
An Investigation of Complex Operations with
Word-Size Homomorphic Encryption

Gizem S. Çetin1, Yarkın Doröz1, Berk Sunar1, and William J. Martin1

Worcester Polytechnic Institute
{gscetin,ydoroz,sunar,martin}@wpi.edu

Abstract. Homomorphic encryption has progressed rapidly in both effi-
ciency and versatility since its emergence in 2009. Meanwhile, a multitude
of pressing privacy needs — ranging from cloud computing to healthcare
management to the handling of shared databases such as those con-
taining genomics data — call for immediate solutions that apply fully
homomorpic encryption (FHE) and somewhat homomorphic encryption
(SHE) technologies. Further progress towards these ends requires new
ideas for the efficient implementation of algebraic operations on word-
based (as opposed to bit-wise) encrypted data. While the arithmetic
operations that are essential for cloud computing have known boolean
representations, most of them require access to each bit individually, such
as comparison and we lack solutions on a word domain. In this work, we
tackle this challenging problem of finding ways to solve algebraic prob-
lems -including comparison and homomorphic division- in word-based
encryption via an SHE scheme. We present concrete performance figures
for all proposed primitives.

Keywords: Homomorphic encryption, word-size comparison, homomor-
phic division.

1 Introduction

A fully homomorphic encryption scheme (FHE scheme) is one which permits
the efficient evaluation of any boolean circuit or arithmetic function on cipher-
texts [20]. Gentry introduced the first FHE scheme [8, 9] in 2009; this lattice-
based scheme was the first to support the efficient evaluation of arbitrary-depth
boolean circuits. This was followed by a rapid progression of new FHE schemes
(e.g., [24, 4, 23]). In 2010, Gentry and Halevi [10] presented the first actual FHE
implementation along with a wide array of optimizations to tackle the infamous
efficiency bottleneck of FHE schemes. Further optimizations for FHE which also
apply to somewhat homomorphic encryption (SHE) schemes followed including
batching and SIMD optimizations, e.g. see [11, 22, 12]. Nevertheless, bootstrap-
ping [9], relinearization [5], and modulus reduction [5, 4] remain as indispensable
tools for most HE schemes.

Most relevant to the present work, López-Alt, Tromer and Vaikuntanathan
proposed SHE and FHE schemes (which we denote LTV) based on the Stehlé and
Steinfeld variant of the NTRU scheme [23] that support inputs from multiple

public keys [18]. Bos et al. [1] introduced a variant of the LTV FHE scheme
along with an implementation. The authors of [1] modify the LTV scheme by
adopting a tensor product technique introduced earlier by Brakerski [3] thereby
providing a security reduction to that of standard lattice-based problems. Their
scheme affords enhanced flexibility by use of the Chinese Remainder Theorem
on the message space and obviates the need for modulus switching. Doröz, Hu
and Sunar propose another variant of the LTV scheme in [7], putting forward a
batched, bit-sliced implementation that features modulus switching techniques.

With these improved primitives as a springboard, homomorphic encryption
schemes have been used to build a variety of higher level security applications.
For example, Lagendijk et al. [14] give a summary of homomorphic encryption
and MPC techniques to realize key signal processing operations such as evaluat-
ing linear operations, inner products, distance calculation, dimension reduction,
and thresholding. Meanwhile SHE tools, developed mainly to achieve FHE, have
not been sufficiently explored for use in applications in their own right. In [19]
for instance, Lauter et al. consider the problems of evaluating averages, standard
deviations, and logistical regression which provide basic tools for a number of
real-world applications in the medical, financial, and advertising domains. The
same work also presents a proof-of-concept Magma implementation of an SHE
scheme, offering basic arithmetic functionality, based on the ring learning with er-
rors (RLWE) problem proposed earlier by Brakerski and Vaikuntanathan. Later,
Lauter et al. show in [15] that it is possible to implement genomic data com-
putation algorithms where the patients’ data are encrypted to preserve patient
privacy. The authors used a leveled SHE scheme which is a modified version
of [17] where they omit of the costly relinearization operation. In [2] Bos et
al. show how to privately perform predictive analysis tasks on encrypted med-
ical data. These authors use the SHE implementation of [1] to provide timing
results. Around the same time, Graepel et al. in [13] demonstrate that it is pos-
sible to homomorphically execute machine learning algorithms in a service while
protecting the confidentiality of the training and test data. They, too, provide
benchmarks for a small scale data set to show that their scheme is practical.
Cheon et al. [6] present a method along with implementation results to compute
encrypted dynamic programming algorithms such as Hamming distance, edit
distance, and the Smith-Waterman algorithm on genomic data encrypted using
a somewhat homomorphic encryption algorithm.

2 Motivation

With word size message domains we gain the ability to homomorphically mul-
tiply and add integers via simple ciphertext multiplications and additions, re-
spectively. This significant gain comes at a severe price. We can no longer homo-
morphically compute comparisons via direct evaluation of a standard boolean
comparator circuit, since the input bits are no longer accessible via our homo-
morphic evaluation operations. The same applies to more complex operations
such as comparison evaluations, thresholding and division. Division, in particu-

lar, requires heavy computations and is challenging to evaluate in either bit or
higher characteristic encryption. Therefore, it is commonly avoided by selecting
division free algorithms or by postponing the computation to the client side after
decryption whenever possible.

Our Contribution. In this work we present an array of solutions to improve the
versatility of higher characteristic SHE/FHE schemes along with new abilities,
specifically we

– We introduce convergence based iterative division and comparison algo-
rithms and an algebraic technique for zero check and thresholding. Whenever
the characteristic is large, the convergence algorithms perform better. This
is due to the simple fact that convergence based algorithms work along-
side residue number system based optimizations while algebraic techniques
do not. Further, we introduce a new technique to perform constant divi-
sion which is used to adjust the precision on-the fly. When the ciphertext is
decrypted the rounded message is recovered.

– We introduce a technique to remove the excess bits of the numbers after
homomorphic divisions and thresholding operations. Basically, we show how
the numbers are effected by the noise levels, parity of the messages so that
they round up or down when they are decrypted.

– We discuss the usage of residue number system (RNS) representation for
proposed arithmetic operations to achieve a large message space. The al-
gorithms that causes rounding operations (causing precision bits) on the
messages are not recoverable since the error destroys the CRT operations.

3 Leveled FHE Background

An FHE scheme is an encryption method where one is capable of performing
these two primitive operations: Decrypt(c1 + c2) = b1 + b2 and Decrypt(c1 · c2) =
b1 · b2 (where ci is the corresponding ciphertext of bi). In general, all operations
are performed over a ring of the form Rq = Zq[x]/〈F (x)〉 with a prime modulus
q and an irreducible polynomial F (x) of degree n. The schemes also specify
an error distribution χ, typically a truncated discrete Gaussian distribution,
for sampling random polynomials that are B-bounded. The term B-bounded
means that the coefficients of the polynomial are selected in the range [−B,B]
according to distribution χ: for g ← χ, we have ‖g‖∞ ≤ B. There are usually four
primitive functions, namely Keygen, Encrypt, Decrypt and Eval. Among these,
Eval involves homomorphic multiplication, which creates significant noise growth
in ciphertexts and in order to cope with this, there are also several noise cutting
operations.

For complex homomorphic operations, we will build homomorphic circuits
involving only addition and multiplication operations, hence our proposed algo-
rithms are not designed for a particular FHE scheme. However, there are some
optimization techniques that are specific to LTV Scheme that we used in our
experiments.

3.1 LTV Scheme

In 2012 López-Alt, Tromer and Vaikuntanathan proposed a leveled multi-key
FHE scheme (LTV) [18]. The scheme is based on a variant of the NTRU encryp-
tion scheme proposed by Stehlé and Steinfeld [23]. The LTVscheme uses a new
operation called relinearization and existing techniques such as modulus switch-
ing for noise control. Here we use a customized single-key version of LTVproposed
by Doröz, Hu, and Sunar [7] along with key size reduction techniques.

Here we describe an instance L of the LTV encryption scheme. Once parame-
ters n and q are chosen, and a polynomial F (x) of degree n in Zq[x] is fixed (e.g.,
F (x) = xn ± 1 or mth cyclotomic polynomial with Φ(m) = n), computations
are performed in some ring Rq = Zq[x]/〈F (x)〉 of size qn for each level i of the
evaluation circuit. We write L = LTV(p, q) where

– L.Keygen(n,B) first generates integers q, p, and B-bounded polynomials
f ′(x)← χ and g(x)← χ and then sets f = pf ′+1 and computes h = pgf−1

in ring Rq. When modulus switching is to be enabled, q is a decreasing se-
quence of moduli and evaluation keys are computed as ζτ (x) = hsτ + peτ +
wτf2 where sτ (x), eτ (x)← χ and τ ∈ [blog qi/ logwc].

– L.Encrypt(m) = hs+ pe+m where s(x)← χ and e(x)← χ
– L.Decrypt(c) = dfccq mod p reduces fc modulo q, balancing coefficients to

lie between −q/2 and q/2 and then reduces the result modulo p
– L.Relinearize(c) =

∑
τ ζτ (x)cτ (x) in Rq where c(x) =

∑
τ w

τ cτ (x) expands
ciphertext c as a combination of polynomials with all coefficients in {0, . . . , w−
1}; this operation is to be computed on each product c(x).

There are two more ingredients we need for performance:

Modulus Switching. As indicated above, the noise scaling performance of
this scheme can be improved dramatically by choosing a sequence of prime
powers qd+1 > qd > · · · > q and employing a different qi = qd+1−i in each
level i of our arithmetic circuit of depth d. With this special choice of mod-
uli, the evaluation keys are promoted to the next level via modular reduction:

ζ
(i)
τ (x) = ζ

(0)
τ (x) mod qi. This technique drastically reduces the key storage re-

quirement and obviates the need for key switching even for complex fixed-depth
circuits. Applying modulus switching between levels as c̃(i)(x) = b qi

qi−1
c̃(i−1)(x)ep

decreases the noise by log q bits by dividing and multiplying the new ciphertext
with the previous and current moduli, respectively. In each level the arithmetic
is performed over Rqi . The operation b·ep refers to rounding so as to match all
parities.

Batching. We can also batch multiple messages into a single plaintext for paral-
lel evaluations as proposed by Smart and Vercauteren [22, 11]. For this purpose,
the specially selected polynomial F (x) is factorized over Fp into equal degree
polynomials Fi(x) which define the message slots in which message bits are
embedded using the Chinese Remainder Theorem. In this way, we can batch
` = n/t messages into one polynomial, where t is the smallest integer that sat-
isfies m|(pt − 1).

4 Homomorphic Complex Arithmetic - Beyond Additions
and Multiplications

In this section, we will focus on a number of operations that are essential for
many machine learning algorithms such as division, zero test, thresholding and
comparison. For homomorphic applications, the main goal is to represent any
operation as a polynomial function so that they can be applied to encrypted in-
puts. implement parallel circuits for the mentioned procedures, but with complex
operations such as division the evaluation of the circuit becomes too inefficient.
Even though finding solutions to these problems is algebraically possible with
word-based encryption, the challenge lies in finding low degree polynomials for ef-
ficiency. Therefore, in this work, we first focus on finding an algebraic solution to
the proposed complex problems, then we go further and try to find more efficient
approaches by using approximation algorithms. We start with finding the mul-
tiplicative inverse of a number, then by using the inverse function we will derive
division and zero test, consequently equality check. After that, we will provide
solutions to thresholding using zero test and other approximation techniques.
Then using a thresholding approximation, we will have a look at the compari-
son problem. Additionally, we will propose a way for constant division which is
especially useful to get rid of the excess bits in approximation/convergence algo-
rithms and finally we describe how to use RNS in order to handle the overflow
in these proposed methods.

4.1 Multiplicative Inverse and Division

One of the most difficult, and currently open, questions is how to implement
homomorphic division efficiently. With bit-level encryption, one could implement
a parallel division circuit by unrolling the shift and subtract operations. However
the depth of this division circuit would be very high; the best we can do is to use
a costly carry look ahead subtraction circuit and emulate a serial shift division
algorithm withO(n log(n)) depth complexity. In the case of higher characteristic,
we run into the aforementioned comparison and sign-detection problems.

The problem is as follows: Given two inputs a and b which are both defined in
Zp, can we find a polynomial function, let it be P (x, y), such that P (a, b) = a/b?
This question can be reduced to this: Can we find a polynomial P (x) such that
P (b) = 1/b? Because if there exists such P (x), then in order to find a/b, we
can compute aP (b) = a/b. Furthermore the same polynomial can be used to
execute a simple zero test which we will describe later. In this section we will
construct such a polynomial using three different methods. The first one gives
an exact algebraic solution, but works as a modular operation, whereas the next
two use approximation algorithms and they output real results with respect to
a preinitialized precision.

Fermat’s Little Theorem We can obtain a polynomial function via Fermat’s
Little Theorem that permits homomorphic evaluation of the multiplicative in-
verse b−1 of a number b, modulo p. Note that a generalization of Fermat’s Little

Theorem states that bα ≡ bβ mod p as long as α ≡ β mod φ(p), where b and p
are coprime. If we pick p a prime, b can be any number from Zp and it is known
that φ(p) = p − 1. It follows that b−1 mod φ(p) = bp−2 mod p. Hence we define
P (x) = xp−2 and P (x) is defined over Zp.

Lemma 1 (Modular Inverse and Modular Division). Let L = LTV(p, q)
where p ∈ Z is prime. For c = L.Encrypt(b), we compute c̃ = cp−2. Then
L.Decrypt(c̃) = b−1 mod p. For c1 = L.Encrypt(a), c2 = L.Encrypt(b), if we
compute c̃ = c1c

p−2
2 , then L.Decrypt(c̃) = ab−1 mod p.

As we have a polynomial of degree p − 2, this method is not very efficient
due to the fact that we have to compute a homomorphic exponentiation of
multiplicative depth O(log(p)). Unless p is small without further customization
this approach will not be very practical. Additionally note that this method does
not provide a multiplicative inverse over real numbers since this is a modular
operation. On the bright side, the output is an exact arithmetic solution, i.e there
is no approximation, no fractions or precisions to handle. In the next approach
we will find the reciprocal without a modulo p, as a real number using a root
finding algorithm.

Newton’s Root Finding Algorithm We can find the multiplicative inverse
of any arbitrary number b using Newton’s root finding algorithm. The function
f(z) = 1/z − b has a root at z = 1/b, hence if we can find the root of f(z), we
obtain the reciprocal for b. Iterations start with an initial guess z0 and follows

by finding zi+1 = zi − f(zi)
f ′(zi)

= zi (2− bzi). Assuming b has a range of [0, 2k],

we set the initial value z0 to 21−k and fix the number of iterations to µ, the
approximation can be seen in Figure 1a.

In homomorphic applications, we deal with integers, therefore we need to
represent fractions using an initially chosen precision value. Since we initialized
z0 = 21−k, we need at least k − 1 bits in order to cover the fractional part. If
we use a fixed constant ρ = 2k−1 and let z̄0 = z0ρ = 1, we can represent our
initial guess as an integer. In the following iteration steps, whenever there is
an addition/subtraction we need to re-arrange the precision point so that both
operands are represented with respect to the same precision, similarly whenever
there is a multiplication we need to allow the precision point to move to the
left so that we can mimic the fractional multiplication. For instance, in order to
compute z1 we also need to multiply the constant 2 in the equation with ρ, so that
the precision points of 2 and bz̄0 are aligned. Let the first iteration result be z̄1,
then z̄1 = z̄0 (2ρ− bz̄0) = z0ρ (2ρ− bz0ρ) = z1ρ

2. Similarly in the next iteration,
we need to align the precision point of constant 2 with the precision point of
product bz̄1. Hence we have z̄2 = z̄1

(
2ρ2 − bz̄1

)
= z1ρ

2
(
2ρ2 − bz1ρ2

)
= z2ρ

4.
Notice that with one iteration step, we doubled the number of fractional bits
since we executed a multiplication. Finally, at the end of each iteration we will

have ¯zi+1 = z̄i

(
2ρ2

i − bz̄i
)

= ziρ
2i
(

2ρ2
i − bziρ2

i
)

= zi+1ρ
2i .

Lemma 2 (Approximate Inverse). Let L = LTV(p, q) and c = L.Encrypt(b).

We compute ci+1 = ci

(
2ρ2

i − cic
)

, where ρ = 2k−1 with an integer k with

b ∈ [0, 2k] and c0 = 1. Then for a chosen number of iterations µ, L.Decrypt(cµ) u
(1/b) ρ2

µ−1

mod p. Let d = L.Encrypt(a), we compute d̃ = dcµ. Then L.Decrypt(d̃) u
(a/b) ρ2

µ−1

mod p.

The depth of this approximation depends on the number of iterations µ, i.e.
it is independent of p. Consider the equation ci+1 = ci2ρ

i − c2i c, the depth of
the function comes from the product c2i c. Initially c0 is a constant, hence the
exponent of c in c1 becomes 1. In the next iterations, the exponent of c will be
doubled by the square operation c2i , plus one increased due to the multiplication
with c, hence the exponents will increase as 3, 7, · · · . Thus, after µ iterations, the
exponent will be 2µ − 1 and the depth is µ. This gives a great advantage over
the first scheme where we use Fermat’s Little Theorem, when the inputs come
from a small subset of the plaintext space (assuming µ < log(p)). Note that
the algorithm is flexible in the sense that we can keep iterating to increase the
precision, or terminate early if less precision suffices for the application. Once
the iterations have been completed, the precision has changed where the least
significant log(ρ2

µ

) bits of the result represent the desired reciprocal. This means
that any further computation requires other operands that will interact with the
reciprocal need to be shifted to align with the segment representing the fractional
part. On the other hand, the down-side of this algorithm is, since we need to fix
the precision variable ρ, we need to have an upper limit for input b. The next
algorithm finds an approximate reciprocal using a convergence algorithm.

(a) Using Newton’s root finding al-
gorithm, where b ∈ [0, 64], z0 =
1/32 and µ ∈ {5, 8}.

(b) By convergence, where b ∈
[0, 64] and η ∈ {5, 8}.

Fig. 1: Multiplicative inverse approximation function P (x) = 1/x

By Convergence We briefly and informally describe how to find the inverse
by convergence as follows: Assume we want to compute the reciprocal 1/b. The

algorithm works by multiplying both the numerator and denominator by a series
of values r0, r1, . . . so as to make the denominator converge to a 1. Thus, at the
end of the computation the numerator yields the desired division result:

1

b
=

1

b
· r0
r0
· r1
r1
· · · rη

rη
, b · r0r1 · · · rη → 1 .

The standard approach starts by normalizing 1 and b to become fractions in
the unit interval, in particular b ∈ [12 , 1). Then we can write z = 1 − b where

z ∈
[
0, 12
]
. Then setting r0 = 1 + z, r1 = 1 + z2, . . . , ri = 1 + z2

i

will yield
the desired result. We can show that b · r0 ∈ [1 − 2−2, 1], b · r0r1 ∈ [1 − 2−4, 1],
b · r0r1r2 ∈ [1 − 2−8, 1], etc., with products b · r0 · · · rη converging to one. The
approximated inverse values for different η can be seen in Figure ??.

Given the encrypted value of b, we can mimic the division by convergence
algorithm to effect a homomorphic division operation. As in the last method,
we are not able to multiply fractions, hence we need to allow the products of
integers r0, r0r1, r0r1r2, . . . to grow. We again view this as allowing the precision
point to move to the left with each multiplication. Another restriction is, we need
to roughly know the magnitude of b, i.e. assume b ∈

[
2`−1, 2`

)
, then we need

to normalize b with the constant σ = 2`, so that b/σ is in the [12 , 1) interval.
This means that b/σ will have ` fractional bits and in order to represent the
fraction as an integer we need to shift it to the left for ` times. Thus we have
b̄ = 2`b/σ = b. We also need to normalize the numerator, so it becomes 1/σ.
Here, this fractional multiplication can be left to after decryption, since it is a
constant. But if it is needed to be done before decryption we need to represent
it as an integer, hence we need to left shift it ` times. Now, instead of setting
z = 1 − b/σ, we align the precision point in constant 1 and set z̄ = σ − b.
Similarly for each iteration step, we need to set r̄0 = σ + z̄, r̄1 = σ2 + z̄2 and
in general r̄i = σ2i + z̄2

i

. Assume we need η iterations, then our polynomial

becomes P (x) = σ
∏η
i=0

(
σ2i + (σ − x)

2i
)

.1 The grow of the fractional part can

be computed as σ1+
∑η
i=0 2i = σ2η+1

.
For the most significant ` bits to stabilize, we need log(`) + log log(`) =

O(log(`)) iterations which also represents the depth of the computation. Now
if we cannot estimate the magnitude of b, due to repeated squaring the power
of z will double in precision in every iteration moving bit by bit closer to the
end of the precision window2. Therefore, we will need another O(`) iterations
for the denominator to reach 2i`−1 ≤ br0r1 . . . ri < 2i`. In practice the number
of iterations required by the division by convergence algorithm will depend on
the distribution of the data. For uniformly distributed data of precision `, the
expected value of the deviation in the magnitude will be in the order of 2O(log(`)).

1 Notice that the first σ in the equation comes from the numerator and it can be
handled after decryption.

2 Note that in the special case of a constant division we can always finish the result
in log(b) iterations. Therefore we can very efficiently divide by small constants with
compact representation.

Therefore, the average case and worst case complexities of the division by con-
vergence algorithm are in the order of O(log(`)) and O(`), respectively.

Lemma 3 (Inverse by Convergence). Let L = LTV(p, q) and c = L.Encrypt(b).

We compute c̃ =
∏η
i=0

(
σ2i + (σ − c)2

i
)

, for a chosen number of iterations η,

which depends on the predetermined precision factor `, with inputs b ∈ [0, 2`] and

σ = 2`. We have L.Decrypt(c̃) u (1/b)σ2η+1−1 mod p. Let d = L.Encrypt(a), we

compute d̃ = dc̃. Then L.Decrypt(d̃) u (a/b)σ2η+1−1 mod p.

The degree of the polynomial P (x) becomes
∑η
i=0 2i = 2η+1−1. This means

that the depth of this method is log
(
2η+1 − 1

)
= η + 1. As in the previous

approximation method, this is also independent from encryption factor p. But
both algorithms suffer from the growth in the fractions, i.e. p should be large
enough to cover the magnitude of the end result in order to avoid overflows.
Even with small precision, after a few iteration steps we end up with a large
fraction. This is a generic problem in any approximation based algorithm where
we have to use real numbers. Thus, later in Section 5.2, we propose a method to
make these schemes, that require large p, more practical using RNS. We propose
another solution, where we describe a homomorphic constant division method,
so that we can adjust the precision before decryption. This method lets p size to
decrease on the fly, hence there are advantages and disadvantages that will be
discussed later in Section 5.1.

From now on, whenever we use the approximation based algorithms we will
refer the excess bits as ω in general. For instance, ω = σ2η+1−1 if we use the
convergence based inverse algorithm, similarly ω = ρ2

µ−1

when Newton’s root
finding method is used. For the sake of generality, when we use an algebraic
method, i.e. when there is no excess bit, we will take ω = 1. Additionally,
whenever we refer to P (x), it is the generic polynomial that works as an inverse
function, i.e. P (x = b) = ω/b.

4.2 Zero Test and Equality Check

We can obtain a polynomial function that permits homomorphic evaluation of
a zero test. The test returns a zero or one depending on whether the encrypted
message content holds a zero or not. Let this polynomial be Z(x), then we want
to have Z(a) = 0 if a is equal to zero, Z(a) = 1 otherwise. We can retrieve this
functionality using Fermat’s Little Theorem by computing xp−1 mod p. This
can be interpreted as multiplying the input x with its inverse modulo p, which
is xp−2 mod p. Inspired by the same idea, we can create a zero test polynomial
by using any inverse polynomial as follows: Z(x) = xP (x). Then the output will
give us a 0 or ω depending on the chosen inverse finding method.

The zero test may be used trivially to homomorphically perform an equality
check on two messages a, b by computing Z(a − b). Note that this is a much
simpler operation than magnitude comparison which we will address later in
Section 4.3.

Lemma 4 (Zero Test and Equality Check). Let L = LTV(p, q) and c =
L.Encrypt(b). We compute c̃ = cP (c). Then L.Decrypt(c̃) = 0 if b = 0 mod p and
L.Decrypt(c̃) u ω if b 6= 0 mod p. Let c1 = L.Encrypt(a) and c2 = L.Encrypt(b),
then if we compute c = c1 − c2 and c̃ = cP (c), we will retrieve L.Decrypt(c̃) = 0
if a = b mod p and L.Decrypt(c̃) u ω if a 6= b mod p.

The degree of Z(x) is always one more than the degree of P (x). Thus, the
complexity of a zero test depends on the underlying inverse polynomial. Due to
the same reason, the zero test also suffers from the same problems of the chosen
inverse method.

4.3 Thresholding and Comparison

Using the zero test we can compute thresholding operations easily albeit in-
efficiently. Assume we want to homomorphically evaluate the check b ≤ t for
some data m and threshold t ∈ Zp. As earlier we are given the encryption of b
while t is presumed available as cleartext and again we are seeking a polynomial
to represent this operation. Let it be T (x, t), then we want T (a, t) = 0 when
a < t whereas T (a, t) = 1 otherwise. We can devise this algorithm by testing the
equality over the range of integers i = 0, . . . , t − 1 and aggregate the result as3

T (x, t) =
∑
i∈[t] (ω − Z(x− i)) where Z(x) is a zero test polynomial that is de-

scribed in the previous section. Clearly, we can instead compute the complement
if t is closer to p than to 0.

If we compute it using Fermat’s Little Theorem, although it is not efficient,
this presents a viable and exact technique for evaluating thresholds. A significant
positive aspect of the formulation is that the multiplicative depth of the thresh-
old computation is independent of the threshold constant t and is the same as
the depth of an equality check: O(log(p)). On the other hand, the summation
becomes computationally expensive — with complexity O(t log(p)) — as p and
the range of t grow. Lookup tables and selection of special moduli can be used
to increase the efficiency.

Unless p is small without further customization this approach will not be
very practical. To gain some economy over the prime p case, we may chose p
to be highly composite p =

∏
i∈[k] pi in such a way that the zero test simply

becomes cφ(p) = c
∏
φ(pi). Then the multiplicative depth complexity of a zero

test (or comparison) becomes
∑
i∈[k] log(pi − 1).

Approximation Methods In order to retrieve a threshold polynomial T (x),
we will make use of the Unit Step Function, i.e H(x) = 0 when x < 0 and
H(x) = 1 when x > 0, then we can just compute T (x) = H(x − t) where t
is a fixed cleartext threshold. Furthermore, the same polynomial can be used
to compare two encrypted values a, b by computing H(a − b). We propose two
different methods to create a step function.

3 Since the zero tests are exclusive, we may aggregate the result using a standard
homomorphic addition operation instead of a boolean OR.

For the first approach we will make use of logistic function and the equa-

tion is given as follows, H(x) = lim
k 7→∞

1
1+e−2kx u (ex)

2k
(

1 + (ex)
2k
)−1

. By

limiting k to a small constant, we can get a smooth approximation and we
can use Taylor Series approximation to compute the exponential function ex u∑∞
i=1

xi

i! , and we can also use one of the inverse functions that we found in

Section 4.1. Thus H(x) becomes: H(x) u
(∑∞

i=1
xi

i!

)2κ
P

(
1 +

(∑∞
i=1

xi

i!

)2κ)
.

Even though we can get a threshold polynomial using this approach, it is com-
putationally expensive considering the input to the inverse function has already
a large exponent. Therefore, we use another approach which is constructing a
square wave using sine waves. Square wave function S(x) can be approximated

as, S(x) u
∑∞
i=1

sin((2i−1)x)
(2i−1) For sinus values we can use the approximation,

sin(x) u
∑∞
j=1

(−1)j−1x2j−1

(2j−1)! . Embedding this in the previous equation we will

have, S(x) u
∑∞
j=1

∑∞
i=1

(−1)j−1(2i−1)2j−2

(2j−1)! x2j−1

The output of the square wave function is in the range of [−0.8, 0.8] in a

period, thus we compute H(x) as: S(x)+0.8
1.6 . The degree of H(x) depends on the

limit of j. If we define i ∈ [1, α] and j ∈ [1, β], then the largest exponent of
input x, thus the degree of H, becomes 2β − 1. Consequently, the depth of the
approximation algorithm becomes dlog (2β − 1)e = log β+1. For different values
of α and β the unit step approximation can be seen in Figure 2.

Fig. 2: Unit step function H(x) for various approximation degrees.

To make use of this approximation algorithm, we also need to associate mes-
sage space elements to discrete samples of the input range [−1, 1] of H(x). As-
sume we handle elements of precision ` bits and we want to find H(b− t), where
b, t ∈ [0, 2`). Then we have an input x = b − t ∈

(
−2`, 2`

)
and we have to nor-

malize it with ω = 2`, so that the normalized value lies in the input range, i.e.
x/ω ∈ (−1, 1). As in the previous approximation methods, we need to represent
` fractional bits with a binary point placed right after leaving a single bit for
the integer part. During evaluation we need to keep track of the precision point
which moves to the left, with each multiplication by x. Once the evaluation
is completed the approximation result resides in the most significant precision
bit(s) ready to be used for subsequent evaluation and the maximum number of
fraction bits can be found in the term with the highest exponent, ω2β−1.

4.4 Square Root

We can find an approximation to the square root of a number by using a root
finding algorithm. As before, we seek a polynomial, let it be R(x), such that
R(b) =

√
b. The function f(y) = y2 − b has a root at y =

√
b, hence if we

can find the root of f(y), we obtain the square root of b. If we use Newton’s
Root Finding method as in Section 4.1, we can iterate the values yi+1 = yi −
f(yi)
f ′(yi)

= 1
2

(
yi + b

yi

)
with an initial guess of y0. For the inverse computation

b
yi

, we can use the inverse approximation polynomial that we retrieved before,

yi+1 = 1
2 (yi + bP (yi)). In order to handle fractions, again we need to consider an

imaginary precision point. The depth of the algorithm depends on the number
of iterations, let it be κ, then total depth will be κ times the depth of the inverse
computation P (x). Thus, we can conclude that this is a relatively much more
costly operation.

5 Making Complex Arithmetic More Practical

As mentioned before, most of the proposed methods require a large p. By in-
creasing the size of p, we introduce a high noise growth in the ciphertexts. As a
consequence, this leds to the use of larger coefficient size for the ciphertexts, i.e.
the ring Rq = Zq[x]/〈F (x)〉 with a larger q. Increasing q size affects security,
hence this leads to the use of a cyclotomic polynomial with a larger degree, i.e.
even a larger ring Rq. So even though, increasing message space gives us free-
dom of handling inputs from a much higher characteristic, it also comes with
the efficiency problems. In this section we propose two independent methods to
make the arithmetic with large p more practical.

5.1 Constant Division - Adjusting the Precision

Here we introduce a technique that may be used to remove excess bits (at de-
cryption) after division and thresholding operations. We consider L = LTV(p, q)
with private key f = pf ′ + 1 and public key h = pgf−1 and we will examine
decryption using L̃ = LTV(p̃, q) where p̃|p and L̃ uses the same private key f
(along with the same n and q) as does L.

Lemma 5 (Constant Division). Suppose the plaintext m is LTV-encrypted
using L as c = c(x) = hs + pe + m so that L.Decrypt(c) = m. Suppose p = d · p̃
and q ≡ 1 (mod p). Let u = gs + fe + f ′m and write m = d · m̃ + r where
0 ≤ mi < p, 0 ≤ m̃i < p̃, 0 ≤ ri < d . Then, as long as ‖u‖∞ ≤ (q − 1− 2p)/2p,

the scaled ciphertext c̃ = d−1 · c in R satisfies L̃.Decrypt(c̃) =
∑n−1
i=0 m̂ix

i where

m̂i =

{
m̃i, if 0 ≤ ri ≤ d/2 + ui

2‖u‖∞ ;

m̃i + 1, otherwise.

When decrypted we obtain our results with reduced precision afforded by p̃.
However, we can perform deeper computations with as much precision allowed
by dp̃. We may chose to divide the message by any divisor s of d by multiplying
it with s−1 ∈ Zq.

5.2 Using RNS with Approximation Algorithms

As shown in Sections 4.1 and 4.3 we can efficiently compute divisions and ap-
proximate thresholds using convergence. While asymptotically efficient, both re-
quire many levels of multiplication and a large message space, i.e. p, to prevent
overflow. This is where the residue number system (RNS) can make a signifi-
cant difference. Since both algorithms use only constant scaling, additions and
multiplication operations and therefore can be used in conjunction with RNS
representation. For this, we create parallel LTV encryptions of the same mes-
sage by computing its residues using a set of distinct prime moduli p1, p2, . . . , pk.
The product p =

∏
pi should be large enough to contain the result even after

division or thresholding and any subsequent evaluations. This creates k parallel
evaluation paths where the same evaluation is performed including any divisions
and threshold computations. The resulting ciphertexts are decrypted individu-
ally. The result is recovered using CRT. With this approach noise growth can be
curbed and parameter sizes can be kept in a reasonable range. Finally, we note
that the prevision adjustment technique cannot be used along with RNS since
CRT cannot recover from rounding errors that occur during decryption.

6 Implementation Results

We implemented the proposed division, zero test, thresholding and comparison
algorithms using the leveled single key LTV scheme using Shoup’s NTL library
version 9.0 [21] compiled with the GMP 5.1.3 package. Our simulations are
performed on an Intel Xeon @ 2.9 GHz server running Ubuntu Linux 13.10.
Note that the proposed homomorphic algebraic operations in Section 4, are
generic, i.e. they can be implemented using any FHE scheme that supports word
size encryption, but the optimizations defined in Section 5 are LTV-specific.
For parameter selection we utilized the two Hermite factor analysis using the
formula in [16], i.e. 1.8/ log δ− 110. We used modulus polynomial xn− 1 for our
message embedding. For the first test, we picked p = {17, 257} and n = 16384

and applied Fermat’s Little Theorem for a zero test. In this scenario, we have a
single message, because for packing multiple data with degree n we need a much
larger p value for NTT operations. For the second test we used 20-bit p values,
we first applied Newton’s Root Finding method µ = 5 and inputs in the range
[0, 64] and we used RNS method with 4 different p values, because p needs to

be larger than 2(k−1)(2
µ−1) = 280. Secondly, we applied division by convergence

algorithm for η = 5 and inputs in the range [0, 64], in this case we used 20 p

values, because p must be larger than 2`(2
η+1−1) = 2378. For the last test, we

computed a comparison with inputs in the range [0, 32] and α = 5, β = 16. For
relinearization and evaluation keys, we use a block size of ω = 2log(q)/2 where q
is the noise cutting factor for each level i = 0, · · · , d− 1.

d n log q Total Time Amortized

Zero Test
4 16384 30 4 sec N/A
8 16384 45 9.09 sec N/A

Division
5 16384 80 36 min 130 msec
6 16384 100 1.18 h 259 msec

Comparison 5 16384 80 27 min 90 msec

Table 1: Zero Test using Fermat’s Little Theorem with a single message, Division
first using root finding, then convergence algorithm for multiple packed data and
finally comparison using Square Wave approximation for multiple packed data.

References

1. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) Cryptography and Cod-
ing, Lecture Notes in Computer Science, vol. 8308, pp. 45–64. Springer Berlin
Heidelberg (2013)

2. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Journal of biomedical informatics 50, 234–243 (2014)

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. IACR Cryptology ePrint Archive 2012, 78 (2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Electronic Colloquium on Computational Complexity
(ECCC) 18, 111 (2011)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS. pp. 97–106. IEEE (2011)

6. Cheon, J., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) Financial Cryptography
and Data Security, Lecture Notes in Computer Science, vol. 8976, pp. 194–212.
Springer Berlin Heidelberg (2014)

7. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the modified
LTV scheme. Designs, Codes and Cryptography pp. 1–26 (2015)

8. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing. pp. 169–178.
STOC ’09, ACM (2009)

10. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) Advances in Cryptology–EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 129–148. Springer (2011)

11. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with poly-
log overhead. IACR Cryptology ePrint Archive Report 2011/566 (2011), http:

//eprint.iacr.org/
12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.

IACR Cryptology ePrint Archive 2012 (2012)
13. Graepel, T., Lauter, K., Naehrig, M.: Ml confidential: Machine learning on en-

crypted data. Cryptology ePrint Archive: Report 2012/323 (June 2012)
14. Lagendijk, R., Erkin, Z., Barni, M.: Encrypted signal processing for privacy pro-

tection: Conveying the utility of homomorphic encryption and multiparty compu-
tation. Signal Processing Magazine, IEEE 30(1), 82–105 (Jan 2013)

15. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. In: Aranha, D.F., Menezes, A. (eds.) Progress in Cryptology - LATINCRYPT
2014, Lecture Notes in Computer Science, vol. 8895, pp. 3–27. Springer Interna-
tional Publishing (2015)

16. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: CT-RSA. pp. 319–339 (2011)

17. López-Alt, A., Naehrig., M.: Large integer plaintexts in ring-based fully homomor-
phic encryption. in preparation (2014)

18. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing. pp. 1219–1234.
STOC ’12, ACM (2012)

19. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop. pp. 113–124. CCSW ’11, ACM (2011)

20. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Foundations of Secure Computation pp. 169–180 (1978)

21. Shoup, V.: http://www.shoup.net/ntl/, NTL: A Library for doing Number The-
ory

22. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryp-
tology ePrint Archive 2011, 133 (2011)

23. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over
ideal lattices. In: Paterson, K.G. (ed.) Advances in Cryptology EUROCRYPT
2011, Lecture Notes in Computer Science, vol. 6632, pp. 27–47. Springer Berlin
Heidelberg (2011)

24. Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Advances in cryptology–EUROCRYPT 2010, pp.
24–43. Springer (2010)

Appendix

Proof of Lemma 5.

Remark 1. We note that cases 2ri ≡ 0 (mod d) become simpler in the case when
distribution χ generates only polynomials with non-negative coefficients.

Proof. Set q = p`+1 and U = `
2 −1 so that ‖u‖∞ ≤ U . Observe that d′ = q− p̃`

is the inverse of d in Zq and write m′ = d′m.
We begin by expanding f c̃ and, where possible, reducing modulo q to find

c̃ = d′hs+ d′pe+ d′m = p̃gf−1s+ p̃e+ d′m

fc̃ = p̃gs+ p̃fe+ (pf ′ + 1)d′m = p̃gs+ p̃fe+ p̃f ′m+ d′m = p̃u+ d′m .

Next, we substitute m = dm̃+r and d′ = q− p̃` as above: f c̃ = p̃u+d′dm̃+d′r =
p̃u+ m̃+ (q − p̃`) r = p̃u+ m̃− p̃`r in Zq[x]. So we can write

L̃.Decrypt(c̃) = df c̃cq mod p̃ = dp̃u+ m̃− p̃`rcq mod p̃

That is, m̂ = dMcq mod p̃ where M(x) = p̃u(x)+m̃(x)− p̃`r(x) with coefficients
Mi = p̃ui + m̃i− p̃`ri for 0 ≤ i < n. We will consider various cases and compute
dMicq mod p̃ in each case.

First we observe that, in all cases, −q < Mi < q/2. Since ui ≥ −U , m̃i ≥ 0
and ri ≤ d − 1, we have Mi ≥ −p̃U − p̃`(d − 1) = −p̃U − p̃`d + p̃` = p̃(` −
U)− (q− 1) > −q since U < ` by hypothesis. Likewise, ui ≤ U and m̃i < p̃ give
Mi < q/2. So the balanced reduction modulo q takes a very simple form:

dMicq =

{
Mi + q, if Mi ≤ −q/2;

Mi, if − q/2 < Mi ≤ q/2.
(1)

Case 1: ri = 0 : Here, we have Mi = p̃ui + m̃i > −p̃U > −q/2 so that
dMicq = Mi and dMicq mod p̃ = m̃i .

Case 2: d even, ri = d/2 : First note that Mi is close to our boundary −q/2:

Mi = p̃ui + m̃i −
p`

2
= p̃ui + m̃i −

q − 1

2
.

If ui ≥ 0, we obtain −q/2 < Mi < q/2 and dMicq = Mi. Since d is even, 2p̃
divides q − 1 and we have dMicq mod p̃ = m̃i. On the other hand, if ui < 0,
m̃i < p̃ gives p̃ui + m̃i < 0 and Mi < −q/2 so that dMicq = Mi + q and

dMicq mod p̃ =

(
p̃ui + m̃i −

p`

2
+ p`+ 1

)
mod p̃ = m̃i + 1 .

This dependence on ui is reflected in the statement of the theorem by replacing
ri by ri − ui/2U .

Case 3: 0 < ri < d/2 : Since U < `
2 and d ≥ 2, p̃U+p̃`bd−12 c <

q
2 and p̃U+p̃`ri <

q
2 , thus Mi = p̃ui + m̃i − p̃`ri > − q2 . So dMicq = Mi and dMicq mod p̃ = m̃i in
this case.

Case 4: d/2 < ri < d : Here, we have ui ≤ U , m̃i < p̃, and ri ≥ d+1
2 so that

our bound U = `
2 − 1 gives p̃U ≤ p̃ `2 − p̃ and p̃U + (p̃− 1) − p`

2 −
p̃`
2 < − q2 ,

thus Mi = p̃ui + m̃i − p̃`ri < − q2 so that dMicq = p̃ui + m̃i − p̃`ri + q and
dMicq mod p̃ = m̃i + 1. �

