in the
standard model. Ordinary signatures are possible from any one-way function [25]. Is it possible
to obtain DAPS from any one-way function? Or, can one give some evidence that this will not be
true, for example by showing that DAPS implies a primitive like secret-key exchange that is not
likely to be possible based on one-way functions [18]?

The DAPS property that the secret key is recoverable from signatures of colliding messages
is conceptually similar to the recoverability of the spender’s identity from double-spending of an
e-coin in offline e-cash [11]. Whether this connection can be exploited to obtain new DAPS schemes
is an interesting open question.

2 Notation and some standard definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x←$X denote picking an
element of X uniformly at random and assigning it to x. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the output to y. We let
y←$A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, . . .. We use the code based
game playing framework of [8]. (See Fig. 2 for an example.) By Pr[G] we denote the event that
the execution of game G results in the game returning true. We also adopt the convention that
the running time of an adversary refers to the worst case execution time of the game with the
adversary. This means that the time taken for oracles to compute replies to queries is included.

We expand on our notation and treatment of random oracles in these games since it is a bit
unusual. In our constructions, we will need random oracles with different ranges. For example we
may want one random oracle returning points in a group Z∗N and another returning strings of some
length k. To provide a single unified definition, we have the procedure H in the games take not
just the input x but a description Rng of the set from which outputs are to be drawn at random.
Thus y←$ H(x,Z∗N ) will return a random element of Z∗N , and so on. If Rng1,Rng2 are different
sets then H(·,Rng1) and H(·,Rng2) are independent random oracles with the indicated range sets.

Signatures. In a signature scheme DS, the signer generates signing key sk and verifying key vk
via (vk, sk)←$ DS.KgH where H is the random oracle, with syntax is as discussed above. Now
it can compute a signature σ←$ DS.SigH(vk, sk,m) on any message m ∈ {0, 1}∗. A verifier can
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Game UFADS

(vk, sk)←$ DS.KgH ; M ← ∅
(m,σ)←$ASign,H(vk)
Return (DS.VfH(vk,m, σ) ∧ (m 6∈M))

Sign(m)

M ←M ∪ {m} ; σ←$ DS.SigH(vk, sk,m)
Return σ

H(x,Rng)

If not HT[x,Rng] then HT[x,Rng]←$ Rng
Return HT[x,Rng]

Figure 2: Game defining unforgeability of signature scheme DS.

deterministically compute a boolean v ← DS.VfH(vk,m, σ) indicating whether or not σ is a valid
signature of m relative to vk. Correctness as usual requires that DS.VfH(vk,m,DS.SigH(vk, sk,
m)) = true with probability one. Unforgeability is measured via the advantage Advuf

DS(A) =
Pr[UFADS] of adversary A, where game UFADS is in Fig. 2. This is the classical notion of [16], lifted
to the ROM as per [7].

3 Cimp-secure Identification

We define security of identification schemes against constrained impersonation. Later we will show
how any trapdoor identification scheme with this property can be transformed into a DAPS with
a tight reduction.

Identification. An identification (ID) scheme ID operates as depicted in Fig. 3. First, via
(isk, ivk, tk)←$ ID.Kg, the prover generates a private identification key isk, public verification key
ivk and auxiliary information tk. Via (Y, y)←$ ID.Cmt(ivk) it generates commitment Y and cor-
responding private state y. The verifier sends a random challenge of length ID.cl. The prover’s
response z and the verifier’s boolean decision v are deterministically computed. An example is
the GQ scheme of Fig. 15. We require the obvious correctness condition. We also require the
Sigma Protocol [12] extractability condition, which says there is an algorithm ID.Ex such that if
Y1‖c1‖z1, Y2‖c2‖z2 are accepting transcripts under ivk with Y1 = Y2 but c1 6= c2 then ID.Ex given
ivk and the transcripts returns isk. Formally we ask that Pr[EXAID] = 0 for all adversaries A,
where the game is in Fig. 3. Finally we require a key-verification algorithm ID.KVf such that
ID.KVf(ivk, isk) = true if (isk, ivk, tk) ∈ [ID.Kg] for some tk, and false otherwise.

The auxiliary information tk is not used in a basic ID scheme. We use it when we say what
it means for the scheme to be trapdoor. Namely there is an algorithm ID.Cmt−1 that produces y
from Y with the aid of the trapdoor tk. Formally, the outputs of the following two processes are
identically distributed. Both processes generate (isk, ivk, tk)←$ ID.Kg. The first process then lets
(Y, y)←$ ID.Cmt(ivk). The second process picks Y ←$ ID.CmtSp(ivk) and lets y←$ ID.Cmt−1(ivk,
tk, Y ). Both processes return (isk, ivk, tk, Y, y). Here ID.CmtSp(ivk) is a space of commitments
associated to ID. We let ID.tl denote the length of tk.

Security of ID schemes. Recall that security of an identification scheme ID under imperson-
ation [13, 1] considers an adversary who, given ivk but not isk, first attacks the honest, isk-using
prover and then, using the information it gathers, attempts to impersonate the real prover by suc-
cessfully identifying itself to the verifier. In this impersonation attempt, the adversary, in the role
of malicious prover, submits a commitment Y of its choice, receives an honest verifier challenge c,
submits a response z of its choice, and wins if ID.Vf(ivk, Y ‖cz) = true. A hierarchy of possible first-
phase attacks is defined in [6]. We are interested only in the weakest, namely passive attacks, where
the adversary is just an eavesdropper and gets honestly-generated protocol transcripts. (Active and
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Prover

Input: ivk, isk

(Y, y)←$ ID.Cmt(ivk)

z ← ID.Rsp(ivk, isk, c, y)

Y-
c�
z-

Verifier

Input: ivk

c←$ {0, 1}ID.cl

v ← ID.Vf(ivk, Y ‖c‖z)

Game EXAID
(ivk, isk, tk)←$ ID.Kg
(Y, c1, z1, c2, z2)←$A(ivk, isk, tk)
v1 ← ID.Vf(ivk, Y ‖c1‖z1) ; v2 ← ID.Vf(ivk, Y ‖c2‖z2)
isk∗←$ ID.Ex(ivk, Y, c1, z1, c2, z2)
Return (isk∗ 6= isk) ∧ (c1 6= c2) ∧ v1 ∧ v2

Figure 3: Functioning of an identification scheme ID and game defining its Sigma-Protocol ex-
tractability.

Game cIMPPID
(ivk, isk, tk)←$ ID.Kg ; i← 0 ; j ← 0

d←$ PTr,Ch,Dec(ivk)
Return win

Game KRPID
(ivk, isk, tk)←$ ID.Kg ; i← 0
x←$ PTr(ivk)
Return (x = isk)

Tr()

i← i+ 1
(Yi, yi)←$ ID.Cmt(ivk) ; ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
Return Yi‖ci‖zi
Ch(l)

If not (1 ≤ l ≤ i) then return ⊥
j ← j + 1 ; U ← U ∪ {j} ; c←$ {0, 1}ID.cl

TT[j]← Yl‖c ; Return (j, c)

Dec(j, z)

If (j 6∈ U) then return ⊥
U ← U \ {j} ; TT[j]← TT[j]‖z
DT[j]← ID.Vf(ivk,TT[j])
win← win ∨DT[j] ; Return DT[j]

Figure 4: Games defining security of identification scheme ID against constrained impersonation
under passive attack and against key recovery.

even concurrent attacks are relevant in other contexts [6].)
We suggest a new constrained impersonation goal that weakens the classic impersonation goal.

We will be in the setting where the adversary has a passive attack, allowing it to obtain transcripts.
When it makes its impersonation attempt, it is no longer allowed to choose the commitment.
Rather, it is required (constrained) to use a commitment from the transcripts. The formalization
considers game cIMPPID of Fig. 4 associated to identification scheme ID and cimp adversary P.
The transcript oracle Tr returns upon each invocation a transcript of an interaction between the
honest prover and verifier, allowing P to mount its passive attack. Adversary P can mount an
impersonation attempt through its Ch and Dec oracles. It would first have to give Ch the index l
of an existing transcript. It would get back a fresh challenge c and a session id j. To win it would
have to call Dec with j and a correct response relative to the commitment from the l-th transcript
and challenge c. Note that unlike the conventional definitions, we allow multiple impersonation
attempts, not just one, reflected in the adversary being able to call oracles Ch,Dec as often as it
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DS.KgH

(ivk, isk, tk)←$ ID.Kg
vk ← ivk ; sk ← (isk, tk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (z, s)← σ
Y ← H(m, ID.CmtSp(ivk))
c← H(m‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

s←$ {0, 1}sl
ivk ← vk ; (isk, tk)← sk
Y ← H(m, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y )
c← H(m‖s, {0, 1}ID.cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 5: Our construction of a signature scheme DS = H2[ID, sl] from a trapdoor identification
scheme ID and a seed length sl ∈ N.

likes and winning if any attempt is successful. We let Advcimp
ID (P) = Pr[cIMPPID].

A scheme meeting this goal is not necessarily useful for actual identification in practice because
in the latter we cannot constrain the adversary to use only existing commitments. However we do
not wish to use it directly in this way. We use identification only as a tool. The benefits are (1) it
will suffice for our application, but (2) as indicated by Theorems 4 and 5, it can be achieved with
tight reductions to standard assumptions, as opposed to the stronger impersonation goals.

We also define and use the security of the identification scheme against key recovery under
passive attack. The formalization considers game KRPID of Fig. 4 associated to identification scheme
ID and kr adversary P. The transcript oracle Tr is as before. Adversary P aims simply to
recover isk. We let Advkr

ID(P) = Pr[KRPID] be the probability that it succeeds, where success means
recovering the secret key. Again Theorems 4 and 5 show that this form of security is easily proven
under standard assumptions with a tight reduction.

4 Basic double-hash transform

We specify the basic transform and prove it works.

The construction. Let ID be a trapdoor identification scheme. Our H2 (double hash) transform
associates to it and a seed length sl ∈ N a signature scheme DS = H2[ID, sl]. The algorithms of
DS are defined in Fig. 5. Recall that in the Fiat-Shamir transform [14], the signer picks (Y, y)←$

ID.Cmt(ivk) as per the ID scheme and commits to these values by hashing Y with the message to
create a challenge. We instead specify the commitment Y as a hash of the message alone. However,
doing this means that it is not clear how in general to obtain y. This is where the trapdoor
property comes in, allowing our signer to obtain it as y←$ ID.Cmt−1(ivk, tk, Y ). We then specify
the challenge as a randomized hash of the message. (Unlike in the FS transform, the commitment
is not hashed along with the message.) The randomization is captured by the seed s whose length
sl was a parameter of our transform.

Unforgeability of our construction. The following shows that the unforgeability of our
signature tightly reduces to the cimp security of the underlying ID scheme. Recall that as per our
conventions, the number of queries by A to some oracle includes the number made in the game,
and similarly the running time of an adversary is the total execution time of the game, the time
used by oracles included.

Theorem 1 Let signature scheme DS = H2[ID, sl] be obtained from trapdoor identification scheme
ID and seed length sl as in Fig. 5. Let A be a uf-adversary against DS. Suppose the number of
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Game G0/ G1

(ivk, isk, tk)←$ ID.Kg
vk ← ivk ; sk ← (isk, tk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng] then
HT[x,Rng]←$ Rng

Return HT[x,Rng]

Sign(m)

s←$ {0, 1}sl
ivk ← vk ; (isk, tk)← sk
Y ← H(m, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y )
If (not HT[m‖s, {0, 1}ID.cl]) then

HT[m‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

Else
bad← true ;
HT[m‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

c← HT[m‖s, {0, 1}ID.cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 6: Games for proof of Theorem 1. Game G1 includes the boxed code and game G0 does not.

queries that A makes to its H(·, ID.CmtSp(ivk)), H(·, {0, 1}ID.cl), Sign oracles are, respectively,
q2, q3, qs, where ivk is as in game UFADS. Then from A we can construct cimp adversary P such
that

Advuf
DS(A) ≤ Advcimp

ID (P) +
qs(2q3 + qs − 1)

2sl+1
. (1)

Adversary P make q2 + qs + 1 queries to Tr. It makes q3 queries to Ch and one query to Dec. It
has running time about that of A.

Proof of of Theorem 1: We assume that A avoids certain pointless behavior that would only
cause it to lose. Thus, we assume it did not query to Sign the message m in the forgery (m,σ)
that it eventually outputs. This means that the set M in game UFADS, and the code and checks
associated with it, are redundant and can be removed. We will work with this simplified form of
the game.

When procedure Sign is replying to signing query m, it first computes Y and picks s. We would
like that, at this point, it can define the table entry HT[m‖s, {0, 1}ID.cl] without caring whether it
was already defined. (This is to allow an eventual impersonation adversary to program this RO
response with a challenge emanating from a transcript obtained from the transcript oracle.) In
general, of course, this would be wrong, but intuitively the random choice of s means it is usually
right. (This indeed is why we have the seed in the scheme.) To show this formally we consider the
games G0,G1 of Fig. 6. Game G0 excludes the boxed code, so that its Sign procedure defines HT[m
‖s, {0, 1}ID.cl] only when this entry was not already defined, but game G1 includes the boxed code,
so that Sign defines this entry always, as we would like. But these games are identical-until-bad [8],
meaning differ only in code that follows the setting of the boolean flag bad to true. So we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0]− Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad] , (2)

where the inequality is by the Fundamental Lemma of Game Playing of [8]. The random choice of
s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q3 + i

2sl
=
qs(2q3 + qs − 1)

2sl+1
. (3)
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Game G2

(ivk, isk, tk)←$ ID.Kg
vk ← ivk
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0
(m,σ)←$ASign,H(vk)
(z, s)← σ
Y ← H(m, ID.CmtSp(ivk))
c← H(m‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)

Sign(m)

s←$ {0, 1}sl
Y ← H(m, ID.CmtSp(ivk))
i← Ind2(m)
HT[m‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng)

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.cl) then

HT[x,Rng]←$ Rng
If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 7: Game G2 for the proof of Theorem 1.

Adversary PTr,Ch,Dec(ivk)

vk ← ivk
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr()
i2 ← 0
(m,σ)←$ASign,H(vk)
(z, s)← σ
Y ← H(m, ID.CmtSp(ivk))
c← H(m‖s, {0, 1}ID.cl)
j ← Ind3(m‖s)
d← Dec(j, z)

Sign(m) // P
s←$ {0, 1}sl
Y ← H(m, ID.CmtSp(ivk))
i← Ind2(m)
HT[m‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // P
If (not HT[x,Rng]) then

If (Rng = {0, 1}ID.cl) then
m‖s← x ; Y ← H(m, ID.CmtSp(ivk))
l← Ind2(m) ; (j, c)←$ Ch(l)
Ind3(x)← j ; HT[x,Rng]← c

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 8: Adversary for proof of Theorem 1.

Now we need to bound Pr[G1]. Consider game G2 of Fig. 7. Towards using cimp, this game
refrains from using isk directly in procedure Sign. Instead, it begins by generating conversation
transcripts Yi‖ci‖zi and has Sign use these. To make this possible, H(·, ID.CmtSp(ivk)) values are
set to the transcript commitments. Then Sign retrieves the corresponding commitment Y , sets
HT[m‖s, {0, 1}ID.cl] to the challenge from the same transcript, and puts the corresponding response
in the signature. Since the signatures are correctly distributed we have

Pr[G1] = Pr[G2] . (4)

We build cimp adversary P so that

Pr[G2] ≤ Advcimp
ID (P) . (5)

Game G2 was crafted exactly to make the construction of adversary P quite direct. The construction
is described in detail in Fig. 8. Adversary P has access to oracles Tr,Ch,Dec as per game cIMPPID
in which it is executing. It runs A, simulating answers to A’s queries to Sign and H as shown.
It obtains conversation transcripts using its Tr oracle to play the role of the ones generated in
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Game RUFADS

(vk, sk)←$ DS.KgH ; A,M ← ∅
(m,σ)←$ASign,H(vk)
Return (DS.VfH(vk,m, σ) ∧ (m 6∈M))

Game DAPADS

(vk, sk)←$ DS.KgH ; (m1,m2, σ1, σ2)←$AH(vk, sk)
v1 ← DS.VfH(vk,m1, σ1) ; v2 ← DS.VfH(vk,m2, σ2)
(a1, p1)← m1 ; (a2, p2)← m2

sk∗←$ DS.ExH(vk,m1,m2, σ1, σ2)
Return (sk∗ 6= sk) ∧ (a1 = a2) ∧ (p1 6= p2) ∧ v1 ∧ v2

Sign(m)

(a, p)← m
If a ∈ A then return ⊥
A← A ∪ {a} ; M ←M ∪ {m}
σ←$ DS.SigH(vk, sk,m)
Return σ

H(x,Rng)

If not HT[x,Rng] then HT[x,Rng]←$ Rng
Return HT[x,Rng]

Figure 9: Games defining unforgeability and extractability conditions of DAPS DS. The Sign
procedure is invoked by game RUF while H is invoked by both games.

G2. Using these, Sign can be simulated as per game G2. Oracle H(·,Rng) is simulated as in G2

when Rng = ID.CmtSp(ivk). When a query x is made to H(·, {0, 1}ID.cl), adversary P parses x as
m‖s. It then retrieves the index l corresponding to m in the list of transcripts and submits this
to its challenge oracle Ch to get back a session id j and a challenge, and returns this challenge as
the response to the oracle query. Finally when A produces a forgery, the session id corresponding
to the message and seed in the forgery is retrieved via Ind3. Now this session is completed by
querying the response in the forged signature to the decision oracle Dec. We need to show that
the impersonation is successful as long as the forgery was valid. A somewhat delicate point is that
we use the fact that the message m in the forgery was not a Sign query. This is what ensures that
a session corresponding to the forgery conversation exists.

5 DAPS definitions

Let DS be a signature scheme. In a DAPS [23], a message m = (a, p) is a pair consisting of an
address a and a payload p. We require the DAP property and a restricted form of unforgeability.

The DAP property. Let us say that messages m1 = (a1, p1) and m2 = (a2, p2) are collid-
ing if a1 = a2 but p1 6= p2. Double authentication prevention [23] requires that signatures on
colliding messages allow anyone to extract the signing key. It is captured formally by the advan-
tage Advdap

DS (A) = Pr[DAPADS] associated to adversary A, where game DAPADS is in Fig. 9. The
adversary produces messages m1,m2 and signatures σ1, σ2, and an extraction algorithm DS.ExH

associated to the scheme then attempts to compute sk. The adversary wins if the key sk∗ produced
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by DS.Ex is different from sk yet extraction should have succeeded, meaning the messages were
colliding and their signatures were valid. If G is a game, we are denoting by Pr[G] —here and
in the rest of the paper— the probability that the game returns true. The argument Rng to the
random oracle H allows the caller to specify the set from which responses are drawn in a particular
scheme, for example Z∗N . The adversary has sk as input to cover the fact that the signer is the one
attempting —due to coercion and subversion, but nonetheless— to produce signatures on colliding
messages. (And thus it does not need access to a Sign oracle.) We note that we are not saying it
is hard to produce signatures on colliding messages —it isn’t, given sk— but rather that doing so
will reveal sk. We also stress that extraction is not required just for honestly-generated signatures,
but for any, even adversarially generated signatures that are valid, again because the signer is the
adversary here.

Unforgeability. We also require restricted unforgeability, captured formally by the advantage
Advruf

DS(A) = Pr[RUFADS] associated to adversary A, where game RUFADS is in Fig. 9 [23]. This is
the classical notion except that addresses of the messages the signer signs must be all different,
as captured through the set A in the game. This is necessary because the double authentication
prevention requirement precludes security if the signer releases signatures of two messages with
the same address. In practice it means that the signer must maintain a log of all messages it has
signed and make sure that it does not sign two messages with the same address. A CA is likely to
maintain such a log in any case so this is unlikely to be an extra burden.

Discussion. Asking that the key sk∗ returned by the extractor DS.ExH be equal to sk may seem
unnecessarily strong. It would suffice if sk∗ was “functionally equivalent” to sk, meaning allowed
computation of signatures indistinguishable from real ones. Indeed, such a property is formalized
in PS [23]. However our schemes achieve the stronger property we have defined, so we adopt it in
our definition.

The DAP game chooses the keys vk, sk honestly. Allowing these to be adversarially chosen would
result in a stronger requirement, also formalized in PS [23]. Our view is that our requirement
is reasonable because the coercion happens after the CA and its keys are established. If the
choice of keys is considered a potential source of vulnerability, one might generate them via secure
computation between a few different parties.

6 The extended double-hash transform

We show how any trapdoor identification scheme can be transformed into a DAPS. We prove both
that our DAPS is double authentication preventing and unforgeable. In the next section we will
instantiate this general construction to get specific, efficient DAPS.

The construction. Let ID be a trapdoor identification scheme. Our H2+ (extended double hash)
transform associates to it and a seed length sl ∈ N a DAPS DS = H2+[ID, sl]. The algorithms of
DS are defined in Fig. 10. We instead specify the commitment Y as a hash of the address rather
than of the full message as in H2. This is done so that messages with the same address result in
transcripts with the same commitment, putting us in a position to use the extractability of ID to
achieve double authentication prevention. We then specify the challenge c as a randomized hash
of the message and seed, as in basic H2+. The introduction of the trapdoor tk however creates
a new difficulty, namely that extraction under the ID scheme will only recover isk and to achieve
double authentication prevention we must recover the entire secret key sk = (isk, tk). We resolve
this by putting in the verification key a particular encryption, denoted TK , of tk, under isk.

DAP-security of our construction. The following confirms that double authentication pre-
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DS.KgH

(ivk, isk, tk)←$ ID.Kg
TK ← tk⊕H(isk, {0, 1}ID.tl)
vk ← (ivk,TK ) ; sk ← (isk, tk)
Return (vk, sk)

DS.ExH(vk,m1,m2, σ1, σ2)

(ivk,TK )← vk
For i = 1, 2 do

(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai, ID.CmtSp(ivk))
ci ← H(ai‖pi‖si, {0, 1}ID.cl)

isk∗ ← ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)
tk∗ ← H(isk∗, {0, 1}ID.tl)⊕TK
Return (isk∗, tk∗)

DS.SigH(vk, sk,m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK )← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y )
c← H(a‖p‖s, {0, 1}ID.cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

DS.VfH(vk,m, σ)

(ivk,TK )← vk ; (a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(a‖p‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)

Figure 10: Our construction of a DAPS DS = H2+[ID, sl] from a trapdoor identification scheme ID
and a seed length sl ∈ N.

vention is achieved. This is relatively straightforward given the construction; the bigger challenge
will be showing unforgeability. As per out conventions, the number of (distinct) queries q of the
adversary to H(·, {0, 1}ID.cl), referred to below, is, formally, the number of queries made to this
oracle in the execution of the game DAPADS, so that queries made not directly by A but by game
procedures are also counted. As a result it will always be the case that q ≥ 2.

Theorem 2 Let DAPS DS = H2+[ID, sl] be obtained from trapdoor identification scheme ID and
seed length sl as above. Let A be an adversary making q ≥ 2 distinct H(·, {0, 1}ID.cl) queries. Then

Advdap
DS (A) ≤ q(q − 1)/2ID.cl+1.

Proof of of Theorem 2: Consider the DAPADS game of Fig. 9. Within this, consider the
execution of the algorithm DS.ExH of Fig. 10 on vk,m1,m2, σ2, σ2 where (m1,m2, σ1, σ2)←$AH(vk,
sk). Let Y1‖c1‖z1, Y2‖c2‖z2 be the transcripts computed within. Assume σ1, σ2 are valid signatures
of m1,m2, respectively, relative to vk = (ivk,TK ). As per the verification algorithm DS.VfH of
Fig. 10 this means that the transcripts Y1‖c1‖z1, Y2‖c2‖z2 are valid under the ID scheme, meaning
ID.Vf(ivk, Y1‖c1‖z1) = ID.Vf(ivk, Y2‖c2‖z2) = true. If the messages m1 = (a1, p1) and m2 = (a2, p2)
output by A are colliding then we also have Y1 = Y2. This is because verification ensures that
Y1 = H(a1, ID.CmtSp(ivk)) and Y2 = H(a2, ID.CmtSp(ivk)). So if c1 6= c2 then the extraction
property of ID ensures that isk∗ = isk. If so, we also have tk∗ = tk, so that the full secret key
sk = (isk, tk) is recovered. So Advdap

DS (A) is at most the probability that the challenges are equal
even though the payloads are not. But the challenges are outputs of H(·, {0, 1}ID.cl), to which
the game makes at most q queries. So the probability that these challenges collide is at most
q(q − 1)/2ID.cl+1.

Restricted unforgeability of our construction. The following shows that the restricted
unforgeability of our DAPS tightly reduces to the cimp plus kr security of the underlying ID scheme.

Theorem 3 Let DAPS DS = H2+[ID, sl] be obtained from trapdoor identification scheme ID and
seed length sl as in Fig. 10. Let A be a ruf-adversary against DS. Suppose the number of queries that
A makes to its H(·, {0, 1}ID.tl), H(·, ID.CmtSp(ivk)), H(·, {0, 1}ID.cl), Sign oracles are, respectively,
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Game G0/ G1

(ivk, isk, tk)←$ ID.Kg
TK ← tk⊕H(isk, {0, 1}ID.tl)
vk ← (ivk,TK ) ; sk ← (isk, tk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng] then
HT[x,Rng]←$ Rng

Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK )← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y )
If (not HT[a‖p‖s, {0, 1}ID.cl]) then

HT[a‖p‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

Else
bad← true ;
HT[a‖p‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

c← HT[a‖p‖s, {0, 1}ID.cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Game G2 /G3

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK ) ; sk ← (isk, tk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng] then
HT[x,Rng]←$ Rng
If ((Rng = {0, 1}ID.tl) ∧ (x = isk)) then
bad← true ; HT[x,Rng]← TK⊕tk

Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK )← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y )
c←$ {0, 1}ID.cl

HT[a‖p‖s, {0, 1}ID.cl]← c
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 11: Games for proof of Theorem 3. Games G1,G2 include the boxed code and games G0,G3

do not.

q1, q2, q3, qs, where ivk is as in game RUFADS. Then from A we can construct cimp adversary P1
and kr adversary P2 such that

Advruf
DS(A)

≤ Advcimp
ID (P1) + Advkr

ID(P2) +
qs(2q3 + qs − 1)

2sl+1
. (6)

Adversaries P1,P2 make q2 + qs + 1 queries to Tr. Adversary P1 makes q3 queries to Ch and
one query to Dec. The running time of adversaries P1 is about that of A. The running time of
adversary P2 is that of A plus the time for q1 executions of ID.KVf.

Proof of of Theorem 3: We assume that A avoids certain pointless behavior that would only
cause it to lose. Thus, we assume that, in the messages it queries to Sign, the addresses are all
different. Also we assume it did not query to Sign the message m in the forgery (m,σ) that it
eventually outputs. The two together mean that the sets A,M in game RUFADS, and the code and
checks associated with them, are redundant and can be removed. We will work with this simplified
form of the game.

Identical-until-bad games G0,G1 of Fig. 11, as in the proof of Theorem 1, move us to allow picking
a random seed in responding to a Sign query, regardless of whether the corresponding hash table
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entry was defined or not. We have

Advruf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0]− Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad] , (7)

where the inequality is by the Fundamental Lemma of Game Playing of [8]. The random choice of
s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q3 + i

2sl
=
qs(2q3 + qs − 1)

2sl+1
. (8)

Now we need to bound Pr[G1]. We start by considering whether the ciphertext TK ← tk⊕
H(isk, {0, 1}ID.tl) helps A over and above access to Sign. Consider the games G2,G3 of Fig. 11.
They pick TK directly at random rather than as prescribed in the scheme. However, via the boxed
code that it contains, game G2 compensates, replying to H(·, {0, 1}ID.tl) queries in such a way that
TK = tk⊕H(isk, {0, 1}ID.tl). Thus G2 is equivalent to G1. Game G3 omits the boxed code, but the
games are identical-until-bad. So we have

Pr[G1] = Pr[G2] = Pr[G3] + Pr[G2]− Pr[G3]

≤ Pr[G3] + Pr[G3 sets bad] , (9)

where again the inequality is by the Fundamental Lemma of Game Playing of [8]. Now we have
two tasks, namely to bound Pr[G3] and to bound Pr[G3 sets bad]. The first corresponds to showing
that A cannot forge if the ciphertext TK is random, and the second corresponds to showing that
changing the ciphertext to random makes little difference. The first relies on the assumed cimp
security of ID, the second on its assumed kr security.

To bound Pr[G3], consider game G4 of Fig. 12. It mimics game G2 in the proof of Theorem 1,
moving us towards using cimp by generating conversation transcripts Yi‖ci‖zi and having Sign use
these. We have

Pr[G3] = Pr[G4] . (10)

We build cimp adversary P1 so that

Pr[G4] ≤ Advcimp
ID (P1) . (11)

The construction of P1 mimics the construction of P in the proof of Theorem 1, and is described
in detail in Fig. 13.

To bound Pr[G3 sets bad], consider game G5 of Fig. 12. It answers Sign queries just like G4, and
the only modification in answering H queries is to keep track of queries to H(·, {0, 1}ID.tl) in the set
T . The game ignores the forgery, returning true if isk was queried to H(·, {0, 1}ID.tl). We have

Pr[G3 sets bad] = Pr[G5] . (12)

We build P2 so that

Pr[G5] ≤ Advkr
ID(P2) . (13)

The idea is simple, namely that if the adversary queries isk to H(·, {0, 1}ID.tl) then we can obtain
isk by watching the oracle queries of A. The difficulty is that, to run A, one first has to simulate
answers to Sign queries using transcripts, and it is to enable this that we moved to G5. Again
the game was crafted to make the construction of adversary P2, described in detail Fig. 13, quite
direct. The simulation of the Sign oracle is as before. The simulation of H is more direct, following

18



Game G4

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(a‖p‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)
Game G5

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0 ; T ← ∅
(m,σ)←$ASign,H(vk)
Return (isk ∈ T )

Sign(m) // G4,G5

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CmtSp(ivk))
i← Ind2(a)
HT[a‖p‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // G4

If (not HT[x,Rng]) then
If ((Rng = {0, 1}ID.tl) ∨ (Rng = {0, 1}ID.cl)) then

HT[x,Rng]←$ Rng
If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // G5

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then
T ← T ∪ {x} ; HT[x,Rng]←$ Rng

If (Rng = {0, 1}ID.cl) then
HT[x,Rng]←$ Rng

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 12: More games for the proof of Theorem 3.

game G5 rather than invoking the Ch oracle. When A returns its forgery, the set T contains
candidates for the identification secret key isk. Adversary P2 now verifies each candidate using
the key-verification algorithm of the identification scheme, returning a successful candidate if one
exists in its list.

Necessity of trapdoor ID schemes for DAPS. Trapdoor identification may seem a very
particular assumption as a starting point for DAPS. However in Section 8 we show that from
any DAPS satisfying double-authentication-prevention and unforgeability we can build a simple
trapdoor identification scheme satisfying mimp-security and Sigma-protocol extractability. These
being exactly the assumptions for our transform, it shows that these sufficient assumptions are in
fact also necessary. The link between trapdoor identification and DAPS is thus quite strong.

7 Instantiation and implementation

We instantiate our general transform of Section 6 to obtain GQ-DAPS and CF-DAPS. We then
make parameter choices and discuss our implementation and performance results.

7.1 GQ-ID and GQ-DAPS

GQ-ID. An RSA generator with modulus length k is an algorithm RSA that returns a tuple
(N, p, q, e, d) where p, q are distinct, odd primes, N = pq is the modulus, in the range 2k−1 <
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Adversary PTr,Ch,Dec
1 (ivk)

TK ←$ {0, 1}ID.tl

vk ← (ivk,TK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr()
i2 ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(a‖p‖s, {0, 1}ID.cl)
j ← Ind3(a‖p‖s)
d← Dec(j, z)

Adversary PTr
2 (ivk)

TK ←$ {0, 1}ID.tl

vk ← (ivk,TK )
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr()
i2 ← 0 ; T ← ∅
(m,σ)←$ASign,H(vk)
For all x ∈ T do

If ID.KVf(ivk, x) then
Return x

Return ⊥

Sign(m) // P1,P2

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CmtSp(ivk))
i← Ind2(a)
HT[a‖p‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // P1

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then

HT[x,Rng]←$ Rng
If (Rng = {0, 1}ID.cl) then
a‖p‖s← x ; Y ← H(a, ID.CmtSp(ivk))
l← Ind2(a) ; (j, c)←$ Ch(l)
Ind3(x)← j ; HT[x,Rng]← c

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // P2

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then
T ← T ∪ {x} ; HT[x,Rng]←$ Rng

If (Rng = {0, 1}ID.cl) then
HT[x,Rng]←$ Rng

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 13: Adversaries for proof of Theorem 3.

Game OWARSA
(N, p, q, e, d)←$ RSA
x←$ Z∗N ; X ← xe mod N
x′←$A(N, e,X)
Return (x′ = x)

Game CFAFG
(ek, ik)←$ FG
(x0, x1)←$A(ek)
If (x0 6∈ FG.D1(ek)) or (x1 6∈ FG.D1(ek))

then return false
y0 ← FG.Evek,0(x0); y1 ← FG.Evek,1(x1)
Return (y0 = y1)

Game FACAMOD

(N, p, q)←$ MOD
r←$A(N)
Return (r ∈ {p, q})

Figure 14: Games defining one-wayness of RSA generator RSA, claw-freeness of claw-free TDF
generator FG and factoring security of modulus generator MOD.

N < 2k, encryption and decryption exponents e, d are in Z∗ϕ(N) and ed ≡ 1 (mod ϕ(N)). The
assumption is one-wayness, formalized by defining the ow-advantage of an adversary A against
RSA by Advow

RSA(A) = Pr[OWA
RSA] where the game is in Fig. 14.

Fig. 15 shows the GQ-ID identification scheme associated to RSA and a challenge length l < k
such that gcd(e, c) = 1 for all c ∈ {0, 1}l and all (N, p, q, e, d) ∈ [RSA]. The commitment space is
Z∗N . By egcd we denote the extended gcd algorithm that given relatively-prime inputs e, c returns
a, b such that ae+ bc = 1. Algorithm GQ-ID.Cmt−1 shows that this scheme is trapdoor.

If we want to establish cimp security, the first and natural route is to use known results.
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GQ-ID.Kg

(N, p, q, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
Return ((N, e,X), x, d)

Prover

Input: (N, e,X), x

y←$ Z∗N
Y ← ye mod N

z ← yxc mod N

Y-
c�
z-

Verifier

Input: (N, e,X)

c←$ {0, 1}l

v ← (ze ≡ Y Xc (mod N))

GQ-ID.Ex((N, e,X), Y, c1, z1, c2, z2)

z ← z1z
−1
2 mod N

c← (c1 − c2) ; (a, b)← egcd(e, c)
x← Xazb mod N ; Return x

GQ-ID.KVf((N, e,X), x)

Return (xe mod N = X)

GQ-ID.Cmt−1((N, e,X), d, Y )

y ← Y d mod N
Return y

GQ-DAPS.KgH

((N, e,X), x, d)←$ GQ-ID.Kg
TK ← d⊕H(x, {0, 1}k)
Return ((N, e,X,TK ), (x, d))

GQ-DAPS.ExH((N, e,X,TK ),m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai,Z∗N )
ci ← H(ai‖pi‖si, {0, 1}l)

x← GQ-ID.Ex((N, e,X), Y1, c1, z1, c2, z2)
d← H(x, {0, 1}k)⊕TK
Return (x, d)

GQ-DAPS.SigH((N, e,X,TK ), (x, d),m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a,Z∗N )
y←$ Y d mod N
c← H(a‖p‖s, {0, 1}l)
z ← yxc mod N
σ ← (z, s) ; Return σ

GQ-DAPS.VfH((N, e,X,TK ),m, σ)

(a, p)← m ; (z, s)← σ
Y ← H(a,Z∗N )
c← H(a‖p‖s, {0, 1}l)
Return (ze ≡ Y Xc (mod N))

Figure 15: Identification scheme GQ-ID associated to RSA generator RSA with modulus length k,
and challenge length l, and GQ-DAPS = H2+[GQ-ID, sl] derived via our transform from GQ-ID.

Thus let Advimp
ID (Q) denote the advantage of an adversary Q in violating the standard security

against impersonation under passive attack as formalized in [1]. If P is a cimp adversary making
q queries each to its Ch and Dec oracles then a standard hybrid argument shows how to build
Q using the same number of Tr queries as P and with about the same running time so that
Advcimp

ID (P) ≤ q ·Advimp
ID (Q). The imp advantage is well studied, and using the standard bound

and proof based on the reset lemma of [6] we would get a ow adversary A of comparable resources
such that

Advcimp
GQ-ID(P1) ≤ q ·

(√
Advow

RSA(A) +
1

2l

)
. (14)

The term in parentheses is from the reset lemma. This bound is poor, both due to the square root
and due to the multiplication by q in the first term. The following says that we can do much better
with a direct analysis, establishing both cimp and kr security with tight bounds.

Theorem 4 Let GQ-ID be the identification scheme associated to RSA generator RSA with modulus
length k and challenge length l as above. Let P1 be a cimp adversary making q queries each to its
Ch and Dec oracles. Then from P1 we can construct ow adversary A such that

Advcimp
GQ-ID(P1) ≤ Advow

RSA(A) +
q

2l
. (15)
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The running time of A is that of P1 plus the overhead of one execution of the GQ-ID.Ex algorithm.
Also let P2 be a kr adversary. Then from P2 we can construct ow adversary A such that

Advkr
GQ-ID(P2) ≤ Advow

RSA(A) . (16)

The running time of A is that of P2.

The proof of Equation (15) is simple. In the execution of P1, if the impersonation is successful
with a challenge different from the one in the transcript, then we can use GQ-ID.Ex to extract
the secret key. The transcript queries can be simulated using the honest-verifier zero-knowledge
property of GQ-ID. This doesn’t add to the time overhead because by our convention running time
refers to the execution of the adversary with the game, and in the real case the transcript oracle
uses comparable time. The proof of Equation (16) is even more trivial since P2 returns the secret
key directly. Thus we see that for these weaker goals we can not only establish tighter security but
the proofs are much simpler.

GQ-DAPS. Fig. 15 shows the algorithms of our GQ-DAPS DAPS scheme derived by applying our
transform to the trapdoor GQ-ID identification scheme of Fig. 15, where the latter is based on an
RSA generator RSA with modulus length k and a challenge length l < k. It is thus parameterized
by RSA, l and seed length sl. To estimate security for a given modulus length k we use Theorem 3
and Theorem 4. The reductions are tight in both cases and so we need to estimate the advantage
of a time t adversary against the one-wayness of RSA. We do this under the assumption that
the NFS is the best factoring method. Then taking into account Theorem 3 and Theorem 4, our
implementation uses a 1024-bit modulus, a 160-bit hash and a seed length of 160 for the usual
expected 80 bits of security. Since CA’s now use 2048-bit modulii, we also implement the scheme
with a 2048-bit modulus and 256-bit hashes and seeds. See below and Fig. 17 for implementation
and performance information.

7.2 CF-ID and CF-DAPS

CF-ID. Our definition of a claw-free function generator extends the one of [16]. To be able to work
with generators where membership in the domain cannot be efficiently tested, we have a super-
set of this domain in which such testing is possible. We also include a key-verification algorithm.
Proceeding to the details, the generator FG specifies the following. Key-generation algorithm FG.Kg
returns a tuple (ek, ik) consisting of an evaluation key ek and an inversion key ik. Associated to
ek are finite sets FG.D1(ek) ⊆ FG.D2(ek). Also specified are deterministic evaluation and inversion
algorithms FG.Ev and FG.Ev−1. For d ∈ {0, 1}, these in turn specify functions FG.Evek,d: FG.D2(ek)
→ FG.D1(ek) such that the restriction FG.Evek,d: FG.D1(ek) → FG.D1(ek) is a permutation with
inverse FG.Ev−1ik,d: FG.D1(ek) → FG.D1(ek). Membership in FG.D2(ek) must be efficiently testable
given ek. Membership in FG.D1(ek) may not be efficiently testable given ek, but it should be
possible to efficiently pick random elements from the set given ek. The assumption is claw-freeness,
formalized by defining the cf-advantage of an adversary A against FG by Advcf

FG(A) = Pr[CFAFG]
where the game is in Fig. 14. The game tests membership in FG.D1(ek) and hence may not be
efficient but that’s ok. There is an extraction algorithm FG.Ex that takes ek, x0, x1 such that
FG.Evek,0(x0) = FG.Evek,1(x1) —x0, x1 is referred to as a claw— and returns ik. There is a key
verification algorithm FG.KVf that takes ek, x and returns true iff (ek, x) ∈ [FG.Kg].

For a string w = w[1] . . . w[n] ∈ {0, 1}n, let FG.Evek,w: FG.D2(ek) → FG.D1(ek) and FG.Ev−1ik,w

: FG.D1(ek)→ FG.D1(ek) be defined for x ∈ FG.D2(ek) and y ∈ FG.D1(ek) by
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CF-ID.Kg

(ek, ik)←$ FG.Kg
Return (ek, ik, ε)

Prover

Input: (ek, ik)

Y ←$ FG.D1(ek)

z ← FG.Ev−1ek,0c(Y )

Y-
c�
z-

Verifier

Input: ek

c←$ {0, 1}l

If z 6∈ FG.D2(ek) then v ← false
Else v ← (FG.Evek,0c(z) = Y )

CF-ID.Ex(ek, Y, c1, z1, c2, z2)

z1 ← FG.Evek,0(z1) ; z2 ← FG.Evek,0(z2)
For i = 1, . . . , l do
z′1 ← FG.Evek,c1[i](z1) ; z′2 ← FG.Evek,c2[i](z2)
If (c1[i] 6= c2[i]) ∧ (z′1 = z′2) then

If (c1[i], c2[i]) = (0, 1) then Return FG.Ex(ek, z1, z2)
If (c1[i], c2[i]) = (1, 0) then Return FG.Ex(ek, z2, z1)

z1 ← z′1 ; z2 ← z′2
Return ⊥

CF-ID.KVf(ek, x)

Return FG.KVf(ek, x)

CF-ID.Cmt−1(ek, ε, Y )

Return ε

CF-DAPS.KgH

(ek, ik, ε)←$ CF-ID.Kg
Return (ek, ik)

CF-DAPS.ExH(ek,m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai,FG.D1(ek))
ci ← H(ai‖pi‖si, {0, 1}l)

Return CF-ID.Ex(ek, Y1, c1, z1, c2, z2)

CF-DAPS.SigH(ek, ik,m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a,FG.D1(ek))
c← H(a‖p‖s, {0, 1}l)
z ← FG.Ev−1ek,0c(Y )
σ ← (z, s) ; Return σ

CF-DAPS.VfH(ek,m, σ)

(a, p)← m ; (z, s)← σ
c← H(a‖p‖s, {0, 1}l)
If (z 6∈ FG.D2(ek)) then return false
Return (FG.Evek,0c(z) = H(a,FG.D1(ek)))

Figure 16: Identification scheme CF-ID associated to claw-free function generator FG and challenge
length l, and CF-DAPS = H2+[CF-ID, sl] derived via our transform from CF-ID.

Function FG.Evek,w(x)

For i = 1, . . . , n do x← FG.Evek,w[i](x)

Return x

Function FG.Ev−1ik,w(y)

For i = n, . . . , 1 do y ← FG.Ev−1ik,w[i](y)

Return y

Fig. 16 shows the CF-ID identification scheme associated to FG and a challenge length l. The
commitment space is FG.D1(ek). By 0c we denote the challenge c prefixed with a 0 bit. This is
done following [20] because the verifier may not be able to test membership of z in FG.D1(ek), but
now it can test membership in FG.D2(ek) and use the fact that FG.Evek,0(z) ∈ FG.D1(ek). The
scheme is trivially trapdoor, with CF-ID.Cmt−1 returning ε. The key verification algorithm is the
same as that of FG. The following summarizes the security properties of the scheme.

Theorem 5 Let CF-ID be the identification scheme associated to function generator FG and chal-
lenge length l as above. Let P1 be a cimp adversary making q queries each to its Ch and Dec
oracles. Then from P1 we can construct cf adversary A such that

Advcimp
CF-ID(P1) ≤ Advcf

FG(A) +
q

2l
. (17)
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The running time of A is that of P1 plus the overhead of one execution of the CF-ID.Ex algorithm.
Also let P2 be a kr adversary. Then from P2 we can construct cf adversary A such that

Advkr
CF-ID(P2) ≤ Advcf

FG(A) . (18)

The running time of A is that of P2.

Again the value here is that the reductions for these weaker security goals are tight. For the classical
imp goal, the reductions are analogous to Equation (14). The proof of Theorem 5 is again simple.
The identification protocol is honest-verifier zero-knowledge and this together with extractability
establishes Equation (17). Equation (18) is even more direct.

CF-DAPS. Fig. 16 shows the algorithms of our CF-DAPS DAPS scheme derived by applying our
transform to the trapdoor CF-ID identification scheme of Fig. 15, where the latter is based on an
function generator FG and a challenge length l. It is thus parameterized by FG, l and seed length
sl. Due to the tight reductions in Theorem 3 and Theorem 5, security will amount to that of the
function generator. Our implementation will use a particular choice of the latter for speed, and we
now discuss the schemes based on this choice.

MR-ID and MR-DAPS. A modulus generator with security parameter k is an algorithm MOD
that returns a tuple (N, p, q) where p, q are primes satisfying p ≡ 3 (mod 8) and q ≡ 7 (mod 8),
and N = pq is the modulus, in the range 2k−1 < N < 2k. The assumption is hardness of factoring,
formalized by defining the factoring-advantage of an adversary A against MOD by Advfac

MOD(A) =
Pr[FACAMOD] where the game is in Fig. 14.

We associate to a modulus generator MOD the particular function generator FG = FG[MOD]
defined as follows. FG.Kg runs MOD to get (N, p, q) and then returns (N, (N, p, q)). We let
FG.D2(N) = Z∗N , in which membership is efficiently testable given N . We let FG.D1(N) = QR(N) =
{z2 mod N : z ∈ Z∗N} be the subset of quadratic residues. Membership in QR(N) is not known to
be efficiently testable given only N , but one can sample a random point in it by picking z←$ Z∗N
and returning z2 mod N . For x ∈ Z∗N let FG.EvN,0(x) = x2 mod N and FG.EvN,1(x) = 4x2 mod N .
Note that, since p ≡ 3 (mod 8) and q ≡ 7 (mod 8), we have that neither 2 nor −2 is a quadratic
residue mod N . For y ∈ QR(N) the inverses are defined as

FG.Ev−1(N,p,q),0(y) =
√
y mod N and FG.Ev−1(N,p,q),1(y) =

√
4−1y mod N

where
√
z denotes the square root of z that is itself a quadratic residue mod N . This can be

efficiently computed given p, q. Extraction algorithm FG.Ex takes N, x0, x1 such that x0, x1 ∈
QR(N) and x20 ≡ 4x21 mod N , which means r = gcd(x0 − 2x1, N) divides N . However x0, x1 ∈
QR(N) and hence x0 6≡ ±2x1 (mod N), so r is a non-trivial factor of N , and the algorithm can
thus return (N, p, q). Key verification algorithm FG.KVf(N, (N, p, q)) returns true if N = pq. Claw-
freeness tightly reduces to factoring, so the latter is the basis of security.

When FG = FG[MOD], identification scheme CF-ID is an identification scheme specified by
MR [20] as underlying the signature scheme of [19]. We denote this identification scheme by MR-ID.
The corresponding CF-DAPS is denoted by MR-DAPS. This is the choice for our implementation.
Given the tightness of the reduction of Theorem 3 and Theorem 5 we can again pick the modulus
based on the assumption that the NFS is the best factoring method.

7.3 Implementation and performance

We implemented the MR-DAPS and GQ-DAPS schemes. For comparison purposes we also im-
plemented the original PS-DAPS and used an implementation of the standard RSA PKCS#1v.5
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currently used for signing certificates. Our implementation is in C, using OpenSSL’s BIGNUM
library for number theoretic operations. 3

For the implementation of the claw-free TDF for MR-DAPS, we need to compute FG.Ev−1(N,p,q),c(x)
for a c of length l. The naive approach requires computing l square roots modulo N , which takes
O(lk3) time. Instead, we use the following technique suggested by Goldreich [15] which computes
FG.Ev−1(N,p,q),c(x) with a constant number of exponentiations (assuming a small amount of pre-

computation which can be reused), thereby achieving an overall runtime of O(k3). Compute

FG.Ev−1(N,p,q),c(x) =
RN (2l, x)

(RN (2l, 4))i(c)
mod N

where RN (2l, x) denotes the 2l-th square root of x modulo N , l is the bit-length of c, and i(c) denotes
the integer representation of c. RN (2l, x) can be computed quickly by computing Rp(2

l, x) and
Rq(2

l, x) and using the Chinese remainder theorem. Rp(2
l, x) can be computed by precomputing

a = (p + 1)/4 (the “inverse” of 2 modulo ϕ(p)) and b = al mod ϕ(p) (the “inverse” of 2l modulo
ϕ(p)), and then computing Rp(2

l, x) as xb mod p.
To hash onto quadratic residues we follow the framework of Brier et al. for indifferentiable

hashing [9] as described by Poettering and Stebila [23]: we first hash onto ZN to obtain an element
r. With high probability, randomly chosen elements of ZN are also in Z∗N . If r has Jacobi symbol
−1, we set r ← rt mod N where t is a fixed element with Jacobi symbol −1, in our case t = 2
always suffices. Exactly one of r and N − r will be a quadratic residue mod N .

For the implementation of GQ-DAPS, we use encryption exponent e = 65537 as this is the default
RSA public key exponent in OpenSSL, allowing for fair comparisons with RSA PKCS#1v1.5.

Timings were run on an Intel Core i7 (3720QM) with 4 cores each running at 2.6 GHz; the tests
were run on a single core with TurboBoost and hyper-threading disabled. Software was compiled
for the x86 64 architecture with -O3 optimizations using llvm 6.0 (clang 600.0.56). The OpenSSL
version used was v1.0.2.

Table 17 shows average runtimes and key sizes using 1024-bit modulii and 160-bit hashes and
using 2048-bit modulii and 256-bit hashes. For DAPS schemes, address is 15 bytes and payload
is 33 bytes; for RSA PKCS#1v1.5, message is 48 bytes. Times reported are an average over 30
seconds. For RSA sign and verify operations, standard deviation was between 3% and 44%. For
all other operations, standard deviation was less than 4%.

The table omits runtimes for key generation, as this is a one-time operation. Key generation
times are fairly similar across schemes, as for all schemes the main cost is the generation of an RSA
modulus. For all schemes with 1024-bit keys, key generation times, from the top row to the bottom
row, are 29.9ms, 24.2ms, 31.5ms, and 23.7ms; with 2048-bit keys, generation times are 156.5ms,
135.6ms, 167.8ms, and 125.5ms. For all key generation operations, standard deviation was between
64% and 74% (this is to be expected, as key generation involves generating primes, a probabilistic
process with high variance in runtime). While key generation is substantially more expensive than
signing or verification, it is still less than a second, and each signer needs to do it only once.

Compared with the existing PS-DAPS, our MR-DAPS and GQ-DAPS are several orders of mag-
nitude faster for both signing and verification. When using 2048-bit modulii, MR-DAPS signatures
can be generated 336× and verified 116× faster, and GQ-DAPS signatures can be generated 198×
and verified 399× faster; moreover our signatures are much smaller, both just 2304 bits, compared
with 528384 bits for PS-DAPS, and nearly the same size as RSA PKCS#1v1.5 signatures. Signing
times for our schemes are competitive with RSA PKCS#1v1.5 signatures. Using MR-DAPS or GQ-

3The implementation source code can be downloaded from the anonymous URL https://173.203.208.70:54242/

npfTVfFK/src.zip.
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1024-bit modulus, 160-bit hash 2048-bit modulus, 256-bit hash

Scheme
Runtime (ms) Size (bits) Runtime (ms) Size (bits)

sign verify pub. sig. sign verify pub. sig.

PS-DAPS [23] 208.30 71.33 1024 164864 1009.88 271.36 2048 528384
GQ-DAPS (Fig. 15) 0.76 0.15 2048 1184 5.10 0.68 4096 2304
MR-DAPS (Fig. 16) 1.26 1.00 1024 1184 3.00 2.34 2048 2304

RSA PKCS#1v1.5 0.21 0.02 1024 1024 1.32 0.05 2048 2048

Figure 17: Average runtime in milliseconds and public key/signature sizes for double-authentication
preventing signatures and standard RSA signatures. Secret key sizes are the same as the modulus
size for all schemes.

ID.Kg

(vk, sk)←$ DS.Kg
Return (vk, sk, ε)

Prover

Input: vk, sk

Y ←$ {0, 1}sl

z ← DS.Sig(sk, Y ‖c)

Y-
c�
z-

Verifier

Input: vk

c←$ {0, 1}sl

v ← DS.Vf(vk, (Y, c), z)

ID.Cmt−1(ivk, tk, Y )

Return Y

ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)

Return DS.Ex(ivk, (Y1, c1), (Y2, c2), z1, z2)

Figure 18: Our construction of a trapdoor identification scheme ID = H2−1+ [DS, sl] from a DAPS
DS and a seed length sl ∈ N. ID.CmtSp(ivk) = {0, 1}sl for all ivk.

DAPS for signatures in digital certificates would incur little computational or size overhead relative
to currently used signatures.

8 From DAPS to trapdoor ID

Here we show that DAPS implies trapdoor identification. Given any DAPS satisfying double-
authentication-prevention and unforgeability, we build a trapdoor identification scheme, via the
construction H2−1+ in Fig. 18, that is mimp-secure and satisfies the Sigma protocol extractability
condition. This shows that the assumption we make to obtain DAPS is effectively necessary. All
proofs are omitted.

The basic idea of the construction is as follows. The ID scheme’s keys are just the keys of a
DAPS. A commitment is a random string, as is a challenge; the response is generated as a DAPS
signature with the commitment as the address and challenge as the payload. Verification in the
ID scheme is just verification in the DAPS. The ID scheme is trapdoor because the commitment
“secret” is just the commitment itself, and the extractability of the Sigma protocol comes from the
double-signature extractability of the DAPS.

We now make and prove three claims about the identification scheme: (1) it is trapdoor (2) It
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Adversary ASign
1 (vk)

d←$ATrS,ChS,DecS(vk)

TrS()

Y ←$ ID.CmtSp(vk)
c←$ {0, 1}sl
z←$ Sign((Y, c))
Return Y ‖c‖z

ChS(Y )

i← i+ 1 ; U ← U ∪ {i} ; c←$ {0, 1}ID.cl

TT[i]← Y ‖c ;
Return (i, c)

DecS(j, z)

If (j 6∈ U) then return ⊥
U ← U \ {j} ; Y ‖c← TT[j]
v ← DS.Vf(vk, (Y, c), z)
If v then A1 returns ((Y, c), z) to its uf-challenger
Return v (to A)

Figure 19: Adversary for proof of Theorem 7.

is mimp-secure, and (3) It satisfies Sigma-protocol extractability as defined in Appendix 3. These
are exactly the properties assumed of the identification scheme for our transform to work, so that
our result here shows that the sufficient assumptions we make in Section 6 on the identification
scheme to obtain DAPS are in fact also necessary.

Theorem 6 Let DS be a DAPS and let sl ∈ N. Then ID = H2−1+ [DS, sl] is trapdoor.

Proof: Recall that for an ID scheme to be trapdoor, the following two processes must be identically
distributed:

1. (isk, ivk, tk)←$ ID.Kg ; (Y, y)←$ ID.Cmt(ivk) ; Return (isk, ivk, tk, Y, y).

2. (isk, ivk, tk)←$ ID.Kg ; Y ←$ ID.CmtSp(ivk) ; y←$ ID.Cmt−1(ivk, tk, Y ) ; Return (isk, ivk,
tk, Y, y).

For ID = H2−1+ [DS, sl], since ID.Cmt(ivk) simply selects Y ←$ ID.CmtSp(ivk) and Y = y, we have
that both processes above are equivalent to:

(isk, ivk, tk)←$ ID.Kg ; Y ←$ ID.CmtSp(ivk) ; Return (isk, ivk, tk, Y, Y )

This completes the proof.

Next we show that our constructed identification scheme is mimp secure.

Theorem 7 Let DS be a DAPS and let sl ∈ N. Let A be a mimp-adversary against ID =
H2−1+ [DS, sl] making q queries to its Tr oracle. Then from A we can construct uf-adversary A1

such that Advcimp
ID (A) ≤ Advruf

DS(A1). A1 makes q queries to its Sign oracle and the running time
of A1 is that of A plus some small overhead, including one execution of DS.Vf for each call by A
to its Dec oracle.

Proof: Adversary A1 is shown in Fig. 19. A1 directly simulates the mimp experiment for A; to
create transcripts, A1 uses its Sign oracle. If A submits an accepting transcript to its DecS oracle,
this immediately gives A1 a forgery for DS. A1’s simulation of game RUFADS is perfect. The bound
follows.

Finally we show that our constructed identification scheme satisfies Sigma-protocol extractability.
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Adversary A1(vk, sk)

(Y, c1, z1, c2, z2)←$A(vk, sk, ε)
Return ((Y, c1), (Y, c2), z1, z2)

Figure 20: Adversary for proof of Theorem 8.

Theorem 8 Let DS be a DAPS and let sl ∈ N. Let A be a ex-adversary against ID = H2−1+ [DS,

sl]. From A we can construct dap-adversary A1 such that Advex
ID(A) ≤ Advdap

DS (A1). The running
time of A1 is that of A.

Proof: Adversary A1 is shown in Fig. 20. A1 directly calls A which is an ex adversary against
the identification scheme ID. Note that, for ID = H2−1+ [DS, sl], the trapdoor key tk = ε, so this
is a perfect simulation of EXAID. If A returns two accepting transcripts Y ‖c1‖z1 and Y ‖c2‖z2 with
c1 6= c2, then (Y, c1) and (Y, c2) are a pair of colliding messages for DS and z1 and z2, respectively,
are valid signatures. ID.Ex fails to return the correct secret key from this part of transcripts exactly
when DS.Ex fails. The bound in the theorem statement follows.
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