
Reconfigurable LUT: A Double Edged Sword for
Security-Critical Applications

Debapriya Basu Roy1, Shivam Bhasin3, Sylvain Guilley2,4, Jean-Luc Danger2,4,
Debdeep Mukhopadhyay1, Xuan Thuy Ngo2, and Zakaria Najm2

1 Secured Embedded Architecture Laboratoty (SEAL)
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur
{deb.basu.roy,debdeep}@cse.iitkgp.ernet.in

2 Institut MINES-TELECOM, TELECOM ParisTech, CNRS LTCI (UMR 5141).
{sylvain.guilley,danger,znajm}@enst.fr,

xuan-thuy.ngo@telecom-paristech.fr
3 Temasek Laboratories, NTU, Singapore.

sbhasin@ntu.edu.sg
4 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes, 35 700 Rennes, FRANCE

Abstract. Modern FPGAs offer various new features for enhanced re-
configurability and better performance. One of such feature is a dynam-
ically Reconfigurable LUT (RLUT) whose content can be updated in-
ternally, even during run-time. There are many scenarios like pattern
matching where this feature has been shown to enhance the performance
of the system. In this paper, we study RLUT in the context of secure
applications. We describe the basic functionality of RLUT and discuss its
potential applications for security. Next, we design several case-studies to
exploit RLUT feature in security critical scenarios. The exploitation are
studied from a perspective of a designer (e.g. designing countermeasures)
as well as a hacker (inserting hardware Trojans).

Keywords: Reconfigurable LUT (RLUT), FPGA, CFGLUT5, Hardware
Trojans, Side-Channel Countermeasures, Secret Ciphers.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have had a significant impact on
the semiconductor market in recent years. FPGAs came into the VLSI industry
as successor of programmable read only memories (PROMs) and programmable
logic devices (PLDs) and has been highly successful due to its reconfigurable
nature. A standard FPGA can be defined as islands of configurable logic blocks
(CLBs) in the sea of programmable interconnects. However, with time, FP-
GAs have become more sophisticated due to the addition of several on-chip
features such as high-density block memories, DSP cores, PLLs, etc. These fea-
tures coupled with their core advantage of reconfigurability and low-time to
market have made FPGA an integral part of the semiconductor industry, as

an attractive economic solution for low to medium scale markets like defense,
space, automotive, medical, etc. The key parameters for FPGA manufacturers
still remain area, performance and power. However, during these recent years,
FPGA manufacturers have started considering security as the fourth parame-
ter. Most recent FPGAs support bitstream protection by authentication and
encryption schemes [1]. Other security features like tamper resistance, blocking
bitstream read-back, temperature/voltage sensing, etc. are also available. FPGA
has also been a popular design platform for implementations of cryptographic
algorithms due to its reconfigurability and in house security. Apart from the
built-in security features, designers can use FPGA primitives and constraints to
implement their own designs in a secure manner. In [2], authors show several
side-channel countermeasures which could be realized on FPGAs to protect one
design. Another work [3] demonstrates the efficient use of block RAMs to imple-
ment complex countermeasures like masking and dual-rail logic. DSPs in FPGAs
have also been widely used to design public-key cryptographic algorithms like
ECC [4, 5] and other post-quantum algorithms [6]. Moreover, papers like [7] have
used FPGA constraints like KEEP, Lock PINS or language like XDL to design
efficient physical countermeasures.

The basic building block of an FPGA is logic slices. Typically a logic slice
contains look up tables (LUTs) and flip-flops. LUTs are used to implement com-
binational logics whereas flip-flops are used to design sequential architectures.
Every LUT contains an INIT value which is basically the truth table of the
combinational function implemented on that LUT. This INIT value is set dur-
ing the programming of the FPGA through bitstream. Generally this INIT value
is considered to be constant until the FPGA is reprogrammed again. However, in
recent years, a new feature has been added to the FPGAs which allows the user
to modify the INIT value of some special LUTs in the run time, without any
FPGA programming. These special LUTs are known as reconfigurable LUTs or
RLUTs as they can be reconfigured during the operation phase to change the
input-output mapping of the LUT. To the best of our knowledge, RLUTs have
found relevant use in pattern matching and filter applications [8]. Side chan-
nel protection methodology using RLUT is presented in [9] where the authors
have combined different side channel protection strategies with RLUTs and have
developed leakage resilient designs. However, in that work the authors have con-
centrated mainly on constructive use of RLUTs, not on destructive applications
which is covered by our paper.

In this paper, we aim to study the impacts and ramifications of these RLUTs
on cryptographic implementations. We have provided a detailed study of RLUTs
and have deployed it in many security related applications. We propose several
industry-relevant applications of RLUT both of constructive and destructive
nature. For example, an RLUT can be easily (ab)used by an FPGA IP designer
to insert a hardware Trojan. On the other hand, using RLUT, a designer can
provide several enhanced features like programming secret data on client-side.
The contribution of the paper can be listed as follows:

– This paper provides a detailed analysis of RLUTs and how it can be ex-
ploited to create extremely stealthy and serious hardware security threats
like hardware Trojans (destructive applications).

– Moreover, we also propose design methodologies which uses RLUTs to re-
design efficient and lightweight existing side channel countermeasures to mit-
igate power based side channel attacks (constructive applications)

– Thus, in this paper we show that how RLUTs provide a gateway of creating
efficient designs for both adversary and normal users and act as double-edged
swords for security applications. To the best of our knowledge, this is the
first study which provides a detailed security analysis of RLUTs from both
constructive and destructive points of view.

The rest of the paper is organized as follows: Sec. 2 describes the rationale
of an RLUT and discusses its advantages and disadvantages. Thereafter several
destructive and constructive applications of RLUT are demonstrated in Sec. 3
and Sec. 4 respectively. Finally conclusions are drawn in Sec. 5.

2 Rationale of the RLUT

RLUT is a feature which is essentially known to be found in Xilinx FPGAs.
A Xilinx RLUT can be inferred into a design by using a primitive cell called
CFGLUT5 from its library. This primitive allows to implement a 5-input LUT
with a single output whose configuration can be changed. CFGLUT5 was first
introduced in Virtex-5 and Spartan-6 families of Xilinx FPGAs. As we will show
later in this section, the working principle of CFGLUT is similar to the shift reg-
ister or the more popularly known SRL primitives. Moreover, some older families
of Xilinx which do not support CFGLUT5 as a primitive, can still implement
RLUT using the SRL16 primitive. In the following, for sake of demonstration,
we stick to the CFGLUT5 primitives. Nevertheless the results should directly
apply to its alternatives as well.

As stated earlier, a RLUT can be implemented in Virtex-5 FPGAs using a
CFGLUT5 primitive. The basic block diagram of CFGLUT5 is shown in Fig. 1.
It is a 5-input and a 1-output LUT. Alternatively, a CFGLUT5 can also be mod-
eled as a 4-input and 2-output function. The main feature of CFGLUT5 is that
it can be configured dynamically during the run-time. Every LUT is loaded with
a INIT value, which actually represents the truth table of the function imple-
mented on that LUT. A CFGLUT5 allows the user to change the INIT value at
the run-time, thus giving the user power of dynamic reconfiguration internally.
This reconfiguration is performed using the CDI port. A 1-bit reconfiguration
data input is shifted serially into INIT in each clock cycle if the reconfigura-
tion enable signal (CE) is set high. The previous value of INIT is flushed out
serially through the CDO port, 1-bit per clock cycle. Several CFGLUT5 can be
cascaded together using reconfiguration data cascaded output port (CDO).

The reconfiguration property of CFGLUT5 is illustrated in Fig. 2 with the
help of a small example. In this figure, we show how the value of INIT gets
modified:

I2

I3

I4

I1
I0

CE

Clk INIT

CFGLUT5
CE= Reconfiguration enable signal (active high)
CDI= Reconfiguration data serial input
O6= LUT output (For 5/4 i/p function)
O5= LUT output (For 4 i/p function)

CDO= Reconfiguration data output, can
be cascaded to CDI input of other CFGLUT

Clk=clock

INIT=Initial content of LUT

I4, I3, I2, I1, I0= LUT i/p (similar to the
address of shift register)

CDI

O6

O5

CDO

Fig. 1. Block diagram of CFGLUT5

– from value O = (O0, O1, O2, . . . , O30, O31),
– to a new value N = (N0, N1, N2, . . . , N30, N31).

This reconfiguration requires 32 clock cycles. As it is evident from the figure,
reconfiguration steps are basic shift register operations. Hence if required, re-
configuration of LUT content can be executed by using shift register primitives
(SRL16E 1) in earlier device families. The CDO pin can also be fed back to the
CDI pin of the same CFGLUT5. In this case, the original INIT value can be
restored after a maximum of 32 clock cycles without any overhead logic. We will
exploit this property of RLUT later to design hardware Trojans.

...

...

O0 O2 O31O30

N31 O0 O1 O30O29

...N30 N31 O0 O28 O29

...N2 N3N1 N31 O0

...N0 N1 N2 N30 N31

O1

CE = 0, CDI = N31

CE = 1, CDI = N31, CDO = O31

CE = 1, CDI = N30, CDO = O30

...

CE = 1, CDI = N1, CDO = O1

CE = 1, CDI = N0, CDO = O0

Stage 0

Stage 1

Stage 2

Stage 31

Stage 32

INIT

Fig. 2. INIT value reconfiguration in CFGLUT5

There are two different kinds of slices in a Xilinx FPGA i.e., SLICE M and
SLICE L. Whereas a simple LUT can be synthesized in either of the slices, CFG-
LUT5 can be implemented only in SLICE M. SLICE M contains LUTs which
can be configured as memory elements like shift register, distributed memory
along with combinational logic function implementation. The LUTs of SLICE L
can only implement combinational logic. CFGLUT5, when instantiated, is essen-

tially mapped into a SLICE M, configured as shift register (SRL32) as shown
in Fig 3.

Fig. 3. CFGLUT5 mapped in LUT as SRL32 as shown from Xilinx FPGA Editor

2.1 Comparison With Dynamic Configuration

Another alternative to reconfigure FPGA in run-time is to use partial or dynamic
reconfiguration. This reconfiguration can also be exploited to implement secure
architectures [10]. In partial reconfiguration, a portion of the implemented de-
sign is changed without disrupting operations of the other portion of the FPGA.
This operation deploys an Internal Configuration Access Ports (ICAP) and the
design needing reconfiguration must be mapped into a special reconfigurable re-
gion [11]. Reconfiguration latency is in order of milliseconds. Partial reconfigura-
tion is helpful when significant modification of the design is required. However,
for small modification, using RLUT is advantageous as it has very small latency
(maximum 32 clock cycles) compared to partial reconfiguration. RLUT is con-
figured internally and no external access to either JTAG or Ethernet ports are
required for reconfiguring RLUTs. Additionally, traditional DPR (Dynamic Par-
tial Reconfiguration) requires to convey an extra bit file which is not required
in case of RLUT, making RLUT ideal for small reconfiguration of the design, in
particular for Trojans.

2.2 RLUT and Security

Since we have described the functioning of RLUT in detail, we can clearly rec-
ognize some properties which could be helpful or critical for security. A typical
problem of cryptographic implementations is its vulnerability to statistical at-
tacks like Correlation Power Analysis (CPA) [12]. For instance, CPA tries to
extract secret information from static cryptographic implementations by cor-
relating side-channel leakages to estimated leakage models. A desirable feature
to protect such implementations is reconfiguration of few internal features. A
RLUT would be a great solution in this case as it has the power to provide re-
configurability at minimal overhead and with no external access. It is important
to reconfigure internally to avoid the risk of any eavesdropping. On the other

hand, RLUT can also be used as a security pitfall. For example, an efficient de-
signer can simply replace a LUT with RLUT in a design keeping the same INIT
value. Until reconfiguration, RLUT would compute normally. However upon re-
configuration, the RLUT can be turned into a potential Trojan. The routing of
the design is actually static, only the functionality of the LUT is modified upon
reconfiguration. In the following sections, we would show some relevant applica-
tions of constructive or deadly nature. Of course it is only a non-exhaustive list
of RLUT applications into security.

3 Destructive Applications of RLUT
In earlier sections, we have presented the basic concepts of RLUTs with major
emphasis on CFGLUT5 of Xilinx FPGAs. Though CFGLUT5 provides user
unique opportunity of reconfiguring and modifying the design in run-time, it also
gives an adversary an excellent option to design efficient and stealthy hardware
Trojan. In this section, we focus on designing tiny but effective hardware Trojan
exploiting reconfigurability of RLUTs.

A hardware Trojan is a malevolent modification of a design, intended for
either disrupting the algorithm operation or leaking secret information from
it. The design of hardware Trojan involves efficient design of Trojan circuitry
(known as payload) and design of trigger circuitry to activate the Trojan opera-
tion. A stealthy hardware Trojan should have negligible overhead, ideally zero,
compared to the original golden circuit. Moreover, probability of Trojan getting
triggered during the functional testing should be very low, preventing accidental
discovery of the Trojan. The threat of hardware Trojans is very realistic due
to the fabless model followed by the modern semiconductor companies. In this
model, the design is sent to remote fabrication laboratories for chip fabrication.
It is very easy for an adversary to make some small modification in the design
without violating the functionality of the design. The affected chip will give de-
sired output in normal condition, but will leak sensitive information upon being
triggered. More detailed analysis of hardware Trojans can be found in [13–15].

Researchers have shown that it is possible to design efficient hardware Trojans
on FPGAs. In [16] the authors have designed a Trojan on a Basys FPGA board
which get triggered depending upon the ‘content and timing’ of the signals. On
the other hand, authors in [17] have designed a hardware Trojan which can be
deployed on the FPGA via dynamic partial reconfiguration to induce faults in
an AES circuitry for differential fault analysis.

In this section, we will focus on effective design of hardware Trojan payload
using RLUT. But before going into the design methodologies of payload using
RLUTs, we will first describe the other two important aspects of the proposed
hardware Trojans: Adversary model and Trigger methodologies.

3.1 Adversary Model
It is a common trend in the semiconductor industry to acquire proven IPs to
reduce time to market and stay competitive. We consider an adversary model
where a user buys specific proven IPs from a third party IP vendor. By proven
IPs, we mean IPs with well-established performance and area figures. Let us
consider that the IP under consideration is a cryptographic algorithm and the

target device is an FPGA. An untrusted vendor can easily insert a Trojan in
the IP which can act as a backdoor to access sensitive information of other
components of the user circuit. For instance, an IP vendor can provide a user with
an obfuscated or even encrypted netlist (encrypted EDIF (Electronic Design
Interchange Format)). Such techniques are popular and often used to protect the
rights of the IP vendor. A Trojan in an IP is very serious for two major reasons.
First, the Trojan will affect all the samples of the final product and secondly it is
almost impossible to get a golden model. Moreover, research in Trojan detection
under the given attack model is quite limited. The user does not have a golden
circuit to compare, thus making hardware Trojan detection using side channel
methodology highly unlikely. Additionally, this adversary model also makes the
Trojan design challenging. Generally, before buying an IP, user will analyze IPs
from different IP vendors for performance comparison. This competitive scenario
does not leave a big margin (gate-count) for Trojans.

Using RLUT, we can design extremely lightweight hardware Trojan payload
as we can reconfigure the same LUTs, used in the crypto-algorithm implemen-
tation, from correct value to malicious value. This reduces the overhead of the
hardware Trojan and makes it less susceptible to detection techniques based on
visual inspection [18]. We can also restore the original value of RLUT to re-
move any trace of Trojan, of course, at minor overheads. An IP designer can
easily replace a normal LUT with RLUT. In this case, the designer has only one
restriction of replacing a LUT implemented in SLICE M. It is not difficult to
find such a LUT in a medium to big-scale FPGA which is often the case with
cryptographic modules. Moreover, if the designer chooses to insert the trojan
at RTL level, the present restriction would not even apply. Additionally, if the
access to the client bitstream is available, the adversary can reverse engineer the
bitstream [19] and can replace a normal LUT with RLUT.

Instantiation of CFGLUT5 does not report any special element in the design
summary report, but a LUT modeled as SRL32 . A shift register has many
usages on the circuit. For example, a counter can be very efficiently designed on
a shift register using one hot encoding. Moreover, lightweight ciphers employs
extensive usage of shift registers for serialized architectures. Thus any suspicion
of malicious activity will not arise in the user’s mind by seeing the design report.

The only requirement is efficient triggering and a reconfiguration logic which
will generate the malicious value upon receiving trigger signal. However, in this
paper we will show that once triggered, malicious value for the hardware
Trojan can be generated without any overhead, thus giving us extremely
lightweight and stealthy design of hardware Trojans. The basic methodology is
same for all the Trojans, which can be tabulated as follows:

– Choose a sensitive sub-module of the crypto-algorithm. For example, one
can choose a 4×4 Sbox (can be implemented using 2 LUTs) as the sensitive
sub module.

– Replace the LUTs of the chosen sub-module with CFGLUT5s without al-
tering the functionality. A 4 × 4 Sbox can also be implemented using two
CFGLUT5.

– Modify the INIT value upon trigger. As shown in Fig. 1, reconfiguration
in CFGLUT5 takes place upon receiving the CE signal. By connecting the
trigger output to the CE port, an adversary can tweak the INIT value of
CFGLUT5 and can change it to a malicious value. For example, the 4 × 4
Sboxes, implemented using CFGLUT5 can be modified in such a way that
non-linear properties of the Sboxes get lost and the crypto-system becomes
vulnerable to standard cryptanalysis. The malicious INIT value can be easily
generated by some nominal extra logic. However, in the subsequent sections,
we will show that it is possible to generate the malicious INIT value without
any extra logic.

– Upon exploitation, restore original INIT value.

3.2 Trigger Design the Hardware Trojans

A trigger for a hardware Trojan is designed in a way that the Trojan gets acti-
vated in very rare cases. The trigger stimulus can be generated either through
output of a sensor under physical stress or some well controlled internal logic.
The complexity of trigger circuit also depends on the needed precision of the trig-
ger in time and space. Several innovative and efficient methods were introduced
as a part of Embedded Systems Challenge (2008) where participants were asked
to insert Trojans on FPGA designs. For instance, one of the the proposition
was content & timing trigger [16], which activates with a correct combination of
input and time. Such triggers are considered practically impossible to simulate.
Other triggers get activated at a specific input pattern. A more detailed analysis
with example of different triggering methodologies and their pros and cons can
be found in [20].

Moreover, modern devices are loaded with physical sensors to ensure correct
operating conditions. It is not difficult to find voltage or temperature sensors
in smart-cards or micro-controllers. Similarly, FPGA also come with monitors
to protect the system for undesired environmental conditions, Virtex-5 FPGAs
contain system monitor. Though system monitor is not a part of cipher, they
are often included in the SoC for tamper/fault/ temperature variation detection.
These sensors are programmed to raise an alarm in event of unexpected physi-
cal conditions like overheating, high/low voltage etc. Now an adversary can use
this system monitor to design an efficient and stealthy hardware Trojan trig-
ger methodology. The trick is to choose a trigger condition which is less than
threshold value but much higher than nominal conditions. For instance, a chip
with nominal temperature of 20◦C− 30◦C and safety threshold of 80◦C, can be
triggered in a small window chosen from the range of 40◦C − 79◦C. Similarly,
user deployed sensors like the one proposed in [21] can also be used to trigger a
Trojan. In our case study, we used the temperature sensor of Virtex-5 FPGAs
system monitor to trigger the Trojan, more precisely on SASEBO-GII boards.
The heating required to trigger the Trojan can be done by a simple $5 hair-
dryer easily available in the market. The triggering mechanism is explained in
Appendix A. In the following to not deviate from the topic, we focus mainly on
the payload design of the Trojan using RLUT. We let the designer choose any

of the published techniques (including one proposed in Appendix A) or innovate
one. We precisely propose the design of the Trojan and the required triggering
conditions.

3.3 Trojan Description
Before designing Trojan payload for a given hardware, we first demonstrate the
potential of RLUT in inserting malicious activity. Let us consider a buffer which
is a very basic gate. Buffers are often inserted in a circuit by CAD tools to
achieve desired timing requirements. For FPGA designers, another equivalent of
buffer is route-only LUT. These buffers can be inserted in any sensitive wires
without raising an alarm. In fact, sometimes the buffers might already exist.

These buffers are implemented in a LUT6 with INIT=0xAAAAAAAAAAAAAAAA

and can be easily replaced by CFGLUT5. A simple Trojan would consist in
changing the INIT value of CFGLUT5 to 0xAAAAAAAA and feedback CDO output
to CDI input (see Fig 1). The CE input is connected to the trigger of the
Trojan. Now, when the Trojan is triggered once (one clock), INIT value changes
to 0x55555555 which changes the functionality of the gate to inverter. Another
trigger brings back the INIT value to 0xAAAAAAAA i.e., a buffer. The operations
are illustrated in Fig. 4, where red block shows Trojan inverter and black blocks
show a normal buffer. Thus by precisely controlling the trigger, an adversary
can interchange between a buffer and inverter. Such a Trojan can be used in
many scenarios like injecting single bit faults for Differential Fault Attacks [22]
or controlling data multiplexers or misreading status flags, etc.

In the above example, we see how a buffer can be converted to an inverter by
reconfiguring the CFGLUT5 upon receiving the trigger signal. One important
observation is that we do need need any extra reconfiguration logic to modify the
INIT value of the CFGLUT5. The modification of the INIT value is achieved by
the connecting the reconfiguration input port CDI to the reconfiguration data
output port CDO. In other words, we can define the malicious INIT value in
following way

INITmalicious = CSi(INITnormal)

where CSi denotes cyclic right shift by i bits. The approach of RLUT is harder to
detect because the malicious payload does not exist in the design. It is configured
when needed and immediately removed upon exploitation. In normal LUT, the
malicious design is hardwired (requires extra logic) and risk detection, whereas
RLUT modifies existing resources and enables us to design design hardware Tro-
jans without any extra reconfiguration logic. We will use similar methodologies
for all the proposed hardware Trojans in this paper.

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK

1

31 30 29 28 3 2 1 0

INIT (32 bits)

CLK

1

31 30 29 28 3 2 1 0

INIT (32 bits)

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0...... ...

Fig. 4. Operations of CFGLUT5 to switch from a buffer to inverter and back

Next, we target a basic AES IP as a Trojan target. The architecture of the
AES design is shown in Fig. 5. The AES takes 128 bits of plaintext and key
as input and produce 128 bit cipher-text in 11 clock cycles. The control unit of
the AES encryption engine is governed by a 4 bit mod-12 counter and generates
three different control signals which are as follows:

1. load: It is used to switch between plaintext and MixColumns output. During
the start of the encryption, this signal is made high to load the plaintext in
the AES encryption engine.

2. S.R/M.C: It is used to switch between the ShiftRows and MixColumns out-
put in the last round of AES.

3. done: It is used to indicate the end of encryption.

These signals are set high for different values of the counter. In our Trojan design,
we mainly target the control unit of the AES architecture to disrupt the flow of
the encryption scheme so that we can retrieve the AES encryption key. For this,
we have developed four different Trojans and have deployed them on the AES
implementation. The objective of the developed Trojan is to retrieve the AES key
with only one execution of hardware Trojan or single bad encryption. Indeed, it
has been shown that only one faulty encryption, if it is accurate in time, suffices
to extract a full 128-bit key [23]. Triggering conditions can be further relaxed if
several bad encryptions are acceptable. Each Trojan has trigger with different
pulse-width or number of clock cycles. For different payloads, the RLUT content
varies, hence variation in the trigger.

K

E

Y

S

C

H

E

D

U

L

Clk Enable

Counter

4

Control

Signals

Generator

LUT6_2

4

count

Control Unit

Output Cipher Text

done

Reset
Master Key

128

128

128

128

Plain−Text

round key

128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

E

ShiftRows

MixColumns

Substitution

Fig. 5. AES architecture without Trojans

K

E

Y

S

C

H

E

D

U

L

Clk Enable

Counter

4

Control

Signals

Generator

count

Control Unit

Output Cipher Text

Reset

128

128

128

128

round key

128

128

128

128’d0 128

128

State Register

S.R/M.C

load

128

128

4

Trig.

CD
I

CDO

CE

CFGLUT5

done

Plain−Text Master Key

E

Substitution

ShiftRows

MixColumns

Fig. 6. AES architecture with Trojan 1

The detailed description of the developed Trojans are as follows:

Trojan 1 As we have stated earlier, the control unit of AES is based on a
counter which also generates a done flag to indicate completion of the encryption

cycle and is set to high only if counter value reaches 11. Signal done as shown in
Fig. 5, is driven by a LUT6 2, which takes 4 bit counter value as input, and under
normal operation it should contain INIT value 0x00000800 (it means only the
11th bit is set to one i.e. condition required for done signal). To insert a Trojan
we replace this LUT with CFGLUT5 with INIT=0x80000800. It must be noted
that though the INIT value of LUT6 2 and INIT value of CFGLUT5 are not
same, both will essentially produce the same output upon receiving the 4 bit
counter value. This is because truth-table of a function of 4 variables consists of
16 bits only, hence any change in the upper 16 bits of the INIT value will not
change the functionalities of the LUT.

The CDO output is feedback into CDI input as in the example above. A trig-
ger of 2 clock cycles at the CE input activates the Trojan (INIT=0x00002002)
and produces the round 0 output (at round 0, counter value is 1) as the cipher-
text. The round 0 output is actually same as plaintext XOR key and by knowing
the plaintext, one can easily extract the full key with one wrong encryption.
Again, we can see that malicious value of the INIT is generated by cyclic shift
of the original INIT value of the CFGLUT5, hence we do not need any extra
logic to generate the new INIT value. After extracting the key, a trigger of 10
clock cycles will restore the normal operations of the AES (INIT=0x00800800).
This INIT value need not to be the same value, with which we started the com-
putation (INIT=0x80000800), as long as the LUT generates correct output. The
transition of INIT to activate the Trojan and restore back is shown in Fig 7(a)
and the modifications in the AES architecture is shown in Fig. 6.

In the above Trojan description, we need 2 clock cycles to modify the CFG-
LUT5 to malicious Trojan configuration and 10 clock cycles to restore it to the
original correct value. So in total, we require 12 clock cycles.

Keeping this in mind, we have implemented three different versions of the
same Trojan, depending on the precision of the trigger.

1. Trojan 1a needs a 1 cycle trigger synchronized with the start of the encryp-
tion. This trigger is used to enable a FSM which generates 12 clock cycles
for CE of the CFGLUT , in order to activate the Trojan and restore it back
after exploitation. Because of this, the overhead of the developed Trojan is
6 LUTs and 4 flip-flops.

2. Trojan 1b is a zero overhead Trojan. It assumes an adversary to be slightly
stronger than Trojan 1a who can generate a trigger signal active for precisely
12 cycles and synchronized with the start of encryption.This overhead is
absent in Trojan 1b as the trigger itself act as the CE signal of RLUT.

3. Trojan 1c relaxes the restriction on the adversary seen at previous case.
It assumes that there are some delays of n � 10 clock cycles between two
consecutive encryption. The choice of n � 10 is due to the fact that we
need 2 clock cycles to reconfigure the RLUT into malicious Trojan payload,
and 10 clock cycles to restore it back to good value. Hence the gap between
two consecutive AES encryption should be greater than 10. The adversary
provides a trigger of two clock cycles (not necessarily consecutive) before
the start of current encryption. After the faulty encryption is complete, the

adversary generates 10 trigger cycles (again not necessarily consecutive) to
restore back the cipher operations. The overhead for this Trojan is 2 LUTs
, due to routing of RLUT.

CLKCLK
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 01 1 1 1

102

31 30 29 11 2 1 0 31 30 29 13 2 1 0 31 30 23 11 1 0

INIT (32 bits) INIT (32 bits) INIT (32 bits)

...

(a)

CLKCLK
0 0 0 0 1 0 0 0 0 0 0 0 0 1 01 1 11 0

210

INIT (32 bits)

31 30 29 22 2 1 0 31 30 29 10 2 1 0

INIT (32 bits)

31 30 29 12 1 0

INIT (32 bits)

...

(b)

Fig. 7. Operations of CFGLUT5 to activate the Trojan and restore to normal opera-
tions for (a) Trojan 1; (b) Trojan 2. Bit positions not shown contain ‘0’

Trojan 2 This Trojan targets a different signal in the control unit of the AES
design. As shown in Fig. 5, the design contains a multiplexer which switches be-
tween MixColumns output and input plaintext depending on the round/count
value. The output of the multiplexer is produced at input of AddRoundKey op-
eration. Under normal operation, multiplexer passes the input plaintext in round
0 (load signal of multiplexer is set to 1) and MixColumns output (ShiftRows out-
put in the last round) in other rounds (select signal of multiplexer is set to 0).
To design the Trojan, we have replaced the LUT6 2 (with INIT=0x00000002)
which generates load signal of the multiplexer with CFGLUT5, containing INIT=

0x00400002. As we have observed for Trojan 1, the difference in the INIT value
in LUT6 2 and INIT value of CFGLUT5 will essentially produce the same out-
put.

In this case also CDO port of CFGLUT5 is connected to CDI port, enabling
cyclic shift of the INIT value. Upon a trigger of 10 clock cycles, the INIT value
gets modified to INIT=0x80000400 (it means load will set to one during the
last round). This actually changes the multiplexer operation, modifying it to
select the plaintext in the last round computation. From the resulting cipher-
text of this faulted encryption, we can easily obtain the last round key, given
the plaintext. Further a trigger of 2 clock cycles restores the normal operation
(INIT=0x00001002) as shown in Fig 7(b). Again the value over bit position 12
is not a problem as the select signal is controlled by a mod-12 counter and the
value is never reached. The counter value 0 indicates idle state, 1 − 10 encryp-
tion and 11 indicates end of encryption. This Trojan also has a zero overhead
as reconfiguration of the CFGLUT5 is obtained by cyclic right shifting of INIT.
But the trigger signal need to be precise and should be available for consecutive
12 clock cycles. Hence, triggering cost is same as Trojan 1b.

Hence, the triggering cost is same as Trojan 1b.
Tab. 1 summarizes the nature, trigger condition and cost of the four Trojans.

Table 1. Area overhead of the Trojans on Virtex-5 FPGA. Trigger is given in clock
cycles and s subscript indicates trigger must be consecutive synchronized with the start
of encryption.

Trojan Trigger LUT Registers Payload Overhead Frequency (MHz)

AES (No Trojan) 1594 260 X 212.85
Trojan 1a 1s 1600 264 6 LUTs & 4 flip-flops 212.85
Trojan 1b 12s 1594 260 0 212.85
Trojan 1c 12 1596 260 2 LUTs 212.85
Trojan 2 12s 1594 260 0 212.85

The above described Trojans can also be designed using normal LUTs. The
zero overhead Trojans described above can be designed using 2 LUT overhead
(One LUT for Trojan operation and other for selecting between Trojan and
normal operations). But such Trojan designs can be easy to detect as the Trojan
operated LUT is always present on the design unlike CFGLUT5, where the
Trojan operated LUT is created by run time reconfiguration.

In this section, we have presented different scenarios where CFGLUT5 can be
employed as hardware Trojans and can leak secret information from crypto-IPs
like AES. We specifically have targeted multiplexers and FSMs of the circuit.
It is also possible to design sophisticated Trojans using CFGLUT5 where the
developed Trojan will work in conjunction with side channel attacks or fault
injections to increase the vulnerability of the underlying crypto-system.

4 Constructive Applications for RLUT

In the previous section, we discussed some application of RLUT for hardware
Trojans into third party IPs. However, RLUT do have a brighter side to their
portfolio. The easy and internal reconfigurability of RLUT can surely be well
exploited by the designers to solve certain design issues. In the following, we
detail two distinct cases with several applications, where RLUT can be put to
good use.

4.1 Customizable Sboxes

A common requirement in several industrial application is dynamic or cutomiz-
able substitution boxes (Sboxes) of a cipher. One such scenario which is often en-
countered by IP designers who design secret ciphers for industrial application.
A majority of secret ciphers use a standard algorithm like AES with modified
specification like custom Sboxes or linear operations. Sometimes the client is not
comfortable to disclose these custom specifications to the IP designer. Common
solutions either have a time-space overhead or resort to dynamic reconfiguration,
to allow the client to program secret parameters at their facilities. A RLUT can
come handy in this case.

There are several algorithms where the Sboxes can be secret. The former
Soviet encryption algorithm GOST 28147-89 which was standardized by the
Russian standardization agency in 1989 is a prominent example [24]. The A3/A8
GSM algorithm for European mobile telecommunications is another example. In
the field of digital rights management, Cryptomeria cipher (C2) has a secret set
of Sboxes which are generated and distributed to licencees only.

There are certain encryption schemes like DRECON [25], which offers DPA
resistance by construction, exploiting tweakable ciphers. In this scheme, users
exchange a set of tweak during the key exchange. The tweak is used to choose
the set of Sboxes from a bigger pool of precomputed Sboxes. In the proposed
implementation [25], the entire pool of Sboxes must be stored on-chip. Using
RLUT, the Sboxes can be easily computed as a function of the tweak and stored
on the fly. Similarly, a low-cost masking scheme RSM [3] can also benefit from
RLUT to achieve desired rotation albeit at the cost of latency. Thus there exist
several applications where customizable Sboxes are needed.

Architecture of Sbox Generator: As a proof of concept, we implement
the Sbox generation scheme of [25]. The original implementation generates a
pool of 32 4 × 4 Sboxes and stores it into BRAMs, while only 16 are used for
a given encryption. It uses a set of Sboxes which are affine transformations of
each other. For a given cryptographically strong Sbox S(·), one can generate 2n

strong Sboxes by following: Fi(x) = αS(x) ⊕ i for all i = 0, · · · , 2n − 1, where α
is an invertible matrix of dimension n × n. α can also be considered a function
of the tweak value t i.e. α = f(t). Since affine transformation does not change
most of the cryptographic properties of Sboxes, all the generated Sboxes are of
equal cryptographic strength [25].

The Sbox computation scheme of [25] can be very well implemented using
RLUT as follows. The main objective of this Sbox generator is to compute a
new affine Sbox from a given reference Sbox, and store it in the same location.
The architecture is shown in Fig 8. As we have stated earlier, each CFGLUT5
can be modeled as 2 output 4 input function generator, we can implement a 4×4
Sbox using two CFGLUT5 as shown in Fig 8. We consider that the reference
4 × 4 Sbox is implemented using 2 CFGLUT5. We compute the new Sbox and
program it in the same 2 CFGLUT5. The reconfiguration of the Sbox is carried
through following steps:

1. Read the value of the Sbox for input 15.

2. Compute the new value (4-bits {3,2,1,0}) of the Sbox using affine transformer
for the Sbox input 15.

3. Now CFGLUT5 is updated by the computed value, 2 bits for each CFGLUT5
({3,2},{1,0}). However, only one bit can be shifted in CFGLUT5 in one clock
cycle. Hence we shift in two bits, 1-bit in each CFGLUT5 ({0,2}) and store
the other 2-bit ({1,3}) in two 16 bit registers.

4. After the 2-bits ({0,2}) of new value of Sbox is shifted in to position 0 of
each CFGLUT5, old value for the position 15 is flushed out. The old value
at position 14 is moved up to position 15. Thus the address is hard-coded to
4’d15.

5. Repeat steps 1− 4 until whole old Sbox is read out i.e. 16 clock cycles.

6. After 16 clock cycles, we start to shift in the data which we stored in the
shift register bits ({1,3}) for 16 Sbox entries, which takes another 16 clock
cycles. This completes Sbox reconfiguration.

.

.

.

.

.

.

4

1

2

4
1

11

2

1

1

1

CDI

4

CDI

44’d15

SBox input
Affine

index i

Trans-
former

CFGLUT5

CFGLUT5

0

0

15

15

Sbox

SBOXH

SBOXL

α

Shift

Shift
Reg.

.Reg.

reconfig/encrypt

Fig. 8. Architecture of Sbox Computation using affine transformation and storing in
RLUT

The architecture requires 56 LUTs, 38 flip-flops with a maximum operat-
ing frequency of 271 MHz. To reconfigure one Sbox, we need 32 clock cycles.
Now depending on the application and desired security the sbox recomputation
can be done after several encryption or every encryption or every round. It is a
purely security-performance trade-off.

4.2 Sbox Scrambling for DPA Resistance
RLUT also have the potential to provide side-channel resistance. The reconfig-
uration provided by RLUT can be very well used to confuse the attackers. A
beneficial target would be the much studied masking countermeasures [2] which
suffer from high overhead due to the requirement of regular mask refresh. One of
the masking countermeasures which was fine-tuned for FPGA implementation
is Block Memory content Scrambling (BMS [2]). This scheme claims first-order
security and, to our knowledge, no practical attack has been published against it.
However, Sbox Scrambling using BRAM is inefficient on lightweight ciphers with
4x4 sboxes due to underutilization of resources. Hence we propose a novel archi-
tecture using RLUT to address this. Nevertheless, this mechanism can easily be
translated to AES also.

The side channel countermeasure using RLUT, shown in [9] is different from
the proposed design architecture. The design of [9] implements standard Boolean
masking scheme, where each round uses a different mask. Here, we propose a
lightweight architecture of SBox scrambling scheme presented in [2]. These two
countermeasures have similar objectives but quite different designs.

The BMS scheme works as follows: let Y (X) = P (SL(X)) be a round of
block cipher, where X is the data, P (·) is the linear and SL(·) is the non-linear
layer of the block cipher. For example in PRESENT cipher [26], the non-linear
layer is composed of 16 4 × 4 Sboxes and the linear layer is bit-permutation.
According to the BMS scheme, the masked round can be written as YM (X) =
P (SLM (XM)), where XM is masked data X ⊕M and SLM (·) is the Sbox layer

SLM1

SL(XM1 ⊕M1)⊕P−1(M1)

SLM0
keyr

XM0 = X ⊕M0

SL(XM0 ⊕M0)⊕P−1(M0)

64

64

64

64

64

64 64
P

64

SWAP=0

YM0 = P (SL(X))⊕M0

Fig. 9. Architecture of Modified PRESENT Round. SLM0 is the (precomputed) active
SLayer while SLM1 is being computed as in Fig. 10.

of 16 scrambled Sbox. Now each Sbox Sm(·) in SLM is scrambled with one
nibble m of the 64-bit mask M . The scrambled Sbox Sm(·) can be simplified
as Sm(xm)) = S(xm ⊕m) ⊕ P−1(m), where x is one nibble of round input X.
Next in a dual-port BRAM which is divided into an active and inactive segment,
where the active segment contains SLM0(·) i.e. Sbox scrambled with mask M0
is used for encryptions. Parallely, another Sbox layer SLM1(·) scrambled with
mask M1 is computed in an encryption-independent process and stored in the
inactive segment. Every few encryption, the active and inactive contents are
swapped and a new Sbox scrambled with a fresh mask is computed and stored
in the current inactive segment. This functioning is illustrated in Fig. 9.

BMS is an efficient countermeasure and shown to have reasonable overhead
of 44% for LUTs, 2× BRAMs and roughly 3× extra flip-flops in FPGA. Another
advantage of BMS is that it is generic i.e., it can be applied to any cryptographic
algorithm. BMS can be viewed as a leakage resilient implementation, where the
cipher is not called enough with a fixed mask for an attack to succeed. The
memory contexts are swapped again with a fresh mask. However, for certain
algorithms BMS could become unattractive. For example in a lightweight algo-
rithm like PRESENT, a 4 × 4 Sbox can be easily implemented in 4 LUTs. In
newer FPGA families which support 2-output LUT, 2 LUTs are enough to im-
plement a Sbox. Using a BRAM in such a scenario would lead to huge wastage
of resources.

Sbox Scrambling using RLUT: In the following, we use RLUT to implement
BMS like countermeasure. Precisely we design a PRESENT cryptoprocessor pro-
tected with a BMS like scrambling scheme but using RLUTs to store scrambled
Sboxes. The rest of the scheme is left same as [2]. The architecture of Sbox
scrambler using RLUT is shown in Fig 10. SBOXP is the PRESENT Sbox. A
mod16 counter generates the Sbox address ADDR which is masked with Mask
m of 4-bits. The output of Sbox is scrambled with the inverse permutation of
the mask to scramble the Sbox value. Please note that the permutation must be
applied on the whole 64-bits of the mask to get 4-bits of the scrambling constant
for each Sbox. Each output of the scrambler is 4-bits. As stated before, each 4×4
Sbox can be implemented in 2 CFGLUT5 each producing 2-bits of the Sbox com-

MASK m

4

4

64 64

4

ADDR

RNG

4 4

Inverse

pLayer

4

2

2

FIFO

FIFO

RECONFIGURATION
CIRCUIT

SCRAMBLER

SBOXP

CDI

SBOXML

CFGLUT5

CFGLUT5

O6

O5

O5

O6
CDI

SBOXMH

Fig. 10. Architecture of Sbox Scrambler

Table 2. Area and Performance Overhead of Scrambling Scheme on Virtex-5 FPGA

Architecture LUTs Flip-flops Frequency (MHz)

Original 208 150 196
Scrambled 557 552 189
Overhead 2.67× 3.68× 1.03×

putation. Let us call the CFGLUT5 producing bits 0, 1 as SBOXML and bits
2, 3 as SBOXMH . The 4-bit output of the scrambler is split into two buses of
2-bits ({3,2},{1,0}). Bits {3,2} and {1,0} are then fed to the CDI of SBOXML

and SBOXMH respectively, through a FIFO. The same scrambler is used to
generate all the 16 Sboxes one after the other and program CFGLUT5. In total
it requires 16× 32 clock cycles to refresh all 16 inactive Sboxes. We implement
two parallel layers of SBoxes. When the active layer is computing the cipher,
the inactive one is being refreshed. Thus cipher operation is not stalled. 16× 32
clocks (16 encryptions) are needed to refresh the inactive layer and this means
that we can swap active and inactive SBoxes after every 16 encryptions. Swap
means that active SBox become inactive and vice versa. The cipher design uses
active SBox only. The area overhead comes from the scrambler circuit and mul-
tiplexers used to swap active/inactive Sboxes. We implemented a PRESENT
crypto-processor and protected it with Sbox scrambling countermeasure. The
area and performance figures of the original design and its protected version are
summarized in Tab. 2. It should be noted that proposed design has more over-
head compared to original BMS scheme in terms of LUT and flip-flops, but does
not require any block RAMs which are essential part of original BMS scheme.

5 Conclusions
This paper addresses methods to exploit reconfigurable LUTs (RLUTs) in FP-
GAs for secure applications, with both views: destructive and constructive. First
it has been shown that the RLUT can be used by an attacker to create Hard-
ware Trojans. Indeed the payload of stealthy Trojans can be inserted easily in

IP by untrusted vendors. The Trojans can be used to inject faults or modify
the control signals in order to facilitate the key extraction. This is illustrated
by a few examples of Trojans in AES. Second the protective property of RLUT
has been illustrated by increasing the resiliency of the Sboxes of cryptographic
algorithms. This is accomplished either by changing dynamically the Sboxes of
customized algorithms or scrambling the Sboxes of standard algorithms. These
type of design techniques are extremely useful for lightweight block ciphers with
SBox of smaller dimension. Moreover, generating Sboxes in runtime is an attrac-
tive design choice for the designer employing ciphers with secret Sboxes.

To sum up, this paper clearly shows that RLUT is a double-edged sword
for security applications on FPGAs. Due to the obvious positive application of
RLUTs in security, one cannot simply restrict the use of RLUT in secure applica-
tions. This motivates further research in two principal directions. Firstly, there
is need for Trojan detection techniques at IP level. This detection techniques
should be capable of distinguishing a RLUT based optimizations from potential
Trojans. Finally certain new countermeasures totally based on RLUTs can be
studied.

References

1. S.M. Trimberger and J.J. Moore. FPGA Security: Motivations, Features, and
Applications. Proceedings of the IEEE, 102(8):1248–1265, Aug 2014.

2. Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for recon-
figurable devices. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume
6917 of LNCS, pages 33–48. Springer, 2011.

3. Shivam Bhasin, Wei He, Sylvain Guilley, and Jean-Luc Danger. Exploiting FPGA
block memories for protected cryptographic implementations. In ReCoSoC, pages
1–8. IEEE, 2013.

4. Tim Güneysu and Christof Paar. Ultra High Performance ECC over NIST Primes
on Commercial FPGAs. In CHES, pages 62–78, 2008.

5. Debapriya Basu Roy, Debdeep Mukhopadhyay, Masami Izumi, and Junko Taka-
hashi. Tile before multiplication: An efficient strategy to optimize DSP multiplier
for accelerating prime field ECC for NIST curves. In The 51st Annual Design
Automation Conference 2014, DAC ’14, San Francisco, CA, USA, June 1-5, 2014,
pages 1–6. ACM, 2014.

6. Tim Güneysu. Getting Post-Quantum Crypto Algorithms Ready for Deployment.
7. Wei He, Andrés Otero, Eduardo de la Torre, and Teresa Riesgo. Automatic gener-

ation of identical routing pairs for FPGA implemented DPL logic. In ReConFig,
pages 1–6. IEEE, 2012.

8. Martin Kumm, Konrad Möller, and Peter Zipf. Reconfigurable FIR filter using
distributed arithmetic on FPGAs. In 2013 IEEE International Symposium on
Circuits and Systems (ISCAS2013), Beijing, China, May 19-23, 2013, pages 2058–
2061. IEEE, 2013.

9. Pascal Sasdrich, Amir Moradi, Oliver Mischke, and Tim Güneysu. Achieving Side-
Channel Protection with Dynamic Logic Reconfiguration on Modern FPGAs. In
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2015, Washington, DC, USA, 5-7 May, 2015, pages 130–136, 2015.

10. F. Madlener, M. Sotttinger, and S.A. Huss. Novel hardening techniques against
differential power analysis for multiplication in gf(2n). In Field-Programmable

Technology, 2009. FPT 2009. International Conference on, pages 328–334, Dec
2009.

11. Xilinx. Xilinx Partial Reconfiguration User Guide (UG702). http://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf.

12. Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In CHES, volume 3156 of LNCS, pages 16–29. Springer,
August 11–13 2004. Cambridge, MA, USA.

13. Subidh Ali, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay, and Swarup Bhu-
nia. Multi-level attacks: An emerging security concern for cryptographic hardware.
In Design, Automation and Test in Europe, DATE 2011, Grenoble, France, March
14-18, 2011, pages 1176–1179, 2011.

14. Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hard-
ware Trojan: Threats and Emerging solutions. In IEEE International High Level
Design Validation and Test Workshop, HLDVT 2009, San Francisco, CA, USA,
4-6 November 2009, pages 166–171, 2009.

15. Mohammad Tehranipoor and Domenic Forte. Tutorial T4: All You Need to Know
about Hardware Trojans and Counterfeit ICs. In 2014 27th International Con-
ference on VLSI Design and 2014 13th International Conference on Embedded
Systems, Mumbai, India, January 5-9, 2014, pages 9–10, 2014.

16. Zhimin Chen, Xu Guo, Raghunandan Nagesh, Anand Reddy, Michael Gora, and
Abhranil Maiti. Hardware trojan designs on basys fpga board.

17. Anju P. Johnson, Sayandeep Saha, Rajat Subhra Chakraborty, Debdeep
Mukhopadhyay, and Sezer Gören. Fault Attack on AES via Hardware Trojan
Insertion by Dynamic Partial Reconfiguration of FPGA over Ethernet. In Proceed-
ings of the 9th Workshop on Embedded Systems Security, WESS ’14, pages 1:1–1:8,
New York, NY, USA, 2014. ACM.

18. Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Xuan Thuy Ngo, and Laurent
Sauvage. Hardware Trojan Horses in Cryptographic IP Cores. In Wieland Fischer
and Jörn-Marc Schmidt, editors, FDTC, pages 15–29. IEEE, 2013.

19. Jean-Baptiste Note and Éric Rannaud. From the Bitstream to the Netlist. In
Proceedings of the 16th International ACM/SIGDA Symposium on Field Pro-
grammable Gate Arrays, FPGA ’08, pages 264–264, New York, NY, USA, 2008.
ACM.

20. Benchmarks. https://www.trust-hub.org/resources/benchmarks. Accessed:
2015-01-30.

21. Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura, Daisuke Fujimoto, Daichi
Tanaka, Makoto Nagata, and Takafumi Aoki. EM Attack Is Non-invasive? - De-
sign Methodology and Validity Verification of EM Attack Sensor. In Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, pages 1–16, 2014.

22. Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and Khazad. In CHES,
volume 2779 of LNCS, pages 77–88. Springer, September 2003. Cologne, Germany.

23. Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. Differential fault anal-
ysis of AES: towards reaching its limits. J. Cryptographic Engineering, 3(2):73–97,
2013.

24. Axel Poschmann, San Ling, and Huaxiong Wang. 256 Bit Standardized Crypto
for 650 GE - GOST Revisited. In Stefan Mangard and François-Xavier Standaert
Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages 219–233. Springer Berlin
Heidelberg, 2010.

25. Suvadeep Hajra, Chester Rebeiro, Shivam Bhasin, Gaurav Bajaj, Sahil Sharma,
Sylvain Guilley, and Debdeep Mukhopadhyay. DRECON: DPA Resistant En-
cryption by Construction. In David Pointcheval and Damien Vergnaud, editors,
AFRICACRYPT, volume 8469 of Lecture Notes in Computer Science, pages 420–
439. Springer, 2014.

26. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES, volume 4727 of LNCS,
pages 450–466. Springer, September 10-13 2007. Vienna, Austria.

27. Xilinx. Virtex-5 fpga system monitor. http://www-inst.eecs.berkeley.edu/

~cs150/fa13/resources/ug192.pdf.

A Trigger generation for Hardware Trojans

For the hardware Trojan trigger signal, we exploit directly the temperature sen-
sor measurement to generate the trigger signal. The device, used for this exper-
iment, is Xilinx Virtex 5 FPGA mounted on SASEBO-GII boards. As described
in the documentation [27], the temperature measurement is read directly on 10
bits signal output of system monitor. This output allows a value which varies
from 0 to 1023. System monitor measurement allows to sense a temperature in
range of [−273◦C,+230◦C] hence the LSB of the 10 bits output is equal to 1/2◦C.
At the normal operating temperature (25◦C), system monitor output is around
605 = b′1001011101. Thanks to this observation, we decided to use directly the
7th bit of system monitor output as hardware Trojan trigger signal. The hard-
ware Trojan will be activated when 7th bit of monitor output is high, i.e., when
the monitor output is superior to 640 = b′1010000000. This value corresponds
to 42◦C. Therefore the trigger signal will be active when FPGA temperature is
higher than 42◦C. The trigger temperature can be easily changed according to
the design under test. In our case study, a simple hair dryer of cost $5 is enough
to heat the FPGA and reach this temperature. We assume that a system mon-
itor is already instantiated in the design, to monitor device working conditions
and the alarm is raised at a temperature higher than 42◦C. In such a scenario,
the hardware Trojan trigger part does not consume much extra logic and would
result in a very low-cost hardware Trojan example.

Whenever we need to trigger the Trojan, we bring the heater circuit close to
the FPGA. The FPGA heats up slowly to the temperature of 42◦C and raises
the output bit to ’1’. At this point, we switch-off the heater. Now this output
bit stays ’1’ till the FPGA cools down below 42◦C, therefore we cannot precisely
control the duration of trigger in terms of cycle count. We further process this
output bit of the system monitor to generate a precise duration trigger. This
can be done with some extra logic. In other words, we need a small circuit which
can generate a precise trigger signal when the output bit of system monitor goes
to ’1’. For the Trojans in Tab 1, we either need a trigger of 1 clock cycle or 12
clock cycles. Both these triggers can be generated by deploying one LUT and
one flip-flop to process output bit of system monitor. Thus, we can generate a
very small trigger circuit to trigger a zero-overhead hardware Trojan.

