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Abstract

We revisit the different approaches used in the literature to estimate the data complexity of distinguishing
attacks on stream ciphers and analyze their inter-relationships. In the process, we formally argue which approach
is applicable (or not applicable) in what scenario. To our knowledge, this is the first kind of such an exposition.
We also perform a rigorous statistical analysis of the message recovery attack that exploits a distinguisher and
show that in practice there is a significant gap between the data complexities of a message recovery attack and
the underlying distinguishing attack. This gap is not necessarily determined by a constant factor as a function of
the false positive and negative rate, as one would expect. Rather this gap is also a function of the number of
samples of the distinguishing attack. We perform a case study on RC4 stream cipher to demonstrate that the typical
complexities for message recovery attack inferred in the literature are but under-estimates and the actual estimates
are quite larger.
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I. INTRODUCTION

A stream cipher generates a long pseudo-random keystream from a short secret key to encrypt a message
by bitwise XOR operation with the keystream. Since the sender and the receiver share the same secret
key and the keystream generation algorithm is deterministic, the identical keystream is generated at the
receiver side, which when bitwise XOR-ed with the ciphertext recovers the message.

For a stream cipher, if there is an event such that the probability of occurrence of the event is different
from the same event in case of a uniformly random sequence of bits, the event is said to be biased. If
there exists a biased event based only on the bits of the keystream sequence, then such an event gives rise
to a distinguisher for the cipher. A distinguisher can computationally differentiate between the keystream
output of the stream cipher and a truly random sequence of bits.

The efficiency of a distinguisher is measured by the data complexity, i.e., the number of samples
required to identify the bias. For an attacker to successfully identify and exploit a bias, one requires to
inspect a certain length of the output sequence so that one can collect sufficient number of samples for
the event under consideration. The less the number of samples required, the more is the efficiency of the
distinguisher. Sometimes the data complexity is expressed in total number of keystream bits required to
perform the distinguishing attack.

Very often, a distinguisher is directly used in mounting a message recovery attack on stream ciphers.
A famous example is the attack [1] on broadcast RC4. Let Zr be the r-th keystream byte of RC4 and
N = 256 be the standard sate array size of RC4. It was proved in [1] that Pr(Z2 = 0) ≈ 2

N
for RC4,

whereas the same event in an uniformly random bitstream would occur with probability 1
N

. In the broadcast
scenario, the same plaintext is encrypted using multiple secret keys, and then the ciphertexts are broadcast
to a group of recipients, possessing the corresponding secret keys. For every encryption key, the second
message byte M2 has the probability 2

N
to be XOR-ed with 0, and the probability 1

N
to be XOR-ed with

each of the other possible bytes. Thus, a fraction of 2
N

of the second ciphertext bytes C2 are expected to
have the same value as M2, and thus the most frequent value of C2 across all the samples is the mostly
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likely value of M2. The above approach has been adopted by [2] in mounting message recovery attack on
every individual message bytes 3 to 255 based on the distinguishers for RC4 keystream Zr, 3 ≤ r ≤ 255.
Later, the work [3] considered the collection of all the biases in all the keystream byte together to perform
joint message recovery.

In all the above works, the number of samples required to mount the message recovery attack is
considered to be of the same order as that of the underlying distinguisher. However, we observe that in
practice it is not always so. For example, for the broadcast attack on RC4 second byte, the complexity
of message recovery attack for a success probability of 70% is around 8 times higher than that of the
distinguishing attack for the same success probability. In this paper, we perform a rigorous analysis to
understand this gap between the data complexities of distinguishing attack and message recovery attack.

A. Our Contributions

We observe that there exist different approaches to estimate the data complexity of a distinguisher,
yielding different expressions, albeit sometimes one may be a crude approximation of the other. Moreover,
the data complexity of a message recovery attack based on the distinguisher is usually taken to be the
same (or of the same order) as the distinguisher itself, though in practice it is not necessarily true in all
scenarios.

Our current work has two-fold contributions.

1) We review the different approaches used in the literature to estimate the data complexity and point
out their connections and applicable scenarios. To our knowledge, such an expository coverage of
the different approaches has not been done so far. Wherever possible, we provide short proofs of
the results to make this exposition self-sufficient. For longer proofs, we cite appropriate references.

2) We perform a rigorous statistical analysis of the message recovery attack and show that in practice
there is a significant gap between the data complexities of a message recovery attack and the
underlying distinguishing attack. This gap is not necessarily determined by a constant factor as a
function of the false positive and negative rate, as one would expect. Rather, this gap is also a
function of the number of samples of the distinguishing attack. We perform a case study on RC4
stream cipher to demonstrate that the typical message complexities inferred in the literature are but
under-estimates and the actual estimates are quite larger.

B. Notations

Before going into technical discussion, we list down some notations frequently used in this article
below.
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M : The message space (the set of all possible bytes)
P : The distribution of the keystream bytes over M

P ⊕m : Distribution of the random variable X ⊕m, where X ∼ P and m ∈M
pz : Probability of the byte z in the distribution P
p(t) : Distribution of the t-th order statistic for the keystream bytes
P(k) : The distribution of vector of k keystream bytes over Mk

p
(k)
z : Probability of the k-byte vector z in the distribution P(k)

Q : The prior distribution of the plaintext bytes over M
qz : Probability of the byte z in the distribution Q
Q(k) : The distribution of vector of k plaintext bytes over Mk

q
(k)
z : Probability of the k-byte vector z in the distribution P(k)

Dn : n-dimensional discrete distribution over some countable set (same is Pn, Qn)
EP [X] : Expectation of the random variable X ∼ P where P is a distribution.
Rc : Complement of a set R
Ber : Bernoulli distribution
B : Binomial distribution
N : Normal distribution

AN : Asymptotic Normal distribution

II. REVISITING DATA COMPLEXITY OF DISTINGUISHING ATTACKS

In this section, we revisit the existing techniques for estimating the data complexity of a distinguisher
and point out their relations and subtleties.

A. Distance between Expectations
This approach has been used in [1]. We revisit their main result below.

Theorem 1. Suppose the event e happens in distribution X with probability p and in distribution Y with
probability p(1 + q). Then for small p and q, O( 1

pq2
) samples suffice to distinguish X from Y with a

constant probability of success.

Proof: We follow the proof approach of [1]. Let Xe, Ye be the random variables specifying the
number of occurrences of e in n samples. Then Xe and Ye have binomial distributions with parameters
(n, p) and (n, p(1 + q)) respectively. Their expectations, variances and standard deviations are (assuming
both p, q � 1) as follows.

E[Xe] = np,E[Ye] = np(1 + q),

V (Xe) = np(1− p) ≈ np,

V (Ye) = np(1 + q)(1− p(1 + q)) ≈ np(1 + q),

σ(Xe) =
√
V (Xe) ≈

√
np,

σ(Ye) =
√
V (Ye) ≈

√
np(1 + q) ≈ √np.

The authors of [1] consider the size of n that implies a difference of at least one standard deviation
between the expectations of the two distributions:

E[Ye]− E[Xe] ≥ σXe ⇐⇒ np(1 + q)− np ≥ √np
⇐⇒ npq ≥ √np

⇐⇒ n ≥ 1

pq2
. (1)

Consequently, O(pq2) samples (the constant depends on the desired success probability) suffice for the
distinguishing.

Note that when at least one of p� 1 and q � 1 does not hold, the above approach does not work.
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B. Simple Hypothesis Testing

A more rigorous analysis appeared in [4] that gets rid of the restriction p � 1 and q � 1. We revisit
this technique here.

Theorem 2. Suppose the event e happens in uniform random bitstream with probability p and in keystream
of a stream cipher with probability p(1+q). Then the data complexity of the distinguisher with false positive
and false negative rates α and β is given by

n >

(
κ1
√

1− p+ κ2
√

(1 + q) (1− p(1 + q))
)2

pq2
,

where Φ(−κ1) = α and Φ(κ2) = 1− β.

Proof: Consider an event e with Pr(e) = p∗, while observing samples of keystream words of a
stream cipher. Let Xr = 1, if the event e occurs in the r-th sample; Xr = 0, otherwise. In other words,
Pr(Xr = 1) = p∗ for all r. Thus,

Xr ∼ Ber(p∗).

If we observe n many samples, then
n∑
r=1

Xr ∼ B(n, p∗).

When Xr’s are independent and identically distributed (i.i.d.) random variables and n is large enough,
n∑
r=1

Xr ∼ N (np∗, np∗(1− P ∗)) .

We are interested in testing the null hypothesis

H0 : p∗ = p(1 + q), q > 0,

against the alternative hypothesis
H1 : p∗ = p.

The objective is to find a threshold c in [np, np(1 + q)] such that

P

(
n∑
r=1

Xr ≤ c | H0

)
≤ α

and

P

(
n∑
r=1

Xr > c | H1

)
≤ β.

For such a c to exist, we need
np(1 + q)− np > κ1σ1 + κ2σ2,

where

σ2
1 = np(1 + q) (1− p(1 + q)) ,

σ2
2 = np(1− p),

Φ(−κ1) = α

and Φ(κ2) = 1− β.
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This gives,

n >

(
κ1
√

1− p+ κ2
√

(1 + q) (1− p(1 + q))
)2

pq2
. (2)

In the special case, when both p, q � 1, the numerator of Equation (2) is approximately equal to
(κ1 + κ2)

2, and one needs at least (κ1+κ2)2

pq2
many samples to perform the test.

Table II-B gives the sample complexity, false positive and negative rates and the success probability
for some selected values of k1 and k2.

TABLE I
SAMPLE COMPLEXITY AND SUCCESS PROBABILITY FOR DISTINGUISHERS.

k1 = k2 Number of samples α = β Success probability
0.5 1/pq2 0.3085 69.15%
1 4/pq2 0.1587 84.13%
2 16/pq2 0.0228 97.72%

Since 0.6915 > 0.5 is a reasonably good success probability, O( 1
pq2

) many samples are enough to
mount a distinguisher and this threshold is indeed used as a benchmark to compare the data complexities
of different distinguishing attacks in practice.

C. Relative Entropy Between Distributions

This analysis appeared in [5, Appendix A]. The relative entropy between two discrete probability
distributions P (·) and Q(·) is given by the Kullback-Leibler divergence [6]

DKL(P ||Q) :=
∑
x

P (x) log2

P (x)

Q(x)
, (3)

where x runs over all the sample points. Note that this can also be written as

DKL(P ||Q) = EP

[
log2

P (X)

Q(X)

]
,

where X ∼ P . We have the following straight-forward result.

Proposition 1. For the above-mentioned single event e with probabilities p and p(1 + q) in two different
distributions P (·) and Q(·), the relative entropy is approximately equal to pq2, for small p, q.

Proof: We have

DKL(P ||Q) = p log2

[
p

p(1 + q)

]
+ (1− p) log2

[
1− p

1− p(1 + q)

]
= p log2

[
1− q

1 + q

]
+ (1− p) log2

[
1 +

pq

1− p(1 + q)

]
≈ −p

(
q

1 + q

)
+ (1− p)

(
pq

1− p(1 + q)

)
≈ pq2.
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Similarly, for small p, q, we also have,

DKL(Q||P ) = p(1 + q) log2

[
p(1 + q)

p

]
+ (1− p(1 + q)) log2

[
1− p(1 + q)

1− p

]
= p log2 q − (1− p(1 + q)) log2

[
1 +

pq

1− p(1 + q)

]
≈ p(1 + q)q − (1− p(1 + q))

(
pq

1− p(1 + q)

)
≈ pq2.

Also, the following small technical result directly follows from the definition in Equation (3).

Proposition 2. If P,Q are two distributions defined over the domain A and P ′, Q′ are two other
distributions defined over the domain B, then it can be shown that the overall relative entropy of the joint
distributions (considering independence of the corresponding random variables over the two domains)
PP ′ and QQ′ is given by DKL(PP ′||QQ′) = DKL(P ||Q) +DKL(P ′||Q′).

Now we can state the following result.

Lemma 1. For n independent occurrences of the event e with probabilities p and p(1+q) in two different
distributions P (·) and Q(·), the relative entropy is approximately equal to npq2, for small p, q.

Proof: Applying Proposition 2 to n samples from the same distribution as in Proposition 1, we get
the result.

Now, according to [7], [8], we have the following result connecting the relative entropy to the false
positive and negative rates.

Lemma 2. Suppose Dn is an unknown discrete distribution and Pn and Qn are two known distributions.
Suppose we have a test (may be randomized) for

H0 : Dn = Pn vs H1 : Dn = Qn ,

based on X := (X1, X2, . . . , Xn), a sample from the distribution Dn, with false positive rate (α) and
false negative rate (β). Then we have the following bound

DKL(Qn||Pn) ≥ β log2

β

1− α
+ (1− β) log2

1− β
α

. (4)

Proof: Suppose where S is the sample space and φ : S −→ [0, 1] be the test function for the concerned
test with false positive rate (α) and false negative rate (β), i.e., we reject H0 with probability φ(x), when
X = x is observed. Then we have by definition

EH0 [φ(X)] =
∑
x∈S

φ(x)Pn(x) = α,

EH1 [(1− φ)(X)] =
∑
x∈S

(1− φ(x))Qn(x) = β.
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Note that,

DKL(Qn||Pn) =
∑
x∈S

Qn(x) log2

Qn(x)

Pn(x)

=
∑
x∈S

Pn(x)
Qn(x)

Pn(x)
log2

Qn(x)

Pn(x)

=
∑
x∈S

Pn(x)f

(
Qn(x)

Pn(x)

)
where f : R+ → R defined as f(z) = z log2(z), ∀ z > 0. Then, f (2)(z) = (z ln 2)−1 > 0, ∀ z > 0; which
implies f is convex and continuous also. Hence, using Jensen’s Inequality, we have∑

x∈S

φ(x)Pn(x)∑
x∈S φ(x)Pn(x)

f

(
Qn(x)

Pn(x)

)

≥ f

(∑
x∈S

φ(x)Pn(x)∑
x∈S φ(x)Pn(x)

Qn(x)

Pn(x)

)

= f

(∑
x∈S φ(x)Qn(x)∑
x∈S φ(x)Pn(x)

)
= f

(
1− β
α

)
.

Hence, ∑
x∈S

φ(x)Pn(x)f

(
Qn(x)

Pn(x)

)
≥

∑
x∈S

φ(x)Pn(x)f

(
1− β
α

)

= αf

(
1− β
α

)
= (1− β) log2

1− β
α

.

Replacing φ by 1− φ and taking similar sums we get,∑
x∈S

(1− φ(x))Pn(x)f

(
Qn(x)

Pn(x)

)
≥ β log2

β

1− α
.

Summing the above two inequalities we get∑
x∈S

Pn(x)f

(
Qn(x)

Pn(x)

)
≥ β log2

β

1− α
+ (1− β) log2

1− β
α

,

and hence the desired result.
Now, combining Lemma 1 and Lemma 2, we have the following result on the data complexity.

Theorem 3. For n independent occurrences of the event e with probabilities p and p(1+q) in two different
distributions, the sample complexity of a distinguisher with false positive and negative rates α and β is
given by

n ≥ 1

pq2

(
β log2

β

1− α
+ (1− β) log2

1− β
α

)
,
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for small p, q.

The equality may hold true only for the Neymann-Pearson Test [9], which is the optimal test, i.e., given
a fixed level this test maximizes the power. This test is described by the Fundamental Neymann-Pearson
Lemma [9].

Lemma 3 (Neymann-Pearson Lemma). Suppose we have X := (X1, . . . , Xn) ∼ Dn, where Dn is an
unknown discrete distribution. We are to test the hypothesis H0 : Dn = Pn versus the alternative H1 :
Dn = Qn. Suppose S be the set of all possible values that Xi’s can take. Then take any arbitrary constant
k and consider any test function φ : S −→ [0, 1] satisfying the following conditions:

φ(x) = 0, if
Pn[(x1, . . . , xn)]

Qn[(x1, . . . , xn)]
> k,

= 1, if
Pn[(x1, . . . , xn)]

Qn[(x1, . . . , xn)]
< k.

Define α = EH0 [φ(X)], and β = 1 − EH1 [φ(X)]. Then for any other test (may be randomized) for the
above hypothesis with error probabilities α′ and β′, we have

α′ ≤ α⇒ β ≤ β′.

In other words the test satisfying the conditions stated is the most powerful level α test.

Now though Fundamental Neymann-Pearson Lemma gives us the optimum test, the exact values of the
optimum error probabilities for this test is difficult to find in general case. So, in that case we use some
approximation techniques one of which is just discussed. In this situation, for α = β, the relation (1)
reduces to

n ≥
(

1

pq2

)
· (1− 2α) log2

1− α
α

.

In our context, Pn is the distribution of n i.i.d. Bernoulli trials with success probability p(1 + q) where
Qn is the same with success probability p. Here false positive means that the test sequence is actually
from the stream cipher, but we decide it to be random and false negative means that the test sequence is
actually random, but we decide it to be from the stream cipher.

Thus, for a given false positive or negative rate α (= β), one needs roughly O(1/pq2) many samples to
perform the distinguishing test. In particular, n ≥ 1/pq2 signifies α ≈ 0.2227, i.e., a success probability
of approximately 0.7773. Since 0.7773 > 0.5 is a reasonably good success probability, O(1/pq2) many
samples are considered enough to reliably apply the distinguisher.

D. Asymptotic Approach
Another method to find the expression for the error probabilities for the optimum test is to use the

asymptotic analysis given by Chernoff-Stein Lemma [10]. This approach has been used by [11] to mount
distinguishing attack on the stream-cipher HC-128 [12].

Lemma 4 (Chernoff-Stein Lemma). Suppose we have X1, . . . , Xn
i.i.d.∼ D, where D is unknown. We are

to test the hypothesis H0 : D = P versus the alternative H1 : D = Q, where P and Q are two known
distributions. Suppose χ be the set of all possible values that Xi’s can take. Suppose,Pn and Qn are the
joint distributions of (X1, . . . , Xn) under the null and the alternative respectively. Let us fix 0 < α < 0.5.
Define,

βn,α := min {β|R ⊂ χn, Pn[R] < α, β = 1−Qn[R]} ,

In other words, βn,α is the least false negative error probability attainable for level α non-randomized
tests. Then

lim
n→∞

log2 βn,α
n

= −DKL(P ||Q).
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Proof: This proof of Chernoff-Stein Lemma occurs in [10]. First note that,

log2

[
Pn(X1, . . . , Xn)

Q(X1, . . . , Xn)

]
=

n∑
k=1

log2

[
P (Xk)

Q(Xk)

]
,

and by Law of Large numbers

1

n

n∑
k=1

log2

[
P (Xk)

Q(Xk)

]
p−→ EP

[
log2

(
P (X1)

Q(X1)

)]
= DKL(P ||Q),

under the null. Hence,
1

n
log2

[
Pn(X1, . . . , Xn)

Q(X1, . . . , Xn)

]
p−→ DKL(P ||Q),

which by definition gives that ∀ε, δ > 0, ∃ Nε,δ ∈ N such that, ∀n ≥ Nε,δ, we have

Pn

[
| 1
n

log2

[
Pn(X)

Qn(X)

]
−DKL(P ||Q)| < ε

]
≥ 1− δ, (5)

where D = DKL(P ||Q) and X = (X1, . . . , Xn). Now, define Aεn be the subset of χn consisting of all
x = (x1, . . . , xn) such that

Pn(x)2−n(D+ε) < Qn(x) < Pn(x)2−n(D−ε),

i.e.,

| 1
n

log2

[
Pn(x)

Qn(x)

]
−D| < ε.

Then, Equation (5) gives,
Pn(Aεn) ≥ 1− δ,

∀n ≥ Nε,δ. Also note that

Qn(Aεn) =
∑
x∈Aεn

Qn((x)) (6)

<
∑
x∈Aεn

Pn((x))2−n(D−ε) < 2−n(D−ε), (7)

and

Qn(Aεn) =
∑
x∈Aεn

Qn((x)) (8)

>
∑
x∈Aεn

Pn((x))2−n(D+ε) (9)

= 2−n(D+ε)Pn(Aεn) ≥ (1− δ)2−n(D+ε), (10)

∀n ≥ Nε,δ.
Now consider the test which rejects the null if and only if x /∈ Aεn. Then, by equation (6) ∀ n ≥ Nε,α,

1− Pn(Aεn) < α,Qn(Aεn) < 2−n(D−ε) =⇒ βn,α < 2−n(D−ε).

Thus we have, ∀n ≥ Nε,α, ε > 0,

log2 βn,α
n

< −D + ε =⇒ lim sup
n→∞

log2 βn,α
n

≤ −D. (11)
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On the other hand consider any other test with rejection region R, such that Pn(R) < α. Then we
have,∀n ≥ Nε,α,

Qn(Rc) ≥ Qn(Rc ∩ Aεn)

=
∑

x∈Rc∩Aεn

Qn(x)

>
∑

x∈Rc∩Aεn

2−n(D+ε)Pn(x)

= 2−n(D+ε)Pn(Rc ∩ Aεn)

= 2−n(D+ε)(Pn(Aεn)− Pn(R))

≥ 2−n(D+ε)(1− 2α)

Hence,∀n ≥ Nε,α,
βn,α = min

R,Pn(R)<α
Qn(Rc) > 2−n(D+ε)(1− 2α),

which in turn gives,

lim inf
n→∞

log2 βn,α
n

≥ −D − ε, ∀ ε > 0.

Therefore,

lim inf
n→∞

log2 βn,α
n

≥ −D. (12)

Combining Equation (11) and Equation (12) we get the desired result.
The above lemma states that, whatever be the pre-specified false positive error, asymptotically the best

possible false negative error is 2−nDKL(P ||Q). Suppose now that we fix the false positive error at α and want
false negative error to be β. Then the approximate sample size we need is n ≈ − log2(β)/DKL(P ||Q).
Therefore, combining Lemma 1 and Lemma 4, we have the following result on the data complexity.

Theorem 4. For n independent occurrences of the event e with probabilities p and p(1+q) in two different
distributions, the sample complexity of a distinguisher with false positive and negative rates α and β is
given by

n > − 1

pq2
log2(β),

for small p, q, and small β.

Remark. Note that, in Theorem 4, β is required to be small, as Lemma 4 is an asymptotic result. So the
best possible false negative rate is well approximated for large n and consequently for small β.

E. Comparison amongst the Above Approaches

So far we have discussed four bounds on data complexities obtained from Theorem 1, Theorem 2,
Theorem 3 and Theorem 4. We now compare these bounds for small values of p, q and small failure rate
α (i.e., both the error rate is α). We first exclude the bound from Theorem 1 from this comparison, as it
doesn’t consider the error rate in its derivation.

We observe that the bound obtained from Theorem 2 is relatively larger than other two bounds and the
“actual complexity”(which is defined as the minimum over the number of samples needed to distinguish
between two distributions by all possible test procedures with given false positive and false negative rates).
This phenomenon occurs as Theorem 2 considers only non-randomized tests to distinguish between the
two distributions and focuses only on the tests which does not reject Hi when the observed value of the
data is close to its expectation under Hi, i = 0, 1.
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On the other hand, the bound given by Theorem 3 is the smallest as it considers all the randomized
tests. Moreover, equality holds in this bound only under some strict conditions which will imply the
equality condition in Jensen’s inequality. So, the actual complexity is always somewhat bigger than this
bound.

Theorem 4 also considers all randomized tests. However, this bound is derived from an asymptotic
result, and hence will be greater than the bound from Theorem 3. It is also easy to prove that the bound
obtained from Theorem 4 is larger than that from Theorem 3 for fixed false negative and false positive
error rate (both equal to α), as

α ∈ (0,
1

2
) ⇒ (1− α)1−2α < α−2α

⇒ (1− 2α)(log2(1− α)− log2 α) < − log2 α

⇒ (1− 2α) log2

(
1− α
α

)
< − log2 α.

Thus, the bound obtained from Theorem 4 lies in between those given by Theorem 2 and Theorem 3.
Thus, the actual complexity and the bound obtain from Theorem 4, both lies between the other two

bounds, and they become very close to each other as the error rate becomes small. Now, it is natural to
ask: which bound to use for estimating the data complexity? From the context, it is clear that for small
error rate the bound from Theorem 4 should be preferred. Otherwise, it is better to use the bound from
Theorem 2, as this bound is greater than the actual complexity.

F. Other Related Works

In the above discussion, we have considered distinguishing tests which minimize the false negative
error for a given false positive error level. The work [13] considered another paradigm considering the
tests minimizing the average of both kind of error rates, and derived the data complexity of the optimal
distinguishing test in that scenario, which is also of O(1/pq2), for small p, q. However, we note that joint
minimization of both types of errors is an unusual approach in hypothesis testing framework. In practical
scenario, often one would like to strictly bound a particular type of error. Thus, it is more pragmatic to
fix one error and minimize the other. Moreover, the main focus of [13] is block cipher cryptanalysis and
here we concentrate on stream ciphers.

The work [14] considers data complexity of a particular differential cryptanalysis with a set of 2m

sequences, where only one of them verifies the alternative hypothesis and all others verify the null
hypothesis. The scenario we consider is completely different and hence we do not discuss the work [14]
here.

A recent work [15] that has been carried out simultaneously with and independently of our current work,
takes a detailed look at the error in normal approximations and points out several limitations in applying
these approximations to block cipher cryptanalysis. A more recent work [16] (by the same authors as [15])
derives rigorous upper bounds on the data complexity (i.e., the no. of plaintext-ciphertext pairs) required
to achieve at least a pre-specied success probability (for key recovery of a block cipher) and at least a
pre-specified advantage (if the advantage is a, then the number of false alarms is a fraction 2−a of the
number of possible values of the sub-key which is the target of the attack). We emphasize again that
our motivation is completely different, i.e., to analyze the gap between the data complexity estimates of
distinguishing attacks and message recovery attacks in the context of stream ciphers.

III. DATA COMPLEXITY OF MESSAGE RECOVERY ATTACKS USING SAMPLE MODE APPROACH

Now we turn to Message Recovery Attack under the Broadcast scenario for stream ciphers. We shall
consider two approaches: one is a simple message recovery attack exploiting the largest bias in the key-
stream byte distribution and the other is maximum likelihood estimation. The first one is called Sample
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Mode approach discussed in this section and the second one is called Bayesian approach, discussed in
the next section.

We consider again the single byte-bias attack. Suppose m be the mode of the distribution P . Here, we
assume that the distribution is unimodal (note that if the distribution is multimodal, then this approach will
fail). Suppose M is the secret message and Z1, . . . , Zn

i.i.d∼ P be the keys for n broadcasts. We observe
the ciphertexts Ci = M ⊕ Zi( mod N), ∀i = 1, . . . , N.

Now, as m is the mode, we expect it to occur more frequently in the i.i.d. sample Z1, . . . , Zn and hence
we expect M+m( mod N) to be most frequent in the ciphertext sample C1, . . . , Cn. Hence, we estimate
(or guess) M by M̂ = (Mode(C1, . . . , Cn)−m)( mod N). So, here the probability of success is

Pr(M̂ = M)

= Pr[(Mode(C1, . . . , Cn)−m)( mod N) = M ]

= Pr(Mode(Z1, . . . , Zn) = m).

So, it boils down to the problem of finding the probability of sample mode being equal to the population
mode for an i.i.d. sample from distribution P . Suppose Yi be the frequency of k in the sample Z =
(Z1, . . . , Zn), ∀ k = 0, . . . , N − 1. Then

Y := (Y0, . . . , YN−1) ∼Multinomial(n; p0, . . . , pN−1);

where p0, . . . , pN−1 are the p.m.f.’s for the corresponding points. For simplicity of notation we assume
m = 0 (however, the result holds for any mode). So,

Pr(Mode(Z1, . . . , Zn) = 0) = Pr(Y0 ≥ Yk, ∀ k).

First note that, by Law of Large Numbers, we have,

1

n
(Y0, . . . , YN−1)

a.s.−→ (p0, . . . , pN−1);

i.e.
1

n
(Y0 − Y1, . . . , Y0 − YN−1)

a.s.−→ (p0 − p1, . . . , p0 − pN−1). (13)

Since we have p0 > pk, ∀k = 1, . . . , N − 1, we get from (8),

Pr(Y0 > Yk) −→ 1, ∀ k = 1, . . . , N − 1.

Thus, Pr(Mode(Z1, . . . , Zn) = m) −→ 1, as n→∞. Thus M̂
p−→ M , as n→∞, i.e., the estimator is

at least consistent.
Again, by Central Limit Theorem, we have

Y ∼ AN(np, n(diag(p)− ppT ));

i.e.,
n−1Y ∼ AN(p, n−1(diag(p)− ppT )),

where p := (p0, . . . , pN−1)
T . So, for large n we have by normal approximation

Pr(Y0 ≥ Yk, ∀ k = 0, . . . , N − 1)

≈ Pr(U0 ≥ Uk, ∀ k = 0, . . . , N − 1);

where U := (U0, . . . , UN−1)
T ∼ NN(p, 1

n
(diag(p)− ppT )).

But evaluating this probability is too nasty, even numerically. So, we consider two different cases and
go through some further approximations.



13

A. Second Highest Probability far from Lowers Ones
In this case, we consider the situation where the second highest probability in the distribution P is

distinguishably apart from the other lower probabilities in that distribution, i.e., if pi and pj are respectively
the second and third highest probabilities in the distribution p then pi− pj 6= 0. Then we can come to the
following result.

Theorem 5. If P is the distribution of the keystream bytes on the space M, with population mode 0,
and the second and third highest probabilities of P , say pN−2 and pN−3 are distinguishably apart, then
the data complexity of the message recovery attack with failure probability at most α using sample mode
approach is given by

n >

(
Φ−1(1− α)

δi

)2

, (14)

where
δk :=

p0 − pk√
p0 + pk − (p0 − pk)2

> 0, ∀ k = 1, . . . , N − 1.

and δi = min{δk : k = 1, . . . , N − 1}.

Proof: Note that
N−1∑
r=1

Pr(U0 ≤ Ur) ≥ Pr(U0 ≤ Uk for some k)

≥ Pr(U0 ≤ Ul), ∀ l = 1, . . . , N − 1.

So, ∀ k = 1, . . . , N − 1,
we have, Pr(U0 ≤ Uk) = Pr(U0 − Uk ≤ 0) and

U0 − Uk ∼ N (p0 − pk,
1

n
(p0(1− p0) + pk(1− pk) + 2p0pk)).

Hence,
Pr(U0 − Uk ≤ 0) = Φ(−

√
nδk). (15)

Thus,
N−1∑
r=1

Φ(−
√
nδr) ≥ Pr(U0 ≤ Uk for some k)

≥ Φ(−
√
nδl), ∀ l = 1, . . . , N − 1.

As, pi is the second highest probability, δk is minimum and hence Φ(−
√
nδk) is maximum for k = i.

Therefore,
N−1∑
r=1

Φ(−
√
nδr) ≥ Pr(U0 ≤ Uk for some k)

≥ Φ(−
√
nδi).

Now, we shall show that the ratio of the two extremes in the inequality stated above goes to 1 as n goes
to infinity, i.e., for large n they are quite close and then we can approximate the middle term by the
right-hand extreme. The limit we get by using L’Hospital’s Rule as follows.

lim
n→∞

Φ(−
√
nδi)∑N−1

r=1 Φ(−
√
nδr)

= lim
n→∞

−δie
−nδ2i

2∑N−1
r=1 −δre

−nδ2r
2

= 1
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as δi 6= δk, ∀k 6= 0, i. So, Pr(U0 ≤ Uk for some k) ≈ Φ(−
√
nδi). Hence to get success probability at

least 1− α, we should have α ≥ Φ(−
√
nδi). Hence, the sample size we need is

n ≥
(

Φ−1(1− α)

δi

)2

.

But the above approximations performs miserably if all the probabilities in the p.m.f. P , except the
highest one, are very close to each other as then the limit above converges very slowly. We shall consider
this situation in the next case.

B. Almost-uniform Except the Highest Probability-point
Here, suppose all the probabilities in the p.m.f. P , except the highest one i.e. p0, are equal to r. Hence,

p0 + (N − 1)r = 1. Let us define V = (V1, . . . , VN−1)
T := (U0 − U1, . . . , U0 − UN−1)T . Therefore, we

have
V ∼ NN−1((p0 − r)1,Σ)

where 1 is the (N − 1)-dimensional column vector with all entries equal to 1, and Σ is a positive-definite
matrix with all diagonal entries equal to σ2 := n−1(p0+r−(p0−r)2) and all non-diagonal entries equal to
ρσ2 := n−1(p0− (p0−r)2), where σ2 and ρ are the common variance and common correlation coefficient.
So, V has the equicorrelation structure and the correlation coefficient ρ > 0. Now consider

W0, . . . ,WN−1
i.i.d.∼ N (0, 1);

and define
Sk := (p0 − r) + σ(

√
ρW0 +

√
1− ρWk), ∀ k = 1, . . . , N − 1.

Then, clearly S := (S1, . . . , SN−1)
T D= V. Hence, we have

Pr(U0 ≥ Uk, ∀ k = 0, . . . , N − 1)

= Pr(Vk ≥ 0, ∀ k = 0, . . . , N − 1)

= Pr(Sk ≥ 0, ∀ k = 0, . . . , N − 1)

= Pr(
√
ρW0 +

√
1− ρWk ≥

−(p0 − r)
σ

,

∀ k = 0, . . . , N − 1)

= Pr[
√
ρW0 +

√
1− ρWN−1 ≥ · · · ≥

√
ρW0 +

√
1− ρW1

≥ −(p0 − r)
σ

](N − 1)!

= Pr(WN−1 ≥ · · · ≥ W1 ≥

− (p0 − r)
σ
√

1− ρ
−
√
ρ

√
1− ρ

W0)(N − 1)!

= Pr(W(1) ≥ T0)

where we define W(1) := min {Wj : 1 ≤ j ≤ N − 1} and T0 ∼ N (−
√
nγ, σ2

0) and T0 is independent of
(W1, . . . ,WN−1), hence with W(1) and

γ :=
p0 − r√

1− ρ
√
p0 + r − (p0 − r)2

, (16)
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σ2
0 :=

ρ

1− ρ
. (17)

We also note that

Pr(W(1) ≥ T0) =

∫
R

(1− Φ(x))N−1
1

σ0
φ

(
x+
√
nγ

σ0

)
dx

= E((1− Φ(T0))
N−1)

Hence, for the data complexity of the message recovery attack in this case using sample mode approach
we have the following result.

Theorem 6. If the distribution P of the keystream bytes on the spaceM, has only one mode at 0 and all
remaining probabilities are equal, then the success probability of the message recovery attack using the
sample mode approach is E((1− Φ(T0))

N−1), where T0 ∼ N (−
√
nγ, σ2

0) and γ and σ2 are as defined
as in Equation (16) and (17).

Remark. For general p.m.f.′s on the message space, the above integral is very difficult to work out
analytically. Hence, to proceed towards further analysis we must pass through numerical methods to
approximate the above probability. Two possible ways are approximating the above integral by different
available numerical integration method or simulating large number of times independently from the
distribution of T0 and take the sample mean of the function (1− Φ(·))N−1 to obtain an approximation of
the above expectation (by Law of Large Numbers).

IV. DATA COMPLEXITY OF MESSAGE RECOVERY ATTACKS USING BAYESIAN APPROACH

The Bayesian method was first discussed in [3, Section 4.1], and it finally boils down to maximum
likelihood estimation. Here we shall only explore the method for some general version of single-byte
bias attack. The Bayesian approach for multiple-byte bias attacks are defined similarly. The set up is as
follows.

Suppose,M = {0, 1, . . . , N − 1}, where N is the size of the message space. For simplicity of language
we shall call the elements of the message space as bytes. P is the distribution of the keystream bytes of
the concerned stream cipher. Suppose M is the secret message-byte (or, plaintext) and Z1, . . . , Zn

i.i.d∼ P
be the keys for n broadcasts. We observe the ciphertext bytes Ci = M ⊕ Zi, ∀i = 1, . . . , n, where the
XOR sum indicates summing modulo N .

We also assume a prior distribution on the message space M, say Q. Then qx denotes the relative
frequency of the message-byte x in a large message. If enough prior information is not available, this
prior distribution is taken as uniform (i.e., a non-informative prior). In this Bayesian approach, we want
to maximize the posterior probability of the message-byte given the ciphertext bytes, i.e., we want to
maximize Pr(M = m|Ci = ci, ∀ i = 1, . . . , n), over m ∈M.

Now, before going into the maximization problem, we introduce a notation

Nm,z := | {i : ci = z ⊕m} | (18)

∀ z ∈ M. That means Nm,z denotes the number of occurrences of the byte z in the n keystream bytes,
where the plaintext is m and ciphertexts are c1, . . . , cn. Now we have the following result according to
[17].

Lemma 5. Maximization of Pr(M = m|Ci = ci, ∀ i = 1, . . . , n), over m ∈ M is equivalent to
maximizing

h(m) := log(qm) +
∑
z∈M

Nm,z log(pz),

over m ∈M.
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Proof:
Note that if c1, . . . , cn are the observed ciphertexts then

Pr(M = m|Ci = ci, ∀ i = 1, . . . , n)

= Pr(Ci = ci, ∀ i = 1, . . . , n|M = m)

Pr(M = m)

Pr(Ci = ci, ∀ i = 1, . . . , n)

= Pr(Zi = zi, ∀ i = 1, . . . , n)
Pr(M = m)

Pr(Ci = ci, ∀ i = 1, . . . , n)
;

where zi := ci − m(mod N); ∀i = 1, . . . , n. Now the denominator in the above expression, Pr(Ci =
ci, ∀ i = 1, . . . , n) is independent of the choice of m, because

Pr(Ci = ci, ∀ i = 1, . . . , n)

=
∑
m∈M

Pr(Zi = ci −m(mod N), i = 1, . . . , n).

So, we are to maximize only

Pr(Zi = zi, ∀ i = 1, . . . , n) Pr(M = m),

over m ∈M. As the broadcasts are independent, we have

Pr(Zi = zi,∀i = 1, . . . , n) =
n∏
i=1

Pr(Zi = zi)

=
n∏
i=1

pzi =
∏
z∈M

pNm,zz ,

and we are to maximize

g(m) := Pr(M = m)
∏
z∈M

pNm,zz = qm
∏
z∈M

pNm,zz , (19)

over m ∈ M. Taking log on both sides in (6) (as computationally it is easy to work with the function
after logarithm), we get

h(m) := log g(m) = log(qm) +
∑
z∈M

Nm,z log(pz). (20)

So, we get the estimator for the unknown plaintext byte as

M̂ := arg max
m∈M

g(m).

If prior information is not available and we take Q to be uniform over the message space, then our
objective boils down to maximizing

h0(m) :=
∑
z∈M

Nm,z log(pz); (21)

over m ∈ M, and this objective function is nothing but the constant times log-likelihood for the data
C1, . . . , Cn

i.i.d∼ P ⊕ m, where m ∈ M acts as the unknown parameter. So, in this case, this is the
maximum likelihood estimator.

Now, if we use the above idea for multiple-byte bias attack, the message space M will be substituted
by Mk, for some k ∈ N. The basic methodology remains same. For this type of attack, we need a prior
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distribution Q(k) on Mk, as the prior distribution of the plaintexts, and the distribution P(k) of vector
of k keystream-bytes, where we shall exploit the biases in the later distribution to mount the message
recovery attack. Let p(k)z and q(k)z denote the probabilities of a k-byte vector z in the keystream according
to the corresponding distributions. By similar arguments used in Lemma 5 our objective is to maximize

h(m) = log(q(k)m ) +
∑

z∈Mk

Nm,z log(p(k)z ),

over m ∈Mk, where Nm,z is defined similarly for a vector of k bytes as previous.
The above maximization may be computationally difficult as Mk may contain a very large number of

elements. As for example, in the case of RC4, only for k=3,4 it becomes of high complexity. So, we go
for some approximation techniques.

One of these approximation techniques is based on the assumption that if Zi := (Zi1, . . . , Zik) be the
i-th sample, then Zi1, . . . , Zik’s are independent for i = 1, . . . , n. This approximation is very good for the
cases where the single-byte biases are dominant. Then we have

p(k)z =
k∏
i=1

pz(i) ,

for all z = (z(1), . . . , z(k)) ∈Mk. Our new objective function becomes

h(m) = log(q(k)m ) +
∑

z∈Mk

k∑
i=1

Nm,z log(pz(i))

= log(q(k)m ) +
k∑
i=1

∑
z∈M

Nm(i),z log(pz)

where Nm(i),z := |
{
j : cj(i) = z ⊕m(i)

}
|, and (ci(1), . . . , ci(k)) be the i-th ciphertext sample.

If q(k)m(1),...,m(k) = qm(1)
. . . qm(k)

(note that this is a weaker assumption than uniformity of q(k)), then it
reduces to nothing but single-byte bias attack at k plaintext points.

Another approximation reduces multiple-byte bias attacks to double byte bias attacks. For this, we make
the Markovian assumption, i.e., for the i-th key Zi, the random variables Zi1, . . . , Zik satisfies the Markov
property. Therefore,

p(k)z = P [Zi = z]

= P [Zi1 = z(1)]
k∏
j=2

P [Zij = z(j)|Zi(j−1) = z(j−1)]

=

∏k
j=2 p

(2)
(z(j),z(j−1))∏k−1

j=2 pz(j)
[Note: k = 2 here]
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So, the objective function turns out to be

h(m) = log(q(k)m ) +
k∑
j=2

∑
z∈Mk

Nm,z log(p
(2)
(z(j),z(j−1))

)

−
∑

z∈Mk

k−1∑
j=2

Nm,z log(pz(j))

= log(q(k)m ) +
k∑
j=2

∑
z,y∈M

Nm(j),m(j−1),z,y log(p
(2)
(z,y))

−
k−1∑
j=2

∑
z∈M

Nm(j),z log(pz),

where Nm(i),m(i−1),z,y is equal to

|
{
j : cj(i) = z ⊕m(i), cj(i−1) = y ⊕m(i−1)

}
|

We shall now discuss about the performance of this Bayesian estimation technique. We shall concentrate
only on the case where the prior distribution is taken to be uniform and hence the procedure boils down
to ML estimation. It is to be noted that the exact calculation of the success probabilities is very difficult
in this set up. So we shall continue by doing some approximate calculations. We shall consider two cases
and concentrate on the single-byte bias attack.

A. Unimodal Keystream Distribution
Here, we shall consider the situation where the keystream-byte distribution is unimodal. In that case,

suppose the probabilities for the keystream-bytes (in the distribution P) are p(0) ≤ p(1) ≤ · · · ≤
p(N−2) < p(N−1), in increasing order corresponding to the bytes k0, . . . , kN−1 (these bytes are nothing
but a permutation of 0, . . . , N − 1 in increasing order of their probabilities). Then in long run, i.e., for
large sample size, by Law of Large Numbers, we have Yk0 ≤ Yk1 ≤ · · · ≤ YkN−2

< YkN−1
with probability

1, where Yi denotes the number of occurrences of byte i in Z1, . . . , Zn. On the other hand, considering
Equation (21), we are to maximize∑

z∈M

Nm,z log(pz) =
N−1∑
z=0

Nm,kz log(pkz),

over m.
By Rearrangement Inequality [18], it will be maximized at m ∈ M if Nm,k0 ≤ · · · ≤ Nm,kN−1

. If the
sample mode of the ciphertext stream is c, then for large sample size the plaintext must be m∗ = c−kN−1(
mod N) with very high probability and we also note that Nm∗,k0 ≤ · · · ≤ Nm∗,kN−1

for long run with
very high probability. And therefore in this case the maximum likelihood estimate would be equal to the
estimate based on the sample mode (discussed thoroughly in next section) for large sample size. The data
complexity can then be estimated by Theorem 5 and Theorem 6.

B. Multimodal Keystream Distribution
Now we shall concentrate on multi-modal distribution (by multi-modal, we actually intend to mean

that the highest probabilities have negligible difference) for the key-stream bytes. Like previous case,
here also we need Nm,k0 ≤ · · · ≤ Nm,kN−1

, for some m to get direct optimization using Rearrangement
Inequality [18]. Here we may have more than one sample modes for the ciphertexts (or the sample mode
of the ciphertext may not be equal to the actual plaintext XOR-ed with the population mode of the key-
stream distribution, i.e., the population and sample mode for the Z’s may differ even in the long run). But
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if the distributions of P ⊕m, where m ∈M, are different for different m’s, then also the ML estimation
succeeds in long run as it not only take into account the sample mode of the ciphertexts but also other
points, and hence able to distinguish between the distributions P ⊕m, for all possible m’s.

To estimate the data complexity of the ML method based attack in this scenario, we shall use Theorem 5
and Theorem 6. Recall that our ML estimate was

M̂ = arg max
m∈M

∑
z∈M

Nm,z log(pz), (22)

Then, define
tk := (log(p0−k), . . . , log(p(N−1)−k))

T ,∀ k = 0, . . . N − 1,

and
N := (N0,0, . . . , N0,N−1)

T .

Now, as Nm⊕k,z = Nm,z⊕k, it is easy to see that Equation 22 reduces to

M̂ = arg max
m∈M

tm
TN . (23)

Note that, N0,z is the number of occurrences of the byte z in the n obtained cipher-text bytes. Suppose
the unknown plain-text is m∗. Define, qT := (p0−m∗ , . . . , pN−1−m∗). Then, we have

N ∼Multinomial(n; qT ),

and hence, by Central Limit Theorem,

n−1N ∼ AN (q, n−1(diag(q)− qqT )) (24)

Now, define
N0 := (tT0N , . . . , tTN−1N ) = (R0, . . . , RN−1)

T .

and let tTi q = ri, ∀ i = 0, . . . , N − 1. Then by (24) we have,

n−1N0 ∼ AN ((r0, . . . , rN−1)
T , n−1Σ′),

where Σ′ = ((σij))i,j is the corresponding covariance matrix. Note that ri is maximum if i = m∗, and

rm∗ =
N−1∑
k=0

pk log(pk),

i.e., doesn’t depend on the value of m∗. Now, we can readily recognize the set-up as the same which
was in Theorem 5, as here success probability is Pr(M̂ = m∗), which is nothing but the probability of
the maximum of N0s co-ordinates occurring in the co-ordinate with highest mean. So, like previous we
define

ηk :=
rm∗ − rk√

σm∗m∗ + σkk − 2σm∗k
;∀ k 6= m∗. (25)

Note that this quantities doesn’t depend on the absolute value of m∗, only just the difference between
m∗ and k. Hence, their ordered sequence is fixed and known, call it η = η(1) ≤ η(2) ≤ · · · ≤ η(N−1). Then
using Theorem 5, we have the following result.

Corollary 1. If η(1) and η(2) are distinguishably apart, then the data complexity of the message recovery
attack with failure probability at most α using ML approach is given by

n >

(
Φ−1(1− α)

η

)2

, (26)

where η(1), η(2), η are as defined as in Equation 25.
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The condition needed here is that η(1) and η(2) are distinguishably apart, which doesn’t hold true
implies the distribution of the key-stream bytes is nearly non-identifiable, and hence ML method performs
miserably.

However, if there are two or more m ∈M such that P ⊕m have same distributions, then ML method
fail. We take an example for this. Consider M = {0, . . . , 255} and suppose that the distribution P is
such that 0 and 128 are two modes and all other probabilities are equal. Then if the objective function is
maximized in m then will also be maximized in m⊕ 128 as in this case h0(m) = h0(m⊕ 128). So, ML
method would fail in all cases in this example. Not only ML method, any estimator fails here miserably
as the parameter m is not identifiable [19] in this case.

C. Comparison between Bayesian and Sample Mode Approach

So far we have discussed two ways for message recovery attack, one by Sample Mode Approach and
another by Bayesian Approach.

In this context we would like to point out the following result for unimodal case of Bayesian approach.

Lemma 6. If the distribution P of the keystream bytes on the space M, has only one mode at 0 and
all remaining probabilities are equal, then the message recovery attack using ML estimation and sample
mode approach give the same result.

Proof: Here ML method maximizes

h0(m) =
N−1∑
k=1

Nm,k log r +Nm,0 log p0

= Nm,0 log p0 + (n−Nm,0) log r;

i.e., practically we are to maximize Nm,0(log p0 − log r) therefore only Nm,0 over m. Clearly, it is
maximized if we take m to be equal to sample mode of the ciphertexts and thus the two estimates
coincide.

Note that if the mode is different from 0, then also the same result holds.
In general, as the Bayesian approach uses more information about the keystream distribution (as it

considers biases in all positions) than in the later approach, it has always greater success probability. But
on the other hand, in the first approach, we have to maximize a complex function over a huge set, which
may turn out to be computationally inefficient sometime. Therefore, we may follow the following rules
while deciding which method to apply:

1) As discussed earlier, for unimodal key-stream byte distribution, both methods gives same estimate
for large sample size, and hence in that we should go for computationally more efficient sample
mode approach.

2) For small sample sizes or multi-modal distributions (with identifiable plaintext parameter), we should
go for Bayesian approach.

3) For, non-identifiable plaintext case, both methods fail miserably, and hence none is preferred.

V. CONNECTING THE COMPLEXITIES OF DISTINGUISHER AND MESSAGE RECOVERY: A CASE STUDY

We are interested in the relation between the data complexities of Distinguishing and Message Recovery
Attack. We define the function Distinguish-equivalent on the set of natural numbers as follows.

Definition 1. Distinguish-equivalent(n) is the number of samples needed in the distinguishing attack to
have the same success probability as that in the message recovery attack for sample size equal to n.

To compare the data complexities in the two cases, we define another function Multiplier on the set of
natural number as follows.
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Definition 2. Multiplier(n) is the ratio n
Distinguish-equivalent(n) , which indicates how many times more

sample is needed to recover the message than to only distinguish from uniform distribution with same
probability of success.

Due to the remark after Theorem 6, derivation of a closed-form expression of this quantity is not
possible.

Now, we illustrate our previously derived results by pursuing the attack on RC4 stream cipher based
on its second byte bias. Here N = 256 and the distributional node is 0 with p0 ≈ 2

256
. In the other

sample points, biases are very small which makes the other probabilities (i.e., p1, . . . , p255) almost equal.
Therefore, according to Lemma 6, one may use either ML or Sample Mode approach.

In a broadcast attack scenario, we have same message encrypted by different RC4 keystreams (say
n times). We collect the second byte of the ciphertexts C1, . . . , Cn and guess the secret message by
Mode(C1, . . . , Cn). Our probability of success is given by the above integral or expectation. In this
particular context

γ = 0.06286849 , σ2
0 = 2.003922.

The change in success probability for different sample size is given in Fig. 1.
The behaviour of the Multiplier function with n is shown in Fig. 2, where the distinguishing data

complexity is calculated using the result stated in Theorem 2 and taking the both way success probabilities
equal (i.e., equal false positive and negative errors).

From Fig.2 we see that the Multiplier function is continuously decreasing and decreasing very rapidly
at the recovery attack sample size 2400 to 3000 (i.e., at success rate in [0.55, 0.66]. At success rate 0.7,
i.e., near sample size 3250 for recovery attack, we note that we need almost 8 times more samples in the
recovery attack than that in the distinguishing attack, whereas near success rate in [0.97, 0.98], it becomes
almost 1.3 to 1.35.
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Fig. 3. Graph of f(n) vs. g(n)
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We would now be interested in estimating the Multiplier function in terms of some known handy
function. It is very interesting to note that we find empirically ln(n) and ln(ln(Multiplier(n))) to be
highly linearly related. We define two functions f and g on the set of natural numbers as follows:

f(n) := ln
( n

1000

)
; g(n) := ln(ln(Multiplier(n))).

The graph of f(n) vs g(n) in Fig.3 shows empirically high linear relationship.
Fig.3. shows the function g(n) is slightly convex in the region (0.9, 1.4) and slightly concave in the

region (1.8, 2.2) with respect to f(n). In the middle region it is almost linear. So, we try to approximate
the above relationship i.e. the function g(n) in these three regions separately.

For the region (1.8, 2.2) we empirically find that h1(n) := exp

(
g(n)

2

)
is almost linear w.r.t. f(n).

We try to estimate h1(n) by a linear function of f(n) by minimizing the distance over the range
(1.8, 2.2)( where the distance between two integrable functions f and g over the range (a, b) is defined
as
∫ b
a

(f(x)− g(x))2 dx .) The function h1(n) and its estimate looks like in Fig.4 where the estimating
linear function h′1(n) := 2.249515− 0.7759676f(n) is in dotted line.

So, we get
g(n) ≈ 2(ln(2.249515− 0.7759676f(n));

for 1.8 ≤ f(n) ≤ 2.2 i.e. 6000 ≤ n ≤ 9000.

For the region (1.4, 1.8) we estimate the function g(n) itself by linear functions by same method as
described above. The function and its estimating line g′(n) := 2.758714− 1.703975f(n) looks like Fig.5.
So, we get

g(n) ≈ 2.758714− 1.703975f(n));

for 1.4 ≤ f(n) ≤ 1.8 i.e. 4000 ≤ n ≤ 6000.
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For the region (0.9, 1.4) we find empirically the function h3(n) := (g(n))
3
4 to be highly linearly related

with f(n). As previous we estimate by linear function by minimizing the distance and the estimating line
h′3(n) := 2.393338− 1.336852f(n) looks like in Fig.6.

So, we get
g(n) ≈ (2.393338− 1.336852f(n))

4
3 ;

for 0.9 ≤ f(n) ≤ 1.4 i.e. 2450 ≤ n ≤ 4000.

VI. CONCLUSION

In this paper, we review different approaches towards estimating the data complexity of distinguishing
attacks on stream ciphers and analyze their inter-relationships and applicable scenarios. We also formally
analyze the data complexity of message recovery attack that exploits a distinguisher and show that in
practice there is a significant gap between the two complexities. This gap turns out to be a function of
the number of samples of the distinguishing attack. We perform a case study on RC4 stream cipher to
demonstrate how these two complexities are related.
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