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Abstract

We present a unified framework for studying secure multi-party computation (MPC) with
arbitrarily restricted interaction patterns. Our study generalizes both standard MPC and recent
models for MPC with specific restricted interaction patterns (such as a chain or a star), which
were studied by Halevi et al. (Crypto 2011), Goldwasser et al. (Eurocrypt 2014), and Beimel
et al. (Crypto 2014).

Since restricted interaction patterns cannot always yield full security for MPC, we start by
formalizing the notion of “best possible security” for any interaction pattern. We then obtain
the following results:

• Completeness theorem. We prove that the star interaction pattern is complete for the
problem of MPC with general interaction patterns.

• Positive results. We present both information-theoretic and computationally secure
protocols for computing arbitrary functions with general interaction patterns. We also
present more efficient protocols for computing symmetric functions and for computing
arbitrary functions over a chain.

• Negative results. We give evidence that our information-theoretic protocols for general
functions will be hard to substantially improve on.

All of our protocols rely on a correlated randomness setup, which is necessary for computing
general functions in our setting. In the computational case, we also present a generic procedure
to make any correlated randomness setup reusable, in the common random string model.

Although most of our information-theoretic protocols have exponential complexity, they may
be practical for functions on small domains (e.g., {0, 1}20), where they are concretely faster than
their computational counterparts.
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1 Introduction

Secure multiparty computation (MPC) allows n mutually suspicious parties to evaluate a function
on their joint inputs in such a manner that no information about their inputs, beyond the output
of the computation, is revealed to each other. Since the first general feasibility results for MPC [52,
35, 6, 15], almost all prior work in this area has considered protocols that require full interaction
between the parties. Such protocols typically proceed in rounds, where in each round each party
may send messages to all other parties, thus requiring that all parties remain online throughout
the execution of the protocol.

MPC with Restricted Interaction. Full interaction between the parties is often problematic or
even infeasible. For instance, physical distances between wireless devices may prevent them from
directly communicating with each other, and temporal constraints may restrict their availability
to send or receive messages (e.g., due to battery life). Furthermore, efficiency considerations may
also motivate a leaner form of communication. Consider, for instance, the goal of computing the
majority vote over the inputs of n parties. While this task can be performed using only (n − 1)
messages if no security is needed, typical MPC protocols with full interaction involve Ω(n2) point-
to-point messages to compute the same task securely.

Such considerations have motivated the study of MPC protocols with restricted interaction
between the parties. Halevi, Lindell, and Pinkas [40] were the first to study this problem: they
consider an interaction pattern where each of the n parties, in an ordered fashion, sends a single
message to a central server, who eventually computes the output of the function. A different
interaction pattern, where each party independently (i.e., without any predetermined order) sends
a single message to the server, was recently considered by Goldwasser et al. [36] and Beimel et
al. [3]. In both cases, the security guarantee is necessarily weaker than the standard simulation-
based security for MPC (see below for further discussion on security).

The above works constitute two specific examples of restricted interaction patterns. In general,
different application scenarios may dictate different interaction patterns. For example, applications
involving data aggregation typically use interaction patterns that can be represented as a directed
tree. Furthermore, the topology of the communication network (used by an application) may itself
limit the choices of interaction patterns: e.g., a communication network without any node with
full degree is not consistent with server-centered interaction patterns. Importantly, as we discuss
below, the security guarantees that we get would typically depend on the interaction pattern at
hand.

Our Goal: MPC with General Interaction Patterns. Seeking to understand the fundamental
role of interaction patterns in MPC, we ask the following broad question:

Given an arbitrary n-party interaction pattern I and an n-input function f , can f be
securely realized by a protocol that complies with I? If so, how efficiently and under
what assumptions?

Before addressing this question, we should clarify how we model interaction patterns, what we
mean by “securely,” and what setup assumptions we are willing to make.

Modeling Interaction Patterns. A natural starting approach is to represent an interaction
pattern as a directed acyclic graph (DAG), where each node represents a party who expects to
receive messages from all of its parents and can then send messages to all of its children, and where
the sinks of the graph compute outputs. Two simple examples of DAGs include a chain, a simple
directed path traversing all nodes, and a star, a graph connecting all nodes to a single central node.
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The protocols from [40, 39] can be adapted to accommodate a chain-based interaction, whereas
the protocols from [36, 3] were designed for the case of a star-based interaction. More general
DAG-based interaction patterns naturally arise in “self-forming sensor networks,” where multiple
sensor nodes form an arbitrary communication graph and then collect and compute on data that
is transmitted, using the smallest possible number of messages, to a central base station.

While DAGs are an important special case, general interaction patterns are not necessarily
restricted to DAGs. Some other useful patterns include the server-centered interaction pattern
from [40], a two-way chain, where messages travel along a chain from Pn to P1 and back to Pn who
computes an output, or the traditional multi-round protocols over a fully-connected point-to-point
network. In Section 2 we describe a unified modeling of general interaction patterns.

1.1 Formulating Achievable Security

In the traditional model of MPC, corrupted parties are restricted to learning the outputs of f on just
a single input (x1, . . . , xn). However, as observed by [40], this property cannot always be achieved in
the case of restricted interaction patterns. For instance, in the server-centered interaction pattern
of [40], if the server and the last few parties Pi, . . . , Pn are corrupted, there is nothing to prevent
the adversary from learning the value of f on the honest inputs x1, . . . , xi−1 and every possible
choice of corrupted inputs x∗i , . . . , x

∗
n.

To define the “best possible security” for a fixed interaction pattern, we use the notions of free
and fixed inputs and residual function from [40]. We call the inputs that the adversary can vary
the free inputs, and the other inputs are the fixed inputs. Clearly, all the honest parties’ inputs are
fixed. Crucially, however, some of the inputs controlled by the adversary can be fixed as well. For
example, in the protocols from [40], the only free inputs are those of corrupted parties that send
messages after the last honest party does; the inputs of all other corrupted parties are fixed.

Extending the model from [40] to our setting of general interaction patterns, we first consider
the case where only one party computes an output and call this party the evaluator. The input of
a corrupted party Pi is considered fixed if the interaction pattern includes any message path that
leads from Pi to the evaluator and passes through some honest party. The input of a corrupted Pi
is free if all paths from Pi to the evaluator consist only of other corrupted parties. For example, in
a star pattern with a corrupted center, the inputs of all the corrupted parties are free [36, 3]. In
contrast, traditional MPC requires the inputs of all corrupted parties to be fixed.

The “best possible security” is defined by the residual function, that captures everything that
the adversary can learn about the honest parties’ by restricting f to the values of all the fixed
inputs while allowing arbitrary choices of the free inputs. Some additional subtleties arise in the
malicious-adversary model when multiple parties compute outputs; in particular, security in this
case generalizes goals such as Byzantine agreement. We discuss some of these issues further in 2,
but leave the issue of malicious-security with multiple output nodes to future work.

An important technical point relates to the achievable notion of simulation. Traditional ideal-
vs-real definitions of security (cf. [38, 10, 34]) require efficient simulation, but it is known that
efficient simulation is, in general, impossible in our setting [40, 36]. For example, protocols with
efficient simulation for a star (or even chain) interaction pattern imply virtual black-box obfuscation
[36], which is known to be impossible in general [2]. To get around these impossibility results, we
settle for security with respect to indistinguishability or unbounded simulation.

Correlated randomness setup. It is not hard to see that without any form of setup, even
very simple functions such as majority cannot always be realized with any meaningful notion of
security [3]. Perhaps the simplest model to circumvent such impossibility results is the “minimal
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model” (PSM) from [28] with general correlated randomness setup, where the parties have access
to a source (r1, . . . , rn) of correlated random strings. When implementing such protocols, the
correlated randomness can come from a trusted dealer or generated using an offline MPC protocol
that takes place before the inputs are known and before the limitations on interaction are imposed.
This clean model is popular both for a theoretical study of MPC and as a platform for practical
implementations that exploit the efficiency benefits of offline preprocessing. (See [7, 22, 3, 23] and
references therein.)

The correlated randomness setup can either be reusable or non-reusable. Namely, it can either
be akin to a one-time pad, allowing only a single run of the protocol (which is the case for protocols
with information-theoretic security), or it can allow polynomial number of runs (which is sometimes
possible in the computational setting). A key advantage of the correlated randomness setup model
is that we can hope to tolerate any number of corrupted parties even in the information-theoretic
setting [45, 43, 7].

Is “Best Possible Security” Good Enough? Though weaker than the standard notion of
security for MPC protocols, our notion of “best possible security” is still meaningful in many
interesting cases. First, depending on the interaction pattern and the set of corrupted parties, it
could be that most corrupted parties are fixed and hence the residual function is quite degenerate
(or even all inputs are fixed as in standard MPC). Second, there are functions for which access even
to a “large” residual function does not compromise the secrecy of uncorrupted inputs significantly.
Examples include symmetric functions (such as majority) where the size of the residual truth
table is not very significant (see [3] for a discussion), as well as unlearnable functions where it is
computationally hard to figure out the inputs of honest parties even when given oracle access to
the residual function.

1.2 Our Results

We give a variety of answers to the main question posed above. In particular we show “low-end”
protocols that offer unconditional security and are generally exponential in the input size (except
for special function classes and special interaction patterns), as well as “high-end” protocols that
(necessarily) use general-purpose obfuscation techniques to achieve polynomial-time solutions for
general functions and interaction patterns.Finally, we also show protocols that make simple use
of multilinear maps to compute symmetric functions with general interaction patterns. All of our
protocols tolerate an arbitrary number of corrupted parties in the static corruption model. Below,
when describing our results, we use the phrase I-compliant to denote that the interaction pattern
in a protocol is consistent with I.

I. Completeness Theorem for Interaction Patterns. In Section 3 we show that the star
interaction pattern is complete for secure computation with restricted interaction patterns. Specifi-
cally, we give an efficient, unconditional reduction from the problem of realizing a function f using a
general interaction pattern I to that of realizing the same f on a star. This transformation requires
its own (non-reusable) correlated randomness setup, in addition to the setup for the underlying
star-pattern protocol, and yields security against malicious parties essentially for free.

Theorem 1 (Informal). There exists an efficient transformation T that, for any n-party interac-
tion pattern I and any star-compliant protocol Π? for computing a function f : {0, 1}n → {0, 1},
generates an I-compliant protocol ΠI for computing f in the non-reusable correlated randomness
setup model. If Π? is statistical/computational semi-honest secure then the resulting ΠI is statis-
tical/computational malicious secure. Moreover, the randomness-size (resp. communication com-
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Correlated Randomness Online Communication
Previous work: Star [3] 2.5MB 2.5MB
Star (Lemma 4.2) 128KB 128KB
Chain (Theorem 11) 2.5MB 20bits
DAG (Theorem 2) 128KB 1.25MB
Gen. Patterns (Theorem 3) 2.5MB 25MB

Table 1: Concrete complexity numbers (per party) for n = 20 for computing general functions with
single output with information-theoretic security in the semi-honest model.

plexity) are only a factor of O(nλ) (resp. O(n2λ)) above those of the underlying protocol Π?, where
λ is a security parameter.

Note that the above theorem is stated for the case where f operates over binary inputs. When
the function f computed by ΠI accepts larger inputs, our transformation requires Π? for a different
(but related) function f ′ that operates over binary inputs. We remark that although we only
consider communication patterns I with a single sink, in the semi-honest case this can be trivially
extended to allow for multiple sink nodes which can each have a different output.

II. Information-Theoretic Protocols for General Functions. In the information-theoretic
setting, we present in Section 4 perfectly (resp., statistically) secure protocols for computing any
deterministic function against semi-honest (resp., malicious) adversaries. For f : {0, 1}n → {0, 1},
our semi-honest protocols give each party 2n bits of correlated randomness and require each party to
communicate O(n · 2n) bits. For malicious security, the correlated randomness and communication
are of size O(λn · 2n), with λ the security parameter. In the special case of a star pattern, our
protocols improve over previous protocols from [3] by a factor of n.

Theorem 2 (Informal). For every function f : {0, 1}n → {0, 1} and any DAG interaction pat-
tern I, there is a semi-honest, perfectly-secure, I-compliant protocol for f , in which each party gets
2n + 1 bits of correlated randomness and sends at most n · 2n−1 bits of communication. Also, there
is a malicious, statistically-secure, I-compliant protocol for f , in which each party gets O(λn · 2n)
bits of correlated randomness and sends at most O(λn · 2n) bits of communication.

For non-DAG patterns, we can use our protocol for star (which is a special case of the above;
see Section 4.2) and then apply our reduction to obtain:

Theorem 3 (Informal). For every function f : {0, 1}n → {0, 1} and any interaction pattern I,
there is a semi-honest, perfectly-secure, I-compliant protocol for f , in which each party gets n+(n+
1) · (2n + 1) bits of correlated randomness and sends at most n2 · (2n−1 + 2) bits of communication.
Also, there is a malicious, statistically-secure, I-compliant protocol for f , in which each party gets
O(λn · 2n) bits of correlated randomness and sends at most O(λn2 · 2n) bits of communication.

We stress again that for small input domains, these protocols could be quite practical, see
Table 1 for some concrete numbers for computing general functions with binary inputs, a single
output and semi-honest security.

Better Communication Complexity. For the chain interaction pattern, we describe in Sec-
tion 4.1 protocols for computing arbitrary functions where the total communication complexity is
only polynomial in the input size, though the correlated randomness is still exponential.
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Theorem 4 (Informal). For every f : {0, 1}n → {0, 1}, there is a semi-honest, perfectly-secure
protocol for f with a chain pattern in which each party gets at most n · 2n bits of correlated ran-
domness and sends at most n bits of communication. Also, there is a malicious, statistically-secure
protocol for f with a chain pattern in which each party gets at most O(λn · 2n) bits of correlated
randomness and sends at most O(n2 + λn) bits of communication.

In Section 8, we give evidence that it would be hard to extend this result to more general
interaction patterns: concretely, we show that even in a network Nn consisting of two chains (each
of length n) that lead to a common endpoint, a similar protocol would imply a 3-server protocol
for information-theoretic PIR [18] with poly-logarithmic communication, which is an unexpected
result.

Theorem 5 (Informal). Assume that, for every f : {0, 1}2n → {0, 1}, there exists a semi-honest,
statistically ε-secure Nn-compliant protocol that computes f with communication complexity c(n).
Then, there exists an (interactive, statistical) 3-server PIR protocol, with communication complexity
O(c(logN) + logN + log 1/ε), where N is the database size.

III. Efficient Information-Theoretic Protocols for Symmetric Functions. For symmetric
functions, we construct in Section 5 efficient, perfectly (resp., statistically) secure protocols over a
chain against semi-honest (resp., malicious) adversaries where both the offline and online phases
are polynomial in the input size.

Theorem 6 (Informal). For every symmetric binary function f : {0, 1}n → {0, 1}, there is a semi-
honest perfectly-secure protocol for f for the chain network in which each party gets (n+ 1)2 bits of
correlated randomness and sends at most (n+1)2 bits of communication. Also, there is a malicious
statistically-secure protocol for f for the chain in which each party gets O(λn2) bits of correlated
randomness and sends at most O(λn2) bits of communication, where λ is the statistical security
parameter. Moreover, both these protocols have efficient simulators.

IV. Computational Protocols for General Functions from Obfuscation. In the com-
putational setting, we observe in Section 6 that the multi-input functional encryption scheme of
Goldwasser et al. [36] already yields a protocol for computing general functions with a star inter-
action against semi-honest adversaries, based on indistinguishability obfuscation (iO) [2, 31] and
one-way functions. Combining their result with Theorem 1, we obtain a malicious-secure protocol
for computing general functions with general interaction patterns.

Theorem 7 (Informal). Assuming iO for general circuits and one-way functions, for every inter-
action pattern I, there exists an I-compliant protocol for computing any polynomial-time function,
that achieves malicious security against any number of corruptions, in the (non-reusable) correlated
randomness setup model.

Making Correlated Randomness Reusable. We also present a generic procedure to transform
any non-reusable correlated randomness setup into one that is reusable. Our transformation works
in the common random string (CRS) model where the size of the CRS grows linearly with the
number of uses of the correlated randomness. We note, however, that since the CRS is “public”
randomness, it can be easily compressed in the random oracle model.

Our transformation builds on the recent work of [41] and inherits their assumptions of iO and
fully homomorphic encryption (FHE). Composing our transformation with Theorem 7, we obtain
the following:
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Theorem 8 (Informal). Assuming FHE and iO for general circuits, for every interaction pattern
I, there exists an I-compliant protocol for computing any polynomial-time function that achieves
malicious security against any number of corruptions. The protocol uses a reusable correlated
randomness setup in the CRS model where the size of the CRS grows linearly with the number of
uses of the protocol.

Necessity of iO. We note that general-purpose iO is a necessary assumption for the above results.
Indeed, for the special case of a star pattern, it was already shown by [36] that a secure protocol
for general functions implies general-purpose iO.

V. Computational Protocols for Symmetric Functions from Multilinear Maps. For
the case of symmetric functions, we describe in Section 7 a much simpler protocol for general
interaction patterns that uses multilinear maps but does not require general-purpose obfuscation.
The security of that protocol reduces to a very simple variant of the Multilinear Decisional Diffie-
Hellman (MDDH) assumption over multilinear maps [9, 30], which we call the bookend MDDH
assumption. Unfortunately, in light of recent attacks [16, 19, 17, 46], this assumption (and indeed
the security of our protocol) does not hold for any of the current multilinear map candidates
[30, 20, 33, 21]. We hope that future multilinear map constructions will give rise to efficient
implementations of our protocol. In fact, this application of multilinear maps can serve as a useful
benchmark for evaluating the security and performance of future candidate constructions.

VI. Implications to standard MPC. We note that our results for MPC with general interaction
patterns also have relevance to standard MPC over fully connected networks. For instance, suppose
that there is a cost ci,j associated with sending a message from Pi to Pj . Our results reduce
the question of minimizing the total cost of an MPC protocol in this setting to a combinatorial
optimization problem. For instance, for standard n-party MPC where only P1 has an output, our
results imply general protocols with only 2n− 2 point-to-point messages (e.g., a chain from P1 to
Pn and back), which can be shown to be optimal.

1.3 Technical Overview

We now give an overview of some of our main results, more details are given in technical sections.

Reduction to Star Pattern. Recall that our goal here is to transform an n-party protocol
for computing general functions with a star pattern into another protocol for general interaction
patterns I. For simplicity, here we focus only on computing functions with binary inputs and
achieving semi-honest security see Section 3 for the general case. It is instructive to begin from the
naive protocol where each party just sends over the paths in I to the evaluator whatever message
it was supposed to send in the underlying star protocol. This protocol falls short of providing the
“best possible security” for the pattern I, because in the star pattern the inputs of all the corrupted
parties are free while some of them should be fixed in I.

To do better, we start with the observation that in the underlying star protocol, once all the
randomness is fixed, then every party Pi sends one of two fixed messages (m0

i ,m
1
i ) to the evaluator,

depending upon its input bit. In our transformation, we share the two possible messages of each
party using an n-out-of-n secret-sharing, giving each party one share of every message. These
shares comprise the correlated randomness that each party gets under our transformation. The
idea is that omission of any share will prevent the reconstruction of the original message, so as long
as only one of the two shares of party Pi’s messages is sent by Pj then Pi’s input will be fixed, even
if Pi is corrupted.
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The challenge is to let Pj know which of the two shares to send to the evaluator without revealing
Pi’s input. To that end, we distribute the shares of Pi’s two messages to all the parties in a random
but consistent order. That is, either they all get first the share of m0

i followed by share of m1
i , or

vice-versa. Furthermore, this random permutation bit is given to party Pi. During the protocol
Pi will xor that bit with its input, sending the resulting bit to the other parties to indicate which
shares they should send to the evaluator and which to omit. See Section 3 for more details of this
protocol and its proof of security.

Information-Theoretic Protocols for General Functions. Our information-theoretic proto-
cols follow a somewhat similar approach to the general reduction discussed above. Specifically, we
secret-share the truth table of f , giving each party a share for each of the 2n inputs, and then have
the honest parties omit some of their shares during the protocol run. This is done so as to ensure
that when the input of Pi is fixed, the adversary can obtain all the shares for inputs with xi = 0
or all the shares for inputs with xi = 1, but not both.

We remark that this is easy to implement in a star pattern: since the only fixed inputs are those
of the honest parties, we can have each honest party send to the evaluator only the shares consistent
with its own input bit. A protocol for a general pattern can be obtained using the transformation
from above, but we can get a better communication complexity by instead tailoring the share-
omission rules to the communication pattern. To obtain security in the malicious-adversary model,
we add authentication information to the correlated randomness. See Sections 4.1 and 4.2 for
details.

Efficient Information-Theoretic Protocols for Symmetric Functions. In the case of sym-
metric functions, we capitalize on the fact that there is a small representation of the truth table of
the function. In particular, the residual function in this representation can be obtained from the
global truth table by having each party locally drop one of the rows, depending on its input.

A similar approach was considered by [40] in the computational setting. In their case, the rows
of the truth table were encrypted using an additively homomorphic scheme so that party Pi+1 does
not learn what row was dropped by party Pi. In our information-theoretic setting, however, such an
additively homomorphic scheme is not available so we use a different hiding mechanism. Specifically,
we view messages as matrices, letting each party in the protocol multiply its received message by a
random matrix (which is given to it in its correlated randomness), then dropping one column and
forwarding the result to the next party. The correlated randomness of evaluator consists of the
columns of the resulting product matrix, tagged by the function output and permuted randomly.
In a run of the protocol, the evaluator will receive one of these columns and will use it to determine
the corresponding function output.

Adding security against malicious adversary is harder here than in our other information-
theoretic protocols, since parties do more than just forwarding some pre-determined messages
that are given to them as part of their correlated randomness. Our solution still uses authentica-
tion to force the corrupted parties to send the right messages, but we must ensure that the added
authentication information does not leak information on potential messages that are not sent in a
particular run of the protocol. To ensure that, we use an authentication mechanism that doubles
also as a randomness extractor, namely the “extractor-MAC” construction from [24], which is based
on almost-universal hashing [51]. We also need to withhold from the evaluator the columns of the
product matrix, replacing them by just the authentication information needed to recognize these
columns. See Section 5 for details and proofs of security.

Reusing correlated randomness. We describe a generic transformation from a non-reusable
correlated randomness setup CRnr into a reusable one CR, using a (non-reusable) common random
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string (CRS).
Our starting idea is to use an MPC protocol Π to compute the function Fcr that takes small

randomness as input and outputs a large number L = poly(k) of independent instances of CRnr.
Note that such a function Fcr is easy to define: on input a short random seed, Fcr first expands
it into a large pseudorandom string using a PRG (of appropriate stretch) and then uses different
“chunks” of the resultant string to compute L independent instances of CRnr. Now, fix an honest
execution of Π and consider viewi, the view of each party i in the execution, consisting of its
random tape and the protocol messages. Note that if each |viewi| was independent of L, then we
could simply set (view1, . . . , viewn) as an instance of the reusable correlated randomness setup CR.
This is because given viewi, party Pi can locally compute the output of Π, which consists of L
instances of CRnr.

Thus, we have effectively reduced our problem of making any correlated randomness setup
reusable to the problem of constructing an MPC protocol Πout-ind that computes n-party functions
with “long” outputs where the communication complexity of the protocol as well as the size of
randomness of each party is independent of the function output length. A moments reflection,
however, reveals that such a protocol is impossible in the standard model.1 Instead, our solution
will use a long CRS.

Our starting point is a recent work of Hubáček and Wichs [41], who constructs a secure two-
party computation protocol where the communication complexity of the protocol is independent of
the function output length. However, the size of the randomness of each party does grow with the
function output length. We extend their protocol to the multiparty setting. Let Πlong-rand denote
the resulting protocol. Our key observation then is that the long randomness of the parties in
Πlong-rand can be “compressed” by using a long public CRS. In particular, we transform Πlong-rand

into a new protocol Πshort-rand using a public random string CRS = CRS1, . . . ,CRSn where each
CRSi is as long as the function output length. The randomness of each party Pi in Πshort-rand is set
to be a short seed ri. At the start of the protocol, Pi first locally computes a large random string
Ri = PRG(ri)⊕ CRSi. It then executes the strategy of the i’th party in Πlong-rand using Ri for the
rest of the protocol.

Combining the above steps, we obtain our desired MPC protocol. We stress that we are able to
bypass the aforementioned impossibility result since we are working in the CRS model, where the
size of the CRS grows with the function output length. (But since the CRS is “public” randomness,
it can be easily compressed in the random oracle model.)

Computational Protocols for Symmetric Functions. For symmetric functions, we use multi-
linear maps to construct simple protocols that achieve computational security against semi-honest
adversaries. Here we focus on the star pattern; a protocol for general interaction patterns can be
obtained by composing the star protocol with our general reduction to star.

Consider an n-level multilinear map where [x]i denotes an encoding of x at level i. In our
star protocol, as part of the correlated randomness, each party Pi is given two level-1 encodings
[ai]1, [ai × r]1 for random and independent elements ai’s and the same random r. Let A =

∏n
i=1 ai

denote the product of the ai’s. The evaluator is given of all the n+1 (level-n) encodings [bi]n = [A×
ri], i = 0, 1, . . . n in a random order, where each bi is tagged with the function value fi = f(1i0n−i).

In the protocol, each party Pi simply sends the encoding [ai]1 or [ai × r]1, depending upon
whether its input bit is 0 or 1, respectively. The evaluator multiplies the n encodings that it receives

1Consider an execution of Πout-ind for evaluating a PRG with “long” stretch. The view of any party i in the
protocol is a “compressed” representation of the long protocol output. This can be used to derive a computational
incompressibility argument, similar to several recent works [1, 13, 41].
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and then compares the resulting encoding against the bi’s to determine the function output. More
details are found in Section 7. As mentioned above, this protocol is unfortunately insecure using
current multilinear-map candidates.

1.4 Related Work

There is a very large body of recent work about minimizing interaction in cryptography (mostly
concentrating on the number of rounds, rather than the number of messages): whereas classical
MPC results show that every cryptographic task can be realized with sufficient interaction, popular
recent research topics such as garbling schemes [53, 5, 37], fully homomorphic encryption [32],
functional encryption [49, 8, 48], and obfuscation [2, 31], are all about minimizing interaction. Our
work can be seen as taking the question of “what can we do with a given type of interaction” to
its ultimate level of generality. One can view the previous notions, as well as standard interactive
MPC, as special cases of this general problem.

Another large body of work, originating from [25], studies the problem of secure communication
(or message transmission) in general networks, where only certain pairs of parties can communicate
with each other. This goal is trivialized when allowing a correlated randomness set-up, as we do
here, and so the challenges that arise in that setting are very different from the ones we face in
our work. The same is true for a recent extension of this problem to secret sharing in general
networks [50], a task whose feasibility reduces to that of secure message transmission.

Another line of work, originating from earlier works in the context of distributed computing [26],
studies the possibility of realizing MPC on sparse networks [29, 14]. These works use specially
designed (expander-based) networks to allow MPC in graphs of a small degree. To this end, they
also need to relax the traditional goal of MPC by assuming that some honest inputs are being
compromised. However, in contrast to the model considered in our work, being compromised there
means “known or fixed by the adversary” as opposed to being “free” in the sense considered here.
In particular, general solutions for MPC in that model have no consequences for obfuscation.

Finally, Kearns et al. [44] also study secure computation in a model with restricted communica-
tion. Their restriction is more liberal than our definition of interaction pattern: each message from
Pi to Pj should be computed by a small neighborhood of Pi, Pj (in an undirected network graph).
Their positive results provide computational security against a single corrupted party, a limitation
which they show to be inherent to their model. In contrast, our protocols provide a meaningful
notion of security with respect to any number of corrupted parties.
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2 Preliminaries

Below we formalize our model of secure computation with arbitrary restricted interaction patterns,
generalizing previous definitions from [40, 36, 3] that consider specific patterns. Our definitions
assume that the communication pattern is fixed a-priori and does not depend on the input of the
parties or their randomness. We begin by defining the syntax for specifying a communication pat-
tern I and a protocol Π that complies with it. In all the definitions below, we let P = {P1, . . . , Pn}
denote a fixed set of parties who would participate in the protocol. When we want to stress the
difference between a protocol message as an entity by itself (e.g., “the 3rd message of party P1”)
and the content of that message in a specific run of the protocol, we sometime refer to the former
as a “message slot” and the latter as the “message content”.

To define an N -message interaction pattern for the parties in P, we assign a unique identifier
to each message slot. (Without loss of generality, the identifiers are the indices 1 through N .)
An interaction pattern is then defined via a set of constraints on these message slots, specifying
the sender and receiver of each message, as well as the other messages that it depends on. These
constraints are specified by a message dependency graph, where the vertices are the message slots
and the edges specify the dependencies.

Definition 1 (Interaction pattern). An N -message interaction pattern for the set of parties P is
specified by a message dependency directed acyclic labeled graph,

I =
(
[N ], D, L : V → P × (P ∪ {Out})

)
.

The vertices are the message indices [N ], each vertex i ∈ [N ] is labeled by a sender-receiver pair
L(i) = (Si, Ri), with Ri = Out meaning that this message is output by party Si rather than sent to
another party.

The directed edges in D specify message dependencies, where an edge i → j means that mes-
sage j in the protocol may depend on message i. The message-dependency graph must satisfy two
requirements:

• I is acyclic. We assume without loss of generality that the message indices are given in
topological order, so i < j for every (i→ j) ∈ D.

• If message j depends on message i, then the sender of message j is the receiver of message i.
That is, for every (i→ j) ∈ D, we have Sj = Ri (where L(i) = (Si, Ri) and L(j) = (Sj , Rj)).

We assume without loss of generality that each party P ∈ P has at most one output, namely
at most one i ∈ [N ] such that L(i) = (P,Out). For a message j ∈ [N ], we denote its incoming

neighborhood, i.e. all the messages that it depends on, by DepOn(j)
4
= {i : (i→ j) ∈ D}.

An n-party, N -message interaction pattern, is an N -message pattern for P = [n]. To avoid
confusion, we usually denote party i by Pi rather than just the index i.

Note that we allow “party cycles” with one message sent from Pi to Pj and a different message
sent from Pj to Pi. Such cycles may have one message depends on the other (e.g., Pi waits for a
message from Pj and then replies to it), or they may be independent (e.g., Pi, Pj send independent
messages to each other in the same communication round). Some examples of communication
patterns with party cycles include:

• Clique. Each party sends a single message to each other party (and then computes an
output). The message-dependency graph for this pattern has N = n2 vertices, labeled by
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all pairs (R,S) ∈ P × (P ∪ {Out}) with R 6= S. The only dependencies are in the output,
namely the message labeled by (P,Out) depends on all the messages labeled by (P ′, P ) (for
all P, P ′ ∈ P).

• Two-way chain. Messages travel from party Pn to party P1 on a simple path and then back
to party Pn on the same path in the reverse direction, and party Pn is the only one computing
an output. Here we have a total of N = 2n− 1 messages (including the final output).

• Standard MPC: Standard MPC protocols over point-to-point channels consist of m rounds
of interaction, where in each round every party sends a message to every other party, de-
pending on messages it received in previous rounds, and parties compute their outputs at the
end of the last round. The clique pattern above is a special case of this pattern with a single
communication round.

DAG-based patterns. In some cases we consider special interaction patterns without such party
cycles and call them “DAG-based” patterns. Two extreme types of DAGs that we consider in
this work are a star, containing only one message from Pi to Pn, for i = 1, . . . , n− 1, and a chain,
containing messages from Pi to Pi+1, for i = 1, . . . , n − 1. In both cases, we think of party Pn as
the only party that has an output. For notational convenience, in some of our protocols for stars
and chains we use n+ 1 parties, where Pn+1 is an “evaluator” party who has an output but has no
input.

2.1 Protocols with Restricted Interaction Patterns

We next define the syntax of an MPC protocol complying with a restricted fixed interaction pat-
tern. Importantly, our model includes general correlated randomness set-up, making protocols with
limited interaction much more powerful.

Definition 2 (MPC with fixed interaction: Syntax). Let I = ([N ], D, L) be an n-party N -message
interaction pattern. An n-party protocol complying with I is specified by a pair of algorithms
Π = (Gen,Msg) of the following syntax:

• Gen is a randomized sampling algorithm that outputs an n-tuple of correlated random strings
(r1, . . . , rn).

• Msg is a deterministic algorithm specifying how each message is computed from the messages
on which it depends. Concretely, the input of Msg consists of the index i ∈ [N ] of a vertex in
the dependency graph, the randomness rSi and input xSi for the sender Si corresponding to
that vertex, and an assignment of message-content to all the messages that message i depends
on, M : DepOn(i) → {0, 1}∗. The output of Msg is an outgoing message in {0, 1}∗, namely
the string that the sender Si should send to the receiver Ri.

The execution of such a protocol Π with pattern I proceeds as follows. During an offline set-up
phase, before the inputs are known, Gen is used to generate the correlated randomness (r1, . . . , rn)
and distribute ri to party Pi. In the online phase, on inputs (x1, . . . , xn), the parties repeatedly
invoke Msg on vertices (message-slots) in I to compute the message-content they should send. The
execution of Π goes over the message slots in a topological order, where each message is sent after
all messages on which it depends have been received. We do not impose any restriction on the
order in which messages are sent, other than complying with the depend-on relation as specified by
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I. Once all messages (including outputs) are computed, the parties have local outputs (y1, . . . , yn),
where we use yi = ⊥ to indicate that Pi does not have an output.

For a set T ⊂ [n] of corrupted parties, let viewT denote the entire view of T during the protocol
execution. This view includes the inputs xT , correlated randomness rT , and messages received by
T . (Sent messages and outputs are determined by this information.) The view does not include
messages exchanged between honest parties.

Security of a protocol with communication pattern I requires that for any subset of corrupted
parties T ⊆ P, the view viewT reveals as little about the inputs xT̄ of honest parties as is possible
with the interaction pattern I. As discussed in the introduction, we formulate this notion of “as
little as possible” via the notion of fixed vs. free inputs: If parties Pi, Pj are corrupted and no path
of messages from Pi to Pj passes through any honest party, then the adversary can learn the output
of Pj on every possible value of xi. However, if there is some honest party on some communication
path from Pi to Pj , then having to send a message through that party may be used to “fix” the
input of Pi that was used to generate that message, so the adversary can only learn the value of
the function on that one input.

Definition 3 (Fixed vs. free inputs). For an interaction pattern I, parties Pi, Pj ∈ P (input and
output parties), and a set T ⊆ P of corrupted parties, we say that Pi has fixed input with respect
to I, T and Pj if either

(1) Pi 6∈ T (the input party is honest), or

(2) there is a directed path in I starting with some message sent by Pi, ending with some message
received by Pj, and containing at least one message sent by some honest party Ph 6∈ T .

We say that Pi has free input (with respect to I, T, Pj) if Pi ∈ T and its input is not fixed. We let
Free(I, T, Pj) ⊆ T denote the set of parties with free inputs, and Fixed(I, T, Pj) = P−Free(I, T, Pj)
is the complement set of parties with fixed input (all with respect to I, T and Pj).

To illustrate the above notion, consider the case where only Pn has output, and T is a strict
subset of P with Pn ∈ T . If I is a chain, then the free inputs are all Pi ∈ T whose position in
the chain is after the last honest party. In the cases of a star and a clique (or 1-round standard
MPC), the entire set T is free. In the cases of a two-way chain and standard m-round MPC with
m ≥ 2, all inputs are fixed. We also note that if the output party is honest then all inputs are
fixed, regardless of the interaction pattern.

Using the notion of fixed inputs, we can now capture the minimum information available to the
adversary by defining a suitable restriction of the function f that the protocol needs to compute.

Definition 4 (Residual function). For an n-party functionality f , interaction pattern I, corrupted
set T ⊂ P, input x = (x1, . . . , xn) and output party Pj ∈ P, the residual function fI,T,x,Pj is the
function obtained from fj by restricting the input variables indexed by F = Fixed(I, T, Pj) to their
values in x. That is, for input variables x′

F̄
= (x′i)i 6∈F , we define fI,T,x,Pj (x

′
F̄

) = fj(x
′
1, . . . , x

′
n),

where x′i = xi for all i ∈ F .

We formalize our notion of security in the semi-honest model below. To get around general
impossibility results for security with polynomial-time simulation [40, 36, 3], we will allow by
default simulators to be unbounded (but will also consider bounded simulation variants). We start
by considering perfectly secure protocols.
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Definition 5 (Perfect security with semi-honest adversaries). Let f be a deterministic n-party
functionality, I be an n-party, N -message interaction pattern, and Π = (Gen,Msg) be an n-party
protocol complying with I. We say that Π is a perfectly T -secure protocol for f in the semi-honest
model for a fixed set T ⊆ P of corrupted parties if the following requirements are met:

• Correctness: For every input x = (x1, . . . , xn), the outputs at the end of the protocol
execution are always equal to f(x) (namely, with probability 1 over the randomness of Gen).

• Perfect security: There is an unbounded simulator Sim that for any input x is given
xT and the truth tables of the residual functions fI,T,x,Pj for all Pj ∈ T , and its output is
distributed identically to viewT (x).

We say that Π is a secure protocol for f if it is T -secure for every T ⊆ P.

As is typically the case for unbounded simulation, one can equivalently formulate the above
definitions in terms of indistinguishability.

Definition 6 (Indistinguishability-based security). We say that a protocol Π is a T -secure protocol
for f in the sense of indistinguishability against a semi-honest adversary if it meets the correctness
requirement and the following security requirement: For every pair of inputs x = (x1, . . . , xn), x′ =
(x′1, . . . , x

′
n) such that xT = x′T and fI,T,x,Pj = fI,T,x′,Pj for all Pj ∈ T , the random variables

viewT (x) and viewT (x′) are identically distributed.

Claim 2.1 (Equivalence of unbounded simulation and indistinguishability). Every protocol Π meets
the T -security requirement of Definition 5 if and only if it meets the T -security requirement with
respect to indistinguishability of Definition 6.

Proof. Suppose that the indistinguishability requirement is met. Then a simulator Sim, on input
xT and given oracle access to the residual functions fI,T,x,Pj for all Pj ∈ T , can proceed as follows:

• Using a brute-force search on the input space, find an input x′ such that x′T = xT and
fI,T,x,j = fI,T,x′,j , for all j ∈ T .

• Run the protocol Π on x′ and output the view of T .

The output of the simulator is distributed according to viewT (x′), which by the indistinguishability
requirement is identical to the distribution viewT (x).

In the other direction, suppose there is an unbounded simulator Sim as in Definition 5, and let
x and x′ be inputs such that xT = x′T and fI,T,x,j = fI,T,x′,j , for all j ∈ T . By the definition of Sim,
both viewT (x) and viewT (x′) should be identically distributed to its output and should therefore
have the same distribution, as required.

Statistical and computational security. Definitions 5 and 6 can be modified in a standard way
to capture statistical and computational relaxations of security. In the case of statistical ε-security,
we allow the correctness requirement to fail with probability at most ε and settle for the output
of Sim being ε-close in statistical distance to viewT (x) (respectively, for viewT (x) and viewT (x′) to
be ε-close). In the case of computational (t, ε)-security, we further relax the latter requirements
by requiring (t, ε)-indistinguishability rather than ε-statistical-closeness. Equivalence of simulation
and indistinguishability notions holds also for these variants, up to a factor 2 loss in ε.
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Protocol compilers. As is typically the case in the context of MPC protocols, we will be inter-
ested not in a single protocol for a single instance of the problem, but rather in a general solution
that can handle different functionalities, interaction patterns, and levels of security in a uniform
way. Such a general solution is captured by the following notion of a protocol compiler.

Definition 7 (Protocol compiler). A protocol compiler is a polynomial-time algorithm whose in-
puts consist of the number of parties n and number of messages N , an n-party functionality f
(given by some canonical representation such as a boolean circuit or a truth-table), an n-party N -
message interaction pattern I, and (for the case of statistical and computational security) a security
parameter 1k.

The output of the compiler consists of a pair of boolean circuits implementing a protocol Π =
(Gen,Msg) as in Definition 2. The compiler can be either perfect, statistical, or computational. In
the computational (resp., statistical) case, it is required that for every polynomial t(k) there is a
negligible ε(k) such that the protocol Π, output by the compiler when invoked with security parameter
k, is (t(k), ε(k))-secure (resp., ε(k)-secure).

In the rest of the paper, the term “protocol” will implicitly refer to a protocol compiler as above.
We will sometimes restrict protocol compilers to handle special types of functionalities (such as
boolean, symmetric, or single-output functionalities), special types of representations (such as a
truth-table representation) or special types of interaction patterns (such as a chain or a star).

Bounded simulation. One can similarly define a bounded simulation variant of the above defi-
nition, in which the protocol compiler should also output an explicit description of a circuit imple-
menting Sim. This effectively restricts the running time of Sim to be polynomial in the description
size of f and the security parameter. While this variant of the definition cannot be realized for
general circuits, it can be realized for special types of interaction patterns (such as ones forcing all
inputs to be fixed), special functionalities (such as symmetric boolean functions) or when using a
truth-table representation of f that effectively allows Sim to be exponential in the bit-length of the
inputs.

Reusable set-up. The above definition uses a single invocation of the set-up Gen to support a
single evaluation of f . Ideally, one would want to use the same set-up to support an arbitrary
polynomial number of function evaluations. While this is impossible to achieve in the information-
theoretic setting, some of our protocols for the computational setting have a reusable set-up.

2.2 Security in the presence of malicious adversaries

We define security against malicious adversaries via a suitable modification of the standard real-
ideal paradigm for MPC. We start by highlighting some subtleties that arise in this setting.

When considering malicious adversaries, who may deviate from the protocol’s specification, one
needs to consider not only the information obtained by the adversary about the inputs of honest
parties, but also the adversary’s influence on the outputs of honest parties. Moreover, while in the
semi-honest case the content of messages sent during the protocol execution is insensitive to the
message scheduling, malicious adversaries may correlate messages they send with messages they
receive, and the latter may depend on the scheduling.2 We will thus need to guarantee that our

2In the case of standard MPC in the synchronous setting with static (non-adaptive) corruptions, one can assume
without loss of generality that the adversary is rushing, namely that in each round it waits until it receives all message
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notion of security hold for every (adversarially chosen) admissible message scheduling, as defined
in Definition 1.

Additional subtleties arise in the case where there is more than one output. While the traditional
notion of MPC requires that the adversary’s inputs be chosen independently of the honest parties’
inputs, this is not always possible with general interaction patterns. For instance, in the case of the
clique pattern from above, a corrupted P1 may first compute the output (on each possible choice
of its input) after receiving messages from all other parties, and then pick its input depending on
the information it learned and send messages honestly according to this input. Moreover, it can
potentially use a different input for each destination. This generic strategy allows P1 to correlate
its choice of inputs with the information it can obtain about inputs of honest parties. We will thus
need to relax the ideal model to accommodate this type of attacks.

Our definition follows the standard framework for simulation-based security definitions of MPC
(cf. [10, 11]). Such definitions require that for any adversary attacking the real protocol there is a
simulator attacking an ideal protocol, such that no environment can distinguish between the case
it is interacting with the adversary attacking the real protocol and the case it is interacting with
the simulator attacking the ideal protocol. The ideal protocol employs a special trusted party for
computing the functionality, effectively restricting the simulator to picking its inputs independently
of the honest parties’ inputs and learning only the outputs of corrupted parties.

One can consider both a standalone variant of these definitions [10, 34], in which the environ-
ment only communicates inputs in the beginning of the protocol and receives outputs (from the
adversary/simulator and the honest parties) in the end of the protocol, or a universally compos-
able (UC) variant [11, 12] in which the environment can interact freely with the adversary and
the simulator. One can also consider both an information-theoretic variant in which the adversary
can be unbounded and an information-theoretic variant in which the adversary and the simulator
should be efficient. Allowing a correlated randomness setup gets around impossibility results for
information-theoretic MPC and UC security.

Our definition deviates from the standard MPC framework in the following ways. We allow
simulators to be computationally unbounded by default. We augment the real protocol execution
by incorporating the set-up phase, which cannot be controlled by the adversary. (The random
inputs ri of corrupted parties are treated by the simulator as incoming messages it must simulate,
similarly to a CRS in standard definitions.) The message scheduling in the real protocol is chosen
by the adversary, subject to the constraint of being admissible with respect to the given interaction
pattern I.

The interaction of the simulator with the ideal protocol is modified as follows. We start with
the simpler case of functionalities having a single output. In this case, if the evaluator (i.e., the
output party) is honest then the simulator’s interaction with the functionality is as in the standard
MPC definition. (This implies, in particular, that the adversary should learn nothing about the
honest parties’ inputs, and its effect on the output is limited to choosing its inputs independently
of honest inputs or making the evaluator output an abort symbol ⊥.) If the evaluator is corrupted,
then the simulator is still required to send a single input value to the functionality for each fixed
corrupted input (as defined in Definition 3), but it is also allowed to “reset” the functionality by
changing an existing value of a free corrupted input. The functionality sends an updated output
value to the simulator (assuming it has all n inputs) upon each such change.

Note that in the case of unbounded simulation, there is no restriction on the number of times

from the honest parties before sending messages on behalf of corrupted parties. In our asynchronous setting, however,
the adversary may face several incomparable scheduling options.
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in which the functionality is called. Thus the simulator is effectively given a full description of
the residual function defined by the honest inputs and the fixed corrupted inputs, where the latter
should be produced by the simulator. (The simulator may pick these fixed inputs by running the
adversary’s algorithm and extracting effective inputs from messages it sends.)

Functions with Multiple Outputs. Finally, we address the general case of a functionality with
multiple outputs. As illustrated by the clique example above, in such a case we need to allow the
simulator to learn the corrupted parties’ outputs before committing to the inputs that determine
the honest parties’ outputs. Moreover, it may be possible for the adversary to use different inputs
when determining the outputs of different honest parties.

This is captured in the following way. The interaction of the simulator with the ideal function-
ality is divided into a “learning phase,” where the simulator tries to gather as much information
as it can about inputs of honest parties, and an “influence phase,” where the simulator tries to
influence the outputs of honest parties. During the learning phase, honest parties send their inputs
to the functionality. Then, for each corrupted output j ∈ T , the simulator interacts with fj as in
the single-output case when j ∈ T . (Namely, it can pick a unique input value for each input that is
fixed with respect to T and Pj and can pick arbitrarily many input values for the free inputs; note
that the set of free inputs may be different for each j.) During the influence phase, the simulator
interacts with each fh, h 6∈ T , by picking a single input for each j ∈ T , and allowing fh to deliver
the correct output to party h with respect to this input. The simulator can also send ⊥ to fh,
making party h output ⊥.

3 A Reduction to Star

Below we show that the star interaction pattern is complete, in that we describe a reduction
from the problem of realizing a function f using an arbitrary interaction pattern I to that of
realizing the same f on a star. Our transformation is information-theoretic and does not require
any cryptographic assumptions, but it requires its own non-reusable correlated randomness (in
addition to whatever setup is needed for the underlying star-pattern protocol). We prove that if
the underlying star protocol is semi-honest secure then so is the resulting general-pattern protocol,
achieving possibly even better security. Furthermore, in Section 3.2 we modify the transformation
so that the general-pattern protocol is malicious-secure.

The transformation below assumes that the function f depends on all its inputs, that it has
only a single party with output (as this is inherent in having a secure star-protocol for f), and that
the interaction pattern has at least one message path from every party to the evaluator. We note
that in the semi-honest model one can easily extend a solution for the one output case to multiple
outputs by just running separate protocols for the different outputs (piggybacking over the same
messages of I as needed).

It is instructive to consider first the “naive transformation” where every party just sends what-
ever message it was supposed to send in the underlying star protocol to the evaluator over the
paths in I. The simulator of the secure star protocol can be tweaked to provide a simulator for
the protocol using I. This naive transformation, however, falls short of what we need because we
typically need to provide “more security” in I than what we had in the underlying star protocol.
In a star pattern all the corrupted parties’ inputs are free, yet in other interaction patterns some
of the corrupt parties’ inputs can be fixed. The naive protocol inherits the residual function of the
star, yet we want a more restricted residual function in I.
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We will modify the naive transformation and cause the inputs of a set of corrupted parties to
be fixed. These corrupted parties will include all those who have an honest party on any of their
I-paths to the evaluator. Once we expand the set of parties whose input is fixed, we will consider
this expanded set to be the set of “honest” parties in the star network. This, in return, will also
restrict the residual function that we have access to, thus providing improved security.

The main observation that enables our reduction is that in the star pattern, once the correlated
randomness is fixed, each party has only two messages that it can send to the evaluator, depending
on its input bit. In our transformation, we share these two possible messages of party Pi using
an n-out-of-n secret sharing, giving each party in the graph one share of each message. Note that
even party Pi does not know the two messages corresponding to its two possible inputs. Thus,
the evaluator needs all shares of an input in order to compute the function on this input. We will
further modify the construction to enable an honest Pj on a path of a corrupt Pi to send only one
of the shares, de facto fixing the input of Pi.

A remaining challenge is how to let Pj know which of the two shares to send while, at the same
time, hiding Pi’s input bit. For this, the shares of Pi’s two messages are given to all the Pj ’s in
a random but consistent order. That is, either they all get first the share of message-0 and then
of message-1, or they all get first the share of message-1 and then of message-0. Party Pi is told
whether the order is flipped or not. This enables party Pi to inform the parties on its paths to the
evaluator which share to send without revealing its actual input bit. If Pj is not on any path from
Pi to the evaluator then it will not hear which of the two shares to send, and thus it will forward
both shares. If Pi is corrupted, each honest party on the path from Pi to the evaluator would send
just one of its two shares, so the view of the protocol would include (at most) one of Pi’s underlying
messages in the star protocol, which would fix Pi’s effective input in the underlying protocol.

3.1 The Semi-Honest Transformation

Theorem 9. There exists an efficient transformation T such that for any function f : {0, 1}n →
{0, 1} that depends on all its inputs, any n-party interaction pattern I with a single sink, and any
star-compliant protocol Π? for f , T (Π?, I) is an I-compliant protocol ΠI for f (with non-reusable
correlated randomness) with the following properties:

• If in Π? each party gets at most R bits of correlated randomness and sends at most M bits of
communication, then in ΠI each party gets at most R+ 2n ·M bits of correlated randomness
and sends at most n2(M + 1) bits of communication.

• If Π? is perfect/statistical/computational semi-honest secure then so is the resulting ΠI .

Proof. Let P1, P2, . . . , Pn+1 be the parties, and assume without loss of generality that Pn+1 is the
evaluator. Let Π? = (Gen?,Msg.int?,Msg.eval?) be a protocol for computing f on the star, where
Gen? generates correlated randomness, Msg.int? is the next message function of the parties, and
Msg.eval? is used by the evaluator to compute the output. For any communication pattern I, we
construct a protocol ΠI = (GenI ,Msg.intI ,Msg.evalI) for computing f on I as follows.

Setup. The randomness-generation procedure GenI begins by running Gen? to generate correlated
randomness r1, . . . , rn+1 for the underlying star protocol, and then proceeds as follows:

1. For each party i ≤ n, and for every input bit σ ∈ {0, 1}, compute a message that Pi could
send in the underlying star protocol, mσ

i ← Msg.int?(σ, ri).
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2. Compute an n-out-of-n secret sharing of each message mσ
i . Let mσ

i,1, . . . ,m
σ
i,n denote the n

shares of mσ
i .

3. Choose random permutation bits b1, . . . , bn, one for each party Pi, i ≤ n.

The correlated randomness of each party Pi includes the permutation bit bi, and all the pairs

(m
bj
j,i,m

1−bj
j,i ) for every j ≤ n. Below we denote (M0

j,i,M
1
j,i) = (m

bj
j,i,m

1−bj
j,i ). The evaluator receives

in addition also rn+1.

Messages and Output. On input xi, each party Pi computes the bit ci = xi⊕bi, that determines
which shares of Pi’s messages should be used. Then it proceeds as follows:

1. Pi sends the bit ci on every path to the evaluator in I.

2. Then, for every Pj such that some path from Pj to the evaluator goes through Pi, party Pi
waits until it receives the bit cj and then sends M

cj
j,i = mxi

j,i on the path to the evaluator.

3. For every Pj such that no path from Pj to the evaluator goes through Pi, party Pi sends both
shares on some I-path to the evaluator.

4. In addition, Pi forwards every message that it receives from other parties on some I-path to
the evaluator.

After receiving all the messages, the evaluator collects the set of shares {M ci
i,1, . . . ,M

ci
i,n}i∈[n]

and reconstructs all the messages mxi
i from the corresponding n shares, for every i ∈ [n]. Finally,

it runs the evaluator algorithm Msg.eval? on inputs rn+1 and {mxi
i }i∈[n] and returns its output.

This completes the description of ΠI . The correctness of the protocol is easy to verify.

Complexity. To achieve the communication complexity stated in Theorem 9, the parties need
to send their messages only once on all paths to the evaluator and forward each message that they
receive only once. Specifically each Pi needs to send the bits cj (either its own or others’) toward
each Pj′ downstream only in the first opportunity that it has according to I. Similarly it needs
to send shares toward the evaluator (both its own and forwarded) only in the last opportunity
that it has according to I. All other I messages (if any) should be empty. Done this way, the
complexity of the resulting ΠI depends only on the number of parties n and NOT on the number
of messages N in the communication pattern I.

Some further optimization is possible, in that each Pi need not forward all messages from other
parties, it can drop messages that it already knows are inconsistent with the cj ’s that it saw. This
modification changes the (worst-case) complexity stated in Theorem 9 by at most a small constant
factor.

Proof of Security. We need to describe a simulator SimI for the resulting protocol ΠI , using the
simulator Sim? of the underlying star-protocol. The simulator, SimI , gets the corrupted parties’
input and the residual truth table, and needs to produce the correlated randomness of the corrupted
parties and the messages of the honest parties. It will utilize the simulator of the star to achieve
this goal. As explained above, the residual truth table that SimI gets is more restricted than that of
Sim?, as in I some of the corrupt parties’ inputs may be fixed. However, we show that this residual
function is sufficient to simulate the communications. Let T ⊆ [n + 1] be the set of corrupted
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parties in a run of ΠI , and partition it into fixed and free parties T = TFixed ∪ TFree. Denote the
set of honest parties by H = [n + 1] \ T . Let T ∗ = TFree be the set of corrupted parties used for
simulator Sim? and H∗ = TFixed ∪H be the set of honest parties.

The I-simulator SimI gets the input bits xi for all i ∈ T and the residual function f ′(xTFree ) =

f(x
H∗ , xTFree ). It runs the star-simulator Sim?, giving it the input bits xi for i ∈ TFree and the same

residual function. Sim? returns the correlated randomness ri for i ∈ TFree and messages mi for
i ∈ H∗. (Recall that mi = mxi

i for some xi ∈ {0, 1}, but SimI does not know xi.)
Next SimI computes the corrupted-party messages of the underlying star protocol as mσ

i ←
Msg.int?(σ, ri) for i ∈ TFree, σ ∈ {0, 1}, and also chooses random bits b1, . . . , bn. It computes n-out-
of-n secret sharing of all the m’s that it knows, chooses at random shares for the m’s that it does
not know, and orders the shares as follows:

• For all i ∈ TFree, j ∈ [n], the simulator sets ci := bi ⊕ xi and then for σ ∈ {0, 1} it sets Mσ
i,j

to be the j’th share of the message mσ⊕bi
i .

• For all i ∈ H∗, j ∈ [n + 1], the simulator sets ci := bi and then it sets M bi
i,j to be the j’th

share of the message mi, and it chooses M1−bi
i,j uniformly at random.

The I-simulator SimI gives every i ∈ T the correlated randomness bi and shares {(M0
j,i,M

1
j,i) : j ∈

[n]}, and if the evaluator is corrupted then SimI gives it also the correlated randomness rn+1 of
the underlying star protocol. Finally. SimI runs the actual protocol ΠI using the shares that it
computed and the ci bits to determine the honest parties’ messages in the I-protocol.

We observe that the simulated view is identical/statistially-close/computationally indistinguish-
able to the real view, depending on the properties of the underlying simulator Sim?, Indeed, if the
simulated view contains all the shares of some messages m of the underlying protocol, then either
m was produced directly by Sim? or it was computed from the correlated randomness ri produced
by Sim?. All other shares in the view, as well as the permutation bits bi, are uniformly random and
independent of everything else.

Handling Functions Over a Large Domain. The transformation above can handle a function
with a large range without any change, but its efficiency relies crucially on the domain being small,
so that once the correlated randomness is fixed each party has only a small number of messages
that it can possibly send in the star protocol, depending on its input. Applying the transformation
as-is to a function f : Dn → R with a large domain D, would increase the complexity of the star
protocol for f roughly by a factor of |D|.

To do better, we can always represent each input of f as a binary string of length ` = dlog |D|e,
and apply the above transformation to a star protocol for the modified function f ′ : {0, 1}n` → R,
defined as:

f ′(x1, . . . , xn`) = f
(
(x1, . . . , x`), . . . , (x(n−1)`+1, . . . , xn`)

)
.

Note that this requires that we view the n-player interaction pattern I as an n`-player pattern,
which we can always do by introducing dummy communication flows between the virtual players
that are implemented by a single real player. More importantly, though, it requires a star protocol
for f ′ rather than a star protocol for f .
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3.2 Reduction for Malicious Security

Theorem 10. There exists an efficient transformation T such that for any function f : {0, 1}n →
{0, 1} that depend on all its inputs, any n-party interaction pattern I with a single sink, and any
star-compliant protocol Π? for f , T (Π?, I) is an I-compliant protocol ΠI for f (with non-reusable
correlated randomness) with the following properties:

• If in Π? the evaluator gets R bits of correlated randomness and the other parties send at most
M bits of communication each, then in ΠI each party gets at most R + 2n ·M ·O(λ) bits of
correlated randomness and sends at most nR+n2M ·O(λ) bits of communication, with λ the
statistical security parameter.

• If the underlying protocol Π? is statistical/computational semi-honest secure, then the resulting
ΠI is statistical/computational malicious secure.

Proof. (sketch) The transformation for malicious security is very similar to the semi-honest trans-
formation from above, except that we also secret-share the evaluator randomness rn+1, and we
authenticate all the messages (say, using an information-theoretic two-time MAC, e.g. 3-wise inde-
pendent hash functions). Specifically, the parties are given the authentication tags for the messages
that they may need to send (and they attach these tags to the messages that they actually send),
and the evaluator is given the keys to verify these MACs.

The complexity is easy to verify, and the security proof is quite similar to the one from above.
The main difference is that before SimI learns the inputs of the fixed corrupted parties, it needs
to give all the corrupted parties their correlated randomness and the messages from honest parties
(other than the last one). Moreover, SimI needs to extract these inputs from messages that the
fixed corrupted parties send.

To do this, SimI chooses the bits bi and the shares uniformly at random (and the authentication
keys and tags are chosen as in the protocol). When a fixed corrupted party Pi sends the bit ci
towards an honest party, SimI extracts the input bit xi = ci ⊕ bi. Once it has all the input bits xi
for the fixed corrupted parties, SimI gets the residual function and it can then run the semi-honest
simulator Sim? for the underlying star protocol (choosing arbitrary inputs for the free corrupted
parties). Now SimI learns from Sim? the correlated randomness ri for corrupted parties and the
messages mi for the honest parties, so it can compute all the relevant mi’s and choose the shares
of the last honest party to match these mi’s (and also the randomness rn+1 of the evaluator, if it is
corrupted). Finally SimI can compute the authentication tags using the keys that it prepared for
the evaluator, so it has everything that it needs for the simulation.

Another difference from the semi-honest case is that, when the evaluator is honest, we need to
use the authentication tags. Namely, if the evaluator receives a message which is not consistent
with the shares that SimI generated, then the simulator aborts, since this is what would happen
whp in the protocol itself.

It is not hard to see that this simulation strategy produces a distribution which is statistically
close (upto authentication error) to the real-protocol distribution if Sim? is perfect or statistical, and
is computationally indistinguishable from the real-protocol distribution if Sim? is computational.

4 Information-Theoretic Protocols for General Functions

Below, we present information-theoretically secure protocols with one-time setup for computing
arbitrary functions. We begin in Section 4.1 with a protocol for computing arbitrary functions
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on a chain which is communication efficient (but requires exponential randomness). Then, in
Section 4.2, we describe a protocol for computing arbitrary deterministic functions on arbitrary
DAGs with exponential communication and randomness. We also describe, in Section 4.2.1, a
protocol which is insecure as per Definition 5, but has some interesting implications for garbled
circuits.

We identify an n-input function f(x1, . . . , xn) with a binary decision tree for f . Each input
is associated with a level in the tree and the input ordering in the tree is made to respect the
topological order in the DAG. That is, if there is a path from party A to B in the DAG, then we
put the input of A before the input of B in the decision tree. In particular, for a chain network,
the ordering in the tree agrees completely with the linear order of nodes on the chain.

In the protocols, a party associated with level-i in the tree will be given correlated randomness
associated with each edge leading from level i to level i+1. During the computation of the function
it will send some of the information which is associated with the edges that match its input (i.e.
left edges if the input is 0 and right-edges if it is 1). This can be visualized as each party marking
some of the edges in its layer of the tree. The markings create a single marked path from the root
to a leaf. The value of the function will be computed by the evaluator based on the information in
this leaf.

In the description below, we use the following notations: We have a height-n decision tree T ,
with the root at level 0 and the leaves at level n. The left edge of every intermediate node is labeled
with 0, and the right edge is labeled with 1. We name each node in the tree by the labels on the
path leading to it, so the root is named ε, its left- and right-children are 0 and 1, respectively, their
children are 00,01,10,11, etc. (In the protocols we will attach labels to nodes that may be different
from their names, but it is convenient to have the names fixed.) Party Pi (who gets the i’th input
bit xi) is associated with level i in the tree,3 and a special party E (the evaluator) associated with
the leaves. The evaluator does not have an input, but it is the one who will learn the value of the
function.

4.1 Computing Any Function on a Chain

We consider below only a chain network, and describe communication-efficient protocols that still
require exponential randomness.

Theorem 11. For every function f : {0, 1}n → {0, 1}, there is a semi-honest, perfectly-secure,
chain-compliant protocol for f in which each party gets at most n · 2n bits of correlated randomness
and sends at most n bits of communication.

Setup and Correlated Randomness. We have parties P0, . . . , Pn−1, Pn who are connected in a
chain starting at P0, where the last party Pn is the evaluator who does not have an input. Party Pi
is associated with level i in the decision tree T for f .

The correlated randomness in the protocol is determined by a set of random permutations,
one for every level in the tree. For level i (with 2i nodes) we select a random permutation πi :
{0, 1}i → {0, 1}i, and assign to each node with name x ∈ {0, 1}i the label a = πi(x).4 These
node-permutations induce 1-1 mappings as follows: for a node named x ∈ {0, 1}i, its label a =

3For ease of description we start the enumeration of the parties at 0 rather than 1.
4Some of our techniques have superficial similarity to [47]; in particular, the use of decision trees and permuting the

nodes at each level. However, the setting and goals, as well as the technical details, are very different. In particular,
they deal with two-party protocols that have unlimited interaction and they cannot provide information-theoretic
security (even with correlated randomness).
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ε

π1(1) = 0

π2(11) = 01 f(11) = 1

π2(10) = 11 f(10) = 1

π1(0) = 1

π2(01) = 10 f(01) = 0

π2(00) = 00 f(00) = 0

Figure 1: Correlated randomness in the chain protocol. Party i gets the edges from level i to i+ 1,
in the form {

(
πi(x), πi+1(x|0), πi+1(x|1)

)
|x ∈ {0, 1}i}, ordered lexicographically by πi(x). The

evaluator E gets the leaves in the form {
(
πn(x) : f(x)

)
|x ∈ {0, 1}n}, ordered lexicographically

by πn(x).

πi(x) ∈ {0, 1}i and an edge labeled b ∈ {0, 1} that leads to its child (x|b), we have the mapping
mi : {0, 1}i × {0, 1} → {0, 1}i+1, defined as

mi(a, b) = πi+1

(
π−1
i (a), b

)
.

Party Pi is given the above mapping mi. That is, for the two edges x→ (x|0), (x|1), from any
node x at level i to its two children at level i+1, the party Pi is given the tuple (πi(x), πi+1(x|0), πi+1(x|1)).
These tuples are given to Pi in an order that does not reveal any extra information about the
permutations πi and πi+1 (e.g., in lexicographic order of the πi(x)’s). For example, the first
party P0 is given just a single tuple, (ε, π1(0), π1(1)), and the second party P1 is given 2 tuples,(
(0, π2(π−1

1 (0)|0), π2(π−1
1 (0)|1)) and (1, π2(π−1

1 (1)|0), π2(π−1
1 (1)|1))

)
. Overall, Pi is given 2i such

tuples (which takes (i+ 1) · 2i+1 bits to write down).
The evaluator, E is given the “translation” of πn to the function values, i.e., πn(x) 7→ f(x) for

all x. In other words, the evaluator is given the table{〈
a : f(π−1

n (a))
〉
|a ∈ {0, 1}n

}
,

ordered lexicographically by a. An illustration of the permutations and associated function values
for a simple 2-input function is given in Figure 1.

Messages in the Chain Protocol. Party Pi with input bit bi gets a message ai from its
predecessor in the chain Pi−1 (initially a0 = ε). It applies its mapping to compute ai+1 ← mi(ai, bi)
and sends ai+1 to the next party Pi+1. At the end of the chain, the evaluator E receives an and
outputs the corresponding wn = f(π−1

n (an)) from its table.

Lemma 4.1. For any n-bit-input function f , the above chain-compliant protocol for computing f
is semi-honest secure.
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Proof. Correctness is obvious. For security, let the last honest party be Pt, at level t of the tree. The
simulator has the inputs of all the corrupted parties, and the residual truth table of the function,
i.e. for all et+1, . . . , en−1 ∈ {0, 1}n−t−1 it gets the values f(b0, b1, . . . , bt, et+1, . . . , en−1) where bi is
the fixed input for 0 ≤ i ≤ t.

The simulator chooses at random a sequence a1, . . . , at+1. For every party Pi, it fixes a mapping
mi such that mi(ai, bi) = ai+1, for all faulty parties, and mi(ai, 0) = ai+1, for all honest parties.
All other values are chosen at random. If P0 is faulty it fixes m0(ε, b0) = a1 and if P0 is honest
m0(ε, 0) = a1. Furthermore, it chooses random mappings for all faulty parties Pt+1, . . . , Pn−1.
The simulator creates the table for E in the following manner. For et+1, . . . , en−1 ∈ {0, 1}n−t−1 it
computes the chain at+2 = mt+1(at+1, et+1) and continues ai+1 = mi(ai, ei) until an. It sets the
value of the table in location an to be the value of the function which it received for et+1, . . . , en−1.
The simulator gives the adversary the mappings for the faulty parties, the table for E and the
sequence a1, . . . , at+1.

In the real execution, if the input of an honest party is 0, then it uses the mapping created
by the simulator. If the input is 1, and say that mi(ai, 1) = a′i+1 then it changes the mapping by
switching the two values ai+1 and a′i+1. This results in an execution which is identical to the view
of the adversary.

4.1.1 Malicious Security for General Functions on a Chain

We now convert the protocol from Section 4.1 to the malicious-adversary model, simply by authen-
ticating the randomness.

Theorem 12. For every function f : {0, 1}n → {0, 1}, there is a malicious, statistically-secure,
chain-compliant protocol for f in which each party gets O(λn · 2n) bits of correlated randomness
and sends O(n2 + λn) bits of communication.

The protocol Recall that in the basic protocol from Section 4.1, the share of correlated random-
ness given to party i was {

(
πi(x), πi+1(x|0), πi+1(x|1)

)
: x ∈ {0, 1}i}, ordered lexicographically by

πi(x). In the augmented protocol this correlated randomness is augmented by authenticating each
of the pairs (πi(x), πi+1(x|0)) and (πi(x), πi+1(x|1)). Namely, each of these pairs is authenticated
by n different keys for information-theoretic one-time MAC (e.g., pairwise independent hash func-
tions). The authentication tags are given to party i and the keys given to all the other parties, one
key per party. Of course different pairs (y, z) are authenticated by different keys. The keys and
tags are identified by random unique names, independent of the strings (y, z) themselves, so that
parties know what key to use for authenticating what tag.

Note that the total number of keys that a each party receives is n times the number of edges
in the tree, so the randomness complexity increases by no more than a factor of O(nλ), with λ the
statistical security parameter.

In the underlying protocol, party i with input bi receives a message yi−1 from its predecessor
in the chain, finds the matching tuple (yi−1, zi,0, zi,1) in its share of randomness, sets yi = zi,bi
and sends yi to the next party. In the augments protocol, party i will send not only yi but the
pair (yi−1, yi) with all its authentication tags (one per party downstream). It will also forward the
message sent to it by party Pi−1 (along with all its tags), to let the parties downstream authenticate
the various tags. Also, before sending anything, party i will go over all the path so far and use
its authentication keys to check that all the transitions ε → y1 → · · · → yi−2 → yi−1 are properly
authenticated.

23



Any authentication failure, or properly-authenticated inconsistent or malformed messages, will
be considered an abort message. Parties will then forward abort messages downstream to cause the
entire protocol to be aborted. In particular the evaluator should verify the entire communication
that it receives and only output the function value if there are no failures, else outputting a special
symbol ⊥. Note that once any honest party decides to abort, it will not send any authenticated
edge y → z, so all honest parties downstream will also abort.

Security. We next describe the simulator for the augmented protocol. It begins by simulating
the correlated randomness as follows:

• The simulator chooses a uniformly random permutation ρi over {0, 1}i for every corrupted
party before the last honest party Pi ∈ T, i < i∗, and gives it the edges {(z, ρi(z0), ρi(z1)) :
z ∈ {0, 1}i} in lexicographic order over z.

• The simulator next chooses a random permutation πi over {0, 1}i for every i ≥ i∗, and gives the
i’th free corrupted party the edges {(πi(x), πi+1(x|0), πi+1(x|1)) : x ∈ {0, 1}i} in lexicographic
order over πi(x), and also gives the evaluator the leaves {(πn(x) : f(x)) : x ∈ {0, 1}n} in
lexicographic order over πn(x).

• The simulator also chooses authentication keys and their names as in the protocol, gives the
corrupted parties their keys and tags, and keeps the keys and tags of the honest parties to
itself. Note that even though honest parties i /∈ T do not have tuples (y, z) (since their
permutations πi are not yet defined), the simulator generates for each i the appropriate
number of keys with random unique names, and gives these keys to all other parties. It will
decide what key belongs to what (y, z) tuple later on.

Thereafter, if at any point any corrupted party is able to forge an authentication tag relative to a
key that no corrupted party knows, then the simulator aborts. This, of course, happens only with
a negligible probability, and that probability accounts for the statistical distance between the real
and simulated views. For ease of exposition, we pretend below that this probability is zero.

For each honest party, except the last one i ∈ T̄ \ {i∗}, the simulator chooses a uniform random
bit-string yi ∈ {0, 1}i+1 and uses yi as the message that this party sends in the underlying protocol
from Section 4.1. Using these messages and the authentication keys, the simulator can simulate
the execution of the protocol until all honest parties but the last send their messages: Once the
incoming message yi−1 of an honest party is determined, the simulator decides randomly which of
the authentication keys to use for the pair (yi−1, yi). Then, it computes the authentication tag for
that tuple and adds the tag (and its name) to the outgoing message from that party. Note that
once the last honest party receives its incoming message, it means that the input of the corrupted
parties have been fixed and sent to honest parties. Let us denote also for these parties i ∈ T the
message sent by the i’th party in the underlying protocol by yi.

If no forgeries occurred and all the authentication checks of the last honest party pass, then
in particular all the transitions yi−1 → yi corresponding to corrupted parties i ∈ T were taken
from the authenticated shared randomness that they received, which means that they correspond
to honest protocol message on incoming yi−1 and some bit bi. The simulator then takes these bits
bi to be the fixed inputs of the corrupted parties, and is then given access to the residual function
with those fixed corrupted inputs and the honest-party inputs set (and the free corrupted inputs
as variables).

The simulator then finds the lexicographic first honest-party input x̃ which is consistent with
the residual function and the fixed inputs of the corrupted parties, and for each honest party Pi,
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i < i∗, it chooses a random permutation πi subject to the constraint that πi(yi−1|x̃i) = yi. We note
that this defines also the permutations πi for the fixed inputs of corrupted parties, as πi(x|b) =
ρi(πi−1(x)|b). Finally, if the last honest party is not the evaluator, then its outgoing message is set
to yi∗ = πi(yi−1|x̃i∗).

It is clear, by construction, that the simulated view is identical to the adversary’s view when the
input of the honest parties really was x̃. And, if all the authentication tests pass (and no forgery
occurred), then it means that the fixed corrupted parties sent messages that are consistent with
the prescribed protocol and the input used by the simulator. In this case, by semi-honest security,
the view is also identically distributed to the view on any other honest-parties’ input that has the
same residual function.

4.2 Protocol for General DAGs

Below, we describe a protocol for computing any deterministic function on any DAG network.

Theorem 13. For every function f : {0, 1}n → {0, 1} and any DAG interaction pattern I, there
is a semi-honest, I-compliant, perfectly-secure protocol for f , in which each party gets 2n + 1 bits
of correlated randomness and sends at most n · 2n−1 bits of communication.

To simplify the presentation, we first describe the protocol for a star network where each party
just send one message to the evaluator, and later we explain how to generalize. The solution has
both communication and randomness complexity that are exponential in the number of parties.
In Section 8, we give evidence that achieving a solution with polynomial communication might be
impossible.

Recall that we identify a function f with its binary decision tree where, in the case of a star
network, the order of inputs is arbitrary and that we denote by Pi the party associated with level i
in the tree, and its input is denoted bi.

4.2.1 A First Attempt

We begin with a protocol which is insecure as per Definition 5, but will nonetheless be useful to
provide some intuition. In this protocol, every party Pi is given an input-masking random bit ri
and also random output-masking bits sie for every edge e leading from level i to level i + 1 in the
tree. Roughly speaking, the input-masking bits will be used to map the input string b0, . . . , bn−1

to the root-to-leaf path b0 ⊕ r0, . . . , bn−1 ⊕ rn−1 in the tree, and the output-masking bits on the
edges of this path will be used to mask the function value that the evaluator gets for that leaf.
Namely, the evaluator E is given a table that holds, for each leaf with name c0, . . . , cn−1, the value
f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1)⊕ s0

c0 ⊕ s
1
c0,c1 ⊕ · · · ⊕ s

n−1
c0,...,cn−1

.
During the protocol execution, party Pi computes ci ← bi ⊕ ri and sends to the evaluator the

bit ci and all the output masking bits associated with edges that are consistent with ci. Namely,
the bits sie|ci for all e ∈ {0, 1}i. The bits c0, . . . , cn−1 that the evaluator E receives define a complete

root-to-leaf path in the tree. Moreover the evaluator gets the associated output-masking bits sic0,...,ci
for i = 0, 1, . . . , n, so it can remove the output masking bits to get f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1) =
f(b0, . . . , bn−1).

While the protocol above is secure when only the evaluator is corrupted, it does not satisfy our
notion of security. Consider a 3-argument function f(x0, x1, x2), where on input f(0, x1, x2) the 4
possible outputs are split to three 0’s and a single 1, and for f(1, x1, x2) the outputs are balanced
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2-2. If the evaluator corrupts P2 (the party of the last level of the tree) and receives its output-
masking bits, it immediately learns whether the right side of the tree corresponds to f(0, x1, x2) or
to f(1, x1, x2). This is due to the fact that the output-masking bits up to that level are the same
for the sub tree with the two 0’s. Thus, the last output-masking bit reveals these values. When
the adversary gets c0 from P0, it immediately knows whether its input is 0 or 1.

4.2.2 A Secure Solution

It turns out that the insecure protocol from above can be made secure by using per-leaf output-
masking bits rather than per-edge. Namely, each Pi still gets one input-masking bit ri, but now
it gets 2n output-masking bits, one for each leaf in the tree, sic0,...,cn−1

for all (c0, . . . , cn−1) ∈
{0, 1}n. The table given to the evaluator also changes accordingly, namely for each leaf with name
c0, . . . , cn−1 the table holds the value f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1) ⊕ s0

c0,...,cn−1
⊕ s1

c0,...,cn−1
⊕ · · · ⊕

sn−1
c0,...,cn−1

.
The protocol is modified to reflect the above change as follows. On input bi, party Pi sets

ci ← bi ⊕ ri, then it assembles a subset of its output-bit masks that are consistent with ci; namely,
Si = {sie0,...,ei−1,ci,ei+1,...,en−1

} for all e0, . . . , ei−1, ei+1, . . . , en−1 ∈ {0, 1}n−1 (in order), and sends
(ci, Si) to the evaluator. As before, the bits c0, . . . , cn−1 that the evaluator E receives define a
complete root-to-leaf path in the tree, and E has all the associated output-masking bits sic1,...,cn ,
so it can remove those masks to get f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1) = f(b0, . . . , bn−1). It is easy to see
that the different masking for each leaf prevent the adversary from analyzing the tree, yielding the
following lemma.

Lemma 4.2. For any n-bit-input function f , the above star-compliant protocol for function f , is
secure in the semi-honest model. Each party gets at most 2n + 1 bits of correlated randomness and
sends at most 2n−1 + 1 bits.

Proof. Let T = {i1, . . . , il} be the corrupted parties. The simulator has the corrupted-parties’ input
and the residual function. For the star pattern, all the corrupted parties are free, so the simulator
gets all the values f(b0, . . . , bn−1) where the honest parties’ input is fixed and the corrupted parties’
input vary over all 2l possibilities.

To compute the table for E , the simulator first chooses random bits r0, . . . , rn−1 and also random
bits sic0,...,cn−1

for all i ≤ n and c0, . . . , cn−1 ∈ {0, 1}n. It chooses a vector of inputs for the honest
parties which is consistent with the inputs of the faulty parties and the residual function; denote
by bi the input chosen for the honest party Pi. For every value of the residual function related to
ei1 , . . . , eil , the simulator computes the leaf to which this value will be assigned as follows: for a
fixed input, if the party is honest then it uses the value bi it chose for it and if the party is faulty it
uses the value it got from the adversary, and sets ci = bi⊕ri. For the free inputs, it sets ci = ei⊕ri.
It will compute the value for the table at location c0, . . . , cn−1 by taking the value d, from the
residual function associated with ei1 , . . . , eil and computing d⊕s0

c0,...,cn−1
⊕ . . .⊕sn−1

c0,...,cn−1
. Once all

the values at the locations associated with the residual function have been entered, the simulator
completes populating the table for E with random values.

The simulator computes the view for the adversary by running the computation on the fixed
inputs that it had chosen and all the random values. The result of this computation is given to the
adversary. It includes all the randomness that relates to the faulty parties (whether their inputs
are fixed or free), the table for E and all the values that the honest parties would transfer to E
during the execution as computed above.
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In the real execution for an honest party Pi on input b′i, the simulator fixes r′i to be bi⊕ ri⊕ b′i.
Furthermore, it uses the paddings for the leaves that it chose above. This would result in an
identical execution for any input vectors of the honest parties that are consistent with the values
of the residual function.

4.2.3 Extending the Star Protocol to General DAGs

Although we can use the reduction from Section 3 to transform the star protocol to a protocol
for any other patterns, below we describe a direct approach that yields more efficient protocols for
DAG patterns.

The format of the decision tree and its randomness for the case of the DAG are identical
to the star, except that we require the ordering of parties to be consistent with the topological
order on the DAG. (Namely each party is assigned to a level of the tree larger than that of all
its predecessors in the DAG, and smaller than that of all its successors.) Again, we will call
the node assigned to level i party Pi, and give it the input-masking bit ri and the leaf-masking
randomness for each leaf in the tree. Also the evaluator E is given exactly the same table as in
the star protocol above, namely for each leaf with name c0, . . . , cn−1 the table holds the value
f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1)⊕ s0

c0,...,cn−1
⊕ . . .⊕ sn−1

c0,...,cn−1
.

The Protocol. The difference between the star protocol and the general-DAG protocol is that
Pi that gets sets of output-masking bits Si

′
from other parties upstream (i′ < i) will prune them to

be consistent with its input and with each other before forwarding these sets downstream toward
the evaluator.5

Party P0 computes c0 = b0 ⊕ r0, a sequence of labeled output-masking bits

S0 =
{〈

(c0, e1, . . . , em) : s0
c0,e1,...,em

〉
| (e1, . . . , em) ∈ {0, 1}m

}
where m = n − 1, and a pattern-vector V0 = (c0, ∗, . . . , ∗) that reflects the coordinates that P0

knows to be fixed. As it is at the root of the tree it only knows its own coordinate. P0 sends
(0, V0, S0) to all the nodes that it can reach in the DAG.

Party Pi receives a collection of tuples (ij , Vij , Sij ) belonging to parties upstream from it,
i1, . . . , il < i. (It may get multiple tuples (ij , ?, ?) for the same ij on several incoming edges,
since this is a semi-honest execution then the corresponding Vij , Sij can only differ by having dif-
ferent pruning.) Each vector Vij reflects inputs that a node upstream knows to be fixed, and hence
represents some pruning of previous values.

Party Pi creates the “merged vector” Vi, in which a coordinate k has Vi[k] = ∗ if and only if (a)
Vij [k] = ∗ in all the incoming vectors Vij , and (b) k 6= i. It sets the i’th coordinate to be Vi[i] = ci,
and the value of every other non-star coordinate is taken from one of the incoming Vij where this
entry is not a ∗. (Again, since this is a semi-honest execution, then if Vij [k] 6= ∗ it must be the case
that Vij [k] = ck, i.e., this entry contains the ck value of the party who first set it to a non-∗ value.)

Then, Pi prunes the sets of output-masking bits in all the Sij ’s to include only those consistent
with Vi. In other words, denote the set of labels in Sij by Xij , then the set of labels consistent
with Vi is the intersection of all the Xij ’s, further reduced to only the labels with the i’th bit
equals ci. Party Pi then drops all the bits from each Sij that are labeled by inconsistent labels. It

5This can be thought of as similar to what happens in the chain protocol, where only a single value needs to be
forwarded, but the pruning in this protocol is not as efficient (even if the DAG happens to be a chain).
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also computes its own set of labeled output-masking bits

Si = {〈(e0, . . . , em) : sie0,...,em〉 | (e0, . . . , em) consistent with Vi}

where m = n− 1 and sends on all its outgoing edges all the pruned (Vi, Sij )’s together with its own
(Vi, Si).

The evaluator applies exactly the same pruning procedure as before, and if all the nodes are up-
stream from it then this leaves a single labeled output-masking bit from every party 〈(c0, . . . , cn−1) :
sic0,...,cn−1

〉. The evaluator looks up the value that it has for the leaf (c0, . . . , cn−1) and unmask all
the output-masking bits to get the function value f(c0 ⊕ r0, . . . , cn−1 ⊕ rn−1) = f(b0, . . . , bn−1).
This completes the description of the protocol.

Lemma 4.3. For any n-bit-input function f and a DAG pattern I, the above I-compliant protocol
for computing the function f is semi-honest secure.

Proof. The proof for the DAG follows the exact same proof as for the case of the star with the
addition that when the simulator computes the execution of the protocol it also creates the vectors
Vi and does the same pruning. These vectors can be created in a straightforward manner from all
the information which the simulator holds.

A simple change of the randomness will yield an identical execution in the real and simulated
worlds.

4.2.4 Malicious Security for General Functions on a DAGs

As before, we convert the protocol from Section 4.2 to the malicious-adversary model by authenti-
cating the shared randomness.

Theorem 14. For every function f : {0, 1}n → {0, 1} and any DAG interaction pattern I, there
is a malicious, statistically-secure, I-compliant protocol for f , in which each party gets O(λn · 2n)
bits of correlated randomness and sends O(λn · 2n) bits of communication.

The Protocol. Recall that in the semi-honest protocol, the share of correlated randomness for Pi
consists of the input-masking bit ri and the output-masking bits six for all x ∈ {0, 1}n. We note that
only E uses the output-masking bits and thus only he needs to verify their authenticity6. However,
honest parties in the inner levels of the tree need in some cases to authenticated the masked input
bit, ci = bi ⊕ ri, of other parties. Thus, we augment the correlated randomness by authentication
information in the following manner. For each tuple (i, x, six) we create an information-theoretic one-
time MAC (e.g., pairwise independent hash function). The authentication tags are given to Pi and
the keys are given to E . In addition, we create the authentication information for the masked input
bits, yet the masked input bit are sill unknown. Thus, we will create authenticating information
both for the message 0 and 1. The party later will choose which authentication information to
use. Here, we create MACS for every two parties Pi, Pj for the messages (Pi, 0) and (Pi, 1). The
authentication tag is given to Pi and key is given to Pj .

Note that the total number of keys that each party receives is the number of leaves in the tree
plus 2n for the masked-input bits. Thus, the randomness complexity only increases by a factor
of O(λ), where λ is the statistical security parameter.

6 If the output is computed by multiple parties then each one needs authentication information.

28



In the protocol, party Pi attaches to each message that it sends all the tags needed to authen-
ticate both input- and output-masking bits along the path to the evaluator. Every party along the
way will carry out the computation that the protocol requires to create the set of messages that
it needs to transfer and for each of these messages it will include the tags that it received for it
(either from other parties or the tags that it holds for the messages). Each party upon receiving
tags that it needs to verify carries out the authentication and if it fails or inconsistent messages are
received then the party aborts the protocol. A party who has aborted will forward abort messages
downstream to cause the entire protocol to be aborted. Furthermore, the evaluator should verify
the entire communication that it receives and only output the function value if there are no failures,
else outputting a special symbol ⊥.

Security. We next describe the simulator for the augmented protocol. It begins by simulating
the correlated randomness as follows:

• For each party with input except the last honest party, i ∈ [n] \ {i∗}, the simulator chooses
2n random output-masking bits {siz : z ∈ {0, 1}n}, in order of z. 7

• For corrupt parties i ∈ T the simulator chooses an input-masking bit ri and for honest parties
i /∈ T the simulator chooses a random masked-input bit ci.

• The simulator choose for the evaluator an output table made of 2n random bits, {tx : x ∈
{0, 1}n} (in order of x).

• The simulator chooses the authentication keys as in the protocol and computes the corre-
sponding tags (except on tuples (i∗, ?, ?)).

The corrupted parties are given their shares of the randomness, and the simulator keeps to itself
the rest of the randomness. It then moves to simulating the protocol messages, up until (but not
including) the message from the last honest party. This is done just by running the prescribed
protocol to compute the outgoing messages, using for each honest party i the random ci’s in the
the role of the masked input bits bi⊕ ri. Note that once the last honest party receives its incoming
message, it means that the fixed corrupted parties sent whatever messages they wanted to honest
parties.

If no forgeries occurred and all the authentication checks of all the honest parties pass, then
it means that the view of every honest party is consistent with the fixed inputs of the corrupted
parties. However, it does not mean that the views of different honest parties are consistent (since
a corrupted party i can send a message consistent with xi = 0 on one edge and with xi = 1 on
another). The simulator takes the input bits for the fixed corrupted parties from the view of the
last honest party, and if there are inputs that should be fixed that are not yet fixed in its view
then it takes their value from the view of some other (arbitrary) honest party. With the fixed
inputs all defined, the simulator gets access to the residual function with those fixed inputs and
the honest-party inputs set (and the free inputs as variables).

The simulator then finds the lexicographic first honest-party input which is consistent with the
residual function and the fixed inputs. Below we let x̃ denote the fixed inputs (of both honest
and corrupt parties). The simulator chooses the rest of the honest-parties’ randomness subject to
consistency with the input x̃ and protocol execution so far, which for honest parties i < i∗ it means

7Recall that the “last honest party” is determined by the assignment of parties to levels in the tree, this ordering
is consistent with topological order on the communication DAG, but otherwise it is arbitrary.
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just setting ri ← ci ⊕ x̃i. For the last honest party i∗, the simulator chooses an input-masking bit
ri at random, sets the output-masking bits that mask the residual function to be consistent with
all the other output-masking bits for these inputs and with the function value. Namely for x = x̃|z
and r = (r1, . . . , rn) being the input-masking bits, the simulator sets si

∗
x ← fx̃,y(z)⊕ tx⊕r ⊕i 6=i∗ six.

For any value of x which is not prefixed by x̃ the simulator chooses si
∗
x at random. Finally the

simulator uses the randomness of i∗ in conjunction with the input value x̃i∗ to compute the message
of the last honest party.

By construction, the simulated view is identical to the adversary view when the input of the
honest parties is x̃, so it remains to show that the same holds also for any other honest-parties’
input that has the same residual function. Here there are three cases, either one of the honest
parties detected authentication error, or no authentication error occurred but the views of some
honest parties were inconsistent, or no authentication errors and all the views were consistent.

If authentication errors occurred then the honest partys that detect them does not send any
of their output-masking bits six. Hence the adversary view is missing at least one of the output-
masking bits six for each x, and therefore the bits six in the adversary view are uniformly random
(and so the tix’es if the evaluator is corrupted), independently of the honest parties’ input and the
function values. This is true even conditioned on the rest of the view (and the rest of the view
itself is always independent of the honest parties’ input).

If no error occurs (and also no forgery) and the views are inconsistent, then there are two
honest parties i, i′ /∈ T that disagree on the x’es used by some corrupted party Pj ∈ T . This
means that party Pi only sends its output-masking bits six for xj = 0 and party Pi′ only sends its

output-masking bits si
′
x for xj = 1. Again it means that the adversary is missing at least one of

the output-masking bits six for every x, and as before it implies that the view is independent of the
honest parties’ input and the function values.

If no authentication error (or forgery) occurs and the honest parties’ views are consistent, it
means that all the corrupted parties behave honestly relative to the fixed input that the simulator
uses. In this case, by semi-honest security, the adversary view for x̃ is identical to that of any other
input with the same residual function.

5 Information-Theoretic Protocols for Symmetric Functions

Below we describe efficient protocols for some simple functions using a chain communication pattern.
These protocols are somewhat similar “in spirit” to the ones from the work of Halevi et al. [40], but
the technical details are quite different. In particular, our protocols offer one-time perfect security
in the correlated-randomness model, while the ones from [40] offer multiple-use computational
security in the public-key model. We mention that Gordon et al. [39] generalized the protocols
from [40] in the computational setting to a wider class of functions, but these generalizations do
not seem to apply to our information-theoretic setting.

Notation. An n-input function f is symmetric if for any n inputs ~x = (x1, . . . , xn) and any
permutation over {1, . . . , n} it holds that f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). When the inputs are
binary, xi ∈ {0, 1}, a symmetric function depends only on the Hamming weight of ~x. Thus, the
truth table of a binary symmetric function f can be described by just n+ 1 rows, listing the value
of f for inputs with Hamming weight w = 0, 1, . . . , n. Moreover, the truth table for the residual
function fx1(x2, . . . , xn) can be obtained from that of f itself by dropping the first row if x1 = 1 or
the last row if x1 = 0. This property was used in [40] to describe an efficient protocol for computing
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symmetric functions in their model, and we can similarly use it in our model.

5.1 Security Against Semi-Honest Adversaries

Theorem 15. For every symmetric binary function f : {0, 1}n → {0, 1}, there is a semi-honest
perfectly secure protocol for f for the chain network (with efficient simulator), in which each party
gets (n+ 1)2 bits of correlated randomness and sends at most (n+ 1)2 bits of communication.

The Protocol. We have a chain of n+ 1 parties, where the first n parties, P1, . . . , Pn, have inputs
x1, . . . , xn, respectively, and the last party (the evaluator) has no input but needs to compute the
value f(x1, . . . , xn). In the pre-processing stage, each party Pi (i ∈ [n]) gets a random invertible

(n + 1)-by-(n + 1) matrix Ri (over any field, say Ri ∈ Z(n+1)×(n+1)
2 ). Denote the product of all

these matrices, in reverse order, by C = Rn × · · · × R1. The evaluator gets the columns of the
product matrix C in random order, and with each column Ci (i = 0, . . . , n) it gets the value of f
on Hamming-weight-i inputs (note that since C is also invertible then its columns are all distinct).
In formula, for a random permutation π, the evaluator is given the pairs{

(Cj , yj) : yπ(i) = f(1i−10n+1−i) for i = 1, . . . n+ 1
}
,

ordered by j = π(i). Later, each party Pi has an input bit xi, and the protocol runs as follows:

0. Denote A0 = I, the (n+ 1)× (n+ 1) identity matrix.

1. For i = 1 to n:

a. Party Pi gets from its predecessor a matrix Ai−1 ∈ Z(n+1)×(n+2−i)
2 .

b. Party Pi removes from Ai−1, either the first column if xi = 1 or the last column if xi = 0,
thus getting an (n+ 1)× (n+ 1− i) matrix A′i−1

c. Party Pi multiplies A′i−1 on the left by its matrix Ri, and sends to Pi+1 the resulting
(n+ 1)-by-(n+ 1− i) matrix Ai = Ri ×A′i−1 (mod 2).

2. The evaluator gets from party Pn a single column An ∈ Z(n+1)×1
2 . If An = Cj , for some j,

then the evaluator outputs the corresponding value yj .

Correctness. To see why the protocol works, note that the action of each party Pi can be
viewed as multiplying Ai−1 on the left by Ri and on the right by one of two (n+ 2− i)× (n+ 1− i)
matrices: either Mi,1 that drops the first column or Mi,0 that drops the last one. Hence we have
Ai = Ri ×Ai−1 ×Mi,xi for all i, which means that

An =
( 1∏
i=n

Ri
)
× I ×

( n∏
i=1

Mi,xi

)
= C ×

( n∏
i=1

Mi,xi

)
.

Next we observe that since the matrices Mi,b just drop columns from the matrix they are multiplying
on their left, then the product I ×

∏n
i=1Mi,xi drops columns from the identity matrix, thus always

obtaining a unit vector ~ej for some j = 1, . . . , n + 1. This, in turn, implies that An = C · ~ej for
some j or, in other words, An is indeed a column of C. Moreover, by definition of the Mi,b’s, we
get the j’th column of C iff the Hamming weight of the vector of xi’s is j, as needed.
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5.1.1 Proof of Security

Fix the set of corrupted parties T ⊂ [n+ 1], and let i∗ ∈ [n+ 1] \ T be the index of the last honest
party. Recall that the fixed corrupted parties are {i ∈ T : i < i∗} while the other corrupted parties
are free. Let x, x′ be two distinct inputs that agree on the inputs of all the corrupted parties, and
induce the same residual function on the inputs of the free corrupted parties. To prove security, we
need to show that the view of the adversary is distributed the same when the protocol is run with
x and x′. The proof for the case n + 1 /∈ T (i.e., honest evaluator) is trivial, since the adversary
only sees random and independent bits in this case, regardless of the input and the function f .
Below, we prove it also for the case of corrupted evaluator, n + 1 ∈ T (which means i∗ ≤ n). To
that end, we describe a one-to-one transformation T on the randomness space of the protocol, such
that the view of the adversary on input x and randomness ~R is the same as its view on input x′

and randomness T (~R). First, we need a few more notations:

Matrices, sets, and permutations. For i = 0, 1, . . . , n, let fi be the i’th value in the truth-table of f ,
namely fi = f(0i1n−1), and let ~f = (f0, f1, . . . , fn) be the (n+ 1)-row vector with these values.

For honets parties i /∈ T , denote Ji =
∏i
j=1Mj,xj , and J ′i =

∏i
j=1Mj,x′j

. Since multiplying

by the Mj,b’s is the same as dropping columns, we can alternatively view these J matrices as
specifying a subset of columns that were not yet dropped (with both Ji, J

′
i having n + 1 − i

columns). Specifically, the matrix J consists of the columns of the identity matrix that are indexed
by the set J (in order).

We also denote the complement sets by J̄i = [n+1]\Ji and J̄ ′i = [n+1]\J ′i , and similarly identify
them with matrices. We usually consider the columns of J̄i, J̄

′
i in order, but for the last honest party

we use different ordering for the columns of the matrix J̄ ′i∗ , as follows: Consider labeling the columns
of the identity matrix by the corresponding values of f , namely each column ej is labeled by fj .
Since the residual functions relative to x, x′ are identical, this means that the columns of Ji∗ , J

′
i∗

have the same labels in the same order. We then choose the order of columns in J̄ ′i∗ so that also
the columns of J̄i∗ , J̄

′
i∗ have the same labels in the same order.8

We also denote Ki = (Ji|J̄i) and K ′i = (J ′i |J̄ ′i) for all i /∈ T (with columns ordered as above), and
note that Ki,K

′
i are permutation matrices. For the last honest party, the ordering of the columns

that we described above implies that ~f ×Ki∗ = ~f ×K ′i∗ .
For notational convenience, we define K0 = K ′0

4
= I, and for corrupted parties i ∈ T, i ≤ n we

define Ki
4
= Kĩ and K ′i

4
= K ′

ĩ
, where ĩ is the last honest party before i (or ĩ = 0 if there is no

such honest party). This implies, in particular, that Kn = Ki∗ and K ′n = K ′i∗ , and also that for all
i ∈ T, i ≤ n we have Ki = Ki−1 and K ′i = K ′i−1.

The transformation T . Recall that the randomness of the protocol consists of the matrices Ri that
are given to the parties, and the permutation applied to the columns of the product (which we
denote by Π, i.e. the evaluator gets Q = C ×Π).

Denote by Di, for i ∈ [n], the product of the Rj ’s so far, Di
4
= Ri × Ri−1 × · · ·R1. In

particular C = Dn. For notational convenience, set D0 = I. We define (R′1, R
′
2, . . . , R

′
n,Π

′) =
T (R1, R2, . . . , Rn,Π) as follows:

• The R′i’s are set so as to get D′iK
′
i = Di ×Ki for all i. Namely,

∀i ≤ n,D′i ← Di ×Ki × (K ′i)
−1, and then ∀i ≤ n,R′i ← D′i × (D′i−1)−1. (1)

8To make the choice unique, we use the lexicographically first ordering that satisfies this condition.
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• The permutation Π′ is set as K ′nΠ′ = KnΠ, namely Π′ ← K ′n ×K−1
n ×Π.

We now need to show that (1) T is one-to-one, and (2) the adversary view on input x and random-

ness ~R is the same as on input x′ and randomness T (~R). It is easy to see that T is one-to-one, since
it is invertible: Each R′i is obtained by multiplying the corresponding Ri by an invertible matrix,
and the same holds also for obtaining Π′ from Π.

To see that we get the same view, we need to show that for corrupted parties we have R′i = Ri,
that the labeled matrices given to the evaluator are the same, and that the messages sent by the
honest parties are the same. We begin with the Ri’s. From Eqn. (1), we have for all i ∈ T

R′i = D′i(D
′
i−1)−1 =

(
DiKi(K

′
i)
−1
)
×
(
K ′i−1K

−1
i−1D

−1
i−1

)
= RiDi−1Ki(K

′
i)
−1K ′i−1K

−1
i−1D

−1
i−1 = Ri,

where the last equality follows from K ′i = K ′i−1 and Ki = Ki−1.
Next, consider the labeled matrices of the evaluator. For the matrices themselves, we have

Q′ = D′n ×Π′ = (DnKn(K ′n)−1)× (K ′nK
−1
n Π) = Dn ×Π = Q.

For the labels, we have ~f ×Π in one case and ~f ×Π′ = ~f ×K ′nK−1
n Π in the other. Recalling that

we have K ′n = K ′i∗ and Kn = Ki∗ , we therefore get

~f ×Π′ = (~f ×K ′i∗ ×K−1
i∗ )×Π = ~f ×Π,

where the last equality follows because ~f ×K ′i∗ = ~f ×Ki∗ .
Finally consider the messages of the honest parties i /∈ T . By definition of D′i, we have D′i ×

(J ′i |J̄ ′i) = Di × (Ji|J̄i), which implies in particular that A′i = D′i × J ′i = Di × Ji = Ai.
We have shown that all the quantities that the adversary sees are the same under input x

and randomness ~R as under input x′ and randomness ~R′ = T (~R). This concludes the proof of
Theorem 15.

5.1.2 Extensions

The above protocol can be extended to handle a slightly larger class of functions. Specifically, all
functions that can be described by a polynomial-size truth table, where processing each input xi
corresponds to dropping some number of rows from the table, and where

(a) the indices of the rows to drop in step i depend only on the value of xi, and

(b) the number of rows dropped in step i does not depend on the input.

For example, it was observed in [40, Sec.4.2] that n-input symmetric functions over the domain Zc
have the above properties, with the truth-table size being

(
n+c−1
n

)
= O(nc). Also it is easy to see

that we can handle any binary function which is symmetric in all but O(log n) of its inputs.
We note that the same protocol can apply to any binary function, but it will not be efficient

anymore. (The truth-table size would be 2n, and processing each bit is done by dropping half the
rows in the table.) The resulting protocol does not have any advantages over the general protocols
from the previous section.

Finally, we mention that we do not know how to extend the above protocol to arbitrary read-once
branching programs. Although we can describe any read-once branching program by a sequence
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of matrices Mi,0,Mi,1 similar to above, we no longer have the guarantee that the matrices Mi,0

and Mi,1 have the same rank, so randomizing via multiplication by a random Ri does not work.
This stands in contrast to the computational setting, where Gordon et al. [39] show how to handle
arbitrary read-once BPs (and also sparse polynomials). The main difference lies in the fact that in
the computational setting one can use suitable partially-homomorphic encryption schemes, whereas
we do not have such notion of encryption in the information-theoretic setting.

5.2 Security Against Malicious Adversaries

Trying to examine the protocol from Section 5.1 in the malicious setting, it is not hard to see that
the main concern is malicious parties dropping columns from the middle of their matrix before
forwarding it in the protocol. For example, consider computing the parity function where only
parties 2,3 are honest. The first party can drop (say) the second column from its matrix rather
than the first. This would make the residual function after the first party something different than
parity, rather than 1-0-1-0. . .-1-0, the truth table of the residual function will be 0-0-1-0...-1-0.
After parties 2,3 had their turn, the others corrupted parties can distinguish the case where they
have two zeros from the case where they have two ones, just by checking if the truth table of the
residual function after the 3rd party begins with 0-0 or 1-0.

The “obvious” solution to this problem is to authenticate the messages (matrices) that the
parties send to each other. At first glance this looks immediate: Fixing the pre-shared randomness,
each party i has exactly n − i different messages that it could receive in an honest execution this
protocol, so we can give it some authentication material to verufy these messages. The problem
is that the extra authentication material can leak information about the other possible messages
that this party could have received (in addition to the one that is actually received in the current
execution). For example, consider computing the all-0 function in a setting where only the first
party is honest. In the protocol from Section 5.1, conditioned on the view of the corrupted parties,
there is a unique matrix which is consistent with x1 = 0, and a different unique matrix which is
consistent with x1 = 1. If the corrupted parties are also provided with authentication material,
they can compute these two matrices and check which of them passes the authentication.

The solution, therefore, is to ensure that the matrices of the honest parties have high entropy,
even conditioned on the view of the corrupted parties and on the input of the honest parties. To that
end, we need to eliminate some of the information that the protocol from Section 5.1 gives to the
parties. Specifically, the evaluator will no longer receive the columns of the product matrix C, in-
stead it will only be given the authentication information needed to verify these columns. Choosing
authentication keys that are also strong randomness extractors then ensures that they do not leak
information about the high-entropy matrices of the honest parties. In the modified protocol, the
messages sent by parties are identical to the semi-honest protocol from above. The only differences
are that now the parties will use their authentication material to verify these messages (and abort
if the verification fails), and the evaluator uses the authentication information (rather than the
protocol message itself) to decide what bit to output.

Theorem 16. For every symmetric binary function f : {0, 1}n → {0, 1}, there is a malicious
statistically secure protocol for f for the chain network (with efficient simulator), in which each
party gets O(λn2) bits of correlated randomness and sends at most O(λn2) bits of communication,
where λ is the statistical security parameter.
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5.2.1 The protocol

In the pre-processing stage, each party Pi (i ∈ [n]) gets a random invertible (n + 1)-by-(n + 1)
matrix Ri over a large enough field Ri ∈ F(n+1)×(n+1). For concreteness, say that we have F = F22λ ,
where each element is represented by 2λ bits. Denote the product of all these matrices, in reverse
order, by C = Rn × · · · ×R1.

In addition, each party Pi gets i pairs {(si,j , ti,j) : j = 0, . . . , i − 1} in random order, where
the si,j ’s are authentication keys and the ti,j ’s are authentication tags relative to these keys, and
these (key,tag) pairs double also as extractor seed and output. Specifically, let Mi,j be the message
that party Pi receives in an honest execution of the protocol with the matrices Ri above when
the Hamming weight of the inputs (x1, . . . , xi−1) is j, then ti,j := Ext(si,j ;Mi,j). The evaluator
similarly gets n + 1 authentication pairs (sn+1,j , tn+1,j) (in random order), and with such pair it
also gets the corresponding output bit, namely yj = f(1j0n−j). (The specific construction that we
use for authentication and the properties that we need from it are described later in this section.)

Later, each party Pi has an input bit xi, and the protocol runs as follows:

0. Denote A0 = I, the (n+ 1)× (n+ 1) identity matrix.

1. For i = 1 to n:

a. Party Pi gets from its predecessor a matrix Ai−1 ∈ F(n+1)×(n+2−i).

Party Pi goes over all of its authentication pairs (s, t), looking for one satisfying t =
Ext(s;Ai−1), and aborting if no such pair was found.

b. Party Pi removes from Ai−1, either the first column if xi = 1 or the last column if xi = 0,
thus getting an (n+ 1)× (n+ 1− i) matrix A′i−1

c. Party Pi multiplies A′i−1 on the left by its matrix Ri, and sends to Pi+1 the resulting
(n+ 1)-by-(n+ 1− i) matrix Ai = Ri ×A′i−1 (mod 2).

2. The evaluator gets from party Pn a single column An ∈ F(n+1)×1. It goes over all of its
authentication triple (s, t, y), looking for one satisfying t = Ext(s;An), and outputting the
corresponding bit y.

Corresness of this protocol (upto error 2−O(λ)) is obvious.

The Extractor-MAC construction. For our purposes we use an authentication mechanism
that also doubles as strong randomness extractors, with the authentication key doubling as the
extractor seed. Specifically we use the “extractor-MAC” construction of Dodis et al. [24], which
is based on almost-universal hashing [51], and our security proof uses special properties of this
construction and its interaction with linear operation over F.

In more detail, the authentication seed consists of three elements of the field F2λ , s = (x, a, b)
with a 6= 0. (Note that F2λ is a subfield of F = F22λ that we use for the matrices.) We view
a messages A to be authenticated as representing a polynomials qA over F2λ (using a specific
representation that we describe below), the MAC/extractor is then defined as

Ext((x, a, b);A) = a · qA(x) + b (operations over F2λ).

The specific representation that we use to identify messages (which are matrices over F22λ) with
polynomials over the smaller field F2λ is chosen to ensure that F22λ-linear operations on these
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matrices translate to F2λ-linear operations on the coefficients of the corresponding polynomials.
(This allows us to describe an efficient simulator below, which can first choose random pairs (si,j , ti,j)
and later sample random matrices that are consistent with these choices.) Namely we view F22λ as
a dimension-2 vector space over F2λ , then collect all the entries of a matrix A over F22λ and view
them as the coefficient vector of a polynomial over F2λ .

5.2.2 Proof of Security

Very roughly, we need to show (a) that the corrupted parties cannot deviate from honest execution
without being caught whp; and (b) that the view of the corrupted parties is close to uniform inde-
pendent random bits conditioned on being consistent with the residual truth table. (Moreover we
need (b) to hold regardless of the input of the honest parties and actions of the fixed corrupted ones.)
Property (a) is implied by the one-time authentication security of the extractor-MAC construction,
while property (b) follows from its extraction property (but the proof takes some care).

The technical crux of the proof is showing that the (key,tag) pairs of the corrupted parties (that
come after some honest parties) in the real execution are close to being uniformly random bits,
independent of their matrices Ri. Fix the input of the honest parties, and partition the parties
into alternating intervals of corrupted and honest parties. That is, all the parties upto Pi′1 are
corrupted, then Pi′1+1 through Pi1 are honest, then Pi1+1 through Pi′2 are corrupted, Pi′2+1 through
Pi2 are honest, etc. In particular the honest parties that receive messages from corrupted parties
are Pi′1+1, Pi′2+1, . . . and the honest parties that send messages to corrupted parties are Pi1 , Pi2 , . . ..

Fix the matrices Ri of all the corrupted parties, and assume by induction that we also fixed
the Ri’s of all the honest parties upto but not including Pij . Hence the (key,tag) values of the next
interval of corrupted parties Pij+1, Pij+2, . . . , Pi′j+1

depend only on the random matrix Rij of the

honest Pij (and on the random ordering that was chosen for them). Ignoring the ordering, we now
use the extraction properties of our extractor-MAC to argue that all these pairs are statistically
close to uniform, relying on the fact that Rij has high entropy.

Claim 5.1. For any fixed values of the corrupted parties’ matrices Ri’s, as well as all the ma-
trices of honest parties upto but not including Rij , the (key,tag) pairs of the corrupted parties
Pij+1, Pij+2, . . . , Pi′j+1

, viewed as a function of the random choice of Rij , are jointly statistically

close to uniform, upto distance bounded below n2/2λ.

Proof. Roughly, we argue that since the tags tx,y are only λ bit long and Rii has nearly 2λ(n+ 1)2

bits of min-entropy, then each (key,tag) pair is obtained by applying the extractor on a source that
has very high min-entropy even conditioned on the values of all the other pairs, and therefore it
is close to being uniform and independent of the other pairs. The exact argument is a little more
delicate, since each pair depends only of a subset of the columns of Rij (e.g., the pairs for the
evaluator depend each on just a single column). Still we can order these pairs so that each one
depends on a high-entropy source even conditioned on all the previous ones, which is what we need.

Specifically, we order them “diagonally”, starting from the pair (si′j+1−1,i′j+1−1, ti′j+1−1,i′j+1−1)

that is used by the last corrupted party in this interval to authenticate the message correspond-
ing to the all-1 input. Next in the order are the two pairs (si′j+1−1,i′j+1−2, ti′j+1−1,i′j+1−2) and

(si′j+1−2,i′j+1−2, ti′j+1−2,i′j+1−2) that depend on a column that the first does not touch (i.e., the last

columns that’s dropped by Pi′j+1−2 in an honest execution with the all-1 input).Next are the three

pairs (si′j+1−1,i′j+1−3, ti′j+1−1,i′j+1−3), (si′j+1−2,i′j+1−3, ti′j+1−2,i′j+1−3), (si′j+1−3,i′j+1−3, ti′j+1−3,i′j+1−3), that
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again depend on a column that all the previous ones did no touch, etc. In general we consider
“batches” of pairs of the form

{(sij+1−1,k, tij+1−1,k), (sij+1−2,k, tij+1−2,k), . . . , (si′,k, ti′,k)}

(where i′ = max(ij , k)), and we note that each batch contains at most i′j+1 − ij ≤ n pairs and
depends on an (n+ 1)-dimensional column that all the previous ones did not touch.

Ordering the pairs within each batch arbitrarily, we get that the first pair in each batch has a
source of min-entropy at least 2(n + 1)λ even conditioned on all the previous batches, the second
has asource with (conditioned) min-entrpy at least (2n + 1)λ, the next has at least 2nλ, etc. As
there are at most n pairs in a batch, the last of them has a source with (conditioned) min-entropy
at least 2(n+ 1)λ− (n− 1)λ = (n+ 3)λ, even conditioned on all previous ones. Hence each pair is
at most 2−λ-far from uniform conditioned on all the others.

As there are less than
(
n+1

2

)
pairs that the corrupted parties see, and each is at most 2−λ-far

from uniform conditioned on all the previous ones, we conclude that the joint distribution is at
most

(
n+1

2

)
/2λ far from uniform.

Armed with Claim 5.1 we can now describe a simulator and prove that the simulated view is
statistically close to the real one. The simulator needs to give the corrupted parties their correlated
randomness and messages from the honest parties. It also needs to send to the ideal functionality
inputs on behalf of the fixed corrupted parties, then it gets access to the residual truth table of the
function and needs to complete the simulation.

The simulator begins by choosing uniformly at random the matrices Ri for all the corrupted
parties, and the corrupted parties before the first honest parties are given (key,tag) pairs as in the
protocol itself. For the other corrupted parties, the simulator chooses the (key,tag) pairs uniformly
at random (subject to a 6= 0 in the authentication key), and if the evaluator is corrupted then the
simulator attaches as many 0’s and 1’s to the (key,tag) pairs of the evaluator as there are in the
truth table of the function f , in random order.

The simulator then goes over the honest parties in their order on the chain, simulating the
messages sent by them one by one. As above, we let Pi′1+1, Pi′2+1, . . . be the honest parties that
receive messages from corrupted parties and Pi1 , Pi2 , . . . be the honest parties that send messages
to corrupted parties, and we show how to simulate the messages of the honest parties Pij and how
to use the messages received by Pi′j+1 to extract the inputs of the corrupted parties preceeding it.

On a high level, the simulator samples the message Aij sent by Pij uniformly at random, subject
to being consistent with the authentication keys and tags of Pij+1, . . . , Pi′j+1

. Specifically, the simu-

lator chooses at random one of the (key,tag) pairs that Pij+1 holds, denote it by (s, t), and records
the constraint Ext(s;Ai) = t. If Pij+2 is also corrupted then the simulator chooses at random two of
its (key,tag) pairs, denoted (s′, t′), (s′′, t′′), and records the two constraints Ext(s′;Rij+1Aij |0) = t′

and Ext(s′′;Rij+1Aij |1) = t′′, where Rij+1Aij |0, Rij+1Aij |1 are the matrices obtaind from Rij+1Aij
by dropping the first or last column, respectively. In general the simulator chooses k of the (key,tag)
pairs of Pij+k and record the constrains that they match all the valid ways of dropping columns

from (
∏1
k=j Rij+k)×Aij .

Once all these constraints are recorded, the simulator samples the message Aij of Pij at random
subject to all these constraints. Note that with our particular choice of extractor-MACs and the
particular representation of matrices as polynomials, the constraints recorded by the simulator are
all linear (over F2λ). Hence the simulator can efficiently sample a random solution if one exists.
By Claim 5.1 the (key,tag) pairs of the corrupted parties in the simulation are statistically close to
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those in the real protocol, and since the constraints are always satisfiable in the real execution (bu
construction) then they must also be satisfiable in the simulation with overwhelming probability.
(If a solution does not exist then the simulator aborts.)

If Pij is not the last honest party (i.e. Pi′j+1+1 is the next honest party), then the sim-

ulator consider the message Ai′j+1
that Pi′j+1

sends to Pi′j+1+1. If Ai′j+1
is not obtained from

A′ = (
∏ij+1

k=i′j+1
Rk) × Ai by dropping columns on the right and the left then the simulator makes

all the honest parties starting at Pi′j+1+1 abort. Otherwise, say that Ai′j+1
is obtained from A′

by dropping u columns on the left and u′ columns on the right (with u + u′ equals the number
of corrupted parties in this interval). The simulator sends to the functionality the input bit 1 on
behalf of the first u corrupted parties in the interval and the input bit 0 on behalf of the last u′ of
them, and then proceeds to simulate the message of the next honest party Pij+1 as above.

If the evaluator Pn+1 is corrupted and Pij is the last honest party (ij ≤ n), then the simulator’s
choice of which (key,tag) pairs of the evaluator to use for the constraints on sampling Aij must
depend the residual function. Before sampling the message of Pij , the simulator already sent to the
functionality the inputs of all the fixed corrupted parties (as described above), and it gets access to
the residual truth table. Then the (key,tag) pairs of Pn+1 that are chosen to match the message Ai
must be attached to the 0/1 bits from the residual truth table (in the right order), so the simulator
chooses two separate random subsets of pairs, one from the pairs attached to 0 and the other from
the pairs attached to 1.

This completes the description of the simulator, it only remains to prove that the simulated
view of the corrupted parties is statistically close to their view in a real execution. The view
consists of the Ri matrices, the (key,tag) pairs, and the messages from the honest parties. We
begin by observing that the one-time authentication properties of our extractor-MAC construction
implies that in the real protocol, whenever a corrupted party sends to an honest party a message
which is not consistent with a valid way of dropping columns from the product of the Ri’s then all
subsequent honest parties will abort with overwhelming probability (as they do in the simulating).

To complete the proof we note that in the Ri’s are chosen in the same way in both the real
protocol and the simulation, and the difference is that in the real world the honest parties’ messages
are chosen at random (subject to being full rank, which only entails negligible statistical distance)
and the (key,tag) pairs are chosen from some distribution that depends on these messages, whereas
in the simulation the (key,tag) pairs are chosen at random and the messages are chosen at random
subject to being consistent with these pairs.

By Claim 5.1 the marginal distribution of the pairs is the same in both cases (even conditioned
on the Ri’s of the corrupted parties), and in both case the distribution of the honest parties’
messages conditioned on the (key.ta) pairs is uniform amond all the messages that are consistent
with these pairs. Hence the entire view of the corrupted parties has nearly the same distribution
in both cases, upto a statistical distance of O(n2/2λ).

6 Computational Protocols for General Functions

In this section, we describe computationally-secure protocols for computing arbitrary polynomial-
time functions with general interaction patterns. Our protocols are built using indistinguishability
obfuscation (iO). We stress that for the case of general functions, the use of iO is necessary. Indeed
it was already shown in [36] that any protocol for computing general functions with star pattern
implies iO.
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We present our protocols for the following two cases:

• Non-reusable Correlated Randomness Setup: We first consider the case where the correlated
randomness setup is non-reusable; i.e., it can only be used for a single computation. In this
case, we are able to obtain a protocol for general interaction patterns by simply composing
the star protocol of [36] with our reduction to star described in Section 3.

• Reusable Correlated Randomness: Next, we consider the case where the correlated randomness
setup is reusable. Here, we present a generic way to transform any non-reusable correlated
randomness setup into one that is reusable, provided that the parties have access to a “long”
common random string (CRS). Combining this transformation with our protocol in the non-
reusable setup case, we obtain a protocol for general interaction patterns in the CRS model.

Below, we consider the above two cases in Section 6.1 and 6.2, respectively.

6.1 Computing General Functions with Non-Reusable Correlated Randomness

Here we present a computationally-secure protocol Πnr
gen for computing arbitrary polynomial-time

functions with general interaction patterns in the non-reusable correlated randomness model.
We first recall that the recent work of Goldwasser et al. [36] on multi-input functional encryption

directly yields a protocol Πnr
star for computing general functions with a star interaction pattern. This

protocol makes use of a non-reusable correlated randomness setup and achieves indistinguishability
security (or equivalently, unbounded simulation security) against semi-honest adversaries based on
iO and one-way functions.

Theorem 17 (Implicit in [36]). Assuming indistinguishability obfuscation for general circuits and
one-way functions, there exists a protocol Πnr

star with non-reusable correlated randomness setup for
computing any polynomial-time function on a star, achieving semi-honest security against any
number of corruptions.

Protocol Πnr
gen. Let Πnr

gen be the protocol obtained by composing Πnr
star with our reduction from

general interaction patterns to star described in Section 3. Note that Πnr
gen also requires a non-

reusable correlated randomness setup.

Theorem 18. Assuming indistinguishability obfuscation for general circuits and one-way functions,
for every interaction pattern I, there exists an I-compliant protocol for computing any polynomial-
time function in the non-reusable correlated randomness setup model that achieves malicious secu-
rity against any number of corruptions.

The proof of the theorem immediately follows by combining the security of the reduction in
Section 3 with Theorem 17.

6.2 Reusable Correlated Randomness in the CRS Model

In this section, we present a generic procedure to transform any non-reusable correlated randomness
setup into one that is reusable. Our transformation works in the common random string (CRS)
model where the size of the CRS grows linearly with the number of computations. In particular, for
every fresh execution of the protocol that uses the correlated randomness setup, we must use a fresh
CRS. We note, however, that since the CRS is “public” randomness, it can be easily compressed
in the random oracle model.

We start by providing an overview of our transformation and then proceed to give details.
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Overview. Suppose we had an MPC protocol Πout-ind for computing n-party functions with
“long” outputs where the communication complexity of the protocol as well as the size of random-
ness of each party is independent of the function output length. Given such a protocol, we can
generically transform any non-reusable correlated randomness setup for n parties into a reusable
one via the following two steps:

• Let Samp be a sampler that generates a single instance of the non-reusable correlated random-
ness setup. Given Samp and a pseudorandom generator (of appropriate stretch), we can easily
define a n-party function Fcr that computes poly(k) independent instances of the correlated
randomness setup.

• Fix an honest execution of protocol Πout-ind for evaluating the functionality Fcr. Let viewi

denote the view of party i in the protocol execution, consisting of its local randomness and the
messages in the protocol. Now, consider the correlated randomness (view1, . . . , viewn) where
viewi is given to party i. Due to the efficiency properties of Πout-ind, we have that |viewi| is
“small”. Furthermore, given viewi, party i can locally compute the output of Πout-ind. In
other words, (view1, . . . , viewn) is reusable.

Note that the above transformation only requires semi-honest security of Πout-ind since we only
use an honest execution of Πout-ind. Unfortunately, however, such a protocol is impossible in the
standard model. Indeed, if we consider an execution of Πout-ind for evaluating a PRG with long
stretch, then the view of any party i represents a “compressed” representation of the long protocol
output. This can be used to derive a computational incompressibility argument, similar to several
recent works [1, 13, 41].

Towards that end, we start by noting that a recent work of Hubáček and Wichs [41] constructs
a semi-honest secure computation protocol for computing functions with “long” outputs, where the
communication complexity of the protocol is independent of the function output length. However,
the size of the randomness of each party (who receives the output) does grow with the function
output length. The security of their protocol relies upon iO and fully-homomorphic encryption
(FHE).

We extend their work on the following two fronts to achieve our goal:

• First, we extend their protocol to the multi-party case. That is, we describe a protocol
Πlong-out for computing multi-party functions with “long” outputs, where the communication
complexity of the protocol is independent of the function output length. The size of the
randomness of each party receiving the output, however, still grows with the function output
length.

• Next, we describe a generic transformation in the CRS model from any semi-honest protocol
Πlong-rand where the parties use “long” randomness (i.e., proportional to the function output
length) into a protocol Πshort-rand where the parties use “short” randomness.

Combining the above two steps, we obtain our desired multi-party protocol Πout-ind where
the communication complexity of Πout-ind as well as the size of the randomness of each party in
Πout-ind is independent of the function output length. We stress that we are able to bypass the
aforementioned impossibility result since we are working in the CRS model, where the size of the
CRS grows with the function output length. This completes the overview.

We now proceed to give details.
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Multiparty Protocol for Computing Long Outputs using Long Randomness. We first
describe an extension of the protocol of [41] to the multiparty case. We borrow much of the
terminology and notations from [41] and defer the reader to [41] for relevant definitions and formal
security proof.

Notations. Let iO be an indistinguishability obfuscator for general circuits. Let (FHE.Keygen,FHE.Enc,
FHE.Dec,FHE.Eval,FHE.Rerand) denote an FHE scheme with re-randomization. By relying on
hybrid encryption, we can assume without loss of generality that c ← FHE.Encpk(x) is of size
`ctx = |x|+ poly(k). Let H = (SSB.Gen, SSB.Hash,SSB.Open, SSB.Verify) denote a somewhere sta-
tistically binding (SSB) hash function. Here, SSB.Gen denotes a key sampling algorithm, SSB.Hash
denotes the hashing algorithm, SSB.Open denotes the opening algorithm, and SSB.Verify denotes
the verification algorithm. Let Σ = {0, 1}`ctx+1 denote the alphabet of H with corresponding hash
size `hash and opening size `opn. We refer the reader to [41] for a formal definition of SSB hash.9

Finally, let Π denote a standard semi-honest MPC protocol for computing arbitrary functions.

Protocol Πlong-out. We now describe a protocol Πlong-out for computing any n-party function f that
takes inputs inp1, . . . , inpn and produces a long output out = out1, . . . , outL, where each outi is a
bit. The communication complexity of Πlong-out is independent of the function output length, i.e.,
CC(Πlong-out) = poly(k, n) +n · `inp(k), where `inp denotes the input length of each party. However,
the size of the randomness of each party Pi in the protocol grows with the output length of f .

Protocol Πlong-out proceeds in the following steps:

1. In the first step, the parties run a standard semi-honest MPC protocol Π to compute the fol-
lowing (randomized) “input-less” function Fgen: it samples a key pair (pk, sk)← FHE.Keygen(1k)
of the FHE scheme and a key hk← SSB.Gen(1k) of the SSB hash function H. The output of
each party i consists of the tuple (hk, pk, ski) where sk = sk1 ⊕ · · · ⊕ skn.

2. In the next step, each party i broadcasts an encryption ci ← FHE.Encpk(inpi) of its input inpi
to all the other parties. Let ~C−i denote the ciphertexts received by party i.

3. Next, each party i performs the following sequence of steps:

• Compute ciout ← FHE.Evalpk

(
f (·, inpi, ·) , ~C−i

)
.

• Choose a random “pad” zi and compute cipad ← FHE.Evalpk(OTPzi , c
i
out) where OTPz(x) :=

x⊕ z is the one-time pad function.

• Re-randomize cipad to compute cifrsh ← FHE.Rerandpk(c
i
pad). Let cifrsh = ci[1], . . . , ci[L].

• Choose randomness a = a1, . . . , aL. For every j ∈ [L], let xi[j] = (ci[j], aj). Let
xi = xi[1], . . . , xi[L]. Compute yi ← SSB.Hashhk(xi).

4. Now, the parties run a standard semi-honest MPC protocol Π to compute the following
function Fdec: the input of party i is the tuple (hk, yi, ski). The output of party i is C̃i ←
iO(Ci) where the circuit Ci = C[hk,yi,sk] contains the SSB hash key hk, the hash value yi and
the FHE secret key sk = sk1 ⊕ · · · ⊕ skn hardwired in it. C[hk,yi,sk] is defined in Figure 2.

5. Each party i performs the following steps: For every j ∈ [L], compute πj = SSB.Open(hk, xi, j)

and the output bit outj = C̃i(j, xi[j], πj). Output out = out1, . . . , outL.

9[41] give a construction of SSB hash from an FHE scheme.
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Input: j ∈ [L], c ∈ {0, 1}`ctx , a ∈ {0, 1}, π ∈ {0, 1}`opn .
Constants: Hash key hk, hash value yi, and decryption key sk.

(a) Check that SSB.Verify(hk, yi, j, (c, a), π) = accept. If not, output 0.

(b) Output FHE.Decsk(c).

Figure 2: Function C[hk,yi,sk] (j, (c, a) , π)

This completes the description of Πlong-out. It is easy to verify that Πlong-out satisfies our desideratum
for communication efficiency. In particular, note that the use of standard MPC protocol Π in
Πlong-out is only for computing functionalities with “small” output that are independent of the
function f .

Lemma 6.1. If fully homomorphic encryption and indistinguishability obfuscation exist, then
Πlong-out is a secure MPC protocol against semi-honest adversaries.

The proof of security follows by a straightforward extension of the proof in [41]. We omit the
details from this manuscript.

Compressing Randomness of Parties in CRS Model. We now describe a simple, generic
procedure to compress “long” local randomness into “short” local randomness, in the CRS model.

Let Πlong-rand be any semi-honest MPC protocol for computing general n-party functions where
the size of randomness of each party Pi grows with the function output length. Fix an n-party
function f with (maximum) output length `out. Let `rand = `rand(`out) be the size of randomness
of each party in Πlong-rand for computing f .

We transform Πlong-rand into a new semi-honest protocol Πshort-rand in the CRS model where the
size of the randomness of each party Pi is independent of the function output length. Let PRG be
a pseudorandom generator that stretches k bits into `rand bits. The length of randomness of each
party in Πlong-rand will be simply k; however, the length of the CRS will be `crs = n · `rand where n
is the number of parties.

We now describe protocol Πshort-rand:

• Denote the CRS as CRS = CRS1, . . . ,CRSn.

• Let ri denote the randomness of party Pi. At the beginning of the protocol, party Pi locally
computes Ri = PRG(ri)⊕ CRSi.

• For the remainder of the protocol, Pi follows the strategy of party i in Πlong-rand using ran-
domness Ri.

The correctness and efficiency properties of Πshort-rand are easy to verify.

Lemma 6.2. If Πlong-rand is a semi-honest MPC protocol for computing an n-party function f and
PRG is a secure pseudorandom generator, then Πshort-rand is a semi-honest MPC protocol for f in
the CRS model.
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Proof. (Sketch) Let M ⊂ [n] denote the set of corrupted parties. Let Slong-rand be the simulator for
Πlong-rand. Given, Slong-rand, we build a simulator Sshort-rand for Πshort-rand in the following manner.
Sshort-rand first runs Slong-rand to obtain a simulated protocol transcript ˜trans along with randomness

R̃i1 , . . . , R̃i|M| for the corrupted parties i1, . . . , i|I| ∈ I. For every j ∈ I, Sshort-rand now chooses r̃j

and ˜CRSj such that PRG(r̃j) ⊕ ˜CRSj = R̃j . For every j ∈ [n] \M , Sshort-rand chooses ˜CRSj as a

random string. Finally, Sshort-rand outputs
(

˜CRS, ˜trans, {r̃j}j∈M
)

, where ˜CRS = ˜CRS1, . . . , ˜CRSn.

The correctness of simulation is easy to verify.

We remark that our transformation only works in the semi-honest model. In the malicious
model, the corrupted parties may choose their inputs and randomness adaptively based on the
CRS. In this case, the simulation strategy described above does not work. We stress, however, that
this is not an issue for us since semi-honest security actually suffices for our purposes.

Protocol Πout-ind in CRS Model. Applying the transformation in Lemma 6.2 on the MPC
protocol from Lemma 6.1, we obtain a semi-honest protocol Πout-ind in the CRS model where
the size of the randomness of the parties as well as the communication complexity of Πout-ind is
independent of the function output length.

Lemma 6.3. Assuming the existence of indistinguishability obfuscation and fully homomorphic
encryption, protocol Πout-ind obtained by applying the transformation from Lemma 6.2 on protocol
Πlong-out from Lemma 6.1 is secure against semi-honest adversaries. The randomness of each party
in Πout-ind is of fixed length k and the communication complexity of Πout-ind is poly(k, n)+n·`inp(k),
where `inp denotes the input length of each party.

Reusable Correlated Randomness in CRS Model. Let CRnr denote any non-reusable cor-
related randomness setup for n parties. We now describe a procedure that transforms CRnr into
a new correlated randomness setup CR that can be used L = poly(k) times for any a priori fixed
polynomial L. This transformation works in the CRS model, i.e., in order to use the new correlated
randomness setup, we require that the parties have access to a CRS where the size of the CRS is
linear in L.

Let Samp denote the sampling algorithm that generates a single instance of CRnr. That is,
Samp takes as input a random string z of length k and outputs a tuple (r1, . . . , rn), where ri is the
(correlated) randomness for party i. For simplicity of notation, we assume that each ri is of the
same length k. Let PRG be a pseudorandom generator that stretches a random seed of length k
into k · L pseudorandom bits.

We first define a deterministic functionality Fcr that takes as input n random string pairs
(s1,m1, . . . , sn,mn) ∈ {0, 1}k and outputs L independent instances of CRnr. See Figure 3 for a
formal description of Fcr.

We now define CR. To sample an instance r1, . . . , rn of CRnr, we first sample an honest execution
of protocol Πout-ind for computing Fcr in the CRS model. Let viewi denote the view of party i in
the execution where viewi consists of its private randomness (that includes the seed mi) and the
protocol messages. The (correlated) randomness of party i is simply set to ri = viewi.

Given this correlated randomness and access to the CRS used in the execution of Πout-ind, party

i first uses viewi and CRS to reconstruct the output of Πout-ind, namely,
{
Rj1

}L
j=1

, . . . ,
{
Rjn
}L
j=1

.

Next, it computes the masks m1
i , . . . ,m

L
i ← PRG(mi). Finally, it computes

{
rji

}L
j=1

where rji =
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1. Compute s = s1 ⊕ · · · ⊕ sn.

2. Compute z1, . . . , zL ← PRG(s).

3. For every j ∈ [L], compute a correlated randomness instance (rj1, . . . , r
j
n) ←

Samp(zj).

4. For every i ∈ [n], compute “masks” m1
i , . . . ,m

L
i ← PRG(mi).

5. For every i ∈ [n], j ∈ [L], compute Rji = rji ⊕m
j
i .

6. Output
{
Rj1

}L
j=1

, . . . ,
{
Rjn
}L
j=1

.

Figure 3: Function Fcr(s1,m1, . . . , sn,mn)

r̃ji ⊕m
j
i . Note that rji denotes the jth instance of CRnr. Thus, from a single instance of CR, we

are able to generate L instances of CRnr.
We note that the use of masks ensures that party i can only reconstruct its own shares of the

correlated randomness while the shares of the other parties remain hidden from its view.

Computing General Functions with Reusable Correlated Randomness in the CRS
Model. Let Πnr

gen denote the protocol from Theorem 18 for computing arbitrary polynomial-time
functions with general interaction patterns in the non-reusable correlated randomness setup model.
Applying our transformation from above to the correlated randomness setup of Πnr

gen, we obtain a
new protocol Πgen with a reusable correlated randomness setup in the CRS model.

Theorem 19. Assuming indistinguishability obfuscation for general circuits and fully homomor-
phic, for every interaction pattern I, there exists an I-compliant protocol for computing any
polynomial-time function that achieves malicious security against any number of corruptions. The
protocol requires a reusable correlated randomness setup in the CRS model where the size of the
CRS grows linearly with the number of uses of the protocol.

Remark 1. We remark that the long CRS in the above result can be easily compressed into a short
CRS in the random oracle model, via standard techniques.

7 Computational Protocols for Symmetric Functions

We describe simpler protocols for computing symmetric functions with semi-honest security, which
do not not require obfuscation. These protocols use multilinear maps, and their security can
be reduced to a simple DDH-like assumption for the underlying maps. We note that current
multilinear-map candidates are not strong enough to support this application, indeed the protocols
below are insecure using any of the known construction [30, 20, 33, 21]. Nonetheless we present
this protocols as a natural application of multilinear maps, as it is plausible that future candidates
will be able to support these protocols.
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Notation. We review very briefly the notion of “multilinear maps” that we use, cf. [30]. Recall
that a graded encoding scheme (in the symmetric setting, with public sampling) with n levels allows
one to sample pairs (a, [a]1), with a a random plaintext element and [a]1 an encoding of a at level 1.
More generally we denote a level-i encoding of a by [a]i.

Encodings can also be publicly negated, added and multiplied: negation does not change the
level, addition of two same-level encoding yields an encoding of the sum at the same level, and
multiplication of level-i and level-j encodings yield an encoding of the product at level i + j,
provided that i+j ≤ n. Encoding can also be multiplied by plaintext elements, which are considered
level-0 encoding for this purpose. Finally, a scheme like that comes equipped with a zero-testing
procedure, allowing anyone to test whether a level-n encoding encodes zero. In our context we
also need the encoding scheme to be level-n randomizable, i.e. given an encoding [a]n it should
be possible to generate a new random level-n encoding of the same element a. Below we denote
addition, subtraction and multiplication, respectively, of encodings by overloading the operators
(+,−,×).

7.1 Protocol for Star Pattern

Protocol Πstar. We describe a protocol Πstar that works with an n-level graded encoding scheme.
Every party i gets level-1 encoding of two elements [ai]1 and [ai×r]1, all using the same ratio r.

Denote the product of the ai’s by A =
∏n
i=1 ai, the evaluator gets level-k encoding of all the

elements [A× ri]n for i = 0, 1, . . . , n in random order, and with each [A× ri]n it gets the function
value fi = f(1i0n−i).

Later, each party i with input bi send to the server the encoding of [ai × rbi ]1 (namely [ai]1 if
bi = 0 and [ai × r]1 if bi = 0). The evaluator multiplies all these level-1 encodings, thus getting a
level-n encoding

[∏
i ai × r

∑
i bi
]
n
. It then subtracts this element from all the elements on its list,

uses zero-testing to find the index that it matches, and outputs the corresponding function value fi.
This completes the description of Πstar. We reduce the security of the star protocol in the semi-

honest, static corruption model, to the following MDDH-like assumption, which we call bookend-
MDDH

The bookend-MDDH assumption. Consider a symmetric n-level graded encoding scheme
that supports public sampling and re-randomization at levels 1 and n, we assume that for every
1 ≤ s < n, the following two distributions are indistinguishable:(

params, [1]1, [r]1, ([ai]1 : i = 0, . . . , s− 1), ([A/ri]n : i ∈ [s]), [Arn−s+i]n : i ∈ [s])
)
,

and
(
params, [1]1, [r]1, ([ai]1 : i = 0, . . . , s− 1), ([ui]n : i ∈ [s]), ([vi]n : i ∈ [s])

)
with r and the ai’s, ui’s and vi’s chosen at random, and A =

∏s
i=1 ai.

(The name bookend-MDDH comes because the scheme lets us compute all the elements [ari]n for
i = 0, . . . , n− s, but yet we assume that for the “bookends” i = −s, . . . ,−1 and i = n− s+ 1, . . . , n
we cannot distinguish [ari]n from random.)

Theorem 20. Assuming the bookend-MDDH assumption on multilinear maps, the proposed star-
compliant protocol Πstar securely computes any symmetric function against semi-honest adversaries.

Proof. Fix an n-input symmetric function f(·) and denote fi = f(1i0n−1) for i = 0, 1, . . . , n. For
ease of notations we assume (wlog) that the honest parties are the first n parties, and let x0, x1 be
two honest-party inputs with the same residual function, f(x1|y) = f(x2|y) for all y. We need to
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show that in this case the view of the adversary is indistinguishable between the cases where the
honest parties’ input is x1 or x2. Assume that we have an adversary A that can distinguish these
two views, and we show how to use it to break the bookend-MDDH assumption from above.

The reduction algorithm B gets as input
(
params, [1]1, [r]1, ([ai]1 : i = 0, . . . , s), ([ui]n : i =

0, . . . , s), ([vi]n : i = 0, . . . , s)
)
, and it needs to decide if the ui’s and vi’s were chosen at random or

set as ui = A/ri and vi = Arn−s+i for A =
∏
j aj .

B uses the sampling procedure of the scheme to sample ai’s also for the adversarial parties,
getting random elements and their level-1 encoding, {(ai, [ai]1) : i = s, . . . , n − 1}. It computes a
level-1 encoding or ai× r for i = s, . . . , n− 1 by multiplying ai× [r]1 and then re-randomizing, and
gives the pairs ([ai]1, [ai× r]1) to A as the shares of the correlated state for the adversarial parties.

For the share of the evaluator, B choose at random t ∈R {1, 2} and, and let w be the Hamming
weight of the honest parties’ input xt. B computes level-n encoded values zi, i = 0, 1, . . . , n − 1,
using the ui’s for the first w of them, computing the next n− s+ 1 as ri ×

∏
i<s ai, and using the

vi’s for the last n− w − s. Specifically, B sets

zi ←


uw−i for i ≤ w − 1
vi−n+s−w−1 for i > n− s+ w
([r]1)i−w × ([1]1)n−s+w−i ×

∏
j<s[aj ]1 otherwise

Finally, B multiply in the plaintext aj ’s for j ≤ s and re-randomize, setting z′i ← reRand(zi ×∏
j≥s ai), and give A the pairs (zi, fi) in random order.

For the messages of the honest parties i = 0, 1, . . . , s− 1, B just uses the level-1 encodings [ai]1
from its input. After A receives all these inputs, it issues a guess as to whether the honest parties’
input was x1 or x2. Then B outputs “real” if the guess matches its chosen index t and “random”
otherwise.

Analysis (sketch). It can be seen that if the input of B was “real”, i.e., ui = A/ri and vi =
A × rn−s+i, then the view of the adversary is indeed consistent with a honest execution of the
protocol with the honest parties’ input being xt (upto the statistical distance between re-randomized
encodings and fresh ones).

On the other hand, if the input of B was “random” then the view of A is independent of the
index t. This is because all the elements in the list of the evaluator that cannot be verified using
the graded-scheme operations are random and independent in this case, regardless of what t is.

It therefore follows that the advantage of B in distinguishing real from random is exactly half
the advantage of A in distinguishing x1 from x2.

7.2 Protocol for General Interaction Patterns

Combining our protocol for star network with our general reduction in Section 3, for every in-
teraction pattern I, we obtain a semi-honest I-compliant protocol Πgen for computing symmetric
functions with general interaction patterns.

Theorem 21. Assuming the bookend MDDH assumption on multilinear maps, protocol Πgen se-
curely computes symmetric functions against semi-honest adversaries in the non-reusable correlated
randomness setup model.
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8 Barriers for Efficient Information Theoretic Protocols

In this section, we present some negative results on the existence of communication-efficient proto-
cols, even for very simple communication patterns such as two-chains entering an evaluator. Our
negative results are conditional: we show that the existence of such efficient protocols would imply
strong upper bounds, much better than what is known [18, 54, 27, 4], on the well-studied problem
of (3-server, information-theoretic) Private Information Retrieval (PIR).

We start by considering a very simple network S2: the star network (see Section 4.2) with
two parties P0, P1, each holding n-bit input (x0, x1, respectively), and an evaluator E who wish
to compute f(x0, x1), for some arbitrary function f . The following theorem claims that, even if
we allow exponential randomness, a solution with polynomial communication complexity, for all f ,
implies 3-server PIR with polylogarithmic communication complexity.

Theorem 22. Assume that, for every f : {0, 1}n × {0, 1}n → {0, 1}, there exists a semi-honest
(statistically) secure protocol that computes f on the network S2, with randomness complexity r(n)
and communication complexity c(n). Then, there exists an (interactive, statistical) 3-server PIR
protocol, with communication complexity O(c(logN) + logN + log 1/ε), where N is the database
size and ε is the desired statistical security parameter for the PIR protocol.

Proof. For clarity of presentation, we will start by making the stronger assumption that there is a
perfectly secure protocol that computes any f on the network S2. Then, we will modify the proof
to deal with the more involved case of statistical security.

As a first step, we argue that the assumption of the theorem implies that, for every f as above,
there exists a secure protocol in the PSM model [28] with communication complexity c(n) and
shared randomness for the two clients of size r′(n) = 2r(n) (and no randomness for the server).
Specifically, given a protocol Πf to compute f in the correlated-randomness model, on the network
S2, that uses correlated randomness r0, r1, rE (for P0, P1, E, respectively), we construct Π′f by fixing
rE to some possible value (that has positive probability) and giving shared randomness (r0, r1),
sampled from the conditional probability obtained by fixing rE , to both P0, P1. The protocol Π′f
then proceeds as in Πf . Security in the PSM model only requires that E does not obtain additional
information beyond the output and, indeed, E’s view in Π′f is identical to its view in Πf , when its
randomness is rE (here we use the perfect security of the protocol; we will get rid of this assumption
later).

In our transformation of PSM protocols into PIR protocols, that will be presented below, the
shared randomness will be picked by one of the servers and communicated. It is therefore important
for us to reduce the length of the shared randomness used by the PSM protocol, even at the cost
of slightly hurting the security. For this, we use a standard “sub-sampling” technique, where
rather than picking r′(n)-bit randomness according to some generation process G, a small multi-set
R ⊂ {0, 1}r′(n) of random strings is fixed and one of them is uniformly chosen (using log |R| bits)
as the shared randomness. We say that R ε-fools a function C : {0, 1}r′(n) → [M ] (wrt G) if the
statistical distance between C(R) and C(G) is bounded by ε, where C(R) is the random variable
obtained by applying C to a random element of R and C(G) is the random variable obtained by
applying C to a random r′(n)-bit string sampled by G. We say that R ε-fools a family of functions
C (wrt G) if it ε-fools every function C ∈ C. We use the following claim from [42, Lemma 1].10

10The original lemma is formulated for the case where G is uniform over r(n)-bit strings, but the proof remains the
same, as each member of R is picked according to G. The proof is a standard argument involving a Chernoff bound
and a union bound.
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Claim 8.1. Let C be a family of functions from {0, 1}r′(n) to [M ] and let ε > 0. Then, there exists
a set RC ⊂ {0, 1}r

′(n) of size poly(1/ε,M, log |C|) that ε-fools C.

If we let M ≤ 2c(n) be the number of possible communications and, for each input (x0, x1), we
have a function C(x0,x1)(r) that maps the input to the corresponding communication (depending

on the randomness r), then |C| = 22n and |RC | = poly(1/ε, 2c(n), n). The modified protocol uses
log |RC | bits of randomness, its communication complexity is at most c(n), and the view of E on
any input is at most ε-far from its view on the same input in the original protocol. Denote the
resulting protocol by Π′′f .

Finally, we obtain a 3-server PIR protocol for 3 servers S1,S2,S3, each holding N -bit database
D, and a user U that holds i ∈ [N ]. The PIR protocol works as follows:11

1. Server S1 picks shared randomness r ∈ R (this depends on the function f being computed,
that depends on the database D; see below) and sends r to user U .

2. U additively shares i (i.e., i = a+ b mod N) and also picks a random bit c. It sends (a, c) to
S1 and (b, r) to S2.

3. Servers S1,S2 simulate the clients in a PSM protocol Π′′fD to compute the function fD((a, c), b) =
D[a+ b mod N ]⊕ c (using shared randomness r). They send their messages to server S3 who
simulates the PSM referee (and who also knows fD). S3 recovers the output bit and sends it
to U .

4. U unmasks D[i] by xoring c.

The correctness is obvious. The communication complexity consists of O(log |R|) = O(log 1/ε +
c(logN) + logN) bits for distributing the randomness r, then O(logN) bits for sending a, b, and
c(logN) bits for computing fD (whose inputs are of length logN). Altogether, as promised in
the theorem statement. Finally, to argue security, servers S1,S2 just see sharing of i. Server S3

has exactly the same view as the referee in the PSM for computing fD. The output of fD reveals
nothing to S3, due to the random mask c.

So far, we handled the case of perfect security. Next, we will deal with the case of statistical
security by making the necessary modifications to the above proof. The first step would be, as
above, to move from the correlated randomness setting to the PSM (shared randomness) setting.
The difficulty here is how to pick rE . While we know that the observer’s views on any two inputs
with the same output are δ-close, which implies that there exists randomness rE for E where the
conditioned views will also be δ-close, this randomness may be different for any pair of inputs and,
moreover, it will be more convenient to get rid of the conditioning on the output value. In light of
this, we will first restrict our attention to functions of the form f ′((x, c), y) = f(x, y)⊕ c, where c is
a bit that will be picked at random. Observe that this is the type of functions that we actually use
in our PSM to PIR transformation. Moreover, this means that for every pair of inputs (x, y), (x′, y′)
(excluding the bit c) the views of E in the protocol for f ′ are δ-close (such a view consists of E’s
randomness, rE , and the messages it receives from both clients, denoted as a random variable
M(x, y)). This in turn means that, the distributions ((x, y), rE ,M(x, y)) and ((x, y), rE ,M(x′, y′))
are δ-close, for any (x, y), (x′, y′) and hence also if (x, y), (x′, y′) themselves are picked uniformly
at random. Therefore, there exists an rE such that, conditioned on its choice, the distributions
((x, y),M(x, y)) and ((x, y),M(x′, y′)) are δ-close, for random (x, y), (x′, y′). We fix such rE and,

11A similar transformation is given in [28] to obtain a 3-oracle, interactive, instance hiding scheme for all functions.
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as before, we give shared randomness (r0, r1) (sampled from the conditional probability obtained
by fixing rE) to both P0, P1. The protocol Π′f ′ then proceeds as in Πf ′ .

In the next stage, as before, we reduce the amount of shared randomness that the protocol uses
(at the price of slightly hurting the security), and it proceeds similarly to the perfect case. We
choose the same parameters as above (in particular, note that the function C(x,y)(r) is essentially
the same as the random variable M(x, y), viewed as a function of the randomness r). Hence,
choosing the shared randomness from the smaller set RC , changes the distribution of each M(x, y)
by at most ε and therefore also ((x, y),M(x, y)) and ((x, y),M(x′, y′)) are (δ+2ε)-close, for random
(x, y), (x′, y′) and randomness chosen from RC . As before, we denote the resulting protocol for f ′

by Π′′f ′ .
Finally, we turn this PSM protocol into a PIR. The main difference is that now we only have a

guarantee that refers to random inputs to the PSM. We will therefore make sure our PIR invokes
the PSM with random inputs. We modify the above construction as follows. The user starts by
picking a random shift for the database ∆ ∈R {0, . . . , N −1}. To retrieve the i-th bit of D, the user
will retrieve the i′ = i+ ∆ bit of D′ = D � ∆. Since i′ is uniformly distributed, we will have the
security. In more detail, the protocol proceeds as the previous PIR protocol where the index is i′ and
the database is D′. Since i′ is random then so are its shares (a, b). Also, as mentioned, the function
fD′ is of the right form. The correctness of the PIR protocol is obvious. As for its security, each of
the servers S1,S2 just sees random values: one share of i′ and ∆ and r which are independent of i.
Server S3 sees ∆ and the view of the referee in the PSM for computing fD′ (as before, the output of
fD′ reveals nothing to S3, due to the mask c). For any two indices i, j, the corresponding i′, j′ are
uniformly distributed and therefore the corresponding sharings (ai, bi), (aj , bj) are also uniformly
distributed. Using the security properties of the PSM, we have that the view of S3 in the first case,
i.e. (M(ai, bi), (ai, bi)) is (δ + 2ε)-close to (M(ai, bi), (a

′, b′)) (where (a′, b′) are random) which, in
turn, is (δ + 2ε)-close to (M(aj , bj), (aj , bj)). All together, the views are at distance O(δ + ε). (For
convenience we can pick δ = Θ(ε).)

The above theorem refers to a setting where the network is small (2 parties and an evaluator)
but the inputs are long (n-bit strings). The following simple corollary shows that similar results
hold in the case where the network is large (2n parties and an evaluator) but the inputs are short
(single bits). Specifically, we consider a simple network Nn that consists of two chains of n parties
each P0, . . . , Pn−1 and Q0, . . . , Qn−1 where each of Pn−1, Qn−1 is connected to an evaluator E.

Corollary 8.2. Assume that, for every f : {0, 1}2n → {0, 1}, there exists a semi-honest (statisti-
cally) secure protocol that computes f on the network Nn, with randomness complexity r(n) and
communication complexity c(n). Then, there exists (interactive, statistical) 3-server PIR protocol,
with communication complexity O(c(logN) + logN + log 1/ε), where N is the database size and ε
is the desired statistical security parameter for the PIR protocol.

Proof. The proof is by a simple reduction to the previous case. If the assumption of the corollary
holds, then also the assumption of Theorem 22 holds: to compute any function f on S2 the parties
will simulate the computation of a corresponding function f ′ on the network Nn, where the n-bit
input of the first party in S2 is distributed among the n players P0, . . . , Pn−1 of the first chain and,
similarly, the n-bit input of the second party in S2 is distributed among the n players Q0, . . . , Qn−1

of the second chain. The correctness is obvious, the communication is only smaller, and the view
of each set in S2 corresponds to the view of an appropriate set in Nn. The corollary then follows
from the theorem.
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