
A Formal Analysis of Prefetching in Profiled

Cache-Timing Attacks on Block Ciphers

Chester Rebeiro and Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur 721302, India

{chester,debdeep}@cse.iitkgp.ernet.in

Abstract. Formally bounding side-channel leakage is important to bridge
the gap between the theory and practice in cryptography. However,
bounding side-channel leakages is difficult because leakage in a crypto-
system could be from several sources. Moreover the amount of leakage
from a source may vary depending on the implementation of the cipher
and the form of attack. To formally analyze the security of a crypto-
system against a form of attack, it is therefore essential to consider each
source of leakage independently. This paper considers data prefetching,
which is used in most modern day cache memories to reduce the miss
penalty. To the best of our knowledge, we show for the first time that
micro-architectural features like prefetching is a major source of leakage
in profiled cache-timing attacks. We further quantify the leakage due to
important data prefetching algorithms, namely sequential and arbitrary-
stride prefetching. The analytical results, with supported experimenta-
tion, brings out interesting facts like the effect of placement of tables
in memory and the cipher’s implementation on the leakage in profiled
cache-timing attacks.

Keywords. quantifying information leakage, formal modeling, cache
memories, data prefetching, profiled cache-timing attacks

1 Introduction

A cache memory is a small high-speed memory that stores recently used data
and instructions. The time required to access data present in the cache (a cache
hit) is much lesser than when the data is not present in cache (a cache miss). In
modern systems, the number of cache misses is reduced by prefetching data into
the cache memory. However, not all cache misses are prevented and misses still
occur. The differential behavior between a hit and a miss is manifested through
side-channels such as timing, power, and electro-magnetic radiation.

In [21], it was prophesied that this non-uniform memory access behavior
can be used to attack crypto-systems that are implemented with look-up tables
stored in memory. The attack, which came to be known as cache attacks, was first
formulated and simulated in [27]. Subsequently the attack was demonstrated on
MISTY1 in [40] and extended to DES and 3-DES in [39]. AES was the next
target with attacks in [6], [7], and [26]. Subsequently there have been several
works that have analyzed, enhanced, and provided countermeasures for cache
attacks.

Broadly, cache attacks can be classified into timing, trace, and access attacks.
Trace attacks [2, 7, 14, 15, 29] require profiling of cache access patterns during en-
cryption. Traces are generally obtained from power or electro-magnetic radiation

measurements and require sophisticated measuring equipment. Access driven at-
tacks [25, 26, 28, 38] rely on spy processes to gain information about the cache
access patterns of the cipher. Timing attacks such as [6, 8, 10, 30, 39, 40], on the
other hand just require knowledge of the overall execution time of the cipher.
Compared to trace attacks, timing measurements can easily be made. Moreover,
unlike access attacks that are restricted to multi-user environments, timing at-
tacks can target a wide range of platforms. These reasons, along with the threat
that timing attacks may be mounted over the network [4, 9, 12], make timing
attacks an important security concern.

Of all timing attacks, profiled cache-timing attacks are the most portable.
These attacks do not require prior knowledge about the device architecture,
however they assume a powerful adversary, who is capable of loading a key into
the cryptographic device. Profiled attacks have two stages : a learning phase
followed by an attack phase. In the learning phase, a template timing profile
is generated for a known key. During the attack phase, a timing profile for the
unknown key is generated. The two profiles are statistically correlated to yield a
small set of candidate keys. Profiled cache-timing attacks were demonstrated on
AES in [6] and CLEFIA in [30]. The reason for profiled cache-timing attacks to
work is the variations in the encryption time [6, 10, 24]. These variations lead to
information leakage that depends on the microprocessor architecture, operating
system, and the cipher’s implementation.

Formally bounding information leakage due to side-channels is important to
analyze the security of a crypto-system. The first attempt to achieve this was in
[23], where a model for physical observable cryptography was proposed. However
the generality of the model made it impractical to implement. Simplifications
using information theory and mutual information were introduced in [35] and
[16]. Profiled side-channel attacks were also formally analyzed in [11, 31, 34].
The models introduced so far either generalized the leakage or approximated
the leakage by hamming weights or distances. However, leakage is a function of
several parameters and the magnitude of leakage of each parameter may differ.
This is especially true for software implementations of ciphers, where leakage is
influenced by numerous system specific parameters such as the branch prediction
algorithm [3], hyperthreading [28], technology of the memory used [17], and
cache architecture. Hamming weight or distance models will not apply in most of
these cases. Depending on the type of cipher, its implementation, and the type
of attack, the leakage contribution of each parameter may vary. For example,
leakage from branch prediction is higher for public key ciphers compared to block
cipher. For timing attacks on block ciphers implemented with look-up tables, the
leakage from cache memories is the most dominant. To build provably secure
crypto-systems, it is important to pinpoint the causes of leakage and quantify
the amount of information leaked from each source. For timing attacks on block
ciphers, a model for the leakage from cache memories was made in [37]. The
work related leakage to the number of cache misses that occurred during the
encryption. The cache memory modeled was that of a classical cache and did
not consider the advanced techniques that reduce miss-penalty. Our work shows
that the model proposed in [37] would fail for profiled cache-timing attacks. For
such attacks, the leakages in cache memories are due to the micro-architectural
acceleration techniques implemented in caches. Also, as stated earlier, each of
these micro-architectural components have different amounts of leakage. The
contributions of this work are as follows.

– We consider the leakage due to data prefetching in profiled cache-timing at-
tacks. We show that the information leaked due to prefetching depends on
several factors such as the size and number of look-up tables used in the
cipher’s implementation. We analyze the leakage of two prefetching algo-
rithms : sequential and arbitrary-stride prefetching [42]. These algorithms
or their variants are used in most modern day microprocessors.

– Unlike [37], where the mathematical models developed for cache misses were
for classical cache memories, our models also consider data prefetching. We
formally analyze the number of cache misses during an encryption in presence
of the aforementioned prefetching algorithms.

– We propose a mathematical model to analyze the information leakage in a
profiled cache-timing attack. The leakage, denoted D, is derived using the
Kullback-Leibler divergence [22]. We use D to study the effect of sequential
and arbitrary-stride prefetching algorithms with different implementations
of the cipher. To the best of our knowledge this is the first work which quan-
titatively analyzes the effect on security of a micro-architectural component
of a computer.

The paper is organized as follows: Section 2 has the preliminaries about cache
memories, block ciphers, and profiled cache-timing attacks. Section 3 lays the
foundations and assumptions for the formal analysis. This section shows why en-
cryption time can be analyzed in terms of the number of cache misses. Section 4
presents the mathematical models for the number of cache misses in presence
of the two considered prefetching styles. Section 5 presents the model for ana-
lyzing profiled cache-timing attacks by using cache misses. The section also has
empirical validations of the cache models developed. A formal model for profiled
cache-timing attacks is presented in Section 6. An analysis of profiled cache-
timing attacks for different implementation strategies is explained in Section 7
using the previously developed model. Other aspects influencing cache-timing
attacks such as noise in measurements and leakages other than prefetching is
presented in Section 8. The final section summarizes the work and presents po-
tential future directions.

2 Preliminaries

In this section we first give a brief introduction about cache memories and
prefetching. Then we describe a block cipher’s structure from the cache attack
point of view. We then describe formally the profiled cache-timing attack.

2.1 Cache Memories

Caches are high-speed memories, which are incorporated in computer architec-
ture to reduce the memory access time. In systems that use cache memories, the
main memory is divided into blocks referred to asmemory blocks, while the cache
is organized as cache lines. When a cache miss occurs, a block of memory gets
loaded into a cache line. Unless evicted, all subsequent accesses to that memory
block results in cache hits.

A cache miss has considerable overhead compared to a cache hit. On an Intel
Core 2 Duo for example, it was found that a cache miss in the L1 data cache
takes approximately 10 clock cycles more than a cache hit. To reduce this over-
head, modern caches incorporate several techniques such as pipelining, paral-
lelization, non-blocking, out-of-order loading, multiple-banks, critical word first,

Algorithm 1: SP : Sequential Prefetching Algorithm
Input: The access to memory block at address ti
begin1

if (ti not in cache) or (ti was prefetched and this is the first access to ti) then2

if ti+1 not present in the cache then3

prefetch ti+14

end5

end6

end7

Algorithm 2: AP : Arbitrary-stride Prefetching Algorithm
Input: Address of instruction (IA), Address of memory block accessed (ti)
begin1

prefetch flag ← false2

if first access to IA then3

stride(IA)← 0 ; state(IA)← 14

else5

switch state(IA) do6

case 17

state(IA)← 28

stride(IA)← ti − lastaccess(IA)9

end10

case 211

if stride(IA) = ti − lastaccess(IA) then12

prefetch flag ← true13

else14

stride(IA)← ti − lastaccess(IA)15

end16

end17

end18

if prefetch flag = true and ti+stride(IA) is not present in cache then19

prefetch ti+stride(IA)20

end21

lastaccess(IA)← ti22

end23

end24

early restart, and prefetching [19, 20]. Of all micro-optimizations, only prefetch-
ing works to reduce the number of cache misses. All other techniques reduce the
overhead of the cache miss on the application’s performance.

Prefetching : A prefetcher anticipates cache misses and fetches data from the
memory before the processor requests for it. The prefetch is either invoked by
the program (software prefetching) through explicit microprocessor instructions
or gets triggered automatically (hardware prefetching). With respect to cache-
attacks, software prefetching is of less concern as block cipher implementations
do not generally use explicit prefetching instructions.

There are several techniques to decide ‘when’ and ‘how’ a hardware prefetch
happens. Each technique has its own set of advantages and disadvantages and
is generally suited to a particular class of applications. Broadly, the techniques
are classified into two : sequential prefetch and arbitrary-stride prefetch [41, 42].

– Sequential Prefetch (SP) : A popular sequential prefetch algorithm is the
tagged prefetch algorithm [41, 42]. The algorithm (described in Algorithm 1)
triggers the prefetch for the adjacent memory block whenever it detects a
cache miss or when a prefetch block is accessed for the first time. A variant
of this algorithm, known as prefetch-on-miss, is used on some Intel platforms
[18].

– Arbitrary-stride Prefetch (AP): [41, 42] This form of prefetching is also
known as data prefetch logic and hardware prefetching on Intel platforms

p1 p2 p3

k1 k2 k3

S1 S2 S3

a1 a2 a3

S1 S2 S3

Key Whitening

I Round

II Round

Sr

ar

pr

kr

Sr

ps − pt

Round Key Addition

Diffusion Layer

Round Key Addition

Diffusion Layer

Fig. 1. Iterative Block Cipher Structure

[18] and are applicable to programs that use loops. In this prefetching algo-
rithm, if a stride in the sequence of accesses from an instruction is detected,
then a prefetch to the next memory address gets triggered. Although there
are several forms of arbitrary-stride prefetching algorithms, we consider the
constant stride variant [5] described in Algorithm 2. In this algorithm, if a
stride is detected for accesses to memory locations ti, ti+d, and ti+2d from
the same instruction (IA), then the memory block ti+3d gets prefetched. The
locations ti, ti+d, and ti+2d form a valid sequence, while the stride, d, is the
constant difference between the sequence. The stride can be either positive
or negative, while the length of the sequence (denoted λ) is at-least 2.

2.2 Block Cipher Implementations

Figure 1 shows a typical structure of an iterated block cipher. The input (Λ)
to each round of the cipher can be partitioned into two sets : inputs which
undergo substitution (ΛS) and those that don’t (ΛN). For SPN networks such
as the AES specified in [13], ΛN = φ, while balanced and unbalanced Feistel
networks have |ΛS | = |ΛN | and |ΛS| 6= |ΛN | respectively [32]. In all cases, the
substitution transformations (S1, S2, · · · , Sr) is preceded by a round key addition
and followed by a diffusion layer.

Generalization of the Block Cipher Structure for Cache Attacks : Substitution
is normally implemented by s-box look-up tables. These s-box accesses are key-
dependent and are the main source of information leakage in cache attacks.
The number of tables, size of tables (in terms of memory blocks), and number
of accesses to a table vary from cipher to cipher and may also depend on the
platform of implementation. This paper quantifies the effects of these parameters
on the information leaked in profiled cache-timing attacks. Table 1 lists various
parameters which can be used to characterize the memory accesses of a cipher.
We define cipher model as a function of these parameters.

Table 2 gives the memory access characteristics for the block ciphers at-
tacked by profiled cache-timing attacks. The AES implementation attacked in
[6] considered the standard used in OpenSSL1 library distributions. Although

1http://www.openssl.org

Table 1. Memory Access Parameters of a Block Cipher

Γ : Number of tables used in the implementation
nmax : Number of key related look-ups per table during an encryption
γ : Number of rounds in the cipher
nγ : Number of key related look-ups per table per round
δ : Number of table elements sharing a cache line
l : Number of memory blocks that are required to hold a table
t1,t2, · · · , tl : The contiguous memory block locations that hold the table

Table 2. Memory Access Model of Ciphers Attacked using the Profiled Cache Timing
Attack

Γ nmax γ nγ l δ

AES 4 36 9 4 16 16
CLEFIA 2 72 18 4 4 64

the number of rounds for AES is 10, the last round is not considered in the
table as it uses a different look-up table. The implementation of CLEFIA [33]
attacked in [30] was the reference implementation2. The attack on both AES and
CLEFIA had a similar procedure. In the next part of this section we formally
present the steps involved in a profiled cache-timing attack.

2.3 Profiled Cache-Timing Attacks

Consider an SPN cipher, EK, having a secret key K and a structure similar to
Figure 1. The memory access parameters for EK are as shown in Table 1. The
secret key is chosen uniformly from the key set Kr and is split into r equal
parts as K = (k1|k2|k3| · · · kr). The block cipher function is EK : Pr → Cr. The
plaintext P ∈ Pr and ciphertext C ∈ Cr are also split into r parts (for example
P = (p1|p2|p3| · · · |pr) as seen in Figure 1). Each part of ki, pi, and ci are chosen
from the set K, P , and C respectively and assumed to be of m bits each.

Let a physical realization [23] of EK, denoted as ẼK, be on a computer with

cache memory. The side channel leakage of ẼK is in the form of timing information
(t). The goal of the side-channel adversary is to predict the key parts k1, k2, · · · ,
kr, from the timing information. We present the strategy for the profiled cache-
timing attack on the key part k1. The strategy described can be adopted for any
of the other key parts.

To find k1, the attack uses three phases : learning, attack, and finally analysis.
In the learning phase a known key K∗ = (k∗1 |k

∗
2 | · · · |k

∗
r) is considered and the

timing profile for k∗1 is constructed as shown in Algorithm 3. The inner loop in
the algorithm is generally executed around 216 times.

For a given value of p∗1, the algorithm invokes ˜EK∗(P∗) several times and
obtains the average encryption time (t) from the timing. The timing profile
returned consists of 2m average encryption times, which form the timing profile
for k∗1 for the known key denoted TP(k∗1).

During the attack phase, the key K# = (k#1 |k#2 | · · · k#r) is unknown. A tim-

ing profile (TP(k#1)) for k#1 is constructed in a similar manner. Since the first

2http://www.sony.net/Products/cryptography/clefia

Algorithm 3: Timing Profile for k∗1
Output: The timing profile for k∗

1

begin1

forall p∗1 ∈ {0, 1, · · · , 2
m − 1} do2

for Large number of times do3

p∗j
R
←− [0, 2m), where 2 ≤ j ≤ r ;4

P∗ = (p∗1|p
∗

2|p
∗

3| · · · |p
∗

r) ;5

(C∗, t)← ˜EK∗(P∗)6

end7

Compute AvgEncryptionT imek∗

1
[p∗1] from the timing obtained8

end9

return AvgEncryptionT ime10

end11

operation between p1 and k1 is ex-or (Figure 1), the average encryption times
satisfy the EIS (equal images under different sub keys) property [31]. This means

that for every p∗1 there exists a p#1 such that AvgEncryptionT imek∗

1
[p∗1] ≈

AvgEncryptionT ime
k
#
1
[p#1 ⊕ (k∗1 ⊕ k#1)]. Thus the TP(k#1) is a shifted version

of TP(k∗
1
) and the amount of shift is equal to (k∗1 ⊕ k#1). During the analysis

phase of the attack, this shift is extracted from the two timing profiles to reveal
the unknown key part k#1 . The aim of this paper is to estimate the amount of
information leaked in the timing profiles due to prefetching in cache memories.

3 Foundations and Assumptions

Profiled cache-timing attacks rely on the differences in encryption time of a ci-
pher’s execution. This paper analyzes these differences in terms of the number
of cache misses that occur during the encryption. In this section we first empir-
ically justify the fact that encryption time can in fact be analyzed from cache
misses for various cipher models. Further, the section also states our assumptions
about profiled cache-timing attacks. These assumptions are required in order to
formally model the attack.

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120 140

E
nc

ry
pt

io
n

T
im

e
(c

lo
ck

 c
yc

le
s)

Number of L1-Data Cache Misses

l=4
l=8

l=16
l=32

(a) Encryption Time

 20 40 60 80 100 120 140

F
re

qu
en

cy
 o

f O
cc

ur
an

ce

Number of L1-Data Cache Misses

l=4
l=8

l=16
l=32

(b) Distribution of Cache Misses

Fig. 2. Encryption Time and Distribution vs Number of Cache Misses on Intel Core 2
Duo

Relating Cache Misses and Timing : Figure 2(a) shows the variation in the en-
cryption time with the number of cache misses 3 for SPN cipher models (Figure
1) with different table sizes. All other parameters of the cipher models are identi-
cal with values nmax = 36, Γ = 4, γ = 9, nγ = 4, δ = 16. From the figure, there
is a linear relation between the execution time and the number of cache misses
for all cipher models. Therefore the cipher’s encryption time can be analyzed by
the number of cache misses. Figure 2(b) shows the frequency distribution of the
number of cache misses. The distribution is Gaussian irrespective of the table
size.

Assumptions about the Platform and the Attack : The formal models developed
in this work relies on the following assumptions on the attack and the attack
platform.

– The cache does not contain any information about the program at the start of
encryption. This assumption is valid as operations done after an encryption,
such as transmission or storage of the ciphertext is highly likely to overwrite
the cache contents. Thus each new encryption would start with a clean cache
[6, 24].

– We assume that during an encryption, data loaded into the cache is never
flushed out. This means that the execution of the cipher is independent of
other processes running concurrently in the system. Also, there are no con-
flicts for the cache from within the encryption process. While this assumption
holds for cipher models with tables much smaller than the size of the cache,
for larger tables there would be noise added to the timing due to conflict
misses. This noise makes it more difficult to attack.

– The s-box accesses that occur during the execution of a cipher are at ran-
dom locations and are independent of each other. This assumption is a basic
requirement of block ciphers.

– In profiled cache-timing attacks, the difference in cache misses between en-
cryptions is of concern. We assume that this difference in cache misses is
only due to the accesses to the s-box tables used in the implementation. Also,
we assume that the table accesses are not influenced by any other part of
the cipher’s execution.

For caches that support prefetching, the effectiveness of prefetching depends
on several system parameters such as the number of processing cores in the
system, system load, etc. In order to formally analyze the profiled cache-timing
attacks with prefetching we make a few assumptions. These assumptions are
optimistic, that is, in reality, systems incorporating the described prefetching
schemes would be less effective. The assumptions made are as follows:

– In practice, a trigger by the prefetcher does not imply that the memory block
would always get loaded into cache. The actual availability of the prefetched
block depends on several other factors such as the availability of system’s
resources, work-load of the processor etc. For example, in multi-core systems,

3The experiments were done on a 2.8GHz Intel Core 2 Duo machine with 32 KByte
L1 data cache. The measurements were made using Intel’s performance monitoring
events and Linux’s perfmon library. Since the figures show actual hardware measure-
ments, the number of cache misses is higher than what would otherwise be expected.
This is because of the spurious cache miss events that get counted during the measure-
ments.

the L2 cache is a shared resource, therefore prefetching will not occur unless
the L2 cache is available. In the model of the attack developed, however, it
is assumed that a prefetch trigger would always fetch a block of memory into
cache.

– In practice, the number of instructions the prefetcher can track is limited by
the size of the table [5] which tracks memory access streams. However we
assume that there is no such limit, and the prefetcher is able to track access
patterns in infinitely many streams.

It may be noted that the assumptions made are realistic, as later we show that
the theory developed based on them match the experimental results.

4 Mathematical Models for Cache Memory Accesses

In this section we develop mathematical models for the number of cache misses
that occur during the execution of a cipher. The cipher is viewed as having
Γ tables occupying l blocks each. Each table is accessed randomly nmax times
during the execution. Various cache models are considered, starting from the
classical cache memories to models which support sequential and arbitrary-stride
prefetching.

Probability of a Cache Miss in a Classical Cache : In the architecture of a
classical cache, a cache-miss results in a single block of data getting loaded into
the cache. All subsequent accesses to any location within that memory block
results in cache hits (ie. collisions). Consider a table T1, of size l, present at the
contiguous memory locations t1 to tl and is accessed at nmax random locations.
We determine the probability that the nth access to the table results in a cache
hit, where 1 ≤ n ≤ nmax. Let AC

l,n be a random variable which denotes the

outcome of the nth memory access. AC
l,n takes the value H when a cache hit

occurs and M when a cache miss occurs.

Theorem 1. The probability that the nth random access to table T1 results in a
cache hit is given by

Pr[AC
l,n = H] =

1

ln−1

n−2∑

i=0

(
n− 1

i

)
(l − 1)i (1)

Proof. Let the nth access be to the memory location tb (where 1 ≤ b ≤ l). For
AC

l,n to be a cache hit, tb should have been accessed at-least once in the previous

n−1 memory accesses. There are ln−1 different ways in which the previous n−1
memory accesses can be done. Out of these, the number of ways in which tb
gets accessed exactly j times is

(
n−1
j

)
(l− 1)n−1−j , and j varies from 1 to n− 1.

Theorem 1 follows. ⊓⊔

Corollary 1. The probability that the nth access to table T1 results in a cache
miss is given by:

Pr[AC
l,n = M] = 1− Pr[AC

l,n = H]

4.1 Probabilistic Models for Cache Memories with Prefetching

In a cache memory that supports prefetching, a cache hit can occur either if the
memory block being accessed collides with a previous access (the classical case)
or has been prefetched earlier (the prefetching case). Consider a cache having

some prefetching strategy P . Let the random variable AC,P
l,n denote the result of

the nth access to table T1. Then,

Pr[AC,P
l,n = H] =Pr[AC,P

l,n = H|collision] · Pr[collision]

+ Pr[AC,P
l,n = H|collision] · (1− Pr[collision])

(2)

The probability of a collision is given by Equation 1 and would certainly result
in a cache hit. The probability Pr[AC,P

l,n = H|collision] in Equation 2 depends

completely on the prefetching strategy used. Let AP
l,n denote a random variable

which takes the value H if and only if a cache hit in the nth access occurs
exclusively due to prefetching. Equation 2 can be rewritten as

Pr[AC,P
l,n = H] = Pr[AC

l,n = H] + Pr[AP
l,n = H] · (1− Pr[AC

l,n = H]) (3)

In this section we analyze the probabilities of a cache hit with two prefetch-
ing strategies : sequential prefetching and arbitrary-stride prefetching [5]. These
prefetching styles are common in modern processors.

Probability of a Cache Miss with Sequential Prefetching : For the prefetching al-
gorithm described in Algorithm 1 and under the assumptions made in Section 3,
the following observations can be made.

1. The first memory block in the table cannot be prefetched.
2. The last memory block in the table prefetches a block outside the boundary

of the table.

These observations have an effect on the cache miss probabilities as will be seen
in this section. Let AS

l,n be the random variable which takes the value H if

and only if a cache hit in the nth access to Table T1 occurs exclusively due to
sequential prefetching. In Equation 3, P is replaced with S.

Theorem 2. For the table T1, in a cache supporting sequential prefetching,

Pr[AS
l,n = H] =

l − 1

l
·

1

(l − 1)n−1

n−2∑

i=0

(
n− 1

i

)
(l − 2)i (4)

Proof. If T1 is the only table used in the cipher, then all blocks in the table
are prefetchable except the first block (ie. t1). Thus the fraction of prefetchable
blocks is (l − 1)/l.

Assume nth access is to memory block tb. Since a collision is not allowed, tb
cannot occur in the previous n − 1 memory accesses. Therefore, the only way
to obtain a hit is when the previous block, ie. tb−1, gets accessed at-least once.
Theorem 2 follows by counting in a similar manner as in Theorem 1. ⊓⊔

Probability of a Cache Miss with Arbitrary-Stride Prefetching : Let AA
l,n be

a random variable, which takes the value H if and only if a cache hit in the
nth access to table T1 occurs exclusively due to the arbitrary-stride prefetching
described in Algorithm 2. In Equation 3, P is replaced with A.

We see that the probability with which AA
l,n takes the value H depends on

the number of valid sequences occurring in the previous n− 1 memory accesses.
The valid sequences can have a positive or negative stride, which we respectively
call increasing sequence and decreasing sequence. The following lemmas present
different properties of the sequences.

Lemma 1. Let λ ≥ 2 be the minimum length of a valid sequence and tb (1 ≤
b ≤ l) be the memory block in table T1 that gets accessed in the nth memory
access (where n > λ). The number of valid increasing sequences for tb is

S+
b = ⌈(b− λ)/λ⌉

Proof. Assuming that only increasing sequences are possible, a prefetch of tb
requires a sequence of at-least λ accesses that have a constant stride. This se-
quence can take values from t1 to tb−1. The maximum stride possible is thus
dmax = ⌈(b− λ)/λ⌉. All strides between 1 to dmax (both inclusive) form exactly
one increasing sequence for tb. Thus S

+
b = dmax. ⊓⊔

As an example, consider b = 10 and λ = 3, then the valid increasing sequences
that can prefetch t10 are (t7, t8, t9), (t4, t6, t8), and (t1, t4, t7), thus S

+
b = 3.

Lemma 2. For the l sized table T1, the number of decreasing sequences for the
memory block tb is S−b = S+

(l−b+1).

Proof. For every valid decreasing sequence for tb of the form tb1 , tb2 , · · · , tbλ ,
there exists an increasing sequence tl−b1+1, tl−b2+1, · · · , tl−bλ+1 for the memory
block tl−b+1. ⊓⊔

Continuing the previous example, if l = 16, then there are 3 valid decreasing
sequences for t7 because S−7 = S+

10. These sequences are (t10, t9, t8), (t13, t11, t9),
and (t16, t13, t10).

Lemma 3. If tbi (1 ≤ i ≤ λ) is the ith element of a valid sequence for tb,
then for the pair tb and tbi at most one sequence is possible. Moreover, tb =
tbi mod (λ+ 1− i).

Proof. First Part : Assume, that two sequences are possible with tbi having
strides d1 and d2 respectively. Then, tb = (λ+1− i)d1 + tbi = (λ+1− i)d2 + tbi
Thus d1 = d2, and the two sequences are equal.

Second Part : If d is the stride of the sequence for tb containing tbi , then
|tb − tbi | = d(λ + 1− i). Thus tb = tbi mod (λ+ 1− i). ⊓⊔

In order to prefetch tb a valid sequence (either increasing or decreasing) for
tb should appear at-least once in (n− 1) memory accesses. Figure 3(a) shows a
valid sequence appearing in the 2nd, 3rd, and 4th memory accesses, which would
prefetch tb. Multiple valid sequences for tb can also appear as shown in Figure
3(b). The sequences may also overlap as seen in Figure 3(c) forming a chain of
sequences. For example, for t10 and λ = 3, a chain of length 1 is possible by the
cascade of the sequences (t1, t4, t7) and (t7, t8, t9). This is a chain of length 1
because there is one overlap region. In a similar manner there can be chains of
length greater than 1. The following lemma shows how many chains of length i
are possible.

1 2 3 4 5 6 7 8 9 n− 1 n

Valid Sequence for tb
tb

(a) Exactly one Valid Sequence is Present

1 2 3 4 5 6 7 8 9 n− 1 n

tbSecond Valid Sequence for tbFirst Valid Sequence for tb

(b) Two Valid Sequences are Present

1 2 3 4 5 6 7 8 9 n− 1 n

tbFirst Valid Sequence for tb Second Valid Sequence for tb

(c) A Chain of Length 1

Fig. 3. Arbitrary Stride Prefetch of tb Before the nth Memory Access to Table T1 (for
λ = 3)

Lemma 4. For tb, the number of chains of length i that are possible is

chain(b, λ, i, n) =

{
0 if n < λ+ (λ − 1)i
⌊S

+
b

λi

⌋
+
⌊S

−

b

λi

⌋
otherwise

Also, i < max(⌊logλ S
+⌋, ⌊logλ S

−⌋).

Proof. A chain of length i will have λ + (λ − i) elements. If the number of
accesses made, n, is less than λ + (λ − i), then no chains are possible. For any

two overlapping sequences (t
(1)
b1

, t
(1)
b2

, · · · , t
(1)
bλ

) and (t
(2)
b1

, t
(2)
b2

, · · · , t
(2)
bλ

), without

loss of generality t
(1)
b1

= t
(2)
bλ

and no other elements are common. This means
that an overlap can occur in exactly one location. This follows because if two
sequences overlap in more than one location then the strides would be equal. If
the strides of the cascaded sequences are d1 and d2 respectively,

t
(1)
b1

= t
(2)
bλ

tb − d1(λ) = tb − d2

d1λ = d2

If a third sequence of stride d3 is to be added; making a chain of length 2, then
d2λ = d3, thus d1λ

2 = d3. In a similar manner for i cascades,

d1λ
i = di+1 (5)

Since a stride can take values between 1 and dmax (both inclusive), for the chain
of length i, Equation 5 would hold for ⌊dmax/λ

i⌋ times. Moreover dmax = S+
b ,

therefore there are ⌊S+
b /λi⌋ possible chains of length i comprising of increasing

sequences and the maximum value of i is ⌊logλS
+
b ⌋.

An increasing sequence can never overlap with a decreasing sequence because
all elements in an increasing sequence are less than tb while all elements in a de-
creasing sequence are greater than tb. Thus increasing and decreasing sequences
have to be considered independently. The lemma follows. ⊓⊔

The number of ways to prefetch tb before the nth memory access can be
determined by counting the number possible n − 1 memory accesses without a
valid sequence for tb. If Vb,n−1 is the number of n − 1 memory accesses which
have at-least one valid sequence for tb and Ib,n−1 is the number of n− 1 memory
accesses which have no valid sequence for tb then

Vb,n−1 = (l − 1)n−1 − Ib,n−1

Lemma 5. For λ = 2 and the (n + 1)th memory access is to tb, the following
recurrence computes the value of Ib,n: Ib,0 = 1, Ib,1 = (l − 1), Ib,2 = (l − 1)2 −
(S+

b + S−b), and for n > 2,

Ib,n = (l − 1)Ib,n−1 − (S+
b + S−b)Ib,n−2

+

max(⌊log2 S
+
b
⌋,

⌊log2 S
−

b
⌋)∑

i=1

(−1)i+1 · Ib,n−2−i · chain(b, 2, i, n)

Proof. If n = 0 implies the first access is to tb, therefore Ib,0 = 1. For n = 1, all
memory accesses to table T1 are possible except the one which causes a collision.
Therefore Ib,1 = (l−1). For n = 2, there are (l−1) possible first memory accesses
and another (l− 1) possible second memory accesses. Ib,2 comprises of all those
pairs of accesses, which does not prefetch tb. That is, the first and second memory
accesses do not form a sequence which leads to tb. There are (S+

b + S−b) ways
such sequences can be formed, these are eliminated from (l − 1)2.

For n > 2, Ib,n is computed applying inclusion-exclusion. First, we include all
possible memory access sequences till (n−1) which does not prefetch tb, namely
Ib,n−1, along with all possible ways to access the nth memory access, namely
(l− 1). However, here we have included all possible memory accesses till (n− 2)
which does not prefetch tb, and the (n− 1)th and the nth memory access could
form a sequence. Hence the total number of cases which needs to be excluded is
Ib,n−1(S

+
b + S−b). But, while excluding this we have considered accesses, which,

till (n − 3)rd memory access did not prefetch tb, and the (n − 2)nd, (n − 1)st,
and nth memory access may form a chain which prefetches tb. This counts to
Ib,n−3chain(b, 2, 1, n). Likewise we continue till the maximum possible length of
chain. ⊓⊔

In a similar manner Ib,n, when λ = 3, can be obtained as shown in the
following recurrence: Ib,0 = 1, Ib,1 = (l − 1), Ib,2 = (l − 1)2, Ib,3 = (l − 1)3 −
(S+

b + S−b) and

Ib,n = (l − 1)Ib,n−1 − (S+
b + S−b)Ib,n−3

+
∑max(⌊log3 S

+
b
⌋,⌊log3 S

−

b
⌋)

i=1 (−1)i+1 · Ib,n−4−i · chain(b, 3, i, n) when n > 3

Theorem 3. The probability that the random variable AA
l,n takes the value H in

the nth access is given by

Pr[AA
l,n = H] =

1

l(l− 1)n−1

l∑

b=1

Vb,n−1 (6)

Proof. The nth memory access could be to l memory blocks. Each of these mem-
ory blocks can be prefetched in Vb,n−1 ways. Since, prefetching requires no col-
lision, therefore there are (l − 1)n−1 possible ways to do the first n− 1 memory
accesses. ⊓⊔

4.2 Conditional Probability Models for Cache Accesses

The probability of a cache miss in the nth memory access is altered if one of
the previous accesses is known. Let Tm be a random variable that denotes the
memory block that gets accessed in the mth access. Tm can take values t1 to tl.
In this part of the section we develop models to determine the probability of a
cache miss in the nth memory access given Tm.

In the classical model of the cache, the probability of having a cache hit in
the nth access is independent of the condition Tm (m < n). Therefore

Pr[AC
l,n = H

∣∣Tm] = Pr[AC
l,n = H]

Thus, for cache memories with some prefetching policy P , the conditional prob-
ability for a hit in the nth access can be represented in a similar way as in
Equation 3.

Pr[AC,P
l,n = H

∣∣Tm] =Pr[AC,P
l,n = H|collision, Tm] · Pr[collision|Tm]

+ Pr[AC,P
l,n = H|collision, Tm] · (1− Pr[collision|Tm])

=Pr[AC
l,n = H] + Pr[AP

l,n = H
∣∣Tm] · (1− Pr[AC

l,n = H])

(7)

As in the previous part of this section, we consider the sequential prefetching
and arbitrary-stride prefetching algorithms to determine Pr[AP

l,n = H
∣∣Tm] for

the l sized table T1. Our equations are for m = 1. Similar techniques can be
adopted for m > 1.

Conditional Probability of a Cache Miss with Sequential Prefetching : Let SP
be a function which returns the prefetched memory block (ie. SP (tb) = tb+1 for
1 ≤ b ≤ l). For sequential prefetching Pr[AS

l,n = H
∣∣T1] varies depending on the

value of T1. The following discussion explain this phenomenon.
When T1 = tl,

Pr[AS
l,n = H

∣∣T1 = tl] =
(l − 2)

(l − 1)n−1

n−2∑

i=1

(
n− 2

i

)
(l − 2)n−2−i (8)

For SP (tl), the block prefetched is outside the boundary of the table and has
no effect on the probability. Therefore, AS

l,n = H only if the required prefetch
occurs in the remaining n− 2 memory accesses. If Tn = SP (tb), then tb should
occur at-least once in the n − 2 accesses. This accounts for the summation in
Equation 8. Further, Tn can be prefetched only by l − 2 different values since

Tn 6= tl (as this would cause a collision with T1) and Tn 6= t1 (as t1 cannot be
prefetched).

When T1 6= tl,

Pr[AS
l,n = H

∣∣T1 6= tl] = Pr[AS
l,n = H|Tn = SP (T1)] · Pr[Tn = SP (T1)]

+ Pr[AS
l,n = H|Tn 6= SP (T1)] · Pr[Tn 6= SP (T1)]

(9)

There are two components in Equation 9.

– When Tn = SP (T1), it would certainly cause a cache hit. Also, since Tn

cannot have a collision with T1, it can only take l − 1 different values and
not l. Thus,

Pr[Tl,n = SP (T1)] =
1

l − 1

– When Tn 6= SP (T1). This happens with probability 1 − 1/(l − 1). A hit in
the nth access occurs if and only if Tn = SP (Ti) and 2 ≤ i ≤ n − 1. The
probability with which this happens is given by the following Equation.

Pr[AS
n = H

∣∣Tn 6= SP (T1), T1 6= tl] =
α

(l − 2)(l − 1)n−2

n−2∑

i=1

(
n− 2

i

)
(l−2)n−2−i

,where α is the number of prefetchable blocks.
◦ If T1 = t1 then Tn 6= t1 and Tn 6= t2. Thus, α = l − 2.
◦ If T1 6= t1 then Tn 6= T1, Tn 6= SP (T1), and Tn 6= t1. Thus, α = l − 3.

Conditional Probability of a Cache Miss with Arbitrary-Stride Prefetching : In
a cache supporting arbitrary-stride prefetching, a known value of Tm restricts
the number of valid sequences, thus altering the probability of a cache miss in
the nth memory access (m < n). For example if λ = 2 and T3 = t10, then from
lemmas 1 and 2, the number of valid increasing sequences for t10 is 4. They are
(t2, t6), (t4, t7), (t6, t8), and (t8, t9). However, if T1 is fixed to t2 then only one of
these sequences is possible thus reducing the probability that t10 gets prefetched.
We now determine the probability of a hit due to prefetching when m = 1. This
is given by,

Pr[AA
l,n = H|T1] =

1

l − 1

∑

b∈{1,2,3,··· ,l} and tb 6=T1

Pr[AA
l,n = H|T1 and Tn = tb]

Depending on the value taken by T1, the probability of prefetching tb in the nth

memory access would vary.

– If T1 = ta and ta 6= tb mod λ then by Lemma 3 no valid sequence can be
present at T1. Thus, tb can be prefetched only due to a valid sequence present
in the remaining n− 2 memory accesses. Therefore,

Pr[AA
l,n = H|T1 = ta, Tn = tb and ta 6= tbmodλ] =

Vb,n−2
(l − 1)n−2

– If T1 = ta and ta = tb mod λ then at-most one valid sequence may be present
at T1 (by Lemma 3). Consequently, the number of chains that can be formed
for b is reduced. For example, for λ = 2 and T4 = t10, the number of chains
of length 1 that can be formed is 2, they are ((t2, t6) and (t6, t8)) and ((t6, t8)

and (t8, t9)). If T1 = t2, then only one of these chains is possible. For the
conditional case, we call the number of chains for b as chain′. The number
of chains of length i is given in the following equation,

chain′(b, a, λ, i, n) =





chain(b, λ, i, n) if n > λ+ (λ − 1)i
1 if n = λ+ (λ − 1)i and d|λi

0 otherwise

In the equation, d is the stride for the sequence at T1; (d = (b− a)/λ). The
equation uses the property that a chain of length i is only possible if d|λi.
The chain would have a length λ+(λ−1)i. From the equation for chain′, we
see that n plays a crucial role in determining the number of chains of length
i. Specifically, if n = λ+ (λ− 1)i, then the number of elements in the chain
is equal to the number of memory accesses made, therefore the first element
of the chain must coincide with T1, which is fixed at ta. Thus only one chain
is possible. For n > λ+(λ−1)i, the chain does not have to coincide with T1,
thus all possible chains for b are applicable. This is given by chain(b, λ, i, n).
Let I ′b,a,n be the number of ways memory accesses can be done in which
T1 = ta, Tn+1 = tb, and there are no valid sequences for tb in the preceding
n memory accesses, ie. tb is not prefetched. For λ = 2, I ′b,a,n is given by the
following recurrence: I ′b,a,0 = 1, I ′b,a,1 = 1, I ′b,a,2 = (l − 2), and

I ′b,a,n = (l − 1)I ′b,a,n−1 − (S+
b + S−b)I ′b,a,n−2

+
∑

max(⌊log2 S
+
b
⌋,

⌊log2 S
−

b
⌋)

i=1 (−1)i+1 · I ′b,a,n−2−i · chain
′(b, a, 2, i, n) when n > 2

Similarly for λ = 3, the recurrence for I ′b,a,n is I ′b,a,0 = 1, I ′b,a,1 = 1, I ′b,a,2 =

(l − 1), I ′b,a,3 = (l − 1)2 − 1, and,

I ′b,a,n = (l − 1)I ′b,a,n−1 − (S+
b + S−b)I ′b,a,n−3

+
∑

max(⌊log3 S
+
b
⌋,

⌊log3 S
−

b
⌋)

i=1 (−1)i+1 · I ′b,a,n−4−i · chain
′(b, a, 3, i, n) when n > 3

The probability of a cache hit in the nth access due to prefetching in this
case is

Pr[AA
l,n = H|T1 = ta, Tn = tb and ta = tbmodλ] = 1−

I ′b,a,n−1
(l − 1)n−2

4.3 Effect of Table Placement in Memory

The placement of tables in memory has an effect on the probability of obtaining
a cache hit. There are two factors in the table’s placement that influences the
cache hit probability.

– The boundaries of prefetching
– The relative placement of the tables

Boundaries of Prefetching Some prefetchers are limited by prefetching bound-
aries in the memory. For example, the arbitrary-stride prefetching feature in In-
tel microprocessors can only prefetch within a memory page (4096 bytes) [20].
This means that even though a valid sequence appears in the memory accesses,

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Prefetch Visibility

of l′ blocks

Prefetch Visibility

of l − l′ blocks

l′

l

l − l′

(a) Table Spread Across Bound-
ary

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T1

T2

T3

V
is
ib
il
it
y
o
f
C
la
ss
ic
a
l
C
a
ch
e

V
is
ib
il
it
y
o
f
S
eq
u
en
ti
a
l
P
re
fe
tc
h

V
is
ib
il
it
y
o
f
A
rb
it
ra
ry
-S
tr
id
e
P
re
fe
tc
h

(b) Tables Placed Side-by-Side

Fig. 4. Prefetch Visibility for Look-up Tables

prefetching will not occur if the memory block to be prefetched is in another
page.

In order to determine the effect of prefetching in a table split between two
memory pages, the part of the table in each page can be considered as an inde-
pendent entity. Figure 4(a) shows a table of l memory blocks spread across two
memory pages with l′ memory blocks in one page and l − l′ blocks in another.
Since accesses to a table in a cipher is uniformly random, each part of the table
gets a fraction of the accesses that is proportional to its size. For some prefetch-
ing scheme P , the probability that the nth memory access results in a cache hit
due to a prefetched data is given by

Pr[AP
l,n = H] ≈

l′

l
P r[AP

l′,⌊nl′

l
⌋ = H] +

(
1−

l′

l

)
Pr[AP

(l−l′),n−⌊nl′

l
⌋ = H]

,where A
l′,⌊nl′

l
⌋ and A

(l−l′),⌊n(l−l′)
l
⌋ are the random variables denoting the out-

come of the prefetching in each part of the table.

Relative Placement of Tables If a cipher is implemented with multiple tables
and executed on a system with a classical cache architecture, an access to one
table does not affect the probability of a hit in another table. However in cache
architectures supporting prefetching, it is possible for memory accesses in one
table to prefetch blocks of memory in another.

Figure 4(b) shows the ability (visibility) of a cache strategy to load blocks
from other tables. Tables T1, T2, and T3, are assumed to be placed side-by-side
in memory. For sequential prefetching, an access to the last memory block of
one table may prefetch the first memory block of an adjacent table. Similarly,
with the arbitrary-stride scheme, sequences may occur which would prefetch a
memory block from any of the other tables. As seen in Figure 4(b) arbitrary-
stride prefetching has the maximum visibility, however its effect on information
leakage is less compared to sequential prefetching (as will be seen in Section
7). Therefore in this section we restrict discussion to sequential prefetching in
multiple tables.

Consider that all the three tables in Figure 4(b) have l memory blocks and
that they are accessed consecutively. That is, every access to the table T1 is

followed by an access to the table T2 and then T3. The random variable A
[j],C,S

l,n

denotes the outcome of the nth memory access to table Tj for a cache with se-

quential prefetching policy. The random variable T
[j]
n denotes the memory block

accessed in the nth memory access of table Tj . This can take values t
[j]
1 , t

[j]
2 , · · · t

[j]
l .

Since probability of a collision is independent of the number of tables used
we obtain the following relation, which is similar to Equation 3.

Pr[A
[j],C,S

l,n = H] = Pr[AC
l,n = H] + Pr[A

[j],S
l,n = H] · (1− Pr[AC

l,n = H]) (10)

Pr[A
[j],S
l,n = H] is the probability of a cache hit in the nth access due to prefetch-

ing. For sequential prefetching this is given by the following lemma.

Lemma 6. For j > 1,

Pr[A
[j],S
l,n = H] = Pr[AS

l,n = H] +
1

l
· Pr[t

[j−1]
l gets accessed]) (11)

If all accesses to Tj−1 are random then Pr[t
[j−1]
l gets accessed] = 1−((l−1)n/ln)

and if T
[j−1]
1 = t

[j−1]
l then this probability is 1. For j = 1, Pr[A

[1],S
l,n = H] =

Pr[AS
l,n = H]

Proof. For T1, just as in a single table, the first memory block cannot be prefetched
(from the first observation Section 4.1). For tables Tj (j > 1), which are placed

after another table, the first memory block t
[j]
1 , can be prefetched by the last

memory block of the previous table (ie. t
[j−1]
l). The probability of t

[j]
1 getting

accessed in the nth memory access of tj is 1/l and the probability that this access

results in a cache hit is equal to the probability with which t
[j−1]
l gets accessed

at-least once in n memory accesses. ⊓⊔

When a condition is applied to one of the tables, it affects the outcome of
the neighboring table’s memory accesses. Table 3 summarizes the conditional
probabilities for the nth access in the three tables. To simplify notations in the
table, Pr[X = H] is simply represented as Pr[X].

Table 3. Conditional Probabilities for Sequential Prefetching in Three Tables (T1, T2
T3) Placed Side-by-Side

condition Pr[A
[1],S
l,n

∣

∣condition] Pr[A
[2],S
l,n

∣

∣condition] Pr[A
[3],S
l,n

∣

∣condition]

T
[1]
1 = t

[1]
l Pr[AS

l,n

∣

∣T1 = tl] Pr[AS
l,n] +

1
l

Pr[AS
l,n] +

1
l
X1

(Equation 8) (Equation 11) (Equation 11)

T
[1]
1 6= t

[1]
l Pr[AS

l,n

∣

∣T1 6= tl] Pr[AS
l,n] +

1
l
X2 Pr[AS

l,n] +
1
l
X1

(Equation 9) (Equation 11) (Equation 11)

T
[2]
1 = t

[2]
l Pr[AS

l,n] Pr[AS
l,n

∣

∣T1 = tl] +
1
l
X1 Pr[AS

l,n] +
1
l

(Equation 4) (Equation 8,11) (Equation 11)

T
[2]
1 6= t

[2]
l Pr[AS

l,n] Pr[AS
l,n

∣

∣T1 6= tl] +
1
l
X1 Pr[AS

l,n] +
1
l
X2

(Equation 4) (Equation 9,11) (Equation 11)

T
[3]
1 = t

[3]
l Pr[AS

l,n] Pr[AS
l,n] +

1
l
X1 Pr[AS

l,n

∣

∣T1 = tl] +
1
l
X1

(Equation 4) (Equation 4,11) (Equation 8,11)

T
[3]
1 6= t

[3]
l Pr[AS

l,n] Pr[AS
l,n] +

1
l
X1 Pr[AS

l,n

∣

∣T1 6= tl] +
1
l
X1

(Equation 4) (Equation 4,11) (Equation 9,11)

X1 = (ln − (l − 1)n)/ln X2 = (ln − (l − 1)n−1)/ln

4.4 Estimating the Cache Miss Distribution

When a cipher is executed several times, the number of cache misses form a
distribution as seen in Figure 2(b). This distribution is normal and can be defined
by its expected value and variance. Further we see that the random variables
AC

l,n (for the classical cache) and AC,P
l,n (for caches with prefetching) form a

distribution of the number of cache misses in the nth access. For this section, we
generalize the notations AC

l,n and AC,P
l,n by Al,n. The expected number of cache

misses in the nth access is,

E(Al,n) = 0 · (Pr[Al,n = H]) + 1 · (Pr[Al,n = M])

= 1− Pr[Al,n = H]

and the variance of cache misses in the nth access is

V (Al,n) = (1− Pr[Al,n = H])− (1 − Pr[Al,n = H])2

= Pr[Al,n = H]2 + Pr[Al,n = H]

Let Mn be a random variable denoting the number of cache misses after n
memory accesses. Let the expectation and variance of Mn be denoted E(Mn)
and V (Mn). These are given by the recurrences,

E(Mn) = E(Mn−1) + E(Al,n)

and
V (Mn) = V (Mn−1) + V (Al,n) + 2 · Cov(Mn−1, Al,n)

While the variance for the classical cache can be correctly predicted, the
variance for the prefetching caches is approximated from that of the classical
case. The expectation can be correctly predicted in all cases.

If the cipher uses more than 1 table then the expected number of cache misses
in the cipher is simply the sum of each table’s corresponding expectation. If the
tables are placed so that accessing one table is independent of the others (for
example, the tables are placed in different memory pages), then the variance of
the number of cache misses is the sum of each table’s corresponding variance.
On the other hand if the accesses to the tables are not independent (example,
the tables are placed side-by-side) then the covariance between the cache miss
distributions of each table has to be considered.

5 Building Cache Profiles of a Block Cipher

In a profiled cache-timing attack, prediction of ki requires the timing profile for
ki to be built (Algorithm 3). From the discussion in Section 3, timing information
from a block cipher can be analyzed in terms of the number of cache misses during
the cipher’s execution. We therefore introduce the notion of a cache profile for
ki.

Definition 1. The cache profile for ki is the variations in the cache miss
distribution with respect to the value of pi when Algorithm 3 is computed.

Algorithm 4 shows the estimation of the cache profile for k1 and can be
modified to retrieve the other keys. The algorithm takes as input the number of
tables (Γ), the number of accesses per table (nmax) and the size of each table

Algorithm 4: Cache Profile for k1
Input: Ek(Γ, nmax, l), Prefetching Style (P), Location of tables
Output: The Cache Profile for k1 (CP(k1))
begin1

forall p1 ∈ {0, 1, · · · , 2
m − 1} do2

for n ∈ {1, · · · , nmax} do3

Compute the conditional probabilities of a cache hit in the nth
4

memory access in all Γ tables given T1 = p1.
end5

E[p1] = expected value of cache misses after nmax memory accesses6

V [p1] = variance of the cache misses after nmax memory accesses
end7

return The table of 〈E, V 〉8

end9

 57

 57.2

 57.4

 57.6

 57.8

 58

 58.2

 58.4

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(a) Classical Cache

 43.3088
 43.3089

 43.309
 43.3091
 43.3092
 43.3093
 43.3094
 43.3095
 43.3096
 43.3097
 43.3098
 43.3099

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(b) Arbitrary-Stride
Prefetching

 32

 32.5

 33

 33.5

 34

 34.5

 35

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(c) Sequential
Prefetching (SP)

 37.4

 37.6

 37.8

 38

 38.2

 38.4

 38.6

 38.8

 39

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(d) SP with Split Ta-
bles (l′ = 4)

 34.6

 34.8

 35

 35.2

 35.4

 35.6

 35.8

 36

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(e) SP with Split Ta-
bles (l′ = 6)

 33.6
 33.7
 33.8
 33.9

 34
 34.1
 34.2
 34.3
 34.4
 34.5
 34.6
 34.7

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(f) SP with Split Ta-
bles (l′ = 8)

 34.2

 34.4

 34.6

 34.8

 35

 35.2

 35.4

 35.6

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(g) SP with Split Ta-
bles (l′ = 10)

 36.8

 37

 37.2

 37.4

 37.6

 37.8

 38

 38.2

 38.4

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

(h) SP with Split Ta-
bles (l′ = 12)

 26

 27

 28

 29

 30

 31

 32

 33

 34

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

[1]
[2]
[3]
[4]

(i) SP with Tables
Side-by-Side

Fig. 5. Cache Profiles for k1 with Different Prefetching Styles and Γ = 4, l =
16, nmax = 36, δ = 16

(l) for the cipher EK. The algorithm also takes the prefetching style P used in
the cache memory, and the locations of the Γ tables in memory.

The cache profile returned by the algorithm comprises of a table with 2m rows
with each row consisting of a value of p1 and the corresponding distribution of the
number of cache misses that occurred during the encryption. Each distribution

Table 4. Comparison of Predicted and Empirical Distributions for the Cipher Model,
Γ = 1, l = 8, nmax = 36

Prefetching Style Predicted Distribution Empirical Distribution

Expectation Variance Expectation Variance

Classical Cache 7.934 0.0629 7.938 0.0591

Sequential Prefetching 4.492 0.6695 4.463 0.7302

Arbitrary-Stride Prefetching 7.734 0.2454 7.734 0.2622

is Gaussian (as seen in Figure 2(b)), therefore the table records the mean and
variance of the distribution.

Depending on the type of prefetching, the cache profile would vary for the
same cipher parameters. Figure 5 plots the cache profiles for k1 = 0 with various
prefetching styles and locations of the tables. The x−axis has the values of
p1 while the y−axis has the expected number of cache misses. Except for the
classical cache (Figure 5(a)), all other prefetching styles show a variation in the
expected number of cache misses during the encryption. In the arbitrary-stride
prefetching, the variations in the cache profile is very less, while the variations
are much more significant in the case of the sequential prefetching schemes.
Figures 5(d), 5(e), 5(f), 5(g), and 5(h) show how the cache profile with sequential
prefetching (5(c)) gets affected due to the tables placed across a prefetching
boundary. All cache profiles except (5(i)) assume that each table is not affected
by accesses to a neighboring table. Figure 5(i) shows cache profiles for each table
when the tables are placed side-by-side with T1 placed first followed by T2, T3,
and then T4. These variations in the cache profile aid an adversary in a profiled
cache-timing attack.

5.1 Validation of the Cache Models

To check the correctness of the mathematical models developed in this section, we
used the cache profiling tool Cachegrind 4. Cachegrind provides an ideal platform
for verification as most of the assumptions made in Section 3 are met. The source
code of Cachegrind was patched to support the prefetching algorithms described
in Algorithms (1) and (2). The predicted cache miss distribution was compared
with empirical results obtained from Cachegrind for various cipher (Figure 1)
and cache models. Table 4 shows a comparison of the distributions for various
prefetching styles. The cipher model used in the table has parameters Γ = 1,
l = 8, nmax = 36 with the accesses to the table at randomly chosen locations. The
cache modeled is direct mapped with δ = 32 and of size 16KB. The empirical
distributions were obtained after sampling 10, 000 executions of the cipher.
Figure 6 shows the cache profiles for key byte k1 obtained from Cachegrind and
the prediction for the same cipher and cache model. Both the table and the cache
profile show that the predicted distributions closely match empirical results. It
was also found that for reasonably large cache memories (> 4KB), the size of
the cache and the associativity have little impact on the distribution obtained.

4http://valgrind.org/docs/manual/cg-manual.html

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 0 50 100 150 200 250E
xp

ec
te

d
N

um
be

r
of

 C
ac

he
 M

is
se

s

p1

Predicted Cache Profile
Empirical Cache Profile

Fig. 6. Predicted and Empirical Cache Profiles for k1 for Cipher Model Γ = 1, l = 8,
nmax = 36

6 Formal Model for the Profiled Cache Timing Attack

Just as in the case of timing profiles used in a profiled cache-timing attack
(Section 2.3), the distribution of the cache misses for p1 also satisfies the EIS
property. Therefore for the known (K∗) and unknown (K#) keys,

CacheMissDistributionk∗

1
(p∗1) = CacheMissDistribution

k
#
1
(p#1 ⊕ (k∗1 ⊕ k#1))

This means that the cache profile for the unknown key (CP(k#1)) is a shifted
version of the cache profile of the known key (CP(k∗1)). It is this shift that leaks
information about the secret key from the cache profile.

The cache profile CP(k1) comprises of 2m distributions corresponding to each
value of p1. Let the ith distribution be called Fk1,i for (0 ≤ i ≤ 2m − 1). In the
cache profile with a classical cache (Figure 5(a)), all 2m distributions are equal,

therefore a shift between the profiles CP(k#1) and CP(k∗1) is not observable and
no information is leaked.

Consider the cache profile in Figure 7(a) in which all 2m distributions are
the same except for one. The deviating distribution being Fk1,µ . The shift in
the profile is observable with an error whose standard deviation is say e. The
magnitude of the error depends on the amount of deviation of Fk1,µ compared to
the other distributions. For example, the measurement of shift in the cache profile
in Figure 7(b) would have higher error than that of Figure 7(a). If there are more

L
ea

ka
ge

L
ea

ka
ge

shift
p1

p1

(a) Single, Large Devi-
ating Distribution

shift

L
ea

ka
ge

L
ea

ka
ge

p1

p1

(b) Single, Small Devi-
ating Distribution

shift shift

L
ea

ka
ge

L
ea

ka
ge

p1

p1

(c) Multiple Deviating
Distributions

Fig. 7. Cache Profiles with Single or Multiple Deviating Distributions

variations in the distributions such as in Figure 7(c), then the error in deducing
the shift would reduce. In general, if there are N variations in a cache profile then
the standard deviation of the mean measurement would approximately reduce
to e√

N
[36]. Thus, the uncertainty of the key k#1 can be analyzed in terms of the

variations in a cache profile.

Quantifying Information Leakage : The variations in the cache profile is mea-
sured by the distances between the distributions. The symmetric version of the
Kullback-Leibler (KL) divergence [22] is used for this purpose. Equation 12 com-
putes the symmetric KL divergence between two distribution Fk1,i and Fk1,i′

.

D(Fk1,i , Fk1,i′
) = D(Fk1,i ||Fk1,i′

) +D(Fk1,i′
||Fk1,i) (12)

, where

D(Fx||Fy) =
∑

j

Fx(j) log
Fx(j)

Fy(j)

The index of the summation, j, ranges from the minimum to the maximum
number of cache misses. The minimum number of cache misses is 1 corresponding
to the first compulsory miss in the table. The maximum number of cache misses
is either n (the number of table accesses) or l (the number of memory blocks
required by the table), whichever is greater.

To compute the total information leakage (D(CP(k1)) for the cache profile for
k1, the value of D(Fk1,i , Fk1,i′

) is added for every possible pair of distributions.
Therefore,

D(CP(k1)) =
∑

∀pairs of
i and i′,i6=i′

D(Fk1,i , Fk1,i′
) (13)

7 Analysis of Information Leakage

There are two parts in Equation 13: (a) the Kullback Leibler divergence and (b)
the summation over all pairs of distributions in the cache profile. The Kullback
Leibler divergence is zero when i and i′ fall in the same cache line, leading to
an uncertainty in detection of shifts in the cache profile. For information to
be leaked, at-least one pair of i and i′ from different cache lines should have a
non-zero divergence. Higher the value of the divergence implies more information
getting leaked. The summation in Equation 13 quantifies the case when the cache
profile has more variations in the distributions. This leads to more information
leakage.

As the size of the table (l) increases, it was found that the Kullback Leibler
divergence due to prefetching reduces. On the other hand the contribution of
the summation in Equation 13 increases. In some cache configurations, the di-
vergence is more pronounced thus leading to a decrease in leakage as l increases.
In other cache configurations, the leakage increases with l due to the increase
in the number of terms summed in Equation 13. Figure 8 shows the variation
in leakages for various configurations as the size of the table(s) increases. From
the figures we see that caches with sequential prefetching (Figure 8(b)) fall in
the former category with prominent divergence. The arbitrary-stride prefetching
falls in the latter category where the leakage reduces with an increasing l. Also,
from these figures, it is seen that the sequential prefetching has much larger
leakage than arbitrary-stride prefetching.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

Le
ak

ag
e

Size of Table (l)

λ = 2
λ = 3

(a) Arbitrary-Stride Prefetching
(Γ = 1)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Le
ak

ag
e

Size of Table (l)

Γ = 1
Γ = 2

(b) Sequential Prefetching (SP)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Le
ak

ag
e

Size of Table (l)

Tables Side by Side
Tables Placed Independent

(c) SP with Relative Positions of Ta-
bles (Γ = 2)

 10

 100

 1000

 20 30 40 50 60 70 80

Le
ak

ag
e

Table Split Percentage

Γ=2 Split
Γ=2 Not Split

(d) SP with Split Tables (l = 16,
Γ = 1)

Fig. 8. Leakage for k1 with Various Configurations as the Table Size Increases (nmax =
36)

Figure 8(b) shows that the leakage reduces as the number of tables (Γ)
increase. Moreover, if the tables are placed side-by-side (Figure 8(c)), there is a
further reduction in leakage. Figure 8(d) shows an increase in leakage when the
table is split between prefetching boundaries.

We summarize the results as follows:

– For sequential prefetching, large tables have less leakage due to prefetching
compared to small tables.

– For the arbitrary-stride prefetching, large tables leak more than small tables.
However the magnitude of leakage is several times smaller compared to the
sequential prefetching scheme.

– Larger number of tables in the cipher would result in lesser information
leakage in profiled cache-timing attacks.

– Tables in which accesses are dependent on other tables have less leakage
compared to tables in which the accesses are independent of other tables.

– Split tables have a higher leakage, and the more unequal the split, the larger
the leakage.

8 Practical Aspects in Timing Profiles

In this section we discuss variations in timing profiles obtained during the exe-
cution of Algorithm 3. The difference td between any pair of distributions in the
resulting timing profile can be represented by the equation,

td = tc + to + tn

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35

V
ar

ia
tio

ns
 in

 T
im

in
g

P
ro

fil
e

Size of Table (l)

Fig. 9. Variations in D for Timing Profiles as l increases on an Intel Core 2 Duo with
Γ = 4, nmax = 36

There are three contributing components in td. The component tc denotes the
variation due to cache misses between the distributions. This is the variation
formally analyzed in the previous sections. Besides cache misses, other factors
could also cause differences in the timing. This is represented by to. Some of
these factors have been discussed in [6]. These contributory factors include, for
example, memory reads taking longer time under certain conditions. The com-
ponents tc + to in td result in information leakage, while the third component tn
is due to noise, which makes attacking the system more difficult.

The noise can be categorized into two: frequently occurring (tnf) and spo-
radic (tns). Therefore tn = tnf + tns. Reasons for frequently occurring noise
in the measurements could be several such as stalls in the processor owing to
pipelines or buffers getting full. Generally these events affect all distributions
in the timing profile to an equal extent therefore their effect gets canceled out
when the difference between distributions is taken (so, tnf = 0). Sporadic noise
occur rarely during the execution but are of much larger magnitude. Examples of
sporadic noise are due to TLB misses or page faults. Since this noise is sporadic,
they affect distributions by an unequal extent and their effect on the difference
of distributions cannot be canceled out (ie. tns > 0). Also, as the size of the
tables increase, tns (hence tn) also increases. For example, with an increase in
table size, TLB misses and pages faults are more likely.

To quantify the amount of variations in the timing profile, we use the same
metric as in Equation 13 but the distributions Fk1,i and Fk1,i′

in the equation
are timing and not cache misses.

D(TP(k1)) =
∑

∀pairs of
i and i′,i6=i′

D(Fk1,i , Fk1,i′
) (14)

Figure 9 show the variations in this metric as the size of the tables used
increases. Assuming that to is a constant with respect to the table size, the
analysis in Section 7 shows a decrease in tc as l increases. Also tn increases with
l. This explains the trend in Figure 9, where for smaller values of l there is more
leakage and less noise compared to larger values of l. This makes implementations
of ciphers with small tables more easier to break by profiled cache timing attacks
than ciphers with large tables. This was experimentally verified by mounting
cache profiled attacks on implementations of CLEFIA (using two 256 byte tables)
and OpenSSL’s AES implementation (using four 1024 byte tables). We found

that in 85% of cases the attack on CLEFIA gave the correct key, while only 60%
of the cases the right AES key was obtained in the same attack environment.

9 Summary and Future Directions

This paper is the first reported attempt to quantify leakages due to a micro-
architectural component in the system. The paper considers data prefetching;
an important feature in most modern day cache memories. Two data prefetch-
ing algorithms, namely sequential prefetching and arbitrary-stride prefetching
are analyzed. The results can be used as a guide to implementing ciphers with
minimal leakage due to prefetching. The analysis shows that ciphers implemented
with small tables leak more information due to prefetching compared to those
with large tables. This leakage can be reduced by using several tables in the
implementation. Further reduction in leakage can be obtained by placing tables
side-by-side in memory. Finally, tables should not be split across prefetching
boundaries as this would increase leakage.

There are several architecture and micro-architecture components in the sys-
tem capable of leaking information. This paper has considered one such com-
ponent. A future direction is to pin-point and quantify the leakage from other
components in the system, thus leading to a complete analysis of leakage in the
entire system. Since disabling prefetching may have an averse effect on the per-
formance of other applications, another direction could be in the design of new
prefetching strategies which either reduces or completely eliminates information
leakage.

References

1. Abe, M. (ed.): Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track
at the RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Pro-
ceedings, Lecture Notes in Computer Science, vol. 4377. Springer (2006)

2. Aciiçmez, O., Çetin Kaya Koç: Trace-Driven Cache Attacks on AES (Short Paper).
In: Ning, P., Qing, S., Li, N. (eds.) ICICS. Lecture Notes in Computer Science,
vol. 4307, pp. 112–121. Springer (2006)

3. Aciiçmez, O., Çetin Kaya Koç, Seifert, J.P.: Predicting secret keys via branch
prediction. In: Abe [1], pp. 225–242

4. Aciiçmez, O., Schindler, W., Çetin Kaya Koç: Cache Based Remote Timing Attack
on the AES. In: Abe [1], pp. 271–286

5. Baer, J.L.: Microprocessor Architecture: From Simple Pipelines to Chip Multipro-
cessors. Cambridge University Press (2010)

6. Bernstein, D.J.: Cache-timing Attacks on AES. Tech. rep. (2005)
7. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power

Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1). pp.
586–591. IEEE Computer Society (2005)

8. Bonneau, J., Mironov, I.: Cache-Collision Timing Attacks Against AES. In:
Goubin, L., Matsui, M. (eds.) CHES. Lecture Notes in Computer Science, vol.
4249, pp. 201–215. Springer (2006)

9. Brumley, D., Boneh, D.: Remote Timing Attacks are Practical. Computer Networks
48(5), 701–716 (2005)

10. Canteaut, A., Lauradoux, C., Seznec, A.: Understanding Cache Attacks. Research
Report RR-5881, INRIA (2006), http://hal.inria.fr/inria-00071387/en/

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Çetin Kaya Koç,
Paar, C. (eds.) CHES. Lecture Notes in Computer Science, vol. 2523, pp. 13–28.
Springer (2002)

12. Crosby, S.A., Wallach, D.S., Riedi, R.H.: Opportunities and Limits of Remote
Timing Attacks. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

13. Federal Information Processing Standards Publication 197: Announcing the Ad-
vanced Encryption Standard (AES) (2001)

14. Fournier, J.J.A., Tunstall, M.: Cache Based Power Analysis Attacks on AES. In:
Batten, L.M., Safavi-Naini, R. (eds.) ACISP. Lecture Notes in Computer Science,
vol. 4058, pp. 17–28. Springer (2006)

15. Gallais, J.F., Kizhvatov, I., Tunstall, M.: Improved Trace-Driven Cache-Collision
Attacks against Embedded AES Implementations. In: Chung, Y., Yung, M. (eds.)
WISA. Lecture Notes in Computer Science, vol. 6513, pp. 243–257. Springer (2010)

16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES. Lecture Notes in Computer Science, vol.
5154, pp. 426–442. Springer (2008)

17. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryption Keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium. pp. 45–60. USENIX Association (2008)

18. Hegde, R.: Optimizing Application Performance on Intel Core Microarchi-
tecture Using Hardware-Implemented Prefetchers. Intel Software Network,
http://software.intel.com/en-us/articles/optimizing-application-perfor

mance-on-intel-coret-microarchitecture-using-hardware-implemented-pref

etchers/ (2008)
19. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-

proach, 4th Edition. Morgan Kaufmann (2006)

20. Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference Man-
ual (2009)

21. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Prod-
uct Ciphers. J. Comput. Secur. 8(2,3), 141–158 (2000)

22. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathemat-
ical Statistics 22, 49–86 (1951)

23. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC. Lecture Notes in Computer Science, vol. 2951, pp. 278–296.
Springer (2004)

24. Neve, M.: Cache-based Vulnerabilities and SPAM Analysis. Ph.D. thesis, Thesis
in Applied Science, UCL (2006)

25. Neve, M., Seifert, J.P.: Advances on Access-Driven Cache Attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 4356, pp. 147–162. Springer (2006)

26. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA. Lecture Notes in Computer Sci-
ence, vol. 3860, pp. 1–20. Springer (2006)

27. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel
(2002)

28. Percival, C.: Cache Missing for Fun and Profit. In: Proc. of BSDCan 2005 (2005)

29. Rebeiro, C., Mukhopadhyay, D.: Cryptanalysis of CLEFIA Using Differential
Methods with Cache Trace Patterns. In: Kiayias, A. (ed.) CT-RSA. Lecture Notes
in Computer Science, vol. 6558, pp. 89–103. Springer (2011)

30. Rebeiro, C., Mukhopadhyay, D., Takahashi, J., Fukunaga, T.: Cache Timing At-
tacks on CLEFIA. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT. Lecture Notes in
Computer Science, vol. 5922, pp. 104–118. Springer (2009)

31. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES. Lecture Notes in Com-
puter Science, vol. 3659, pp. 30–46. Springer (2005)

32. Schneier, B., Kelsey, J.: Unbalanced feistel networks and block cipher design. In:
Gollmann, D. (ed.) FSE. Lecture Notes in Computer Science, vol. 1039, pp. 121–
144. Springer (1996)

33. Sony Corporation: The 128-bit Blockcipher CLEFIA : Algorithm Specification
(2007)

34. Standaert, F.X., Koeune, F., Schindler, W.: How to Compare Profiled Side-Channel
Attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.A., Vergnaud, D. (eds.)
ACNS. Lecture Notes in Computer Science, vol. 5536, pp. 485–498 (2009)

35. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT. Lecture Notes in
Computer Science, vol. 5479, pp. 443–461. Springer (2009)

36. Taylor, J.R.: An Introduction to Error Analysis: The Study of Uncertainties in
Physical Measurements (Second Edition). University Science Books (1997)

37. Tiri, K., Aciiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven
cache attacks. In: Biryukov, A. (ed.) FSE. Lecture Notes in Computer Science, vol.
4593, pp. 399–413. Springer (2007)

38. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Coun-
termeasures. Journal of Cryptology 23(2), 37–71 (2010)

39. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
Implemented on Computers with Cache. In: Walter, C.D., Çetin Kaya Koç, Paar,
C. (eds.) CHES. Lecture Notes in Computer Science, vol. 2779, pp. 62–76. Springer
(2003)

40. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. In: International Symposium on
Information Theory and Its Applications. pp. 803–806 (2002)

41. Vanderwiel, S.P., Lilja, D.J.: When caches aren’t enough: Data prefetching tech-
niques. IEEE Computer 30(7), 23–30 (1997)

42. Vanderwiel, S.P., Lilja, D.J.: Data prefetch mechanisms. ACM Comput. Surv.
32(2), 174–199 (2000)

