
Private Large-Scale Databases with
Distributed Searchable Symmetric Encryption

Yuval Ishai1?, Eyal Kushilevitz2?, Steve Lu3?, and Rafail Ostrovsky4?

1 Technion and UCLA, yuvali@cs.technion.ac.il
2 Technion, eyalk@cs.technion.ac.il

3 Stealth Software Technologies, Inc. steve@stealthsoftwareinc.com
4 UCLA, rafail@cs.ucla.edu

Abstract. With the growing popularity of remote storage, the ability to outsource a large private
database yet be able to search on this encrypted data is critical. Searchable symmetric encryption
(SSE) is a practical method of encrypting data so that natural operations such as searching can be
performed on this data. It can be viewed as an efficient private-key alternative to powerful tools such as
fully homomorphic encryption, oblivious RAM, or secure multiparty computation. The main drawbacks
of existing SSE schemes are the limited types of search available to them and their leakage. In this
paper, we present a construction of a private outsourced database in the two-server model (e.g. two
cloud services) which can be thought of as an SSE scheme on a B-tree that allows for a wide variety
of search features such as range queries, substring queries, and more. Our solution can hide all leakage
due to access patterns (“metadata”) between queries and features a tunable parameter that provides a
smooth tradeoff between privacy and efficiency. This allows us to implement a solution that supports
databases which are terabytes in size and contain millions of records with only a 5× slowdown compared
to MySQL when the query result size is around 10% of the database, though the fixed costs dominate
smaller queries resulting in over 100× relative slowdown (under 1 second actual).
In addition, our solution also provides a mechanism for allowing data owners to set filters that prevent
prohibited queries from returning any results, without revealing the filtering terms. Finally, we also
present the benchmarks of our prototype implementation. This is the full version of the extended
abstract to appear at CT-RSA 2016.
Keywords: Searchable Symmetric Encryption, Secure Databases, Private Cloud Comput-
ing

1 Introduction

In order to protect a large database (e.g. for cloud storage), one would like to apply encryption on the
database so that only those with the proper keys can decrypt. However, for ordinary semantically secure
encryption, this precludes any ability to perform useful operations on this data other than decryption.
The ability to perform limited searches or other operations on ciphertexts would greatly enhance the
utility of the encrypted database. This topic has motivated researchers to study the problem from
many different angles, and has lead to cryptographic solutions such as Private Information Retrieval
(PIR) [10,23], Oblivious RAM [17,26,27,19], Encrypted Keyword Search [4,28,14], Deterministic and
Order-preserving encryption [1,3,2], Fully Homomorphic Encryption [15,5], and more.
One of the promising approaches for searching on encrypted data is known as Searchable Symmetric
Encryption (SSE). This approach has been the subject of a long line of research starting with Song
et al. [29]. An SSE scheme allows the data to be encrypted using only private-key primitives that
allow it to be searched upon at a very low cost, while attempting to minimize the correlation between
queries. The latter information is commonly referred to as query leakage or access pattern leakage. An
important improvement of obtaining a sublinear time solution was introduced in Curtmola et al. [11]

? Work done while consulting for Stealth Software Technologies, Inc. Supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract
number D11PC20199 and ENTACT subcontract through MIT Lincoln Laboratory. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation
therein. Disclaimer: The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsement, either expressed or implied, of IARPA,
DoI/NBC, or the U.S. Government.

and the notion of SSE was subsequently generalized to Structured Encryption by Chase and Kamara [9].
Recent works including that of Cash et al. [7] and Fisch et al. [13] present highly scalable SSE schemes
supporting exact match queries and keyword searches, and also more complex Boolean formulas of
these queries, and extended query types such as range queries.
Our motivation of building a large, scalable SSE scheme is similar to that of [7,13], but our approach
and conclusions diverge from these works. Our aim is to build a light-weight solution that supports a
variety of natural string-search queries. However, unlike their work, we insist on eliminating all leakage
about the access pattern except an upper bound on the size of the individual matches, which must be
leaked regardless of any efficiency requirements. Our solution builds on a B-tree data structure whose
choice is natural as B-trees are ubiquitous, serve a variety of queries, and are more suitable for our
cryptographic subprotocols compared to other string data structures like tries or n-grams.
We state a high level summary of our secure construction. At the heart of our construction is the ability
for a client to privately search on a remotely held, encrypted B-tree such that 1) the client learns only
the matching indices and nothing else about the entries in the tree, and 2) neither the client nor the
remote parties learn which path was taken. Consider how a tree is travesed in the clear: starting from
the root, a node is fetched, then the query is compared to the contents of the node which results
in the pointer to a node in the next level, and this repeats until the leaf level is reached. We create
cryptographic parallels to be able to perform this traversal while satisfying our security requirements.
In order to privately fetch a node from a level, PIR or even Symmetric PIR (SPIR, where the client does
not learn anything beyond the query) does not fully guarantee our needs. There are two reasons for
this: PIR still returns the node in the clear to the client, and the client must input a location to fetch.
However, since the client should not learn which path was taken, nor the contents of the nodes, this
information must be hidden. In order to account for this, we introduce a functionality known as shared-
input-shared-output-SPIR or SisoSPIR that takes as input secret-shared values between the client and
remote parties, and outputs a secret-shared node. This way, nodes can be fetched without the client
learning the location or contents of the node. We will see later that the construction is reminiscent
of the “indirect indexing” techniques due to Naor and Nissim [25]. Then, in order to compute on the
secret-shared node against the query, we employ lightweight MPC that effectively computes a b-way
comparison gate, where b is the branching factor of the tree, and returns a secret-shared result.
With this idea in mind, we are then able to build securely queryable B-trees, which then leads to
range queries, substring queries, and more. Our paper takes a formal treatment of these concepts as
a composition of cryptographic functionalities, each of which is easy to analyze, and their combined
security follows from standard secure composition theorems (e.g. Canetti [6]). We propose realiziations
to these functionalities, and also implement them and benchmark our results. Our code has been
independently tested to scale to terabytes in size and millions of records, and we present our own
timings that show that our solution is around 5× slower compared to MySQL when querying around
10% of the database, though the fixed costs dominate smaller queries resulting in over 100× relative
slowdown (under 1 second actual).

1.1 Related Work

As noted above, the problem of searchable encryption, and that of private database management in
general, can be solved using powerful general techniques such as Oblivious RAM, secure multiparty
computation, and FHE. Our aim is to focus on practical solutions that have as little overhead as
possible compared to an insecure solution. One of the interesting aspects of our construction is that we
use highly efficient variants of Oblivious RAM, PIR, and MPC and apply them as sub-protocols only
on dramatically smaller portions of the database.
There is a rich literature on searchable symmetric encryption (see for example [29,16,8,11,9,22,20,21,7,13]),
and these works are highly relevant to the task at hand. Furthermore, recent works such as [24,32,12]
have considered combining PIR with ORAM for efficiency reasons. While these schemes are more ef-
ficient than generic tools, they are limited in search functionality and possibly leak too much access
pattern information. The most relevant work is that of Cash et al. [7], and we highlight the main
differences between this work and ours. Indeed, our model uses two “servers” and a client, and the
servers are assumed not to collude, as the two-server setting typically lends itself to more efficient
instantiations. We also do not necessarily assume the data owner is the same as the client, which is
the case for typical SSE schemes. This allows us to work in different settings, such as the example of a
data owner delegating sensitive data to a semi-untrusted cloud, and still allowing a client (who is not
the data owner themselves) to query against it while guaranteeing no unqueried information is leaked.
If we assume that the client does own the data, then the client can play the role of both the client

2

and the data owner, S1, in which case non-collusion is for free (of course, this would mean the client
would have to store the index data that would have been held by the primary server, but this is less
data than what is held by the “helper” server that has the encrypted payloads). We obtain different
string-type searches as opposed to boolean formulas on exact matches obtained by [7], and our leakage
definitions are similar to those of [11,9,7] (though the type of leakage allowed by our solution is much
more limited).
We do pay a price in the non-collusion assumption and efficiency compared to existing schemes, but
we believe this tradeoff provides an interesting contrast since we achieve less leakage and offer an
alternative construction in achieving these types of search queries like those in existing SSE schemes
while maintaining a practical level of efficiency.

1.2 Our Contributions

In this work, we introduce the notion of distributed searchable symmetric encryption. We define it in
terms of an ideal three-party functionality, where there is a querying client, a data owner, and a helper
server.
We outline our main result as follows: there is a data owner S1 that holds a database D that wants
to outsource the bulk of the work of querying to a helper server S2 such that a client C can perform
queries q against D by interacting with S1 and S2 (but mostly S2). The data owner wants the guarantee
that only the results of the query is revealed to the C and no additional information about D, and only
queries that satisfy the query policy list P will return any results. On the other hand, C does not want
any additional information to be revealed about q to either S1 or S2. We can define a functionality
FSSE with two phases: Setup and Query such that during the setup phase, S1 inputs D and P to FSSE ,
which returns a leakage profile LiSetup to party i ∈ S2,C,S1. During the query phase, C inputs a query
q (range, substring, etc.) to FSSE and the functionality checks that q satisfies P and returns the results
to C if it conforms, while sending a leakage profile LiQuery to player i ∈ S2,C,S1.
Main Theorem (Informal). There is a sublinear communication protocol realizing the above SSE
functionality FSSE where the leakage profiles only reveal minimal size information (no information about
access patterns and intersection of queries or results across multiple queries). The protocol achieves 1-
privacy in the semi-honest (honest-but-curious) model, i.e. any adversary corrupting a single party in
the protocol can be simulated in the ideal model, and uses a logarithmic number of communication
rounds in the size of the database.
In order to construct an efficient realization of this ideal functionality, we define and construct a few
intermediate sub-protocols that may be of independent interest. One new concept is that of privacy
preserving data structures, which can be thought of as a more general variant of Oblivious Data
Structures [30]. Other concepts include efficient realizations of shared-input-shared-output variants of
cryptographic primitives such as pseudorandom functions and private information retrieval.

1.3 Roadmap

In Section 2 we describe background and our model. In Section 3 we provide a high-level overview of
our new scheme and provide the detailed construction and proofs for our main technical functionality
SisoSPIR in Section 4. We construct a full-fledged distributed SSE using this functionality in Section 5.
We show how to reduce various query types into range queries in Appendix C.
We describe our benchmark results in Appendix B. Finally, Appendix D discusses possible applications
of our solution.

2 Background and Model

We consider a system of three parties: the client C, the server S1, and “helper server” S2. When
considering adversarial behavior, we restrict our attention to the case of semi-honest (honest-but-
curious) adversaries with the presence of an honest majority, i.e. only one party may be corrupted. Due
to the low communication complexity, we automatically have some guarantees even against a malicious
C. The assumption that the data owner server and the helper server are semi-honest and do not collude
are reasonable if, for example, the helper server is a neutral cloud service.
We consider a simplified model of a database D, which we take to be a single table of records of the
following form. D is a set of records indexed by t different fields A1, . . . , At, where each field Ai may

3

take on some set of allowed values (e.g. string, date, enum, etc.). Each record r ∈ D then takes the
form r = (x1, . . . , xt, y) with each xi ∈ Ai denoting a searchable field value, and y ∈ {0, 1}` (for some
length parameter `) being the payload. We make the simplifying assumptions that there is only one
payload field (WLOG), the database schema is known to all parties, as well as the total number of
records. All fields and records are padded up to the same length, and we assume A1 to be a unique ID
field, denoted by id(r) for record r.
A range query q on a field Ai is of the form x ≺ b or a ≺ x or a ≺ x ≺ b, where ≺ can be either < or
≤. The query returns all records r satisfying the inequality on field i. We focus on range queries and
describe other query types and how to reduce them to range queries in Appendix C.
We also consider simple query authorization policies p that take as input a query q and output 0 or 1.
As long as p is efficiently computable via a Boolean formula, we can use general MPC to evaluate and
enforce only queries satisfying p applied to q is 1 in our system. For example, our current implementation
allows us to deny queries that are not of a particular query type, or column, or value.

3 Overview of Our Construction

In this section we include a high level overview of our solution. A formal description of the various
sub-protocols and their security proofs will be given in Section 4 and Section 5. In this section only, for
the sake of simplicity, we focus our description on just performing a range query on a binary tree. We
first consider the scenario where we do not need to hide the data owner’s information from the client
C. Recall that protocols such as PIR or ORAM allow queries of the form “fetch location i” from a data
array D to obtain D[i] to be performed in a randomized fashion without leaking any access pattern
information: even identical repeated queries look the same to everyone but the querier.
First, let us focus on a single column (say, ‘Name’) with entries x1, . . . , xn (with duplicity). During
initialization, these are stored in a balanced B-tree T , and let Ti denote the i-th level of the tree, and
Ti[j] denote the j-th node on that level. On the leaves, we additionally store pointers (along with the
xi) that point back to the original rows of the DB. In order to perform a range query (say, fetch all
records where ‘Name’>‘Bob’), the client C uses fetches the node in root T0 of the tree. If the value in
the node is larger than ‘Bob’ the client wants to go right, otherwise left. This determines which node j1
to traverse to in level T1 of the tree. C then uses a private fetching algorithm (such as PIR or ORAM)
to fetch the node T1[j1], and then determines whether to go left or right again, which will result in j2
for level 2 of the tree. This proceeds until C reaches a leaf, whereupon it will also privately fetch all
subsequent leaves (since this is a > query). Since these leaves contain pointers i1, . . . , ik to the original
DB, C can also privately fetch these pointers.
In our full solution, much of the complexity arises when we do not want the client C to learn the contents
of the database not returned by the query. We therefore introduce a secret-shared variant SisoSPIR to
ensure the location and node are secret shared, and then apply secure multiparty computation to
determine whether to go left or right, where the choice is also secret-shared. We explain at a high level
how this is done. Whenever C is about to receive a result of privately fetching a node, the server S1 will
mask it with a random value Rnode. This renders the result node hidden, since now C cannot use this
randomly masked value to determine whether to go left or right. Now, to determine which way to go, C
invokes an MPC protocol with S1 that computes query≥ value ? right:left. We do not want C to know
where it is exactly in the tree, so ‘left’ and ’right’ are absolute pointers that are blinded. A common
technique for this is to virtually shift the array by some random amount r, and offset the pointer by r.
In order to handle policies, we incorporate a “killswitch” into the MPC where a non-compliant query
will always lead the client down to a “no results found” leaf.

4 Formal Description

In this section we formally define and analyze the building blocks of our solution. All functionalities
and protocols involve 3 parties: Server S1, Client C, and Helper Server S2.

Functionalities. We treat functionalities as picking their internal secret randomness. To model leakage,
we use “leak x to P” to specify ideal functionality leakage which only affects the security requirement
and not correctness, whereas “return y to P” is used to specify an actual output which affects both
correctness and security. We treat the “Query phase” of functionalities as receiving a single query, with
the implicit understanding that multiple queries are handled by repeating the Query phase sequentially
for each query. We will sometimes invoke multiple sessions of the same protocol in parallel on different

4

sets of inputs. Since we only consider security against semi-honest adversaries, parallel composition
holds in general (we can run many simulators in parallel since the inputs cannot be modified by a
semi-honest adversary to depend on the transcript). We define the main functionality we are trying to
achieve, the distributed SSE functionality FSSE in Figure 1.

Functionality FSSE

Setup. S1 inputs a database D and policy P to FSSE . Leak LiSetup (which is implementation defined) to party
i ∈ S2,C,S1.

Query. C inputs a query q. Checks that q satisfies P and returns the results of the query to C if it conforms. Leak a
leakage profile LiQuery to player i ∈ S2,C,S1.

Fig. 1. The Privacy Preserving Data Structure functionality.

Protocols. To simplify the presentation of the protocols, we do not explicitly describe the authentica-
tion mechanism used for preventing attacks by the network. Security against the network is achieved
via a standard use of encryption and MACs. This does not affect the security of the protocols against
semi-honest insiders. We also simplify notation by letting parties pick their own randomness. We follow
the standard convention of including in the view of each party only its internal randomness and the
incoming messages. The outgoing messages are determined by the inputs, randomness, and incoming
messages. Finally, we omit “Done” messages in the end of protocols, under the understanding that
whenever a party finishes its role in a (sub)protocol, it sends a “Done” message to all other parties.

Security. We consider asymptotic (vs. concrete) security parameterized by a security parameter k.
Security is defined with respect to families of polynomial-size circuits. Whenever we use a pseudoran-
dom function (PRF) or a pseudorandom generator (PRG) we will instantiate these primitives using a
standard block cipher such as AES with seed size equal to the standard key length of the block cipher.
The correctness of some protocols assumes that the number of queries is smaller than 2k. Concretely,
the number of queries scheduled is polynomial in k, and the correctness requirement should hold for
all sufficiently large k. We use the real/ideal simulation paradigm when discussing security of our pro-
tocols. Namely, we use the following standard definition for security (see e.g. Canetti [6] or Goldreich’s
Book [18]):

Definition 1. We say a protocol π 1-privately realizes F in the semi-honest model if for every semi-
honest (honest-but-curious) PPT adversary A corrupting a party in a real protocol π, there exists a
PPT simulator S playing the role of A that only interacts with the ideal F, such that on all inputs, S
produces a simulated transcript that is computationally indistinguishable from the view of A. The view
of A includes the transcript of messages that A sees during the execution of the protocol as well as its
internal randomness.

We say that the protocol has perfect correctness if the output of π always matches the output of F.

4.1 Technical Overview

We provide a technical overview of our construction at a high level. The goal of our construction is to
build a protocol that 1-privately realizes the functionality FSSE. In order to build an efficient protocol,
we look toward data structures that support fast evaluations of the queries we want (in particular,
range queries). However, because the ideal functionality reveals nothing about the query except the
so-called “leakage profile”, we want to minimize this surface. If the data structure has vastly different
number of lookups for best and worst-case queries, this would require our ideal functionality to reveal
this information, otherwise no simulator could correctly guess how many lookups to simulate without
knowledge of the data. Thus, as a tradeoff, we work only with privacy preserving data structures (which
we introduce below) which roughly states that the access to the data structure is data independent.
This is a very reasonable tradeoff as many real-world data structures already satisfy this property, in
particular B-trees. After we introduce this notion, we focus just on the B-tree case, though our scheme
extends to support any PPDS.

5

In our solution, the way a client performs a query is done roughly in two parts: first, the client interacts
with S1 and S2 to traverse a B-tree to retrieve indexes matching the query, then interacts with S2 to
retrieve the actual records at those indices. For the latter part, we introduce a primitive called weak
distributed oblivious permutation Symmetric Private Information Retrieval or wSPIR for short, and its
range-query variant rSPIR, that does the following: given a set of indices, the client can look them up
from the S2 without revealing anything about the set of indices nor learning anything beyond that set
of indices. This is accomplished by having the data randomly permuted and the client learning only
the permuted indices.
The drawbacks of wSPIR is that once an element is looked up, it must be cached, and a more subtle
point is that the indices must be known. During the traversal of the B-tree, we do not want any party
to learn the path traversed by the query, and so this alone is insufficient. Therefore, we introduce
another primitive, shared-input-shared-output SPIR, SisoSPIR which is a gadget that the input is a
secret sharing of an index to an array (between the client and S2) and the output is a secret sharing of
the indexed array element. We give two instantiations of SisoSPIR, a simple linear-time instantiation
SisoLinSPIR and a more complex sublinear-time instantiation SisoSublinSPIR that we describe in Ap-
pendix A The simplicity of the linear-time instantiation makes it faster than the sublinear-time version
in the implementation for most realistic database sizes, though it is slower asymptotically.
Finally, the last ingredient is a general secure multiparty computation (MPC) scheme. The way we
then combine all of our ingredients is as follows. The data owner S1 sets up a PPDS B-tree to store
the index data, which points to the records of the actual database, then treats each level of the B-tree
as an array to be used for SisoSPIR and the main database will be set up to be used for rSPIR. When
the client wants to make a query, it starts at the root where it has a trivial secret sharing with S2 and
invokes SisoSPIR to obtain a secret shared version of the root node (which is different each time a query
is made). It then uses general MPC to compute comparisons to obtain a secret sharing of the index to
the next level of the B-tree. With this, it can then invoke SisoSPIR for the next level, and continues
down until the leaf level. Then S2 sends the leaf shares to the client whereupon it can reconstruct the
index information, and then uses rSPIR to retrieve the records corresponding to the query.

4.2 Privacy Preserving Data Structures (PPDS)

We can think of a (static) data structure for some data set D (consisting of (key, value) pairs) as being
two algorithms DS = (Setup,Query). The setup algorithm takes as input some dataset D and outputs
the initial state and sizes of the memory arrays M1, . . . ,Mk. The query algorithm takes as input some
query x and produces a sequence of memory probes of the form q` = (i, j) and gets the j-th entry of
Mi, i.e. Mi[j]. The sequence can be adaptive in the sense that q`+1 may depend on q1, . . . , q` as well
as all the Mi[j] for all qk = (i, j).
We take a modular approach and say that since PIR can hide the actual j within a memory array Mi,
a PPDS need only “hide” the access pattern across the memory arrays. That is to say, there exists a
simulator that can simulate the sequence of memory arrays being accessed (though it need not simulate
which element in that memory array). Note that in the extreme case where each memory array is treated
as a single element, the definition flattens into that of oblivious data structures as defined in [30]. We
formalize this concept as a functionality FDSPPDS, relative to some data structure DS = (Setup,Query),
that leaks to S2 only the sizes of the memory arrays in Figure 2.

Functionality FPPDS

Setup. The functionality receives as input (Setup, D), where D is some dataset, from the server. The functionality runs
Setup on D and outputs to the server a sequence M1, . . . ,Mk, where the length of the data stored in Mi is `i. It
outputs {|Mi|}, k, {`i} to the client C and S2.

Query. The functionality receives from the client as input (query, x), where x is a query. The functionality runs Query
and returns the probe results Mi[j] and locations pm = (i, j) to the client. It outputs to S2 only the is corresponding
to the pm probes.

Fig. 2. The Privacy Preserving Data Structure functionality.

Given a data structure, we define the three-party protocol πDS to be: the server sets up the data
structure, and the client sends its query to the server, the server processes the query and sends back

6

the result to the client and “leaks” the memory array locations i to S2. We say that some data structure
is privacy preserving if πDS is a 1-private (against a dishonest S2) implementation of the functionality
FDSPPDS.
Observe that many data structures are well-suited for privacy-preserving data structures. Hash tables,
Bloom filters, trees, and sorted arrays with binary search can all be converted to privacy-preserving
ones. For the remainder of the paper, we will fix balanced B-trees as our PPDS, and focus on building
a secure way to search on these B-trees.

4.3 General MPC

Some of our protocols will employ general secure multiparty computation (MPC) for simple function-
alities with short inputs. In particular, the circuit complexity of functionalities we realize via general
MPC will always be sublinear in the database size N . To abstract away the details of the underlying
general MPC protocol we use, we will cast protocols that invoke it in the MPC-hybrid model. That is,
we will assume the availability of a trusted oracle which receives inputs and delivers the outputs defined
by the functionality. We will similarly use other hybrid models that invoke specific functionalities which
we have already shown how to realize.
The implementation ΠMPC of an MPC oracle will use an efficient implementation of Yao’s protocol [31]
applied to a boolean circuit representing the functionality. To efficiently implement each 1-2 String
OT in Yao’s protocol, we use the 3 parties as follows: In an offline phase, S1 generates a random
OT pair (s0, s1) and (b, sb), sends (s0, s1) to S2 (acting as OT sender) and (b, sb) to C (acting as OT
receiver). In the online phase, we consume the precomputed random OTs via a standard, perfectly
secure reduction from OT to random OT. Thus, the entire implementation of ΠMPC uses an arbitrary
PRF as a black box, and does not require the use of public-key primitives. We omit further details about
the implementation of ΠMPC and treat it from here on as a black box. Finally, we will use sisoMPC to
denote a shared-input-shared-output variant of MPC, where the inputs and outputs are secret-shared
between the parties (typically C and S2).

4.4 Weak distributed oblivious permutation SPIR

We define our lowest level ideal functionality, which we refer to as Weak-distributed-oblivious-permutation-
SPIR (wSPIR). This functionality, described in Figure 3, is used for allowing C to efficiently retrieve
entries in an array generated by S1. In higher level protocols which call wSPIR, the array will be ran-
domly permuted by S1. The main difficulty is in ensuring that S2 does not learn the access pattern of
repeated queries made by C. This is captured by leaking to S2 a random unqueried location whenever
a query repeats itself. When the database is randomly permuted, S2 learns nothing at all about the
queries made by C and C only learns the access pattern but not the actual (non-permuted) locations.

Functionality wSPIR

Init. Given an array A ∈ ({0, 1}K)N from S1:

1. Store N,K,A.
2. Initialize an empty index list I = ∅.
3. Leak N and K to C and S2.

Query. Given input i ∈ [N] from C, do the following:

1. If I = [N] skip to Step 4.
2. If i /∈ I set i′ = i, else pick i′ uniformly at random from [N] \ I.
3. Insert i′ into I and leak i′ to S2.
4. Return A[i] to C.

Fig. 3. Ideal functionality for Weak-distributed-oblivious-permutation-SPIR (wSPIR)

Figures 4 and 5 describe (respectively) the initialization phase and query phase of a protocol ΠwSPIR

realizing wSPIR.

7

Protocol ΠwSPIR.Init

Global parameters and functions.

– Computational security parameter 1k.
– Pseudorandom generator (PRG) G with seed length k. The output length of G will be determined by the context.
– Pseudorandom function (PRF) Fr : {0, 1}k → {0, 1}k, where r ∈ {0, 1}k.
– Notation: Write Frsr(x) to denote Fr(Fs(Fr(x))) where x is padded to a length-k string.

Init.S1. On input (N,K,A), the Server S1 does the following:

1. Pick two random and independent PRF keys r, s ∈ {0, 1}k.
2. Let B be the array defined by B[i] = A[i]⊕G(Frsr(i)).
3. Send N,K,B, s to S2 and N,K, r to C.

Init.C. Store the values N,K, r received from S1, and initialize an index history IH = ∅ and PRF history PH = ∅.
Init.S2. Store the values of N,K,B, s received from S1.

Fig. 4. The initialization phase ΠwSPIR.Init for the functionality wSPIR

Protocol ΠwSPIR.Query

Query.C. On input i ∈ [N]

1. If |IH| = N , skip to Step 4.
2. If i does not occur in IH set i′ = i, else pick i′ uniformly at random from [N] \ I.
3. Send i′ to S2 and get back B[i′]. Insert (i′, B[i′]) into IH.
4. Set msg = Fr(i).
5. If msg does not occur in PH set msg′ = msg, else pick msg′ at random from {0, 1}k.
6. Send msg′ to S2 and get back Fs(msg

′). Insert (msg′, Fs(msg
′)) into PH.

7. Fetch (i, b) from IH and (msg, z) from PH.
8. Return output = b⊕G(Fr(z)).

Query.S2. Upon receiving i′ from C, send back B[i′]. Upon receiving msg′ from C, send back Fs(msg
′).

Fig. 5. The query phase ΠwSPIR.Query for the functionality wSPIR

Lemma 1. Protocol ΠwSPIR realizes wSPIR with perfect correctness (i.e. the output of the protocol
always matches the output of the functionality) and with computational security against a single semi-
honest party.

Proof Sketch. For correctness, consider an invocation of ΠwSPIR.Query on input i. In the end of Step 3,
the pair (i, B[i]) must appear in IH (this is also the case when |IH| = N). In the end of Step 6, the pair
(msg = Fr(i), Fs(msg)) must be in PH. Thus, after Step 7 we have b = B[i] and z = Fs(Fr(i)), and
the output computed in Step 8 satisfies output = b⊕G(Fr(z)) = B[i]⊕G(Frsr(i)) = A[i] as required.
Next, we present a simulator for each party in an invocation of ΠwSPIR.Init and subsequent invocations
of ΠwSPIR.Query.

Simulator for S1. Since S1 does not receive any messages its simulation is trivial.

Simulator for S2. To simulate ΠwSPIR.Init.S2, obtain N,K from the ideal leakage, pick B uniformly
at random from ({0, 1}K)N , and s uniformly at random from {0, 1}k and execute ΠwSPIR.Init.S2 with
these values of N,K,B, s. This simulation is computationally indistinguishable from the real execution
of ΠwSPIR.Init.S2 because S2 does not have Fr. Queries from the client invocations of ΠwSPIR.Query.C
are perfectly simulated by repeatedly invoking the query phase of wSPIR and observing the leakage to
S2. The m messages msg′j received from C in Step 6 are simulated by picking uniformly random and

independent strings from {0, 1}k.

Simulator for C. To simulate ΠwSPIR.Init.C, invoke wSPIR.Init, obtain N,K from the leakage, pick r
uniformly at random from {0, 1}k, and execute ΠwSPIR.Init.C with these values of N,K, r.

8

Let I = (i1, . . . , im) be the sequence of inputs of C in these invocations, and let O = (o1, . . . , om) be
the corresponding outputs of wSPIR. (Note that the indices ij are not necessarily distinct.) We start
by simulating the sequence of m messages z1, . . . , zm received from S2 in Step 6. Since the messages
msg′j sent to S2 in Step 6 are all distinct (except with at most m2/2k failure probability), and since s
is unknown to C, we can simulate all these messages zj = Fs(msg

′
j) by picking uniformly random and

independent ẑj ∈ {0, 1}k. The remaining messages in Step 3 can be simulated similarly, keeping track
of what C has seen. ut

4.5 Shared-Input Shared-Output SPIR

A disadvantage of wSPIR is that it requires C to know the query locations ij , and in particular learn
when a query is repeated. However, when these queries are obtained by traversing a data structure
(rather than originating from C), it is desirable to hide the query locations and query results from C.
To this end we define and implement a stronger primitive which receives the query locations ij in a
secret-shared form and produces the output in a secret-shared form. We refer to this functionality as
shared-input shared-output SPIR (SisoSPIR).
We present two flavors of SisoSPIR. The first has linear computational complexity in the size of the
database for each query, but it is relatively lean and simple. The second implementation achieves
sublinear computation via a light form of oblivious RAM. We will use the first implementation to fetch
entries from the top levels of the tree-based data structure and the second to fetch entries from the
bottom-most (and largest) level.
Both variants will use the following non-reactive shared-input shared-output PRF (SisoPRF) functional-
ity. Loosely speaking, this functionality computes fr[x+ y] and secret shares it as Q and Q⊕ fr[x+ y],
where r is a secret key to a PRF f and x and y are a secret sharing of an input, and Q is a random
mask. See Figure 6 for a description. We will use two different implementations of this functionality:
in the linear solution we will realize it via a 2-server PIR protocol applied to a precomputed table of
function values, and in the sublinear solution we will implement it via the general MPC protocol πMPC

applied to a circuit representation of F .

Functionality SisoPRF

Global parameters and functions.

– Computational security parameter 1k.
– Positive integers N,K received from S1 and leaked to all parties.
– Pseudorandom function Fr : ZN → {0, 1}K , where r ∈ {0, 1}k.

Functionality. On input r ∈ {0, 1}k from S1, x ∈ ZN from C, and y ∈ ZN from S2:

1. Pick a random Q ∈ {0, 1}K .
2. Return Q to C.
3. Return Q⊕ fr[x+ y] to S2.

Fig. 6. Ideal functionality for shared-input-shared-output-PRF (SisoPRF)

4.6 Linear implementation

Figure 7 defines the functionality realized by the linear implementation of SisoSPIR, referred to as
SisoLinSPIR, and Figures 8 and 9 describe (respectively) the initialization phase and query phase of a
protocol ΠSisoLinSPIR realizing SisoLinSPIR. Note that the functionality leaks the input y of S2 to S1. This
leakage is harmless, because in the higher level protocols y will always be random and independent of
the inputs.

Lemma 2 (Main Technical Construction of Linear SisoSPIR). Protocol ΠSisoLinSPIR realizes SisoLinSPIR
in the SisoPRF-hybrid model with perfect correctness and computational security against any single semi-
honest party.

9

Functionality SisoLinSPIR

Init. Given an array A ∈ ({0, 1}K)N from S1:

1. Store N,K,A.
The entries of A will be indexed by the elements of the cyclic group ZN .

2. Leak N and K to C and S2.

Query. Given input x ∈ ZN from C and y ∈ ZN from S2 do the following:

1. Leak y to S1.
2. Pick a random R ∈ {0, 1}K .
3. Return R to C.
4. Return R⊕A[x+ y] to S2.

Fig. 7. Ideal functionality for linear shared-input-shared-output-SPIR (SisoLinSPIR)

Protocol ΠSisoLinSPIR.Init

Global parameters and functions.

– Computational security parameter 1k.
– Pseudorandom function Fr : {0, 1}∗ → {0, 1}∗, where r ∈ {0, 1}k. The input and output length will be understood

from the context.

Init.S1. On input (N,K,A), the Server S1 does the following:

1. Pick a random PRF key r ∈ {0, 1}k.
2. Generate the masked array B defined by B[i] = A[i]⊕ Fr(i) for i ∈ ZN .
3. Send N,K,B to S2 and N,K to C.

Init.C. Store the values N,K received from S1.
Init.S2. Store the values of N,K,B received from S1.

Fig. 8. The initialization phase ΠSisoLinSPIR.Init for the functionality SisoLinSPIR

Protocol ΠSisoLinSPIR.Query

1. S2 sends y to S1.
2. S2 and S1 locally generate a virtual database B←y defined by B←y[i] = B[i+ y].
3. C picks a random R ∈ {0, 1}K .
4. C picks a random subset TS1 ⊆ ZN and lets TS2 = TS1 ⊕ {x}.
5. C sends R and TS1 to S1 and TS2 to S2.
6. S1 locally computes ZS1 =

⊕
i∈TS1

B←y[i] and S2 computes ZS2 =
⊕

i∈TS2
B←y[i].

7. S1 sends to S2 the string Z′S1 = ZS1 ⊕R.
8. Parties invoke the SisoPRF oracle with inputs (N,K, r) from S1, input x from C, and input y from S2. Let YC and YS2

denote the outputs.
9. C outputs R⊕ YC and S2 outputs ZS2 ⊕ Z′S1 ⊕ YS2.

Fig. 9. The query phase ΠSisoLinSPIR.Query for the functionality SisoLinSPIR in the SisoPRF-hybrid model

Proof. Recall from Figure 9 the definition of TS1, TS2 and ZS1, ZS2. Since the only difference between TS1

and TS2 is that x is a member of one and not of the other, we have ZS1⊕ZS2 = B←y[x] = B[x+y]. By the
definition of SisoPRF we have YC⊕YS2 = Fr(x+y). Hence YC⊕(ZS2⊕ZS1⊕YS2) = B[x+y]⊕Fr(x+y) =
A[x+y] and the pair of outputs (R⊕YC, ZS2⊕ZS1⊕R⊕YS2) is distributed identically to (R,A[x+y]⊕R),
as required by the functionality.

We describe a simulator for each of the 3 parties.

10

Simulator for S1. To simulate the view of S1, pick a random PRF key r ∈ {0, 1}k (randomness of
S1 in ΠSisoLinSPIR.Init), a random mask R ∈ {0, 1}K , and a random subset TS1 ⊆ ZN (messages from C
in Step 5 of ΠSisoLinSPIR.Query). Together with the leaked y, this perfectly simulates the view of S1, even
when considered jointly with the outputs of C and S2. This follows from the fact that the output of C
in the protocol is masked with a random Q (from SisoPRF) which is picked independently of the view
of S1. Thus, conditioned on the view of S1 in the real protocol the output of C is uniformly distributed,
as in the ideal world. Since the output of S2 is determined by the inputs and the output of C, the
simulation is perfect.

Simulator for C. The simulator is given leakage N,K and the output OC. It simulates the randomness
of C by picking R ∈ {0, 1}K and TS1 ⊆ ZN at random. It simulates the message received from SisoPRF
by letting YC = R⊕OC. Since R is independent of the randomness Q used by SisoPRF, the value of OC

in the real protocol is independent of R. Thus, the simulated view conditioned on OC is distributed as
in the real protocol. Finally, since the output of S2 is determined by the inputs and OC, the simulation
is perfect also when considered jointly with the output of S2 (recall that S1 has no output).

Simulator for S2. The simulator is given leakage N,K and the output OS2. It simulates the message B
from S1 by picking a random B ∈ ({0, 1}K)N . It simulates the message TS2 by picking a random subset
of ZN and the message Z′S by picking a random string from {0, 1}K . Finally, it simulates the message
from SisoPRF by YS2 = OS2 ⊕ZS2 ⊕Z′S1 where ZS2 is computed from the simulated B and TS2 as in the
protocol. To argue the correctness of the simulator, consider a hybrid experiment in which the protocol
is executed with a truly random function Fr. This experiment is computationally indistinguishable
from the real experiment by the pseudorandomness of F . In this case, the values B, TS2, Z

′
S1, YS2 in

the real protocol are uniformly and independently distributed, and OS2 = ZS2 ⊕ Z′S1 ⊕ YS2. Thus, the
joint distribution of the view of S2 and its output in the hybrid experiment is identical to the joint
distribution of the simulated view and the output of S2 in the ideal model. Since the output of C is
determined by OS2 and the inputs, the simulator emulates the real protocol even when considering the
output of C. ut

5 Full SSE and Range Queries

5.1 Weak distributed oblivious permutation Range SPIR

Figure 10 defines our next (low-level) ideal functionality, referred to as Weak-Distributed-oblivious-
permutation-Range-SPIR functionality (rSPIR). This functionality allows C to retrieve a range of entries
from a permuted array generated by S1. Namely, C will obtain the entries α0, α0+1, . . . , αn of the array,
corresponding to two permuted endpoints: i = π(α0) and j = π(αn). This is done without revealing
the permutation π to C or S2. Moreover, S2 should be unable to observe overlaps between the retrieved
ranges across queries. Such an overlap should look for him as accessing a random fresh location in the
array which, when the database is randomly permuted, ensures that S2 learns nothing about the access
pattern of C.
Figures 11 and 12 describe (respectively) the initialization phase and query phase of a protocol ΠrSPIR

which realizes rSPIR with security against a single semi-honest party.

Lemma 3. Protocol ΠrSPIR realizes rSPIR with perfect correctness and computational security against
a single semi-honest party.

Proof Sketch. The proof proceeds similarly to the wSPIR proof.

5.2 FindEndpoints

Our goal will be to use the above protocols to retrieve a range of records, once we found the relevant
endpoints. For this we use, for each searchable field and each type of query, a “helper” array which is
sorted according to the field value (or, sometimes, tokens) and contain pointers to the actual records.

Example. Suppose we have 2 records: (John, Smith, Blue, “See Alice Run”) and (Bob, Jones, Green,
“Hello World”). Then, for example, the helper table for the first column and range queries will look
like ((Bob,1),(John,0)) (i.e., first names are sorted and each comes with the corresponding record
number). Similarly, we have helper arrays for the second and third columns. For the fourth col-
umn, the helper table will look like ((Hello World,1),(See Alice Run,0)), for range queries, and ((Al-
ice,0),(Hello,1),(Run,0),(See,0), (World,1)), for keyword search queries (where the values are tokenized
into keywords).

11

Functionality rSPIR

Init. Given an array A ∈ ({0, 1}K)N and a permutation π : [N]→ [N] from S1:

1. Store N,K,A, π.
2. Initialize an empty index list I = ∅.
3. Leak N and K to all parties.

Query. Given input i, j ∈ [N] from C, such that π−1(i) ≤ π−1(j), do the following:

1. Set αfirst = π−1(i), αlast = π−1(j) and ∆ = αlast − αfirst.
2. For t = 0, . . . ,∆ do:

Let αt = αfirst + t and βt = π(αt).
If I = [N] skip to Step 3.
If βt /∈ I set β′t = βt, else pick β′t uniformly at random from [N] \ I.
Insert β′t into I, leak β′t to S2 and βt to C.

EndFor
3. Return A[α0], . . . , A[α∆] to C.

Fig. 10. Ideal functionality for Weak-Distributed-oblivious-permutation-Range-SPIR (rSPIR)

Protocol ΠrSPIR.Init

Global parameters and functions.

– Computational security parameter 1k.
– Pseudorandom function (PRF) Fr : {0, 1}k → {0, 1}k.

Init.S1. On input (N,K,A, π), the Server S1 does the following:

1. Pick two random and independent PRF keys r, s ∈ {0, 1}k.
2. Let B be the array defined by B[i] = (A[i], π(i+ 1)⊕ Frsr(π(i))) and B′ = π(B).
3. Invoke ΠwSPIR.Init(N,K,B′).
4. Send s to S2 and r to C.

Init.S2. Participate in ΠwSPIR.Init. Store the value s received from S1.
Init.C. Participate in ΠwSPIR.Init. Store the value s received from S1, and initialize a PRF history PH = ∅.

Fig. 11. The initialization phase ΠrSPIR.Init for the functionality rSPIR

Figure 13 defines the ideal functionality FindEndpoints. This functionality allows C to find, given a
query on field field of type type, the two endpoints of the range of matches inside an array Lfield,type.
The exact content of these arrays will be defined shortly.

The implementation of the FindEndpoints functionality is based on B-tree data-structures. S1, given
each of the sorted arrays L = Lfield,type (for each supported pair (field,type)), builds a B-tree with
branching factor b as follows: in the leaf layer, partition the elements of L into groups of b elements
each (in order). That is, for each such group, there is a leaf node (i.e., the i-th element of the array
L belongs to the bi/bc) leaf node). We will also need to append the value i to the i-th element in the
leafs. Finally, we create a leftmost “trap” node that contains −∞ and a rightmost “trap” node which
contains +∞ values. Non-leaf nodes will contain b elements of the form (il−value, ir−value, ptr), where
the value of all elements inside the subtree pointed to by ptr is in the (closed) interval [il−value, ir−value].
Again, each of these internal layers (excluding the root layer) will contain a leftmost and rightmost
“trap” nodes. Finally, in the initialization we invoke SisoLinSPIR.Init for each such layer (which results
in S2 having an “encrypted” form of the layer).

The leaf level needs to be treated with a bit more care. This is because, when FindEndpoints.Query is
applied, its final output is an actual pointer into the array. Moreover, to allow for an extra efficiency in
the leaf level, we add to the standard entries of the array some δ dummy entries (those are not actually
pointed to in our B-tree data-structure but are used, by SisoSublinSPIR, to hide access patterns).
That is, we will take our array L add to it δ dummy arguments and permute it using some random

12

Protocol ΠrSPIR.Query

Query.C. On input i, j ∈ [N]

1. ptr = i, t = 0
2. While ptr 6= j

Invoke ΠwSPIR.Query(ptr) to obtain B′[ptr] = B[π−1(ptr)] = (A[αt], γt+1).
Set msg = Fr(ptr).
If ∃(msg, z) ∈ PH pick random msg′ ∈R {0, 1}k. Else, set msg′ = msg.
Send msg′ to S2 and get back Fs(msg

′). Insert (msg′, Fs(msg
′)) into PH.

Fetch (msg, z) from PH.
Compute ptr = γt+1 ⊕ Fr(z).
t← t+ 1

End While
3. Invoke ΠwSPIR.Query(j). Obtain (A[αt], γt+1)
4. Output A[α0], ..., A[αt]

Query.S2. Participate in ΠwSPIR.Query. Upon receiving msg′ from C, send back Fs(msg
′).

Fig. 12. The query phase ΠrSPIR.Query for the functionality rSPIR

Functionality FindEndpoints

Global parameters. List of pairs (field, type) such that S1 supports queries of type type to field field.
Init. For each pair (field, type) in the list, S1 provides an array Lfield,type ∈ ({0, 1}K)N .

1. Store each array Lfield,type.
2. Leak the corresponding N and K to all parties.

Query. Given query q from C, do the following:

1. Let ileft be the minimal element of Lfield,type that matches q, or ileft = +∞ if no such element exists.
2. Let iright be the maximal element of Lfield,type that matches q, or iright = −∞ if no such element exists.
3. Return ileft, iright to C.

Fig. 13. Ideal functionality for FindEndpoints

permutation τ : [N + δ]→ [N + δ] (which in particular hides the information on which of the entries is
a dummy entry and which is a real entry). Moreover, we will update according to τ all the pointers into
the array, to reflect the new random order (and the increased size). We will apply SisoSublinSPIR.Init
to this array, with Γ = {τ(N), . . . , τ(N + δ − 1)}.
Figure 14 describes the initialization phase of protocol ΠFindEndpoints which realizes FindEndpoints with
security against a single semi-honest party.

Protocol ΠFindEndpoints.Init

Global parameters and functions. List of pairs (field, type) such that S1 supports queries of type type to field field.

Init.S1. For each pair (field, type) in the list, S1 is given an input array Lfield,type ∈ ({0, 1}K)N
field,type

. It does the following:

1. Construct a B-tree T field,type, as described above, for the (field, type) pair.
2. Send Nfield,type,K, T field,type to S2 and Nfield,type,K to C.

Init.S2. Participate in SisoSublinSPIR.Init. Store the values Nfield,type,K, T field,type received from S1.
Init.C. Participate in SisoSublinSPIR.Init. Store the values Nfield,type,K received from S1.

Fig. 14. The initialization phase ΠFindEndpoints.Init for the functionality FindEndpoints

13

Protocol ΠFindEndpoints.Query

Global parameters and functions. MPC Protocols for the following functionalities:

– The functionality find-left gets as input (additive) shares for the content of the current node v in the B-tree (C-node
and S2-node), a query q from C and a pointer left-trap for a trap node. It returns shares of a pointer (C-ptr, S2-ptr)
to the leftmost (direct) child of v that satisfies the query q, or to left-trap if no such child exists. The functionality
find-right is defined similarly for finding the rightmost child that satisfies q.

– The functionality ExtractEndpoints gets as input shares C-l-leaf, S2-l-leaf of the leftmost node satisfying q and
C-r-leaf, S2-r-leaf of the rightmost node satisfying q. The first node is of the form (x, ileft, irealleft) and the sec-
ond is (x′, iright, irealright). The functionality returns ileft, iright to C, except if irealleft = +∞ or irealright = −∞ or
irealleft > irealright or q does not satisfy the policy; in all of these cases return ileft = +∞, iright = −∞.

Query. On input q ∈ {0, 1}K for C:

1. depth = dlogbNe,C-ptr = root,S2-ptr = 0
2. Do depth times:

Invoke ΠSisoLinSPIR(C-ptr, S2-ptr) to obtain C-node, S2-node.
Invoke MPC oracle for find-left(C-node,S2-node, q, left-trap) to obtain C-ptr,S2-ptr.

End Do
3. Invoke ΠSisoSublinSPIR(C-ptr, S2-ptr) to obtain shares of left leaf C-l-leaf,S2-l-leaf.
4. C-ptr = root,S2-ptr = 0
5. Do depth times:

Invoke ΠSisoLinSPIR(C-ptr, S2-ptr) to obtain C-node, S2-node.
Invoke MPC oracle for find-right(C-node, S2-node, q, right-trap). Obtain C-ptr,S2-ptr.

End Do
6. Invoke ΠSisoSublinSPIR(C-ptr, S2-ptr) to obtain shares of right leaf C-r-leaf, S2-r-leaf.

7. Invoke MPC oracle for ExtractEndpoints(C-l-leaf,S2-l-leaf,C-r-leaf, S2-r-leaf).

Fig. 15. The query phase ΠFindEndpoints.Query for the functionality FindEndpoints in the (SisoPRF,MPC)-hybrid model

Next, we describe how FindEndpoints.Query is actually implemented. The idea is to traverse the B-tree
searching for the given value in the tree. This starts from the root, and at each step proceeds from the
current node to one of its b children, maintaining the invariant that the value that we search for is always
between il−value and ir−value of the current node (this includes the possibility of these values being −∞
or +∞, in case that we search for a value that is smaller or bigger, respectively, than all values in L).
This search is performed jointly between S2 who knows the B-tree, and the client C who knows the
query q. At each stage, they hold shares for the pointer to the current node (C-ptr, S2-ptr, respectively)
as well as shares for the content of that node (C-node,S2-node, respectively). They compute a shared
value of the next pointer via a MPC protocol that allows them maintaining all their information secret,
followed by a shared-input shared-output SPIR that allows them to obtain the shares of the content.
Recall that we have several versions of SisoSPIR; we employ the linear version for the internal nodes
of the B-tree and the sub-linear version for the leafs level which is, of course, the largest. The latter
is more efficient but its security limited to δ invocations; see discussion earlier (also, the shares for
SisoSublinSPIR are in ZN+δ rather than just ZN in the standard SisoSPIR, where N stands for the size
of the relevant array). Finally, the leaf nodes contain triplets of the form (xi, π

field,type(i), i), from which
the endpoints will be extracted given that some basic requirements are met (e.g., that q satisfies the
policy). Figure 15 describes the query phase of protocol ΠFindEndpoints.

Next, we consider the following outer protocol OuterFindEndpoints, that serves as an interface to
FindEndpoints by applying a few additional permutations. Its setup phase consists of preparing all
the arrays that FindEndpoints will utilize. It turns out that rather than keeping one array (for each field
and query type), with entries of the form (xi, ptri), it is convenient to keep two arrays L[i] = (xi, i) and
B[i] = ptri (all sorted according to xi). Then, those arrays will be appropriately mixed, by applying
to them some random permutations, in order to hide unnecessary information. Finally, in the query
phase OuterFindEndpoints again invokes FindEndpoints, appropriately dealing with the random permu-
tations. The ideal functionality OuterFindEndpoints is described in Figure 16. The implementation is
straightforward as it is essentially obtained by replacing the various ideal functionalities by their actual
implementations.

14

Functionality OuterFindEndpoints

Init. S1 is given database D ∈ ({0, 1}K)N .
It picks a random permutation σ : [N] → [N]. Then, for each field field and query type type that S1 supports, it does the
following:

1. Compute arrays Lfield,type[i] = (xi, i), Bfield,type[i] = ptri (of length Nfield,type).
2. Pick a random permutation πfield,type : [Nfield,type]→ [Nfield,type].
3. Let L′ field,type[i] = (xi, π

field,type(i)) and B′ field,type[i] = σ(ptri).
4. Invoke rSPIR.Init using B′field,type and πfield,type as inputs.
5. Invoke FindEndpoints.Init using L′field,type as input.

Invoke wSPIR.Init using D′ = σ(D) (a randomly permuted version of database D) as input.
Query. Given query q of type type to field field from C, do the following:

1. Invoke FindEndpoints.Query using array L′field,type and query q.
Obtain ileft and iright which are equal πfield,type(irealleft) and πfield,type(irealright), respectively. If ileft = +∞ then Return
∅ to C.

2. Invoke rSPIR.Query using ileft and iright as inputs.
Obtain all elements in B′[(πfield,type)−1(ileft), . . . , (π

field,type)−1(iright)] (that is, B′[irealleft, . . . , irealright]).
3. Each of these values is of the form σ(ptrj), for some ptrj which is a pointer to a record that actually matches the query

q. C invokes the functionality ΠwSPIR.Query on each value σ(ptrj) to obtain the records D′(σ(ptrj)) = D[σ−1(σ(ptrj))] =
D[ptrj].
Return records to C.

Fig. 16. Ideal functionality for OuterFindEndpoints

Remark. We discuss how to handle query policies: we augment the FindEndpoints functionality to
take as input a policy from the server, and if it is not satisfied by the policy, it sets ileft = +∞ and
iright = −∞.

5.3 Putting it All Together

Theorem 1 (Main Theorem.). The OuterFindEndpoints protocol is a sublinear communication pro-
tocol realizing the distributed SSE functionality FSSE where the leakage profiles only reveal the sizes of
the objects (no information about access patterns and intersection of queries or results across multiple
queries). The protocol achieves 1-privacy in the semi-honest model and uses a logarithmic number of
communication rounds in the size of the database.

Proof. We describe how to construct a simulator for all the parties in the protocol implementing
OuterFindEndpoints.

Simulator for S1. For the initialization phase, the simulator mimics the server S1 proceeds as it does
in the protocol, except it uses the simulator for rSPIR.Init and FindEndpoints.Init for all fields and query
types, and finally wSPIR.Init for the main database. This generates the transcript for the initialization
step.
During a query, the simulator generates the view for S1 by running the simulator for FindEndpoints.Query
followed by the simulator for rSPIR.Query. Finally, it invokes the wSPIR.Query simulator (which is
trivially empty for S1).

Simulator for S2. For the initialization phase, the simulator for S2 requires invoking the simulator
for rSPIR.Init and FindEndpoints.Init for all the fields and query types. Finally, it runs the simulator for
wSPIR.Init for the main database.
During a query, the simulator generates the view for S2 by running the simulator for FindEndpoints.Query
followed by the simulator for rSPIR.Query. Finally, it invokes the wSPIR.Query simulator.

Simulator for C. For the initialization phase, simulating the client C is similar to simulating S2: we
run the simulator for rSPIR.Init and FindEndpoints.Init for all the fields and query types. Finally, it runs
the simulator for wSPIR.Init for the main database.
During a query, the simulator generates the view for C by running the simulator for FindEndpoints.Query
followed by the simulator for rSPIR.Query. Since it knows the result of the query, it can generate the
view for the client for ileft and iright as follows. If no results are returned, ileft and iright are set to their

15

trap representations, otherwise they are set to the range to be returned (as the result of the query).
The simulator also maintains a list of previously seen pointers and chooses a random pointer for each
never-before-seen location, or reusing an old one previously seen. Finally, it invokes the wSPIR.Query
simulator which just returns the result to C. ut

6 Conclusion

In this paper, we presented a solution for large-scale private database outsourcing via an SSE-style
construction on B-trees. We formalized a model for our two-server SSE, and provided an abstract
scheme along with an efficient realization of the scheme as our solution. The solution has sublinear
overhead and leaks no access pattern information up to δ queries. Finally, we implemented a prototype
and provided benchmarked results for our solution, which is only 5× slower compared to MySQL when
querying around 10% of the database, with smaller queries resulting in over 100× relative slowdown
due to fixed costs.

References

1. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-preserving encryp-
tion for numeric data. In SIGMOD Conference, pages 563–574, 2004.

2. Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, pages 535–552, 2007.

3. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-preserving sym-
metric encryption. IACR Cryptology ePrint Archive, 2012:624, 2012.

4. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In EUROCRYPT, pages 506–522, 2004.

5. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In FOCS, pages 97–106, 2011.

6. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptol-
ogy, 13(1):143–202, 2000.

7. David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean queries.
In CRYPTO (1), pages 353–373, 2013.

8. Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In ACNS, pages 442–455, 2005.

9. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In ASIACRYPT,
pages 577–594, 2010.

10. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval.
In FOCS, pages 41–50, 1995.

11. Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric en-
cryption: improved definitions and efficient constructions. In ACM CCS, pages 79–88, 2006.

12. Jonathan Dautrich and Chinya Ravishankar. Combining ORAM with PIR to minimize bandwidth
costs. In ACM CODASPY, pages 289–296, 2015.

13. Ben Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov, Tal
Malkin, and Steven M. Bellovin. Malicious-client security in blind seer: A scalable private dbms.
IACR Cryptology ePrint Archive, 2014:963, 2014.

14. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious
pseudorandom functions. In TCC, pages 303–324, 2005.

15. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
16. Eu-Jin Goh. Secure indexes, 2003.
17. Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In

STOC, pages 182–194, 1987.
18. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, Cam-

bridge, UK, 2001.
19. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. J.

ACM, 43(3):431–473, 1996.
20. Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and Michael Steiner.

Outsourced symmetric private information retrieval. In ACM CCS, pages 875–888, 2013.

16

21. Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric en-
cryption. In Financial Cryptography, pages 258–274, 2013.

22. Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In Financial
Cryptography, pages 285–298, 2012.

23. Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computationally-
private information retrieval. In FOCS, pages 364–373, 1997.

24. Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file retrieval by com-
bining ORAM and PIR. In NDSS, 2014.

25. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function evaluation.
In STOC, pages 590–599, 2001.

26. Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC, pages 514–523, 1990.
27. Rafail Ostrovsky. Software Protection and Simulation On Oblivious RAMs. PhD thesis, Mas-

sachusetts Institute of Technology, 1992., Dept. of Electrical Engineering and Computer Science,
June 1992.

28. Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. In CRYPTO.
29. Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted

data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.
30. Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov, and

Yan Huang. Oblivious data structures. In ACM CCS, pages 215–226, 2014.
31. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages

160–164, 1982.
32. Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. KT-ORAM: A bandwidth-efficient

ORAM built on k-ary tree of PIR nodes. IACR Cryptology ePrint Archive, 2014:624, 2014.

A Sublinear Realization of SisoSPIR

The sublinear implementation of SisoSPIR will apply light oblivious RAM machinery for making the
computation sublinear without revealing the access pattern to either C or S2. Specifically, the imple-
mentation is similar to that of wSPIR except that the inputs and outputs of the PRFs need to be
secret-shared between C and S2 (as captured by the SisoPRF functionality) and the history lists also
need to be secret-shared between C and S2. Since realizing SisoPRF is expensive and may form an
efficiency bottleneck, we would like to minimize the number of calls to this functionality. To this end
we add dummy entries to the database whose (pseudorandom) locations are known to C. In each sub-
sequent invocation, a new dummy entry is consumed in order to conceal the access pattern from S2.
We use a parameter δ, set by S1, to determine the number of dummy entries. After δ invocations of the
protocol, when all the dummy entries are consumed, one can re-initialize the database with new dummy
entries, yielding a solution with amortized Õ(

√
N) complexity. Alternatively, one can start revealing

the access pattern to S2 once the dummy entries are consumed. In the current implementation we opt
for the latter option.
Figure 17 defines the functionality realized by the sublinear implementation of SisoSPIR, referred to as
SisoSublinSPIR, and Figures 18 and 19 describe (respectively) the initialization phase and query phase
of a protocol ΠSisoSublinSPIR realizing SisoSublinSPIR. Note that the functionality leaks the positions of the
dummy entries to C and the position of the queried entry to S2, where repeated entries are replaced by
dummy entries. This leakage will be harmless, because the higher level protocol will randomly permute
the concatenation of the actual database A with the δ dummy entries. We also note that in the actual
usage of SisoSublinSPIR, the shares x and y of the queried position will never point to a dummy entry.
We therefore obtain the following lemma.

Lemma 4. Protocol ΠSisoSublinSPIR realizes SisoSublinSPIR in the (SisoPRF,MPC)-hybrid model with per-
fect correctness and computational security against any single semi-honest party.

Proof. In the first δ queries, Step 4 creates secret sharing between C and S2 of a flag new which is set
to 1 if and only if this is the first occurrence of the index i = x+ y. (Note that, given the promise that
x+y 6∈ Γ , the flag new is always set to 1 upon the first occurrence of i.) Step 4 also creates a sharing of
the fetched string b = B[i] in case i has occurred before. Step 6 uses the flag new to select between the
fetched b and the value b′ = B[i′] known to S2, yielding a sharing of β = B[i]. Finally, β is unmasked
by Fr[i] in Step 8 to yield output shares of A′[x+ y], as required.
After more than δ queries, Step 1 guarantees that the value β shared between C and S2 is equal to the
masked database entry B[x+ y], which in Step 8 is unmasked with Fr[x+ y] to yield output shares of
A′[x+ y], as required.
Due to the similarity to previous protocols, we briefly argue security against each party.

17

Functionality SisoSublinSPIR

Init. Given positive integers N,K, δ, an array A′ ∈ ({0, 1}K)N+δ, and a list of δ distinct dummy positions Γ =
(d1, d2, . . . , dδ) ∈ ZδN+δ from S1:

1. Store N,K,A′, Γ, δ.
The entries of A′ will be indexed by the elements of the cyclic group ZN+δ.

2. Initialize a counter q to 0 and an index history list I to ∅.
3. Leak N,K, Γ to C and N,K, δ to S2.

Query. Given input x ∈ ZN+δ from C and y ∈ ZN+δ from S2, with the promise that x+ y 6∈ Γ , do the following:

1. Let i = x+ y.
2. If q ≥ δ, leak i to S2 and skip to Step 5; otherwise increment q.
3. If i /∈ I let i′ = i, else let i′ = dq.
4. Insert i into I and leak i′ to S2.
5. Pick a random R ∈ {0, 1}K , and return R to C, and return R⊕A′[i] to S2.

Fig. 17. Ideal functionality for sublinear shared-input-shared-output-SPIR (SisoSublinSPIR)

Protocol ΠSisoSublinSPIR.Init

Global parameters and functions.

– Computational security parameter 1k.
– Pseudorandom function Fr : {0, 1}∗ → {0, 1}∗, where r ∈ {0, 1}k. The input and output length will be understood

from the context.

Init.S1. On input (N,K, δ,A′, Γ), the Server S1 does the following:

1. Pick a random PRF key r ∈ {0, 1}k.
2. Generate the masked array B defined by B[i] = A′[i]⊕ Fr(i) for i ∈ ZN+δ.
3. Send N,K, δ,B to S2 and N,K, δ, Γ to C.

Init.C. Store the values N,K, δ, Γ received from S1. Initialize a counter q to 0.
Init.S2. Store the values of N,K, δ,B received from S1. Initialize list IH to ∅.

Fig. 18. The initialization phase ΠSisoSublinSPIR.Init for the functionality SisoSublinSPIR

Simulator for S1. Since S1 does not get any messages (in the hybrid model), simulating S1 is
trivial.

Simulator for C. Other than learning N,K, Γ (which are allowed by the leakage), C learns nothing:
the message it receives from the SisoPRF oracle in Step 7 is uniformly distributed, independently of its
input and randomness.

Simulator for S2. In the initialization phase, S2 gets a PRF-masked copy of the database A′.
Given the leakage N,K, δ this can be simulated (up to computational indistinguishability) by picking
a random database. In the q-th invocation of the query phase, 1 ≤ q ≤ δ, S2 learns in Step 4 an index
i′ which either satisfies i′ = x+ y if x+ y occurs for the first time as the sum of the inputs, or i = dq
otherwise. This is precisely the leakage of the ideal functionality. Starting from invocation δ, Step 1
reveals to S2 the input x of C, which is also allowed by the leakage of the ideal functionality. All other
messages received by S2 in Steps 4,6,7 are random. ut

B Implementation and Benchmarking

We implemented our protocol in C and C++ targeting a POSIX environment. In our implementation,
we transmit all information over TLS, thus reducing the leakage to the network to just the size of

18

Protocol ΠSisoSublinSPIR.Query

1. If q ≥ δ:
– C lets βC = 0K and sends (BufferFull, x) to S2.
– S2 lets βS2 = B[x+ y].
– Jump to Step 7.

2. C increments q.
3. C picks a random bit newC and random strings bC, βC ∈ {0, 1}K .
4. Parties invoke the MPC oracle for the following computation on inputs (x, IH) from S2 and (y, dq, newC, bC) from C:

– Let i = x+ y.
– If i does not occur in IH let i′ = i and b = 0K , and set the flag new to 1;

else let i′ = dq, fetch (i, b) from IH and set the flag new to 0.
– Return to S2 the index i′, the bit newS2 = newC ⊕ new, and the string bS2 = bC ⊕ b.

5. S2 lets b′ = B[i′] and inserts (i′, b′) into IH.
6. Parties invoke the MPC oracle for the following computation on inputs (newS2, b

′, bS2) from S2 and (newC, bC, βC) from
C:

– If newS2 ⊕ newC = 1 let β = b′ else let β = bS2 ⊕ bC.
– Return to S2 the string βS2 = βC ⊕ β.

7. Parties invoke SisoPRF with inputs (N + δ,K, r) from S1, input x from C, and input y from S2. Let YC and YS2 denote
the outputs.

8. C outputs YC ⊕ βC and S2 outputs YS2 ⊕ βS2.

Fig. 19. The query phase ΠSisoSublinSPIR.Query for the functionality SisoSublinSPIR in the (SisoPRF,MPC)-hybrid model

communication. Our tests were run on a desktop machine running inside a Ubuntu 12.04 LTS virtual
machine with 8GB of RAM and 4 cores of an Intel i7-2600K 3.4GHz CPU assigned to it. Our testing
focused on testing each of the cryptographic components of our solution, as well as the overall solution.
We tested the main components: Oblivious Transfer, Shared-input-shared-output PIR, and secure node
search, in both their online and offline (when applicable) phases. We also tested our setup phase for
building the main database. We summarize our results as follows:

Processing a database from CSV to our format takes roughly 6ms per record, and then another 6ms to
encrypt. Building the PPDS B-tree is much quicker, taking around 1 microsecond per record for each
indexable column.

For online processing, we find that the dominant cost is in the usage of PIR. The generation of PIR
instances can be done independent of the data size, only the number of elements, but the consumption
of PIR depends on the data size. For 64-bit data and 64-bit pointers, a single instance PIR takes roughly
0.9 seconds when accessing something on the order of the leaf layer of a B-tree (100 million divided by
the branching factor), though generating such an instance only takes 3.5 milliseconds (again, due to the
fact that PIR generation is data-size independent). For OTs, since we only use them to transmit keys, we
test them on fixed sizes of 128 bits though varying the number of instances. It takes a few microseconds
to both produce and consume an instance of OT. Finally for secure nodesearch, we see that as the
element size grows the nodesearch time grows linearly, corresponding to roughly 100 microseconds per
bit of the data elements (and using 64-bit pointers). Overall it still takes much less than a second to
evaluate for all tested data sizes.

B.1 Offline Processing

CSV to DB. We start with a flat table in CSV format using records with typical personal data
(Name, DOB, etc.) and a medium sized payload field of 1 megabyte each and convert it into our
internal representation in Figure 20.

Encryption of DB. Once we have a formatted database, we then encrypt each record so that we
have an encrypted DB that will be sent to S2. Again, we run them on various collections of records in
Figure 21.

Building of B-trees. We build privacy-preserving B-trees for our solution. Below in Figure 22 is our
benchmarks in running time for generating a PPDS for data of 64-bit data, 64-bit pointers, branching
factor 128.

19

B.2 Online Processing

Oblivious Transfer. We time the generation of random OTs to be consumed. These are 1-out-of-2
OTs of strings of length equal to the size of an encryption key (AES key). We generate N of them in
batch at a time. These tests are performed over TLS over localhost, and presented in Figure 23. We
also time the consumption of these OTs in Figure 24. Again, they are consumed in batches of size N .

Shared-input-shared-output PIR. We time the generation of random PIRs to be consumed. Note
that these pre-generated PIRs do not depend on the sizes of the data elements, only the number of
elements. We generate N of them in batch at a time. Again, these tests are performed over TLS, and
presented in Figure 25.

We also time the consumption of these PIRs. We run PIR on elements of size equal to that of a node in a
B-tree, which is equal to two data elements and one pointer per branching factor: (2·64+64)·128 = 24576
bits. These are consumed one at a time, are performed over TLS, and presented in Figure 26.

Secure node search. We use an optimized Yao-style secure node search protocol. Here, we present
the time for execution on instances of various data element sizes presented in Figure 27.

Actual Queries and Comparison to MySQL. We set up a database of 10 million records, where
each record is roughly 0.5KB. We query the database using range queries that return roughly 1000,
10000, 50000, 100000, 250000, 500000, 750000, and 1 million records (which is 10% of the database).
The raw times are presented in Figure 28. We consider the relative multiplicative overhead, which
is presented in Figure 29. We see that although it starts off at over 100× due to fixed costs, it is
approaching a factor of 5× for reasonably large queries, though it appears to have considerable overhead
for smaller queries. It is apparent that this is due to our construction having additional fixed cost time
that dominates small queries, and can easily be seen when plotting a trend between our times and the
MySQL times. This is shown in Figure 30 along with the linear regression line showing a roughly 5×
slope.

Fig. 20. CSV to Database

20

Fig. 21. Encrypt Database

Fig. 22. Build Privacy Preserving B-tree

C Reduction to Range Queries

Other Query Types. A keyword search query q on a field Ai consists of a value s. The query returns
all records r where its field element xi contains s as a delimited keyword. A stemming search query q

21

Fig. 23. OT Generation

Fig. 24. OT Consumption

on a field Ai consists of a value s. The query returns all records r where its field element xi contains
some delimited keyword s′ such that STEM(s) = STEM(s′), where STEM is some publicly known
stemming algorithm, e.g. a stemming dictionary. A substring search query q on a field Ai consists of

22

Fig. 25. PIR Generation

Fig. 26. PIR Consumption

a value s. The query returns all records r where its field element xi contains s as an (initial, final, or
intermediate) substring.

23

Fig. 27. Secure Node Search using Yao-based MPC

Fig. 28. Actual Query Times

Reducing Query Types to Range Search. We first describe how to reduce all of our proposed query
types to range search: range/equality, keyword, stemming, and substring. To perform an equality search
on some term q, we simply perform a range search on [q, q]. For the fields with keyword and stemming,

24

Fig. 29. Relative Query Times

Fig. 30. Comparison To MySQL Trendline

we tokenize each word into keywords and stems (for stemming, we use the Porter stemming algorithm
to demonstrate functionality, though any stemming algorithm/dictionary may be used in place of this),

25

then perform an equality search for the keyword or the stem of the keyword. For substring queries, we
have three types of substrings: initial (q%), final q%, and intermediate substrings (%q%).
We have some substring length bound C, and given a term x, we append C − 1 “initial” symbols and
“terminal” symbols to the start and end of x. E.g. If the search term is “Alice”, and our substring
bound is 4 then we make the term “###Alice$$$”. We then insert all size C substrings of that term
into our data structure. Then, to perform an initial search on up to C characters on some query q, we
pad q with sufficiently many # at the start to reach C characters and do an equality search. Similarly,
for a terminal search, we append $ at the end of q and do an equality search. For an intermediate query,
we perform a range search on [q0 . . . 0, q1 . . . 1] which is just the string q appended with all zeroes or all
ones at the end.

D Discussion of Applications

The solution is applicable in any scenario for secure and private database search that is in a three-
party setting, where one party acts as a “semi-trusted” third party helper server. We summarize a few
possible applications:

Secure Search. The main application is secure search, where one party holds sensitive data (hotel
reservations, “no-fly” list, etc.) and another party has sensitive queries against it. The third party in
this scenario is a neutral party agreed upon by both the data and query holders.

Private Forensics. Different entities may want to compare notes on data they collected from their own
internal security team (bugs, vulnerabilities, attack patterns, etc.). The third party can be a repository
for all the data, and each entity can query against it.

Data Collaboration. Different entities may want to collaboratively perform operations on their joint
data. Again, the third party can be a repository for all the data, and each entity can query against it.

Secure Remote Database. With the growing popularity of storing data remotely, we want a way to
do so privately when the data is sensitive. Here, the third party is the storage, and the Server can be
the same entity as the Client.

26

	Private Large-Scale Databases with Distributed Searchable Symmetric Encryption

