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Abstract. We present an efficient method for answering one-dimensional range and closest-point
queries in a verifiable and privacy-preserving manner. We consider a model where a data owner out-
sources a dataset of key-value pairs to a server, who answers range and closest-point queries issued by a
client and provides proofs of the answers. The client verifies the correctness of the answers while learn-
ing nothing about the dataset besides the answers to the current and previous queries. Our work yields
for the first time a zero-knowledge privacy assurance to authenticated range and closest-point queries.
Previous work leaked the size of the dataset and used an inefficient proof protocol. Our construction is
based on hierarchical identity-based encryption. We prove its security and analyze its efficiency both
theoretically and with experiments.

1 Introduction

In this work, we consider the problem of verifiably answering range queries on a key-value store D while
hiding the rest of D’s content. That is, a range query [a,b] on D has the following requirements:
— it returns the answer D’ and a proof of its correctness, i.e., D’ C D and there is no (I;:, 7) € DND’ such
that k € [a,b]; and
— it reveals nothing beyond D', i.e., proofs are zero-knowledge and reveal nothing about D N D’ (e.g., no
even its size).
Range queries are fundamental searches that have numerous applications in a variety of fields, including
data analytics, network security, geographic information systems, and environmental sensing. A variety of
privacy and integrity issues for range queries have been investigated in the literature in models that span
data management systems (e.g., [20031]) and sensor networks (e.g., [9U30]).

We study the problem of performing range queries in a three-party model where a trusted owner uploads
D to an untrusted server and untrusted clients interact with the server to execute range queries on D. Besides
providing security guarantees, we also want to devise a system with low overhead for each party.

The correctness of the server’s answer can be trivially achieved using, for example, proofs from a Merkle
Hash tree [22] built on top of the items of D ordered by keys, where root digest is signed by the owner.
However, our zero-knowledge privacy requirement makes the problem challenging since proofs from a hash
tree, by construction, reveal the rank of the keys and the size of D. As another attempt, the owner could
sign every key in the universe of keys, U: namely sign (k,v) for every (k,v) € D and (k, L), otherwise. The
proof for a range [a, b] would then consist of b— a + 1 signed pairs. This solution, while providing the desired
privacy guarantee, incurs a very high overhead in terms of server storage, proof size, and client verification
time.

Previous work. In 2004, Ostrovsky, Rackoff and Smith [26] explored the above problem in the two party
setting: a prover commits to D and a verifier sends range queries to the prover. The authors also pointed
out the hardness of this problem: “This seems to be a fundamental problem with privacy of Merkle-tree
commitments: revealing the hash values reveals structural information about the tree, and not revealing
them and instead proving consistency using generic zero-knowledge techniques Kkills efficiency.” To this end,
the authors relaxed the privacy guarantees by revealing the size of D as well as all previously queried ranges
on D to the verifier. The resulting scheme uses cut-and-choose techniques to prove commitment consistency
in a variant of the Merkle tree.

The solution of [26] can be directly employed to support queries in the three party model by splitting
the setup and the query phase between a trusted owner and a malicious server, respectively. Unfortunately,



the resulting scheme does not meet the privacy and performance goals of the desired solution. First, this
scheme does not have full privacy guarantees since it reveals information beyond answers to queries. Second,
this scheme cannot be used by multiple mutually distrusting clients (verifiers) since clients need to learn all
queries to the system to verify the correctness of their own results. Finally, the performance of this scheme
suffers from a proof size quadratic in the security parameter that continues to grow with number of queries.
A latency of 5 rounds of interaction between the client and server also make this scheme unsuitable for most
practical applications.

Our contributions. In this paper, we show that there is an efficient solution to answer range queries and
prove the correctness of the answers in zero-knowledge, where the proofs do not reveal anything beyond
the query answers. We propose an efficient scheme where the proof size is independent of the number of
previous queries (for a detailed comparison with [26] see Section . Our gain in performance is due to a
proof technique based on identity based encryption and a relaxation of the model in [26]. The addition of the
owner to the model lets us make use of a trusted setup phase with a digest that can later be used by clients
(verifiers) to verify server’s (prover’s) proofs. Arguably, the three party model fits better the setting where
data is produced by an honest party who wishes to delegate query answering to another party. Consider the
following use cases:

— A data owner uploads her data to a cloud server and delegates the processing of client queries to the
server while enforcing access control policies on the data. For example, consider the outsourcing of
medical records indexed by patient’s visit date/date of birth/dosage of some medication. It is likely that
not all the data should be accessible to everyone among the medical staff.

— A government agency or other trusted entity certifies various facts about an individual so, later on, this
person can reveal a subset of these facts to a third party and provide a proof of them, For example,
entries and exits into/from a country by border control can be used by a traveler to prove she was abroad
in a certain time frame, e.g., during jury duty or elections, without having to reveal all the details of her
trips.

As an application of range queries, we show how to verifiably answer closest point queries without revealing
any information on proximity to other points.
In summary, our contributions are the following:

— Formalizing the problem of zero-knowledge verifiable range queries in the same model as [25].

— Providing an efficient and provably secure construction that significantly improves over the best known
solution in terms of rounds of interaction, proof complexity, query and verification times. Moreover, our
scheme achieves stronger privacy guarantees.

— Implementing our construction and conducting experiments to evaluate the performance overhead in
practice.

2 Related Work

In this section we give an overview of existing techniques (both privacy-preserving and not) for data verifi-
cation in general and then zoom into the literature for range queries specifically. We note that range query is
not to be confused with range proof [4] where the goal is to prove that the committed value lies in a specified
integer range without revealing it.

Authenticated data structures (ADS) [I0I32] are often set in the three party model with a trusted owner,
a trusted client and a malicious server; the owner outsources the data to the server and later the client
interacts with the server to run queries on the data. The security requirement of such constructions is data
authenticity for the client against the server. Since the client is trusted, the privacy requirement of our
model is usually violated by the ADS proofs. For example, authenticated set union in [28] lets a client learn
information about the sets beyond the result of the union (e.g., content of each set).

Zero knowledge sets [23I86I2T] and zero knowledge lists [I4] provide both privacy and integrity of the
respective datasets in the following model. A malicious prover commits to a database and a malicious verifier
queries it; the prover may try to give inconsistent answers while the verifier may try to learn information
beyond query answers. Ostrovsky et al. [20] studied range queries in the same model and this is the closest
to our work. We discuss [26] in detail later.



Constructions that guarantee privacy and integrity in the slightly relaxed three-party model (where the
committer is “honest” and the (malicious) prover is different from the committer) considered in this paper
have been studied for positive membership queries on dataset [II33I2], dictionary queries on sets [25/I5/T3],
order queries and statistics on lists [IOI7U5I29UTRITAIT2] and set algebra [I3].

Papadopoulos et al. [27] studied range queries in the traditional ADS setting where privacy is not consid-
ered. For example, completeness proof in [27] reveals elements of the database that are outside of the queried
range. Shi at al. [31] design an encryption scheme that lets one decrypt data only if it lies within a queried
range. Similar model is considered in [I7J30/9] where encrypted data is stored at the server and traditional
ADS is used to verify data integrity.

Comparison with Ostrovsky et al. [26]. As noted in the introduction the closest to our work is the scheme
by Ostrovsky et al. We contrast the two schemes in terms of the model, privacy guarantees as well as
performance. The model of [26] consists of two parties, the prover and the verifier, and requires the prover to
maintain a state between the queries. Furthermore, the transcript of all old queries has to be incorporated in
every subsequent query response. Such a scheme, clearly, can be used only by a single client or in a trusted
environment. That is, the owner cannot enforce different access control policies across clients.

In terms of privacy, the construction of [26] reveals the size of the database to the verifier whereas we
offer perfect zero-knowledge (i.e., the interaction between the client and the server, can be simulated using
only answers to client’s queries).

In terms of performance, the protocol by Ostrovsky et al. requires 5 rounds of communication and has
O((t +m)log(n)IN?) proof complexity, where n is the number of elements in the database D, [ is length of
each key in D, A is the security parameter, ¢ is the number of queries before the current query and m is the
size of the result to the current query. This two party scheme can be used in our three party setting if prover’s
setup algorithm is executed by a trusted party. Then the schemes can be compared directly with each other;
our protocol requires only one round of communication and has proof complexity of O(ml). In Section
we experimentally show that our server’s protocol is orders of magnitude faster than even a substep of the
query protocol in [26].

3 Preliminaries

Adversarial Model. Our three party model closely follows the model described in [I4] and [25]. The trusted
data owner uploads data D to the server and goes offline. The server answers range queries on D from
the client(s) on behalf of the owner. Both the server and client(s) are malicious but non-colluding. The
server may attempt to tamper with D and give incorrect answers i.e., answers inconsistent with the owner
generated D. On the other hand, clients may try to learn more about D than what they are allowed to learn,
i.e., information about D beyond what can be inferred from answers to their queries. For example, they
may collect and analyze authenticity proofs they have received so far and carefully choose their subsequent
queries. Note that privacy is compromised if the server and the clients collude since the server knows the
database.

Notation. Let A € N be the security parameter of the scheme. Wlog we assume that all the keys in the
database D are [-bits long where [ = poly()\)lﬂ (One can view [ as revealing a trivial upper bound on n since
the clients know the value of I and can deduce that there can be at most 2! key-value pairs in D.)

Hierarchical Identity Based Encryption. HIBE allows one to efficiently derive encryption and decryption
keys respecting access control based on a hierarchy of identities. Messages can be encrypted under a public
key of any identity in the hierarchy but decrypted only by the following subset of these identities. Given a
hierarchy of identities arranged in a tree, an identity that corresponds to some node in the tree should be able
to decrypt the cipheretexts intended for it and its descendants only . This property is achieved through a key
generation algorithm, that, given a node ID and its secret key, can derive decryption keys for its descendant
identities ID*. HIBE consists of the following algorithms [3].

3 Note that this is not a limiting assumption since keys shorter than [-bits can be padded up.



Setup(1*,1) takes in the security parameter A and the depth of the heirarchy I. It outputs a master public
key MPK and a master secret key MSK.

KeyGen(SKp, ID*) derives a secret key SKip~ for a descendent of ID, ID*. The SK for ID* can be generated
incrementally, given a SK for the parent identity.

Encrypt(MPK, ID, M) encrypts M intended for ID as cipherext C using MPK.

Decrypt(MSK, C) decrypts C and returns M where MSK is a prefix of C’s ID.

The selective-security of HIBE is defined as follows.

Definition 1 (HIBE Security [11,3]).

Pr[ID* < Adv(1*); MPK, MSK < Setup(1*,1);
Mo, M, « AdVKeyGen’,(MSK,-),Decrypt’(MSK,-)(1)\, MPK);
b« {0,1}; C « Encrypt(MPK, ID, My);
b« AdyKerGen (MSK,).Decrypt (MSK) (12 \MPK C) 1 b = ¥] < v())

where KeyGen' acts as KeyGen except that it does not accept any |D that is either equal to ID* or its prefix.
Similarly, Decrypt’ does not decrypt under ID* or any prefiz of it.

For estimating the running time of our algorithms and in our experiments we use HIBE instantiation
from [II] which relies on bilinear map pairing and a cryptographic hash function that maps bit strings
to group elements; the construction is secure under the Bilinear Diffie-Hellman assumption. Setup runs in
constant time; KeyGen requires O(l) additions in the group and constant number of hashes; Encrypt requires
O(1) group multiplications and O(l) hashes; and Decrypt needs O(l) group multiplications and bilinear map
computations and 4 hashes. As is standard, we assume each group action and hash function computation
takes unit time for asymptotic analysis. We note that in a more recent work [3], a HIBE scheme is proposed
where MPK is of size | and the ciphertext size is O(1) as opposed to the O(1) size MPK and O(l) size
ciphertexts in [I1].

Hierarchical Identity Based Signature. A HIBS scheme allows one to derive verification and signing keys

based on a hierarchical relation. In terms of algorithms HIBS shares Setup and KeyGen with a HIBE scheme.

However, instead of Encrypt and Decrypt it uses the following two algorithms.

MSign(MPK, MSK, M) takes the master public key MPK, the secret key MSK for the signer’s ID and a
message M and outputs a signature s on m.

MVerify(MPK, ID, M, s) takes the master public key MPK| the ID of the signer, a message and a signature
and returns accept/reject.

As noted in [II], a HIBE scheme can be easily converted to a HIBS scheme.

Signature Scheme. Our construction relies on a classical signature scheme Sig = (KeyGen, Sign, Verify) where
KeyGen(1¥) returns signing key SigSK and verification key SigPK. Sign(SigSK, M) returns a signature oy
on a message M and Verify(SigPK, M, o)) returns 0/1 depending on whether the signature on M is verified
using the verification key or not.

4 Model

We assume the owner has a database D of key-value pairs of the form (k,v). A range query g consists of
an interval [a,b] and the answer a,p to this query consists of all the key-value pairs of D whose keys are
enclosed in the given interval. More generally, let (D, Q, Q) be a triple where D is a set of valid databases, Q
is a set of valid queries and @ is a rule that associates an answer, a, p = Q(g, D) with every valid database
query pair, ¢ € Q,D € D.

We propose a privacy-preserving authenticated range query system RQ = (Setup, Query) that considers
the adversarial model of Section [3] Our model is a generalization of the primary-secondary resolver model
in [25]. The trusted owner prepares his data D and releases authenticated information og for the server and
a digest op for the clients. The client later queries the server on D. Since the server is a malicious party



he needs to return an answer to a client’s query and run a (possibly interactive) protocol with the client to
convince him of the authenticity of the returned answer. We denote this protocol as Query. Wlog we assume
the upper bound on the key length [ is a public parameter.

op,0s < Setup(1*,D) This algorithm (run by the owner) takes the security parameter A and a valid
database D as input. It produces a short database digest signature, op, and a digest for the server,
gs.

answer < Query(D, q,0p, 0s) This is an interactive protocol executed between the client and the server. The
client’s input consists of op and a query ¢. The server’s input is D, op and og. The protocol returns
answer = (¢, D) if the client is convinced by the server in its validity, answer = L, otherwise.

4.1 Security Properties

A secure RQ scheme for answering queries has three security properties.

Completeness. This property ensures that for any valid database D and for any valid query g, if the owner
and the server honestly execute the protocol, then the client will always be convinced about the correctness
of the answer.

Definition 1 (Completeness) For all D € D and all valid queries q € Q,

Pr[(op,0g) < Setup(1*, D); answer « Query(D, q,0p,05) : answer = Q(¢,D)] = 1

Soundness. This integrity property ensures that once an honest owner generates a pair (op,og) for a
valid database D, a malicious server can convince the client of an incorrect answer with at most negligible
probability.

Definition 2 (Soundness) For all PPT algorithms Adv, for all databases D € D and all queries, g € Q,
there exists a negligible function v(.) such that:

Pr[(D,q) «+ Adv(l)‘); (op,05) + Setup(l’\,D); answer < Query’ (D, q,0p,05) :
answer # Q(q,D)] < v(k)

where Query’ is an interactive query protocol executed between an honest client with input op and the ad-
versary Adv with input D,op,os. The honest verifier acts exactly as in Query, while the adversarial server
Adv may deviate from the protocol arbitrarily.

Zero-Knowledge. This property captures that even a malicious client cannot learn anything about the
database (and its size) beyond what he has queried for. Informally, this property involves showing that
there exists a simulator that can mimic the behavior of an honest party, i.e., a honest owner and a honest
server who know D, using only oracle access to D. We model the indistinguishability based on the sequence
of messages View that the malicious client Adv sends and receives while running RQ protocol on a database
and queries of his choice.

Definition 3 (Zero-Knowledge) The real and ideal games are defined as:
Game Realpg, (1*):
Setup: Adv picks a database D. The real challenger runs (op,0s) < Setup(1*,D) and sends op back to
Adv.

Query: Adv runs the interactive query protocol Query with the challenger by adaptively choosing queries.

Game ldealpgy,sim(17):
Setup: Adv first picks a database D. The simulator creates a fake o by running (o,stateg) < Sim(1*,1)
(stateg is the simulator’s internal state) and returns o to Adv.
Query: Adv runs the interactive query protocol with Sim which has oracle access to D, i.e., it can only get
the values that answer adversary’s queries.

Let View,e, and Viewigea be the sequence of all messages that Adv sends and receives in the real and ideal
game. RQ is zero-knowledge if there exists a PPT algorithm Sim s.t. for all malicious stateful adversaries
Adv the probability that Adv distinguishes between View e and Viewigeal 1S negligible.



5 Owur Construction

We begin this section with some definitions that we use in our construction for range queries. We give our
construction and show how to answer closest point queries efliciently using it.

Auziliary Definitions. Let T; denote a full binary tree with [+ 1 levels, where the root (level 0) is labeled L,
the nodes at the ith level are i-bit strings from 0° to 2* — 1, and the leaves are I-bit strings from 0’ to 2! — 1.
A range w.r.t. 7; is a contiguous set of leaves and is represented using two leaves, the left end point and the
right end point of the range. For example, the range represented by [a,b] is {a,a +1,...,b —1,b}.

The canonical covering of a range [a,b] is the minimal set of nodes, P, of T; such that (1) each node in
the range [a, b] is a descendant of one of the nodes in P and (2) for every node x € P, the subtree rooted
at  has it leftmost child wr and rightmost child @yghe inside the range [a,b], ie., a < Tleft, Tright < b.
Note that the canonical covering of a range wrt 7; is unique. For example, let us consider T3 with the leaves
{000,001, ...,111}. Given the range [001,100], its canonical covering in T3 is P = {001,01,100}. Note that
00 ¢ P because its leftmost child 000 < 001. Also, P # {001,010,011,100} since this covering is not minimal.

Our construction uses method GetRoots(l, [a,b], K4 3) to find the canonical covering of a set of ranges.
This method takes as input the height [ of tree T;, a range [a, b], and a subset of keys from range [a, b] denoted
as Kq,5) = {k1,...,km}. It returns a set of nodes R that represent the union of the canonical coverings of
the ranges [a, k1 — 1], [k1 + 1, k2 — 1],. .., [km + 1,b]. Using a simple search procedure, this method takes time
O(ml) where m is the number of elements in K, ).

5.1 Range Query Construction

Our construction for authenticated privacy-preserving range queries builds on a signature scheme and a
HIBE scheme. Informally, it uses the signature scheme to prove that key-value pairs returned as an answer
to a range query are indeed present in D. It then uses HIBE key generation to prove that there are no other
key-value pairs in D that belong to the queried interval.

Membership proofs using signatures are straightforward: the owner generates a signature for every key-
value pair in D along with a nonce p, sends them to the server and publishes the verification key of the
signature scheme and g to clients. The nonce p is a unique identifier for D and the signature on (key, value,
nonce) ties the (key, value) pair with a particular D. Later, when a client queries for a range [a, b] of D, the
server simply returns key-value pairs (k1,v1), (k2,v2), ..., (km, vm) of D lying in this interval along with the
corresponding signatures. For every (k,v) in the answer, the client makes sure that ¢ < k < b and checks
the signature on (k,v, u).

Proving the completeness of the answer returned by the server is less trivial due to the privacy requirement
(Definition . For example, traditional techniques for proving non-membership based on signing adjacent
pairs of key-value pairs fail to preserve privacy. (Let {1,2,5,6,9} be the keys present in D and [3,7] be the
query. If privacy is not a requirement, a proof for the answer 5,6 would consist of signatures on pairs (2,5)
and (6,9) showing that the keys 3,4 and 7,8 are not in D. But this reveals that key 8 is not in D and key 9
is in D, though these elements are outside the queried range.) Another idea could be to use zero-knowledge
accumulator to prove non-membership [I3]. In the example above, one could think of precomputing an
accumulator for all the non-member elements in the domain, namely, of all possible 4 bit integers that are
not in the database. But this requires accumulating exponential (in the bit-size) number of elements, namely,
O(2*) and hence runs in exponential time. Similarly, a range query by the client could cover an exponential
number of elements from the domain (for example, [1,11]). Note that the client can generate this query
efficiently, since there are only two elements present in the query. But the proof of completeness would
require O(2%) non-membership proof computations.

Hence, our proof technique cannot directly rely on the elements present in D. On the other hand, building
a technique that relies on all the keys in the universe U that are not present in D is extremely inefficient
for all the three parties (in fact, impossible for parties running in time polynomial in the security parameter
A since |U| ~ 2*). Intuitively, we wish to develop a technique that succinctly captures ranges of keys non
present in D and not each key individually (since |D| < |U|).

HIBE provides us exactly with the technique we need. Recall that a secret key at a given node of the
hierarchy captures secret keys of all the nodes in the subtree rooted at this node, i.e., node’s secret key can
be used to decrypt a message encrypted using any of the keys in the subtree.



Fig. 1: Algorithm (op,0s) + Setup(1*,D) run by the owner on input database D with n key-value pairs.

Step 1: Run HIBE.Setup(1*,]) to obtain pubic-secret key pair (MPK,MSK) and run Sig.KeyGen(1*) to get
signing keys (SigSK, SigPK).

Step 2: K be a set of keys present in D. The owner uses GetRoots(l, [0',2 — 1],K) to obtain the set of roots
rooty, ..., root; of the forest F obtained from 7; by deleting the paths corresponding the the leaves in K.

Step 3: For every root;, generate its secret key: SKroot; < HIBE.MKeyGen(MSK; root;).

Step 4: Pick a random p & {0,1}”""’(”7 which is unique for D. For every (k,v) € D, generate o(, i)
Sig.Sign(SigSK, u, k, v).

Step 5: Set o5 to ({root:, SKroot; }1<i<ts {0(u,k,0) }reD)-

Step 6: Set op = (MPK, SigPK, u).

Step 7: Return (op,0s).

Fig. 2: Interactive protocol answer < Query(D, q,0p,0g) run by the client with input ¢ = [a, b] and op and
the server with input D and og

C — S: The client sends g to the server.

C < S: The server returns {(k1,v1),..., (km,vm)} and o(, k, v, for i € [1,n].

C — S: The client verifies all signatures o, i, ;) using SigPK. If they do not verify, the client returns
L. Otherwise, the client obtains the set R = {root],...root;,} using GetRoots(l,[a,b],{k1,...,km}).
He then picks ¢ random messages M, ..., M;, encrypts them using the HIBE scheme as Cmt; —
HIBE.Encrypt(MPK, root}, M;) for 1 < j < ¢’ and sends Crootf,...,Croot:I to the server. .

C + S: The server independently runs GetRoots(l, [a,b], {k1,...,kmn}) to obtain R = {rooty,...rooty} . For
each root} the server finds SKioot; s.t., root; is a prefix of root;. He then uses HIBE.KeyGen to generate a
secret key for root} and runs HIBE.Decrypt to decrypt C,oot;. He sends plaintexts for all ciphertext challenges
back to the client.

C': The client outputs answer = [(k1,v1), - .., (km, vm )] iff it receives a decryption of each of his challenge messages
M. Otherwise, he outputs L.

Setup. Recall that 7; is the tree on the universe U of all I-bit strings (7; is used for illustration purposes
only and is never explicitly built). Let D be a database of size n whose keys are or of length ! and let
K = {ki,...,k,} be the set of keys present in D, i.e., || = n. The owner uses GetRoots(l, [0,2! — 1], K)
procedure to get a set of nodes rooty, roots, . .., root;. Recall that these nodes represent the canonical covering
of the empty ranges in 7; created by K and that ¢ = O(nl) [24]. The owner generates a HIBE secret key for
each of these roots and sends them to the server, while releasing the HIBE master public key. We describe
the setup algorithm in more detail in Figure

Query and Verification. We are now ready to describe how the client verifies the completeness of the answer
received from the server for query [a, b]. Given the answer (k1,v1), (k2,v2), ..., (km, Um), the client wants the
server to prove to him that there are no elements of D in the ranges [a, k1 — 1], [km +1,0] and [k;+1, kip1 — 1]
fori=1...m—1. Using HIBE, the server proves knowledge of the secret key of subtrees that cover the above
ranges as follows. The client and the server independently run GetRoots(l, [a,b], {k1, ..., km}) and obtain a
set of roots R = {rootj,...root} }. The client’s challenge is a sequence of ciphertexts that a server has to
decrypt. The client chooses random messages and encrypts them using a public key for the roots in R.

The server can successfully decrypt the ciphertexts generated by the client by deriving the required secret
key as long as the server did not cheat while returning the (k;,v;) pairs. That is, every range challenged by
the client should be a subrange of the empty ranges generated by the owner during the setup (or equal to
it). In other words, root; € R is a node in the subtree rooted at one of root;’s. Hence the server should be
able to derive secret key for each root in R We describe this algorithm in more detail in Figure 2]



Non-interactive Query protocol. During Setup the owner proceeds as as before except he uses HIBS (instead
of HIBE) to generate secret keys for the nodes in the set GetRoots(l, [0, 2! — 1], K).

In the Query phase, upon receiving a query [a,b] from the client, the server first retrieves signatures
of every key-value pair in D whose key falls in the queried range (i.e., the first round in Figure . Then,
he uses HIBS to derive the secret keys for the nodes in R < GetRoots(l, [a, b], {k1,...,kn}) and signs each
node id using the corresponding secret key. He sends back to the client (in a single round) signatures for the
key-value pairs in the answer and HIBS signatures of the nodes in R.

As before the client uses signatures to verify membership of the key-value pairs he receives. To verify
non-membership, he runs R < GetRoots(l, [a, b], {k1,...,kn}) and verifies the signature of each node in R
using the corresponding public key in HIBS. This eliminates the second round of interaction.

We note that Naor and Ziv [25] used HIBE (and HIBS)to prove non-membership queries on a set. Hence,
our technique can be seen as a generalization of [25].

5.2 Closest Point Query

Using our construction (either interactive or non-interactive one), we can answer closest point query in zero-
knowledge as follows. For a given query point k, let k be the closest point to k present in the database. The
server returns k and its signature. Wlog, let us assume k lies to the right of k. Then, the client challenges
the server to prove that intervals [k + 1,k — 1] and [2k — k, k — 1] are empty.

5.3 Complexity Analysis for RQ

We analyze the complexity of each party involved in our instantiation of RQ using HIBE below. The asymp-
totical analsys of the HIBS construction is equivalent except query phase becomes non-interactive.Recall that
[ is the key size, n is the size of owner’s dataset D, and m is the size a query answer.

Owner. The owner’s running time is dominated by HIBE.MKeyGen in Setup which generates O(nl) keys.
Hence, the run-time and space are proportional to O(nl).

Server. The server requires O(nl) space. In round 1, the server returns elements in the queried range and
a signature of every element (which are precomputed by the owner). In round 2, the server receives O(ml)
challenge ciphertexts. and generates a key for each ciphertext ID using HIBE which in the worst case (when
an empty range is just one element) takes O(l) time. Hence, the total run time and space during the query
phase is dominated by O(mi?).

Client. The verification needs to verify m signatures and the equality of at most O(ml) messages. So the
time and space is upper bounded by O(ml).

We summarize the security properties and asymptotic performance of our construction in Theorem [I]
and present security proofs in the next section.

Theorem 1 The construction of Section @ satisfies the security properties of completeness (Definition ,
soundness (Deﬁmtion@) [under the security of the HIBE scheme and unforgeability of the underlying signature
scheme| and zero-knowledge (Definition @) The construction has the following performance, where n is the
number of elements of a database D of key-value pairs, with keys being [-bit values, and m is the size of the
answer to a range query:

— The owner executes the setup phase in O(nl) time and space.

— The server runs in O(ml?) time and space during the query protocol.

— The client runs in O(ml) time and space during the query protocol.

— The query protocol has a single round of interaction in the HIBE instantiation and is non-interactive in
the HIBS instantiation.

Corollary 1 The construction of Section[J] can be used to answer closest point queries with the same security
properties as for range queries. In the resulting construction, the server runs in O(I%) time and space and
the client runs in O(1) time and space.

6 Security Analysis

In this section, we prove that RQ construction based on HIBE is secure according to definitions in Section [4]



6.1 Proof of Soundness

We prove that our construction in Section [f]is sound according to Definition 2]

Let Adv be the adversary that breaks our construction and outputs a forgery as per Definition 2} Given
Adv, we construct an adversary B that either breaks HIBE selective security or the unforgeability of the
underlying signature scheme.

Let D* and ¢* = [a*,b*] be the arguments on which Adv will forge and Q(¢*,D*) =
{(k1,v1),. .., (km,vm)}, i.e., the keys present in D* within [a*,b*].

Adv can output two types of forgeries. First he could return answer with at least one (k,v) ¢ D*. To do
that, he needs to forge a signature on (k,v), thereby breaking the unforgeability of the underlying signature
scheme. The second type of forgery is to omit an element from answer s.t. there exists at least one (k,v) s.t.
(k,v) € D* and a* < k < b* but (k,v) & answer. We show that if Adv does the latter, using Adv we build B
to break selective security of HIBE (Definition [I]).

Given D* and ¢* = [a*, b*], B picks one of (k;,v;) € Q(¢*, D*) randomly (i.e., he guesses that this is the
key-value pair that Adv will omit in his forgery). B chooses a node ID* w.r.t. k; such that ID* satisfies the
following: (1) ID* is a prefix of k; but not of k;_; and not of k;y1, and (2) the leftmost and the rightmost
child of the subtree (w.r.t. 7;) rooted at ID* are completely contained within [a*,b*]. B announces ID* as the
ID it will forge on, to the HIBE challenger.

The first condition ensures that if Adv forges a non-membership proof for k;, then the forgery will be
either w.r.t. ID* or some prefix of it, but never its suffix. The second condition is to avoid picking an ID*
which Adv will never forge on.

B proceeds by computing a set of roots R using GetRoots(l, [0', 2! — 1], D). He then runs HIBE.KeyGen to
generate all the secret keys for the roots in R. HIBE.KeyGen will return L for secret key queries for ID* or its
prefixes. By construction no node in R is a prefix of ID*, hence, B can generate secret keys for all nodes in
R using its HIBE.KeyGen oracle. B then generates nonce p and forwards it, along with R and corresponding
secret keys and the master public key from the HIBE challenger, to Adv.

Wlog we assume Adv outputs a forgery answer such that there exists a key-value pair in D* that is not
present in answer. (Recall that, if answer contains membership proof for some key-value pair not in D*, then
the unforgeability of the underlying signature scheme can be broken.)

Given a forgery [a*, b*] B does the following. He runs R’ + GetRoots(l, [a*, b*], answer) to check if ID* € R'.
If not, he aborts. Otherwise, he picks two random messages My, M; and sends them to the HIBE challenger.
He receives back the challenge cipher text C and uses it as a challenge for ID* root. For encryption under
the rest of the nodes in R’, he picks random messages and encrypts them appropriately. Once Adv returns
decryptions of these messages, I checks if C was decrypted to My or M; and sends the corresponding bit to
its HIBE challenger.

The number of nodes that can cover k; is the number of prefixes of k;, which can be at most the height of
the tree [. Therefore the probability that the reduction does not abort, i.e., the reduction correctly guesses
ID* is 1/ml: B first guesses the key k; from m possible choices and then guesses its prefix from [ possible
choices. Hence, if Adv succeeds with probability €, then the reduction succeeds in the HIBE game with
probability e/ml. |

6.2 Proof of Zero-Knowledge

In this section we show how to build a simulator for the protocol in Section [5| to show that it has the
zero-knowledge property as defined in Definition [3]

Recall that View contains the client digest if D and all the messages exchanged between the client and
the owner in the Setup phase and all messages between the client and the server during the query phase.
In particular, during the Setup phase the client receives A, [ and op = (MPK,SigPK, 11). Hence, the view
contains these four messages. During the query phase, for every query ¢, the view is augmented with the
query parameter [a, b], m elements returned as answer to g, m signatures, ¢ ciphertexts and their decryptions.

We now show how to build Sim to create a view indistinguishable from the one the adversarial client
(Adv in Definition [3) has when interacting with an owner and the server who have access to D.

Setup phase. Sim runs HIBE.Setup(1*,1), Sig.KeyGen(1*) and sets s & {0,1}PYN) | Tt sends op =
(MPK, SigPK, ) to Adv. and saves u, MSK and SigSK.



Query phase. On query g = [a, b], Sim queries the oracle on D for an answer to q. Let {(k1,v1), ..., (Kkm,vm)}
be the elements in the answer he receives from the oracle. He signs every key-value pair as o, r, v,) <
Sig.Signg;esi (11, ki, vi) and sends o,k v1)s -+ -5 O,k vm) 10 Adv.

In the next round, Adv sends ¢ ciphertexts Croot:, - - - , Croot; - Sim first generates the roots itself by running
GetRoots. For each root; Sim uses HIBE.KeyGen to generate SK,oor,. (Recall that the root key MSK lets
Sim generate a key for any node in the tree.) Sim decrypts the challenge cipherexts and sends back the
corresponding messages.

All messages generated by Sim are generated using the same algorithms as those by the owner and the
server: the public keys of the signature and HIBE schemes, the random nonce p and signatures on messages
in the query answer. Hence, these messages in the View come from the same distribution as those in the real
game. Sim can always decrypt ciphertexts in the challenge since he has the root key of HIBE. Since challenge
cipherextes are generated by Adv using the public key of HIBE, the cipherextes and the corresponding
plaintext values also come from the same distribution as in the real game.

7 Experiments

In this section, we measure the cost of each step of the protocol described in Section [5] The goal of our
experiments is to see how parameters such as database size, database clustering and range query size influence
the storage overhead and the running times of the setup, query and verification algorithms. We also compare
our results with our estimates of the query cost in the method of [26]. Finally, we measure the performance
of our approach on closest point queries.

The experiments are run on a machine with 3 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3
memory, running OS X Yosemite version 10.10.5. Our implementation is in Java and builds on the HIBE
library used in [16] that the authors made available to us. The security level in all our experiments is A = 512
bits. The numbers reported here are averaged over 10 runs for each invocation.

Data. We generate several synthetic datasets as follows. Given a parameter  and the corresponding 2! upper
bound on the database size, we choose several databases with sizes n < 2'. Consider a range of keys from 0
to 2! — 1. (Recall that we represent the implicit full binary tree with leaves 0 to 2/ — 1 as 7;.) The value n
determines the number of “non-empty” keys in this range. In order to capture how close or far these n keys
are from each other in the range, we generate datasets with different key clustering levels. Low clustering
level suggests many “empty” keys between the keys of D, while high clustering level suggests that D has
multiple subsequences of consecutive keys k,k + 1,k 4+ 2,.... Low clustering creates many empty ranges,
which, in turn, requires more work for all three parties (e.g., the server has to prove that he did not omit
keys in many ranges).
We use datasets with the following clustering levels:
Dg: the n keys are chosen at random;
D,.: This dataset contains multiple clusters of x sequential keys, generated by choosing one random point
and adding it plus x — 1 consecutive keys to D. We experiment with z = 16, 128, 2048 and several values
of n.

Setup Phase. This is a preprocessing step run by the owner once in order to prepare data for uploading to
the server.

In Table [T we consider 16-bit keys and show the impact of the
database size, n, and the clustering parameter. x, on the setup cost.

As expected, the setup time grows proportionally to nl which
matches the theoretical bounds. We also observe that databases with
higher proportion of clustered keys incur a smaller cost since there are |_Clustering level
fewer empty ranges for which the owner has to derive the master secret - §5$ ID;GG Dolgs ng
keys using HIBE. 10°[1172] 1.29 | 1.4 [0.6

10%[5200[11.58] 5.9 [0.7

Table 1: Setup time (secs) for the
owner for datasets of varying size n
and clustering level; [ = 16 bits.

Range Query Phase. In this section, we analyze the query cost for the
client and the server. Recall that this protocol is interactive; The client sends a range query, receives the
answer, sends ciphertext challenges, gets back their decryptions and verifies that they are correct; The server
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receives a query, sends elements that answer the query and signatures of each of these elements (a simple
lookup). Given a ciphertext, the server derives HIBE key and decrypts it.

In Table [2] (left), we report the client’s time to create challenge ciphertexts. We note that the rest of the
client’s time consists of running m equality checks, which is a cheap operation, and two roundtrips to the
server. In Table [2[ (right), we report the server’s time to decrypt challenge texts. This table does not include
the cost of looking up m signatures, which is relatively cheap (the server simply uses the signatures provided
by the owner).

Table 2: Ciphertext generation time (in sec) for the client and ciphertext decryption time for the server using
HIBE during the query phase; [ = 16. We use ‘-’ to denote entries where m > n.

Client: Server:
ciphertext generation ciphertext decryption
Query answer size m Query answer size m
1 /10|100( 500 {1000 5000 1 /10 (100( 500 {1000 5000
Ds [0.55.6| 65| 332 | 671 - 0.4(5.2| 61 | 311 | 631 -
n = 10%| D16 [0.8]0.5/0.3| 0.8 | 0.8 - 0.6(0.4/0.3] 0.7 | 0.7 -
D125]0.3|0.4|0.6| 0.6 | 1.2 - 0.3]0.3]0.6] 0.6 | 1.1 -
D, |0.3/0.3]0.3| 0.3 | 0.3 - 0.2(0.2/0.2] 0.3 | 0.3 -

Dg (0.2]2.7| 30 | 139 | 283 | 1383 0.1{2.4| 28 | 132 | 237 | 1317
n = 10*| D16 [0.6{0.9/1.0| 0.6 | 1.9 5.3 0.5(0.8/0.9] 0.5 | 1.7 4.9
D128]0.2|0.4{0.5| 0.8 | 1.4 3.9 0.2|10.3/0.4| 0.7 | 1.3 3.6
D, (0.1/0.4{0.5| 0.4 | 0.6 0.2 0.1{0.3|0.4] 0.4 | 0.5 0.2

With observations similar to those made for the setup phase, we note that the number of empty ranges
in the query answer as well as in D w.r.t. 7; influences the cost. Our approach is very efficient for datasets
with key locality (either low or high); even queries returning 5000 elements require at most 4 seconds for
the client to generate challenges for clustered datasets. In particular, if the answer to the query contains
sequential keys (e.g., keys are clustered as z,z + 1,2 + 2,...) then the cost for the client and the server is
smaller than in the case when there are missing keys (e.g., keys in the answer are z,z + 345,z + 1741,...).
The latter case requires the client to challenge the server (and the server to prove) on the canonical covering
of every empty range created by the keys in the answer.

It is important to note that the difference in query execution time between datasets (e.g., between Dg
and D,,) does not leak any additional information to the client beyond what the client can learn from the
query answer, as, the client can determine the number of empty ranges to verify based on 7; (I is public)
and the answer, which is not affected by the rest of the elements in D.

Let us look closer at the cost of individual operations performed by the client and the server. The time
at the client is split in (1) generating roots for the empty ranges to check (i.e., their canonical covering),
and (2) encrypting challenge messages. The cost of (2) significantly dominates that of (1). For example, for
a database of size n = 10* (with [ = 16 and Dg), the cost of encryption for an answer of size 1000 is 283.41s,
whereas the cost of generating canonical coverings is 0.11s. The time at the server is split in (1) generating
roots for the empty ranges he needs to prove for, (2) deriving keys for the roots from the stored secret
keys, and (3) decrypting challenge messages. Similar to the client’s case, server’s cost is dominated by the
decryption cost. In the same example, the typical cost of decryption is 236.5s and the cost of key derivation
is 0.03s. Note that since the the canonical covering is unique, this cost of computing it using GetRoots is the
same at the server and the client.

Server Storage Cost. We measure the total storage cost at the server to store the data (D) and authentication
information (og) used for answering queries. Recall that og contains a secret key of the HIBE scheme for the
root of every subtree covering a range of empty keys (see Section . Since this cost again depends on the
number of empty ranges, we report the number of empty ranges for Dg, D128 and D,, of varying sizes of n in
Table [3] Since Dg has the highest number of empty ranges, it also has the highest storage requirement. The
storage cost is the size of each HIBE key times the number of ranges. For [ = 20, HIBE key size 2960 bytes
is the worst case, i.e., when an empty range covers only one leaf of the tree. Hence, for n = 10,000 and Dg,
the server storage is 62Mb while for n = 10,000 and Disg it is only 0.3Mb.
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Comparison with [26]. The protocol for the server in the scheme of [26] is based on a cut-and-choose

technique, which is required to be run A times so that the verifier can detect a forgery with very high

probability. In particular, the protocol requires the server to commit to the database during the setup phase,

then for every query the server re-randomizes and permutes these commitments. Hence, for each step he has

to also prove that re-randomization and permutation are consistent with his original data. The protocol also

involves proving the equality and comparison of two commitments which requires bit level commitments.
Given the complexity of the above approach, we chose to

implement only one of the steps. In particular, using the same

library we use for our experiments, we measured the cost of re- Table 3: Number of HIBE secret keys by

randomizing a Pedersen commitment (CRR) as 0.2ms. Though database size, n, and clustering level. Keys

not expensive on its own, the number of times it is invoked in have [ = 20 bits.

the protocol is at least 2mAlogn for a query (on a D of size n)

with answer size m. B Clustering level

In Table 4 we show how an estimate of just one step of [26] Ds | Di2s|Dn
compares to the sever’s cost of our protocol. We note that the 10%[ 845 [ 16 [16
performance gap of our protocol grows as with query answer size mi 5222 | 32 |12
and clustering level. Note that clustering does not affect [20]. 105 21004 | 107 | 12
Our approach also makes use of clustered data and its perfor- 107]271089] 814 | 10

mance does not degrade as the number of queries grows (recall
that [26] is stateful).

Closest Point Query. We experiment with closest point query (Table for key size [ = 24 by varying
the database size of Dagss. We see that the encryption (client) and decryption (server) time drops as the
database size grows. As we have discussed before, this is due to the number of empty ranges decreasing as
the database size grows for a fixed .

Table 4: Total time (in sec) for the server in our ap- Table 5: Closest point query time (in sec)
proach vs. time of one step of the server (CRR) in [26] for the server and the client for datasets of
for I =16, n = 10%. varying size, n. The key size is | = 24 bits
Answer| Our scheme | CRR the clustering is Dogysg.-
size m | Dg |Dias|Dn ST 3T A 055 16
100] 28 | 0.4 [0.4] 272 n_ 1071010 110710

o791 Server|1.4{0.9/1.0(1.3]0.5
Client|1.6/1.0/1.3]1.5|0.6

1000|237 | 1.3 |0.5
5000(1317| 3.6 [0.2(13607

8 Conclusion and Future Directions

In this paper we presented and experimentally evaluated an efficient solution for answering 1-D range queries
maintaining both integrity and privacy (zero-knowledge). Our technique extends to multi-dimensional data
only with an exponential (in the security parameter) blow up in the number of secret keys stored by the
server. Finding an efficient solution that maintains integrity and zero-knowledge for multi-dimensional range
query is left as an open problem.
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