CCA Security for Self-Updatable Encryption:
Protecting Cloud Data When Clients Read/Write Ciphertexts

Kwangsu Lee* Dong Hoon Lee' Jong Hwan Park* Moti Yung®

Abstract

Self-updatable encryption (SUE) is a new kind of public-key encryption, motivated by cloud com-
puting, which enables anyone (i.e. cloud server with no access to private keys) to update a past ciphertext
to a future ciphertext by using a public key. The main applications of SUE is revocable-storage attribute-
based encryption (RS-ABE) that provides an efficient and secure access control to encrypted data stored
in cloud storage. In this setting, there is a new threat such that a revoked user still can access past cipher-
texts given to him by a storage server. RS-ABE solves this problem by combining user revocation and
ciphertext updating functionalities. The mechanism was designed with semantic security (CPA).

We have noticed, however, that when anyone can contribute ciphertexts (as this is a public key
setting), and when clients have access to some ciphertexts (encrypted data) at storage servers (since
we do not exclude this possibility), then, when in order to retrieve plaintexts they employ decryption
service (i.e., probe crypto servers in the cloud), this service may be sensitive to Chosen Ciphertext
Attacks (CCA) when the adversary plays as a client. Next notice that when considering CCA, the RS-
ABE functionality, by definition, allows certain malleability, namely, updating of messages by anyone
(e.g., storage servers) over time. This seems, at first, anathema to this security notion, and this has to be
dealt with!

Here, we propose the first SUE and RS-ABE schemes, secure against a relevant form of CCA, which
allows ciphertexts submitted by attackers to decryption servers. Due to the fact that some ciphertexts are
easily derived from others, we employ a different notion of CCA which avoids easy challenge related
messages (we note that this type of idea was employed in other contexts before). Specifically, we define
“time extended challenge” (TEC) CCA security for SUE which excludes ciphertexts that are easily de-
rived from the challenge (over time periods) from being queried on (namely, once a challenge is decided
by an adversary, no easy modification of this challenge to future and past time periods is allowed to be
queried upon). We then propose an efficient SUE scheme with such CCA security, and we also define
similar CCA security for RS-ABE and present an RS-ABE scheme with this CCA security.

Keywords: Public-key encryption, Self-updatable encryption, Chosen-ciphertext security, Cloud storage.

*Korea University, Korea. Email: kwangsu.lee@Qkorea.ac.kr.

TKorea University, Korea. Email: donghlee@korea.ac.kr.

*Sangmyung University, Korea. Email: jhpark@smu.ac.kr.

$Google Inc. and Columbia University, USA. Email: moti@cs.columbia.edu.

1 Introduction

In cloud storage, providing an efficient access control to encrypted data is very important issue, since it
extends traditional data compartmentalization in organizations and services to the Internet based hosting
paradigm. To provide such access control to encrypted data stored in cloud storage, revocable-storage
attribute-based encryption (RS-ABE) was introduced by Sahai, Seyalioglu, and Waters [23]]. Sensitive data
may be kept in cloud storage which is controlled by some servers which do not have access to keys nor are
necessarily fully trusted (and may be accessible at times to some clients). Then, there could be potential
threats that are new to this setting, as nicely pointed out by Sahai et al. [23]. That is, a user who is re-
voked from cloud storage can still access old (before revocation) ciphertexts stored in cloud storage (e.g.,
an rachive), even if he cannot access ciphertexts encrypted after revocation. RS-ABE, which is a kind of
ABE [12,22]24]], can solve this problem by providing two functionalities: user revocation and ciphertext
updating.

Self-updatable encryption (SUE) is public-key encryption (PKE) that allows anyone (and storage servers
in particular) to update a past ciphertext to a future ciphertext by using public keys (or public parameters).
Lee, Choi, Lee, Park, and Yung [[14]], building on [23]], introduced the concept of SUE, and they showed that
an efficient RS-ABE scheme can be built from an SUE scheme and an ABE scheme. That is, the initial RS-
ABE scheme of Sahai et al. [|23|] contains O(log2 Tnax) group elements in a ciphertext to support ciphertext
updating where 7, is the maximum number of time units, while the modularly built RS-ABE scheme of
Lee et al. [14] just contains O(log T;,,¢) group elements in a ciphertext to support ciphertext updating (due
to the use of an SUE scheme). As pointed in [[14]], SUE can also be used to build time-released encryption
(TIE) and key-insulated encryption (KIE) with certain properties.

The available RS-ABE schemes and SUE schemes only provide security against chosen-plaintext attacks
(CPA security) [[10,13}/14,23]]. CPA is strong enough when assuming storage access is performed and
decrypted by key holders. However, if storage access and decryption service are separated, encrypted data
can be presented to a decryption server (with various capabilities and different revocation status). In this case
the decryption keys need extra protection against adversaries who present (possibly arbitrary) ciphertexts. To
deal with stronger attackers in this case, we should consider security against chosen-ciphertext attacks (CCA
security), in which an adversary can adaptively request decryption queries on ciphertexts. CCA security
for PKE and its extensions was intensively studied by many researchers and is a standard requirement by
now e.g., [[1,/8,9, /18,20, [27]] and there are general methods to achieve it [4}/6]. However, constructing a
CCA-secure RS-ABE scheme (or CCA-secure SUE scheme) is paradoxical by definition, since CCA means
non-malleability, but these schemes need to support ciphertext updating functionality over time periods (and
an attacker can update the ciphertext and query on it without changing the cleartext!), thus it seems an
unusually hard requirement in this case. Here we, nevertheless, ask whether and to what extent it is possible
to construct some (properly adapted) level of CCA-security for SUE and RS-ABE schemes.

1.1 Our Results

SUE with CCA Security. We first define time extended challenge (TEC) CCA security for SUE schemes
allowing the ciphertext updating functionality. In a standard CCA security model given a challenge ci-
phertext the adversary is not allowed to probe on it when accessing the decryption oracle, we extend the
restriction not allowing the adversary to ask a decryption query on any ciphertext that is the challenge or
updated from the challenge ciphertext (this is a natural extension preventing the trivial attack due to the
probing capabilities, but leaving the non trivial attack scenario in place; it is also in the spirit of similar

limitations elsewhere). Then we propose an efficient SUE scheme and prove its TEC-CCA security under
the decisional Bilinear Diffie-Hellman (DBDH) assumption. The design idea of our SUE scheme is given in
the later part of this section. Note that another natural restriction can allow queries after the challenge phase
to belong only to the time unit of the challenge; this however is more restricting and is a case covered by our
definition.

RS-ABE with CCA Security. RS-ABE schemes support self updating as well, so for the above reasons we,
similarly, define TEC-CCA security for them. We then propose an efficient RS-ABE scheme by combining a
TEC-CCA secure SUE scheme, a CCA-secure ciphertext-policy ABE (CP-ABE) scheme, and the complete
subtree (CS) scheme. We prove that our RS-ABE scheme is TEC-CCA secure in a selective security model
described next. Our RS-ABE scheme is the first one that achieves security beyond CPA, and gives an answer
to the question raised by Sahai et al. [23]].

Proving Selective Security. The selective revocation list model, introduced by Boldyreva et al. [2]], was used
in proving the security of revocable ABE (R-ABE) and RS-ABE if the partitioning technique is employed
in the proof. Note that the selective revocation list model is weaker than the well-known selective model
that is used for the security proof of identity-based encryption (IBE) [3}[5]] and attribute-based encryption
(ABE) [12,28]]. In the security proof of our RS-ABE scheme, we show that the TEC-CCA security of
our RS-ABE scheme can be proven in the selective TEC-CCA model instead of the selective revocation
list TEC-CCA model although we use the partitioning technique. We note that as a result of independent
interest, our new proof technique can also be used to prove the selective CPA security of the R-ABE scheme
of Boldyreva et al. [2]] instead of the selective revocation list CPA security.

1.2 Our Techniques

A first naive approach to building a CCA-secure SUE scheme is to use the CHK transformation of Canetti
et al. [6]. That is, a CPA-secure SUE scheme augmented by the IBE scheme of Boneh and Boyen [3]
can be converted to a CCA-secure one by adding a one-time signature to provide the ciphertext integrity.
However, this CCA-secure SUE scheme cannot provide the ciphertext updating functionality any longer. To
solve this problem, we divide the ciphertext components into two parts: one part is related to a session key
and another part is related to ciphertext updating. Thus we apply the CHK transformation to the ciphertext
component related to a session key. To check the validity of ciphertext components related to ciphertext
updating, we observe that the well-formedness of these components can be checked by bilinear maps since
these components consist of Diffie-Hellman (DH) tuples. By using these two techniques, we can build an
SUE scheme with TEC-CCA security.

As mentioned before, we combine a TEC-CCA secure SUE scheme, a CCA-secure CP-ABE scheme,
and the CS scheme to build a TEC-CCA secure RS-ABE scheme motivated by the design principle of Lee
et al. [[14]]. To prove the security of our RS-ABE scheme, we use the well-known partitioning method.
However, we need the selective revocation list model to prove the security of RS-ABE as pointed by Lee
[13]. The reason is that an adversary can request many private key queries that match to the challenge
ciphertext in RS-ABE and these (matching) private keys should be placed on (fixed) leaf nodes in a binary
tree for consistency. The selective revocation list model, introduced by Boldyreva et al. [2]f], is weaker than
the well-known selective model [5]]. To prove the security of RS-ABE in the selective model instead of the
selective revocation list model, we observe that if a simulator can predict the number of private key queries
that match the challenge ciphertext then the problem can be solved by placing a user’s private key in a
random leaf node of the binary tree. That is, if § is the number of private keys such as S € A* where S is the
set of attributes in a private key and A* is the access structure in the challenge ciphertext, then the simulator

can fix the positions of these private keys by arbitrary selecting § number of leaf nodes randomly. In this
case, the consistency of private keys and update keys is preserved.

1.3 Related Work

Self-Updatable Encryption. Lee et al. [[14] introduced the notion of SUE and proposed an efficient SUE
scheme with CPA security by reversing the structure of a private key and a ciphertext of hierarchical identity-
based encryption (HIBE) [3] combining with the design idea of forward-secure encryption (FSE) [5]]. Then,
a number of different SUE schemes were proposed in [[10}/13]. The main application of SUE is RS-ABE
for cloud storage [14]. However, SUE itself can be used for other interesting applications: timed-release
encryption [21]] and key-insulated encryption [11].

Revocable IBE and Its Extensions. Providing an efficient user revocation in identity-based encryption
(IBE) and attribute-based encryption (ABE) is very important issue in real applications. A scalable and
efficient revocable IBE (R-IBE) scheme was first proposed by Boldyreva et al. [2] by using a full binary
tree. After that numerous R-IBE schemes were presented in [[15}/16,/19,[25,26]. An efficient revocable ABE
(R-ABE) scheme also proposed in [2] and its security was claimed in the weaker selective revocation list
model. Sahai et al. [23]] introduced the concept of RS-ABE to provide efficient access control on encrypted
data stored in cloud storage. After the introduction of RS-ABE, an efficient RS-ABE schemes with CPA
security were presented in [[13,(14]].

Chosen-Ciphertext Security. Security against (adaptively) chosen ciphertext attacks (or CCA security)
is the standard notion of PKE [20]. For some applications, more adversary constrained notions of CCA
security are considered since CCA security is too strong and immediately un-achievable. Such constrained
adversary notions have been used before: Shoup introduced benign malleability [27], An et al. introduced
generalized CCA security (or gCCA security) [1]], and Canetti et al. introduced Replayable CCA security (or
RCCA security) [8]. Note that benign malleability, gCCA security, and publicly detectable RCCA security
are in fact the same notion. This (more adversarially constrained) CCA security was used to prove the
security of other cryptographic primitives [7,[29].

2 Preliminaries

In this section, we define full binary trees and bilinear groups, and then introduce complexity assumptions
in bilinear groups.

2.1 Full Binary Tree

For binary trees, we follow the notation in [14]. A full binary tree BT is a tree data structure where each
node except the leaf nodes has two child nodes. Let N be the number of leaf nodes in 7. The number of
all nodes in BT is 2N — 1. For any index 1 <i < 2N — 1, we denote by v; a node in B7. The depth of a
node v; is the length of the path from the root node to the node. The root node is at depth zero. The depth
of BT is the maximum depth of a leaf node. A level of B7 is a set of all nodes at given depth. Siblings are
nodes that share the same parent node.

For each node v; € BT, we associated v; with a unique label string L € {0, 1}*. The label of each node
is assigned as follows: Each edge in the tree is assigned with O or 1 depending on whether the edge is
connected to its left or right child node. The label L of a node v; is defined as the bit string obtained by
reading all the labels of edges in the path from the root node to the node v;. We assign a special empty string

to the root node label. We define L(i) be a mapping from the index i of a node v; to a label L. We also use
L(v;) as L(i) if there is no ambiguity. For a label string L € {0,1}", we define some notations: L[i] is the ith
bit of L, L|; is the prefix of L with i-bit length, and L||L’ is the concatenation of two strings L and L'.

For a full binary tree B7 and a subset R of leaf nodes, ST (B7,R) is defined as the Steiner Tree induced
by the set R and the root node, that is, the minimal subtree of B7 that connects all the leaf nodes in R and
the root node. We simply denote ST (BT ,R) by ST(R).

2.2 Bilinear Groups

Let G and G be two multiplicative cyclic groups of prime order p. Let g be a generator of G. The bilinear
map is a map e : G x G — Gr with the following properties:

1. Bilinearity: for all u,v € G and all a,b € Z,, we have e(u®,v") = e(u,v).
2. Non-degeneracy: e(g,g) # 1.

We say that G is a bilinear group if the group operations in G and G as well as the bilinear map e are all
efficiently computable.

2.3 Complexity Assumptions

Assumption 2.1 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,Gr,e) be a description of the
bilinear group of prime order p. Let g be a random generator of G. The DBDH assumption is that if the
challenge tuple

D= ((vaaGTae)vgvgavgbagc) and Z,

are given, no PPT algorithm A can distinguish Z = Zo = e(g, 8)**° from Z = Z; = e(g, g)? with more than a
negligible advantage. The advantage of A is defined as Adv5EP (1) = |Pr[A(D,Zy) = 0] — Pr[A(D,Z)) =
0] ‘ where the probability is taken over random choices of a,b,c,d € Z,,.

3 Self-Updatable Encryption

In this section, we first define the syntax and the chosen ciphertext security of SUE. After that we propose
an efficient SUE scheme in bilinear groups and prove its CCA security under the standard assumption.

3.1 Definitions

Before we introduce SUE, we define ciphertext delegatable encryption (CDE) that is a building block of
SUE. The concept of CDE was introduced by Lee et al. [14] and it is public-key encryption (PKE) that
supports the delegation of ciphertexts. We follow the definition of CDE in [14]]. In CDE, a ciphertext header
is associated with a label string L and a private key is also associated with a label string L'. The ciphertext
header with L can be delegated to a new ciphertext header with a new label string L’ with the restriction that
Lis a prefix of L'. If L is a prefix of L, then the ciphertext header with L can be decrypted by the private key
with L'. The syntax of CDE is given as follows:

Definition 3.1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryption (CDE) scheme for
the set L of labels consists of five PPT algorithms, Setup, GenKey, Encrypt, DelegateCT, and Decrypt,
which are defined as follows:

Setup(1*.1). The setup algorithm takes as input a security parameter 1* and the maximum length | of the
label strings. It outputs a master key MK and public parameters PP.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L € {0,1}* with k <, the
master key MK, and the public parameters PP. It outputs a private key SKj.

Encrypt(L,PP). The encryption algorithm takes as input a label string L € {0,1}? with d < | and the
public parameters PP. It outputs a ciphertext header CHy, and a session key EK.

DelegateCT(CHy,c,PP). The ciphertext delegation algorithm takes as input a ciphertext header CHy, for
a label string L € {0,1}¢ with d < 1, a bit value ¢ € {0,1}, and the public parameters PP. It outputs
a delegated ciphertext header CHy/ for the label string L' = L||c.

Decrypt(CHy,SK;,,PP). The decryption algorithm takes as input a ciphertext header CHy, a private key
SKj:, and the public parameters PP. It outputs a session key EK or the distinguished symbol .

The correctness property of CDE is defined as follows: For all PP, MK generated by Setup, any SK;, gener-
ated by GenKey, any CHy and EK generated by Encrypt or DelegateCT, it is required that:

e If Lis a prefix of L', then Decrypt(CHy,SK;/, PP) = EK.
e If L is not a prefix of L', then Decrypt(CHy,SK;/, PP) =1 with all but negligible probabiliry.

Additionally, it requires that the delegated ciphertext header of DelegateCT is a valid ciphertext header
under the new label string.

SUE, introduced by Lee et al. [14]], is new PKE that supports the updating of ciphertexts by using a
public key (or public parameters). We follow the definition of SUE in [14]]. In SUE, a ciphertext header is
associated with a time T and a private key is associated with a time 7’. If T’ > T, then the ciphertext header
with T can be decrypted by a private key with 7”. That is, the ciphertext header with T can be updated to
a new ciphertext header with 7’ and then the private key with 7’ can decrypt the updated ciphertext header.
The syntax of SUE is given as follows:

Definition 3.2 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme consists of five PPT
algorithms, Setup, GenKey, Encrypt, UpdateCT, and Decrypt, which are defined as follows:

Setup(1*, Tyax). The setup algorithm takes as input a security parameter 1* and the maximum time Ty
It outputs a master key MK and public parameters PP.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T, the master key MK, and the
public parameters PP. It outputs a private key SKr.

Encrypt(T,PP). The encryption algorithm takes as input a time T, and the public parameters PP. It
outputs a ciphertext header CHy and a session key EK.

UpdateCT(CHy,T + 1,PP). The ciphertext update algorithm takes as input a ciphertext header CHr for
a time T, a next time T + 1, and the public parameters PP. It outputs an updated ciphertext header
CHr .

Decrypt(CHy,SKy/, PP). The decryption algorithm takes as input a ciphertext header CHy, a private key
SK7y+, and the public parameters PP. It outputs a session key EK or the distinguished symbol 1.

The correctness property of SUE is defined as follows: For all PP,MK generated by Setup, all T,T’, any
SKy generated by GenKey, and any CHr and EK generated by Encrypt or UpdateCT, it is required that:

e IfT <T', then Decrypt(CHr,SKr',PP) = EK.
o IfT > T, then Decrypt(CHy,SKy:, PP) =1 with all but negligible probability.

Additionally, it requires that the updated ciphertext header of UpdateCT is a valid ciphertext header under
the new time.

Remark 3.3. The syntax of SUE in [14)] additionally includes the ciphertext randomization algorithm
RandCT, but we omit this algorithm in the above syntax of SUE. The RandCT algorithm ensures that
the ciphertext distribution of SUE.UpdateCT is statistically equal to that of Encrypt by completely re-
randomizing the output of UpdateCT. However, in this paper, we weaken this strong requirement by just
requiring that the output of UpdateCT is just a valid ciphertext header because of the reason in Remark[3.7]
In this case, we do not need to completely re-randomize the updated ciphertext header of UpdateCT.

Remark 3.4. If a ciphertext header CHy with a time T is updated to multiple ciphertext headers CHr, ,CHr,,
and CHr, where T1,T,, 13 > T, then those updated ciphertext headers should be re-randomized to remove the
relationship between ciphertext headers. That is, an adversary who obtained the session key of a ciphertext
header can use this session key to break other ciphertext headers if they are not re-randomized. However, in
most applications we can ensure that a ciphertext header CHy is updated to a new single ciphertext header
CHr 1 and completely delete the previous one. In this case, we can prevent the previous attack since there
is only one ciphertext header that is related to the original ciphertext header:

Security against chosen plaintext attacks (CPA security) for SUE was introduced by Lee et al. [14]]. We
define security against chosen ciphertext attacks (CCA security) for SUE by modifying their definition of
CPA security. To be precise, there are several notions of CCA security: security against lunchtime attacks
(or CCA1 security) and security against adaptively chosen ciphertext attacks (or CCA2 security) [[18}20]].
We simply use CCA security for CCA2 security. Although CCA security is regarded as the standard notion
for security of encryption schemes, it is too strong for SUE since CCA security cannot be achievable in SUE.
In CCA security, an adversary is allowed to request a decryption query with the restriction that the challenge
ciphertext given to the adversary cannot be queried. However, an adversary attacking an SUE scheme can
query an updated ciphertext to the decryption oracle after obtaining the updated ciphertext by updating the
challenge ciphertext. Thus, the adversary can easily break CCA security of SUE. To solve this problem in
security definition, we relax the CCA security by restricting that the adversary cannot query the decryption
oracle on a ciphertext that is the challenge or updated from the challenge ciphertext. We may view these
ciphertexts that are the challenge or updated from the challenge ciphertext as time extended challenge (TEC)
ciphertexts. The TEC-CCA security of SUE is given as follows:

Definition 3.5 (Selective TEC-CCA Security). The selective TEC-CCA security for SUE schemes is defined
in terms of the indistinguishability under time extended challenge chosen plaintext attacks (IND-TEC-CCA).
The security game is defined as the following game between a challenger C and a PPT adversary A:

Init: A first submits a challenge time T*.
Setup: C runs the setup algorithm to generate MK and PP. It gives PP to A.

Query 1: A adaptively requests a polynomial number of private key and decryption queries. C handles the
queries as follows:

e [fthis is a private key query for a time T subject to the restriction T < T*, then it creates the
private key SKr for the time T by calling the key generation algorithm. It responses the query
with SK7 to A.

e [f this is a decryption query for a ciphertext header CHry, then it computes the decapsulated
session key EK by calling the decryption algorithm and responses the query with EK to A.

Challenge: A requests a challenge ciphertext header and a challenge session key. C creates a ciphertext
header CHy.. and a session key EK* by calling the encryption algorithm under the challenge time T*.
It flips a random bit y € {0,1}. If y =0, then it gives CH}. and EK* to A. Otherwise, it gives CH;..
and a random session key EK' to A.

Query 2: A continues to request private key and decryption queries. C handles the private key queries as
the same as before. It handles the decryption queries as follows:

o [f this is a decryption query for a ciphertext header CHp subject to the restriction that CHy is
not updated from CHy. in case of T > T*, then it computes the decapsulated session key EK by
calling the decryption algorithm. It responses the query with EK to A.

Guess: Finally A outputs a bit Y.

The advantage of A is defined as Advi\UE(l) = ‘Pr[}/ =] - %‘ where the probability is taken over all
the randomness of the game. An SUE scheme is selectively secure under time extended challenge chosen
ciphertext attacks if for all PPT adversaries A, the advantage of A in the above game is negligible in the
security parameter A.

Remark 3.6. The above TEC-CCA security for SUE is closely related to the relaxed CCA security notions:
the benign malleability of Shoup [27)], the generalized CCA (gCCA) security of An et al. [|1]], and the public
detectable Replayable CCA (RCCA) security of Canetti et al. [8|]. In these relaxed CCA security models,
there exists an efficiently computable relation R(—,—) on ciphertext headers and the decryption results of
two ciphertext headers CH, and CH; are equal if R(CH,,CH,) = True. Thus, the decryption query on any
ciphertext header CH' that satisfies R(CH*,CH') = True where CH* is the challenge ciphertext header is
not allowed in this model. In TEC-CCA, the relation R(—, —) checks whether a ciphertext header is updated
from another ciphertext header or not.

Remark 3.7. If an SUE scheme can re-randomize the output of the UpdateCT algorithm, then this re-
randomizable SUE scheme cannot satisfy the TEC-CCA security. The reason is that there is no efficiently
computable relation R(—,—) that can check whether a ciphertext header is updated from the challenge
ciphertext header or not. Therefore, the syntax of SUE for TEC-CCA security only requires for the UpdateCT
algorithm to output a just valid ciphertext header.

3.2 Managing the Time Structure

To efficiently manage the time structure, we use a full binary tree as in [5}|14}23]. We define some useful
notations for a binary tree. Let v be a node in B7 . Parent(v) is the parent node of the input node v. Path(v)
is the set of path nodes from the root node to the input node v. RightSibling(v) is the right sibling node of
v. That is, RightSibling(v) = RightChild (Parent(v)) where RightChild(v) is the right child of v. We also
define TimeNodes(v) = {v} URightSibling(Path(v)) \ Path(Parent(v)) where RightSibling(Path(v)) is
the set of right sibling nodes of Path(v). Let L be the label string of a node v. We also define Parent(L),

Path(L), RightSibling(L), and TimeNodes(L) similarly except that these are defined by using the label
string L of v.

For each node in BT, we assign a unique time value 7 € {1,..., T, } by using pre-order traversal that
recursively visits the root node, the left subtree, and the right subtree. That is, the root node is assigned to
1, the left most leaf node is assigned to d + 1, and the right most leaf node is assigned to 7., = 2971 — 1
where d is the depth of the tree. We let vy be a node associated with a time 7. We define a mapping Y from
atime 7 to alabel L. That is, y(7T') returns the label L of a node vy associated with a time 7. The following
theorem guarantees that we can handle the time components efficiently.

Theorem 3.8 ([23]]). Let BT be a full binary tree of depth d and vy be a node associated with a time T by
pre-order traversal. For any node vy € BT, TimeNodes(vr) satisfies the following properties:

e Property 1. TimeNodes(vy) N Path(vy) # 0 if and only if T < T’
e Property 2. If v € TimeNodes(vr..1), then there is an ancestor of v in TimeNodes(vr).
e Property 3. |TimeNodes(vr)| < d+1

Remark 3.9. In pre-order traversal, if vy is an internal node, then vy, = LeftChild(vr). If vr is a
leaf node, then vy, = RightChild(vr') where v € Path(vr) is a node with the largest depth such that
LeftChild(vy/) € Path(vy).

3.3 Construction

We use the CPA-secure CDE scheme of Lee [[13]] as the building block of our TEC-CCA-secure SUE scheme.
The main challenge when devising a TEC-CCA-secure SUE scheme is providing the integrity of ciphertexts
while the updating of ciphertexts is also provided. To solve this problem, we observe that ciphertext elements
can be divided into two parts: one part is related to the ciphertext updating and another part is related to the
session key of the ciphertext. The validity of ciphertext elements for the ciphertext updating can be easily
checked by using bilinear maps since these elements are composed of Diffie-Hellman (DH) tuples. The
integrity of ciphertext elements for the session key can be achieved by using the well-known transformation
of Canetti et al. [6]]. To be precise, we will use the direct method of Boyen et al. [4] to improve the efficiency.
The CDE scheme of Lee [|13]] is described as follows:

CDE.Init(1%): It first generates bilinear groups G,Gr of prime order p. It chooses a random generator
g € G and outputs GDS = ((p,G,Gr,e), g).

CDE.Setup(GDS,1): It chooses a random exponent & € Z, and random elements w, v, u, {hi,o,hi’l}le eG.
Let F; »(L) = ulh;), where i € [[] and b € {0, 1}. It outputs a master key MK = [and public parameters
PP = ((p7G7GT76)7 & W VU, {hi,ovhial}ﬁzl’ A:e(g’g)ﬁ)

CDE.GenKey(L,MK,PP): Let L be an n-bit label string. It chooses random exponents r,71,...,r, € Zp
and outputs a private key SK; = (Ko =gPw Ki=g", {Ki,l =V'F i) (L];)", Kia=g"" ;’:1).

CDE.RandKey(SK;,6,PP): Let SK; = (Ko,K1,{Ki1,Ki>}) and 8 be an exponent in Z,,. It selects random
exponents r’,r},...,r, € Z, and outputs a re-randomized private key SK;, = (K}, = Ko - g°w" K| =

Ki-g™", {Kl, = Ki, 'VV/F;',L[i] (L))", K, =Ki> g" ?:1)-

CDE.Encrypt(L,t,5,PP): Let L be a d-bit label string. By using the given exponent ¢ € Z, and the vec-
tor 5 = (s1,...,84) € Z;’,, it outputs a ciphertext header CH, = (Cp = g, C; = w' e, v, {Cii =
g%, Cip = Fy)y(L[;)* }?:1) and a session key EK = A.

CDE.DelegateCT(CHy,c,PP): Let CHy, = (Cy,Ci,{C;1,Ci2}) where L € {0,1}¢. It first sets a new label
string L' = L||c where ¢ € {0,1}. It selects a random exponent s, € Z, and outputs a delegated ci-
phertext header CH;, = (C(’) =Cp, C; =C; -Vt {Cgl =Ci1, Cl{72 =Ci2}4 C21+1,1 = gl C£l+l,2 =
Fapro(L))51).

CDE.VerifyCT(CH.,L,PP): Let CH, = (Cy,C1,{Ci1,Ci2}) for a label string L € {0, 134, Tt checks that

e(Cy,8) L e(Co,w) - e(ITL, Ci1,v) and e(Ciz, g) < e(Cin, Fipj(L];)) foralli € {1,...,d}. If all tests
pass, then it outputs 1. Otherwise, it outputs 0.

CDE.Decrypt(CH,,SK;/,PP): Let CHy, be a ciphertext header for a label string L. Let SK;» = (Ko, K,
{Ki1,Ki2}) foralabel string L' € {0, 1}". If Lis a prefix of L', then it obtains CH}, = (G}, C1,{C} ,C;,})
for L' by iteratively running CDE.DelegateCT and outputs a session key EK by computing e(C}), Ko) -
e(Cl, K1) - TTL, (e(le’l,K,-’l) -e(Cl-’72,K,-,2)). Otherwise, it outputs L.

Let H be a family of collision resistant hash functions H%, indexed by some finite index set {z}. Our
SUE scheme is described as follows:

SUE.Init(1%): It outputs GDS by running CDE.Init(1%).

SUE.Setup(GDS, T,4y): 1t first chooses random elements ug, is € G and obtains M Kcpg and PPcpg by run-
ning CDE.Setup(GDS,) where T}, = 2/*! — 1. Tt also chooses a random index z for a hash function
H* € H. It outputs a master key MK = MKcpg and public parameters PP = (PPCDE, Z, Us, hs).

SUE.GenKey(7, MK, PP): 1t outputs SKr by running CDE.GenKey(y(T), MK, PP).
SUE.RandKey(SK7, PP): It outputs SK7 by running CDE.RandKey(SK7, PP).
SUE.Encrypt(7,z, PP): It sets a label string L = y(T') and proceeds as follows:

1. It first obtains TL = (L, L) ... L(9)) by computing TimeNodes(L) where L = L), Let d/)
be the length of the label L\/). Note that the labels in TL are ordered according to pre-order
traversal.

2. For each label L) in TL such that 0 < j < d, it proceeds the following steps:

(a) If j =0, then it sets a vector 5 = (s1,...,5,0)) by selecting random exponents s1,... 5,0 €
Zp. It obtains CH 0 = (Cy, €y, {Cis ,C,-72}fiol)) and EK by running CDE.Encrypt(L(®) 1,5, PP).

/ /
() dl)—1

from 5'and s/, is randomly selected in Z. It obtains CH () = (Co:C1{C I,Cl’z}jiji) by

d)—1
i=1

(b) If j > 1, then it sets a new vector 5" = (s{,...,s/, |,5/,) Where sj,...s are copied
running CDE.Encrypt(L\),7,5, PP). Next, it removes redundant elements Cy, {Ct{,l , Cz{,2}
from CH/) since they are contained in CH'?).

3. It computes © = H*(Cp) and sets C3 = (ughg)".

4. It outputs a ciphertext header CHy = (CH(O),CH(I), ... ,CH<d),C3) and EK.

10

SUE.UpdateCT(CHr,T +1,PP): Let CHy = (CH")CHY C3) and L") be the label of CH\/). 1t
proceeds as follows:

1. If the length d of L) is less than , then it first obtains CHy) and CHpo))) by running

CDE.DelegateCT(CH'"), ¢, PP) for all ¢ € {0,1} since CH,)| 1s the ciphertext for the next
time T + 1 by pre-order traversal. Next, it prunes redundant elements in CH; ;. It out-

puts an updated ciphertext header CHy | = (CH’(0> = CHL(<))H07CH’(1> = CHL<0)||1,CH’(2) =
CHW,...,CH'"“+Y) = CHY C3).
2. Otherwise, it copies common elements in CH ©) tocH™M and simply removes CH ©) since CH)

is the ciphertext header for the next time 7 + 1 by pre-order traversal. It outputs an updated
ciphertext header CHr | = (CH’(O) =CHWY,...,cCH'4-1) = CH(d),Cg).

SUE.VerifyCT(CHy,T,PP): Let CHr = (CH),...,CH@ C3). It sets a label string L = w(T') and pro-
ceeds as follows:

1. It first obtains 7L = (L, L. .. L(9)) by computing TimeNodes(L) where L = L(*). Note
that the labels in TL are ordered according to pre-order traversal. It checks that the number of
labels in T'L is the same as the number of CDE ciphertext headers in CHy.

2. For each label LU) in TL, it checks 1 = CDE. VerifyCT(CH'/), L) PP). Note that the common
elements of CH%) should be copied to CH/) when j > 0.

3. Next, it computes T = H*(Cy) and checks e(Cs,g) < e(Co,uShs) where C is the element in
CH).

4. It outputs 1 if all checking pass. Otherwise, it outputs 0.

SUE.Decrypt(CHy,SKy/,PP): If T > T', then it outputs _L since it cannot decrypt. Otherwise, it proceeds
as follows:

1. It first checks 1 = SUE.VerifyCT(CHyr, T, PP). If the checking fails, then it outputs L.

2. It finds CH'Y) from CHy such that L) is a prefix of L' = y(T’) and outputs EK by running
CDE.Decrypt(CH') SK+, PP).

Remark 3.10. Compared to the CPA-secure SUE scheme of Lee [|I3|], the main difference of our SUE
scheme is the Encrypt and Decrypt algorithms. The Encrypt algorithm additionally generates a Cz group
element to provide the integrity of the C| group element by using the direct method of Boyen et al. [4]. The
Decrypt algorithm checks the validity of the ciphertext header before it derives a session key by running the
VerifyCT algorithm. The VerifyCT algorithm first checks the validity of CDE ciphertext headers by running
VerifyCT of CDE and then checks the integrity of Cy by using bilinear maps. To check the validity of CDE
ciphertext headers, we additionally added the VerifyCT algorithm in CDE and it checks the validity of CDE
ciphertext header by using bilinear maps since the group elements in a CDE ciphertext header consist of
DDH tuples.

3.4 Correctness

The correctness of the CDE scheme was shown by Lee [13]]. Let CHr be a ciphertext header with a time T
generated by SUE.Encrypt and SK7- be a private key with a time 7’ generated by SUE.GenKey. To show

11

the correctness of the above SUE scheme, we should show that SUE.Decrypt derives a valid session key
EK from CHy and SK7+ if T < T’ and that CHr ;| generated by SUE.UpdateCT is a valid ciphertext header
with a time 7 + 1.

We first show that SUE.Decrypt can derive a valid session key by presenting that SUE.VerifyCT
can check the validity of CHy and CDE.Decrypt can be used to derive a session key. The algorithm
SUE.VerifyCT checks that the number of CDE ciphertext headers in CHr, the validity of each CDE ci-
phertext header by running CDE.VerifyCT, and the validity of C5. The validity of CDE ciphertext headers
can be easily checked by using bilinear maps since a CDE ciphertext header consists of elements composed
of Diffie-Hellman (DH) tuples and bilinear maps can check the validity of DDH tuples. The validity of C3
also can be easily checked by using bilinear maps since C3 is also a DDH tuple.

The CDE.Decrypt algorithm only can derive a valid session key if the label of a CDE ciphertext
header is a prefix of the label of a CDE private key. From the property 2 of Theorem (3.8} we have
TimeNodes(y (7)) NPath(y(T’)) A0 if T > T’ where T and T’ are times associated to the SUE ciphertext
header and the SUE private key respectively. Thus, CDE.Decrypt can derive a session key since the SUE
ciphertext header consists of many CDE ciphertext header with labels in TimeNodes(y (7)) and the SUE
private key is equal to the CDE private key.

We now show that the output of SUE.UpdateCT is a valid ciphertext header. Recall that an SUE ci-
phertext header CHy with a time T consists of CDE ciphertext headers that are associated with labels in
TimeNodes(y(T)). Let vy be a node in BT associated with a time 7 by pre-order traversal. If vz is an
internal node, we have vy, = LeftChild(vr) from Remark Thus we have TimeNodes(y (7 + 1))\
TimeNodes(y/(7)) = {LeftChild(vr),RightChild(v7)} since RightSibling(v7_;) = RightChild(v7) by
the definition of TimeNodes. If vy is a leaf node, vy = RightChild(vy/) where vy € Path(vy) is
a node with the largest depth such that LeftChild(v;/) € Path(vy) from Remark Thus we have
TimeNodes(y(7)) \ TimeNodes(y (7 + 1)) = vr. Therefore, the correctness of SUE.UpdateCT is eas-
ily obtained if CDE.DelegateCT outputs a valid CDE ciphertext header.

3.5 Security Analysis

To prove the TEC-CCA security of the above SUE scheme, we use the well-known partitioning method.
To simplify the security proof, we use the meta-simulation technique of Lee [13]]. In the meta-simulation
technique, a simulator (meta-simulator) for the TEC-CCA security proof uses the previous simulator for
the CPA security proof as a sub-simulator. Recall that the original SUE scheme of the above SUE scheme
was proven to be selectively secure under the DBDH assumption by Lee [13]. If the meta-simulator use the
previous simulator as a sub-simulator, then it can use the power of the sub-simulator to generate private keys
and some elements of a challenge ciphertext header.

Theorem 3.11 ([[13]]). The original SUE scheme is selectively secure under chosen plaintext attacks if the
DBDH assumption holds.

The simulator of this proof sets the element g in the assumption (g, g%, g”, g) as the generator of public
parameters, implicitly sets ab as the master key 3, and sets g¢ in the assumption as the element g’ in a
challenge ciphertext header. Note that these three settings are essential for the correctness of the meta-
simulation. Now we can prove the TEC-CCA security of our SUE scheme as follows:

Theorem 3.12. The above SUE scheme is selectively secure under time extended challenge chosen cipher-
text attacks if the DBDH assumption holds. That is, for any PPT adversary A, we have that AdvilUE (1) <
AdvBPH ())) + negl().

12

Proof. Suppose there exists an adversary .A that attacks the above SUE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,Gr,e),g,8% ", &) and Z where Z = Zy = e(g,8)"* or Z = Z; € Gr. Let Bsyr be a simulator in the
security proof of Theorem[3.11] Then B that interacts with A is described as follows:

Init: A initially submits a challenge time T*. B3 first runs Bsyg by giving D and Z.

Setup: B submits T* to Bsyg and receives PPsyr = ((p,G,Gr,e),g,w,v,u, {hi ;j},A = e(g,g)P). Note
that Bgyg implicitly sets B = ab. It chooses random exponents u, s € Z,. It also chooses a random
index z for H* and calculates 7% = H*(g¢). It implicitly sets B = ab and publishes public parameters PP =
(PPsu, z, us = g°g"s, hs = (g°) ™™ g's).

Query 1: A adaptively requests a polynomial number of private key queries and decryption queries. If A
requests a private key query for a time 7 such that 7 < T*, then B receives a private key SKr by requesting a
private key query to Bsyg and responses SKr to A. If A requests a decryption query for a ciphertext header
CHy with a time T, then BB handles this query as follows:

1. Let CHr = (CHO),... .CHY) C3) and CH") = (Cy,C},{Ci1,Cin}). It first checks whether the ci-
phertext header CHr is valid or not by running SUE.VerifyCT(CHr, T, PP). If the ciphertext header
is not valid, then it responds with L. Otherwise, the ciphertext header is well-formed such as Cy = g’
for some unknown r € Z,,.

2. If T < T*, then it receives a private key SKr by requesting a private key query to Bsyg and obtains a
session key EK by running SUE.Decrypt(CHr,SKy, PP).

3. If T > T*, then it calculates T = H*(Cp) and performs the following steps: If 7 = 7*, then it terminates
the simulation with A and halts since it cannot response. If 7 # 7*, then it selects a random exponent
r' € Z, and computes the session key by implicitly setting r3 = —(ugmw +) /(m —) + 1 as

!
h 1

b *u,sﬂ;*s T v b ¥ —r
EK =¢(Co,(8")" =7 (u5hs)")-e(Cs,(¢")77¢™")
=e(g', 8" (uhs)”) -e((ulhs)' g ") = e(g",8")".

4. It responds to the query with the session key EK.

Challenge: To create the challenge ciphertext header and the session key for the challenge time 7%, 5
proceeds as follows:

1. It first requests a challenge query to Bsyr and receives CH* = (CH(O),CH(I), o ,CH(d)) and EK*.

2. Itsets C3 = (g)“s™ */s. Note that this component is valid since (g°)"s™ s = ((g9g"s)™ - (%)% g's)" =
(uF hs)¢ for m* = H*(Cp) = H*(g°).

3. It sets the challenge ciphertext header CH;. = (CH'”),CHV, ... ,CH?) ,C3) and gives CH}. and EK*
to A.

Query 2: Same as Query 1.
Guess: A outputs a guess i’. B also outputs u’.

To finish the proof, we show that the meta-simulator 53 correctly handles the queries of .A. The public
parameters PP is correct since PPy is correct and ug, hs are properly randomized. The private key is also
correct since it is generated by Bsyg. Now, we will show that the decryption query is correctly handled.

13

From the correctness of the SUE.VerifyCT algorithm, we confirm that the ciphertext header CHr is asso-
ciated with a claimed time 7. The decryption only fails when 7' > T* and © = ©* where 7 = H*(Cy) and
" = H*(g%). The probability of this collision event is negligible since H* is a collision resistant function
and Cy # g¢ from the restriction of the security model. Finally, the challenge ciphertext is also correct since
C3 can be easily calculated. This completes our proof. O

Corollary 3.13. The above SUE scheme is fully secure under time extended challenge chosen ciphertext
attacks if the DBDH assumption holds and T, is a polynomial value. That is, for any PPT adversary A,
we have that AdvS?E (L) < Ty - Adv2EPH (1) + negl(2).

3.6 Discussions

Efficiency Analysis. The proposed SUE scheme consists of O(logT,,,) group elements in public param-
eters, a private key, and a ciphertext header since it uses the CDE scheme of Lee [[13[]. Note that our SUE
scheme additionally contains two group elements in public parameters and one group element in a ciphertext
header to provide the TEC-CCA security. In contrast to the CPA secure SUE scheme of Lee, our TEC-CCA
secure SUE scheme requires to check the validity of ciphertext headers in the decryption algorithm. If the
SUE.Decrypt algorithm checks the validity of ciphertext headers by naively performing the CDE.VerifyCT
algorithm, then it requires O(log? T,) pairing operations since each CDE.VerifyCT requires O(10g Tjux)
pairing operations and an SUE ciphertext header consists of O(log 7;,,c) CDE ciphertext headers. However,
we can reduce the number of pairing operations from O(log2 Tnax) to 71og T4y since pairing operations for
redundant elements can be omitted. The details of this improvement are given below in this section. Thus,
the decryption algorithm just requires 9log 7, pairing operations since it additionally requires 210g T},
pairings in the CDE.Decrypt algorithm.

Reducing Public Parameters. The public parameters of our SUE scheme consists of O(log T;.) group
elements since the CDE scheme of Lee [|13]], which is CPA secure under the DBDH assumption, is used as
the building scheme for the SUE scheme. To reduce the size of public parameters, we can employ the CDE
scheme of Lee with short public parameters. In this case, we have an SUE scheme with O(1) group elements
in public parameters. Note that the size of a private key and a ciphertext header remains the same as before.
However, this SUE scheme only can be proven to be TEC-CCA secure under the g-type assumption instead
of the standard DBDH assumption.

Time-Interval SUE. By combining two CPA secure SUE schemes, a CPA secure time-interval SUE (TI-
SUE) scheme can be constructed as presented by Lee [[13[]. In TI-SUE, a ciphertext header is associated with
a time range specified by two times 77 and Tk and a private key is associated with a time 7’. If Ty < T’ < T,
then the ciphertext with 7; and Tk can be decrypted by a private key with 7’. By following the design
of Lee, we can also build a TEC-CCA secure TI-SUE scheme by combining two TEC-CCA secure SUE
schemes. That is, the master key is simply shared between two SUE schemes to prevent collusion attacks,
the ciphertext header of one SUE scheme is used for future-time SUE, and the ciphertext header of another
SUE scheme is used for past-time SUE. This TI-SUE scheme also can be proven to be secure under the
DBDH assumption. Note that we also can reduce the size of public parameters if the CDE scheme with
short public parameters is used.

Improved Ciphertext Verification. The ciphertext header of our SUE scheme consists of at most log 7},
CDE ciphertext headers and the verification of each CDE ciphertext header requires 2log 7,,,, + 3 pairing
operations. Thus a simple verification of an SUE ciphertext header requires at most 210g2 Tnax +210g Thnax
pairing operations. As mentioned before, the number of pairing operations in the CDE.VerifyCT algorithm

14

can be reduced if we omit the checking of the redundant elements in a CDE ciphertext header. In this
case, we require 210g Ty + 3 pairing operations to check CH©) and 5 pairing operations to check CH).
Therefore we only need at most 71og T,,,, + 3 pairing operations.

4 Revocable-Storage Attribute-Based Encryption

In this section, we define the syntax and the TEC-CCA security of RS-ABE. We also propose an RS-ABE
scheme and prove its TEC-CCA security.

4.1 Definitions

Revocable-Storage ABE (RS-ABE) is ABE that supports user revocation and ciphertext updating. The
concept of RS-ABE was introduced by Sahai et al. [23]] to handle the access control problem on ciphertexts
in cloud storage. In this paper, we follow the RS-ABE syntax of Lee et al. [[14]]. In RS-ABE with ciphertext-
policy, a user’s private key is associated with a set of attributes S and an index « and a ciphertext is associated
with an access structure A and a time 7. A center periodically broadcast an update key that excludes a set
of revoked users R on time 7. If a user is not revoked (# ¢ R) and the set of attributes satisfies the access
structure (S € A), then the user with a private key and an update key can decrypt the ciphertext. The syntax
of RS-ABE is given as follows:

Definition 4.1 (Revocable-Storage Attribute-Based Encryption). A revocable-storage (ciphertext-policy)
attribute-based encryption (RS-ABE) scheme for the universe of attributes U consists of seven PPT algo-
rithms, Setup, GenKey, UpdateKey, DeriveKey, Encrypt, UpdateCT, and Decrypt, which are defined as
follows:

Setup(1’1, Tnax, Nmax). The setup algorithm takes as input a security parameter 1%, the maximum time Tnax
and the maximum number of users Ny, and it outputs a master key MK and public parameters PP.

GenKey(S,u, MK, PP). The key generation algorithm takes as input a set of attributes S C U, a user index
u € N, the master key MK, and the public parameters PP. It outputs a private key SKs .

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T < T,,4y, a set of revoked users
R C N, the master key MK, and the public parameters PP. It outputs an update key UKr g.

DeriveKey(SKs ,,,UKr r,PP). The decryption key derivation algorithm takes as input a private key SKs ,,
an update key UK g, and the public parameters PP. It outputs a decryption key DK 1 or the distin-
guished symbol 1.

Encrypt(A,T,PP). The encryption algorithm takes as input an access structure A, a time T < T4y, and
the public parameters PP. It outputs a ciphertext header CHp 1 and a session key EK.

UpdateCT(CHy 7,T +1,PP). The ciphertext update algorithm takes as input a ciphertext header CHy 1, a
new time T 41 such that T + 1 < T,,,x, and the public parameters PP. It outputs an updated ciphertext
header CHy 741.

Decrypt(CHy 7,DKg 11,PP). The decryption algorithm takes as input a ciphertext header CHy 1, a de-
cryption key DKg 1, and the public parameters PP. It outputs a session key EK or the distinguished
symbol 1.

15

The correctness of RS-ABE is defined as follows: For all PP,MK generated by Setup, all S and u, any SKg ,
generated by GenKey, all A, T, any CHy 7,EK generated by Encrypt or UpdateCT, all T' and R, any
UKt g generated by UpdateKey, it is required that:

If u ¢ R, then DeriveKey(SKs ,,UKr' g, PP) = DKg 1.

o Ifu € R, then DeriveKey(SKs ,,UKr g, PP) =1 with all but negligible probability.

o If(Se A)N(T <T'), then Decrypt(CHy 1,DKs 1, PP) = EK.

o If(S¢ A)V(T' <T), then Decrypt(CHp 1,DKs 17, PP) =_L with all but negligible probability.

Additionally, it requires that the updated ciphertext header of UpdateCT is a valid ciphertext header under
the new time.

Remark 4.2. The original definition of CPA-secure RS-ABE additionally contains the RandCT algorithm
that randomizes a ciphertext header [|14}23|]. However, our definition of RS-ABE with TEC-CCA security
omits the RandCT algorithm because of the reason in Remark Thus, the output of the UpdateCT
algorithm is a just valid ciphertext header, and the randomness of an updated ciphertext header may be
correlated to that of the original ciphertext header. Because of this correlation, if a ciphertext header is
updated from an original one by using UpdateCT, then the original one should be deleted.

Remark 4.3. We define RS-ABE as a key encapsulation mechanism (KEM) version, in which the Encrypt
algorithm derives a session key, instead of a full encryption version. Note that if a KEM scheme is combined
with a symmetric key encryption scheme, then a full encryption scheme can be easily derive by using the
hybrid encryption technique.

The CPA security of RS-ABE was introduced by Sahai et al. [23[]. We define the TEC-CCA security of
RS-ABE by modifying their CPA-security model. Similar to the CCA security of SUE, RS-ABE also cannot
achieve the traditional CCA2 security since the ciphertexts of RS-ABE can be updated by anyone. Thus,
we also relax the definition of CCA2 security by restricting that an adversary cannot request a decryption
query on a ciphertext that is updated from the challenge ciphertext given to the adversary. In this paper,
we define selective time extended challenge (TEC) CCA security of RS-ABE where the adversary should
submit a challenge access structure and a challenge time before he receives public parameters. The TEC-
CCA security of RS-ABE is given as follows:

Definition 4.4 (Selective TEC-CCA Security). The selective security of RS-ABE is defined in terms of the
indistinguishability under time extended challenge chosen ciphertext attacks (IND-TEC-CCA). The security
game is defined as the following experiment between a challenger C and a PPT adversary A:

Init: A first submits a challenge access structure A* and a challenge time T*.

Setup: C generates a master key MK and public parameters PP by calling the setup algorithm, and then it
gives PP 1o A.

Query 1: A may adaptively request a polynomial number of private key, update key, decryption key, and
decryption queries. C handles the queries as follows:

e [f this is a private key query for a set of attributes S and a user index u, then it creates a private
key SKs, by calling the key generation algorithm and gives SKs , to A. Note that A is allowed
to query only one private key for each user u.

16

e [fthis is an update key query for a time T and a set of revoked users R, then it creates an update
key UKt g by calling the key update algorithm and gives UKt g to A. Note that A is allowed to
query only one update key for each time T.

e [fthis is a decryption key query for a set of attributes S and a time T, then it creates a decryption
key DKs 1 by calling the decryption key derivation algorithm and gives DK 1 to A.

o [fthis is a decryption query for a ciphertext header CHy 7, then it computes the decapsulated
session key EK by calling the decryption algorithm and gives EK to A.

We require the following restrictions on the queries of A:

1. If an update key for T and R was queried, then R C R; for all update key queries on T; and R;
such that T <T;.

2. If a private key for S and u such that S € A* was queried, then an update key for Tj and R such
that u € Rj and T; < T* should be queried to revoke this user index u.

3. If a decryption key for S and T was queried, then it is required that S & A* or T < T"*.

Challenge: C creates a ciphertext header CH **7T* and a session key EK* by calling the encryption al-
gorithm under the challenge access structure A* and the challenge time T*. It then flips a random
bit p € {0,1}. If p =0 it sets EK; = EK*, otherwise it sets EK| to a random session key. It gives
CHy. . and EK} 10 A.

Query 2: A continues to request private key, update key, decryption key, and decryption queries. C handles
the queries as the same as before. In addition to the restrictions in query 1 step, we require the
following additional restriction on the queries of A:

4. If a decryption for a ciphertext header CHp- r was queried, then it is required that T < T* or
CHy- 1 is not updated from CH}.. . for T > T™.

Guess: Finally A outputs a bit |1'.

The advantage of A is defined as Advﬁs'ABE (L) = ‘ Prjpu=u']— % ‘ where the probability is taken over all the
randomness of the game. An RS-ABE scheme is secure in the selective model under time extended challenge
chosen ciphertext attacks if for all PPT adversaries A, the advantage of A in the above game is negligible
in the security parameter A.

Remark 4.5. The adversary of the above TEC-CCA security model cannot request a decryption on an
updated ciphertext header that is updated from the challenge ciphertext header. Thus, there should be an
efficiently computable relation R(—,—) that checks whether a ciphertext header is derived from another one
or not. If an RS-ABE scheme supports perfect ciphertext re-randomization, then the security of this scheme
cannot be proven in the above model since there is no efficiently computable relation R(—,—).

Remark 4.6. Selective TEC-CCA security can be weakened to selective revocation list TEC-CCA security,
in which an adversary should additionally submits a set of revoked users on the challenge time. Selective
revocation list CPA security was introduced by Boldyreva et al. [2|] to prove the security of their RS-ABE
scheme and this is employed in RS-ABE by Lee [|13|]. Note that selective TEC-CCA security is stronger than
selective revocation list TEC-CCA security.

17

4.2 Subset Cover Framework

The subset cover (SC) framework, introduced by Naor, Naor, and Lotspiech [17], is a general methodology
to construct an efficient revocation system. The complete subtree (CS) scheme is one instance of the SC
framework. We follow the definition of CS in [[14]]. The CS scheme is given as follows:

CS.Setup(N,,4r): This algorithm takes as input the maximum number of users Nyg,. Let Nygx = 24 for
simplicity. It first sets a full binary tree B7 of depth d. Each user is assigned to a different leaf node
in BT. The collection S is defined as {S; : v; € BT }. Recall that S; is the set of all the leaves in a
subtree 7;. It outputs B7 .

CS.Assign(BT ,u): This algorithm takes as input the tree 37 and a user u € . Let v, be the leaf node of
BT that is assigned to the user u. Let (vj,,vj,,...,v;,) be the path from the root node v;, = vy to the
leaf node v, = v,. It sets PV, = {Sj;,...,S;,} and outputs the private set PV,,.

CS.Cover(B7,R): This algorithm takes as input the tree 37 and a revoked set R of users. It first computes
the Steiner tree ST (R). Let 7;,,...7;, be all the subtrees of BT that hang off ST (R), that is all subtrees
whose roots v;,,...v; are not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a
covering set CVg = {S;,,...,S;, }

CS.Match(CVg, PV,): This algorithm takes input as a covering set CVg = {S,,...,S;, } and a private set

PV, = {S; ,S;,}. It finds a subset Sy with S; € CVg and Sy € PV,. If there is such a subset, it

F
outputs (S, Sk). Otherwise, it outputs L.

Lemma 4.7 ([17]). Let Nyqx be the number of leaf nodes in a full binary tree and r be the size of a
revoked set. In the CS scheme, the size of a private set is 10g Ny, and the size of a covering set is at most

r10g(Npax /7).

4.3 Construction

Before we construct an RS-ABE scheme, we present a CCA-secure CP-ABE scheme from the CPA-secure
CP-ABE scheme of Rouselakis and Waters [22]]. To convert the CPA-secure CP-ABE scheme to a CCA-
secure one, we follow the transformation of Canetti et al. [6]]. To improve the efficiency, we actually employ
the direct conversion method of Boyen et al. [4]. The KEM version of the CP-ABE scheme is given as
follows:

CP-ABE.Setup(GDS): This algorithm takes as input a group description string GDS. It chooses ran-
dom elements w4, va,ua,ha,up,hg € G, and a random exponent y € Z,. It also chooses a ran-
dom index z for a hash function H* € H. It outputs a master key MK = 7y and public parameters
PP = ((p,G,GT,e),g,wA,vA,uA,hA,z,uB,hB,A = e(g,g)y).

CP-ABE.GenKey(S,MK,PP): LetS={A,Az,...,A;} be aset of attributes. It chooses random exponents
1ri,...,7x € Z, and outputs a private key SKg = (Ko =g'w,,Ki =g {Ki» = vg(uﬁ"hA)’i,K,-73 =
g ")

CP-ABE.RandKey(SKs, 6, PP): Let SKs = (Ko,K1,{Ki2,K;3}) for S = {A,A,...,A¢}. It chooses ran-
dom exponents ’, r},...,r, € Z, and outputs a re-randomized private key SKs = (K(’) =Kp- g5w§\’ K| =
KgAK, = Kin-vi (uy'ha) K]y = Kiz-g 1)),

1

18

CP-ABE.Encrypt(A,7,PP): Let A = (M,p) be an LSSS access structure where M is an [X n matrix
and p is a map from each row M; of M to an attribute p(j). It first sets a random vector V =
(t,v2,...,v,) by selecting random exponents vs, ..., v, € Z,. It selects random exponents s1,...,s; €
7, and computes Co = g, {Cj,l = wf‘/l"'vvzj,CjJ =g",Cj3= (uﬁ(j)hA)S./}lgjg. Next, it calculates 7w =
H*(Cy,C11,...,Ci3) and sets C3 = (ujhg)'. It outputs a ciphertext header CHy = (Co, {Cj1,Cj2,Cj3 }5-:1,
C3) and a session key EK = A’

CP-ABE.VerifyCT(CHp,PP): LetCHy = (Co, {Cj71,Cj72,Cj73},C3). It first computes 7w = Hz(Co,ClJ ey
C;3) and checks e(C3, g) < e(Co,ughg). It outputs 1 if the check passes. Otherwise, it outputs 0.

CP-ABE.Decrypt(CHA,SKS,PP): Let CHA = (C(), {Cj71 ,Cj’z,Cj73},C3) and SKS = (Ko,K] s {Kj’z,Kjg}). It
first checks 1 = CP-ABE.VerifyCT(CH,, PP). If the checking fails, then it outputs L. If S € A, then
it computes constants @; € Z, such that ¥, (jcs @;M; = (1,0,...,0) and outputs a session key as

EK = e(Co,Ko)/Tlp(j)es (e(Cj1,K1)-e(Cjn,K2) .e(Cj73,Kj73))w". Otherwise, it outputs L.

Remark 4.8. Compared to the CPA-secure CP-ABE scheme, the above CP-ABE scheme additionally con-
tains a hash function index z and two group elements ug,hp in public parameters, and a group element Cs
in a ciphertext header for integrity. We also added a ciphertext verification algorithm VerifyCT to check the
validity of ciphertext headers.

To construct an RS-ABE scheme, we follow the design principle of Lee et al. [[14]. Our RS-ABE scheme
that uses the above CP-ABE scheme, our SUE scheme, and the CS scheme is described as follows:

RS-ABE.Setup(l’l,Tmax,Nmax): It first generates bilinear groups G,Gr of prime order p. Let g be the
generator of G. It sets GDS = ((p,G,Gr,e),g). It obtains MKsp, PPsgr and MKy g, PPsyg by run-
ning CP-ABE.Setup(GDS) and SUE.Setup(GDS, T,,,,) respectively. It also obtains B7 by running
CS.Setup(N,,4x) and assigns a random exponent ¥ € Z, to each node v; in B7 . It selects a random
exponent & € Z,, and outputs a master key MK = (MKypg,MKsyg, o, 37) and public parameters
PP = (PPABEaPPSUEwQ = €(g,g)a).

RS-ABE.GenKey(S,u, MK, PP): Let MK = (MKupr,MKsyg, o, BT). It first assigns the index u to a ran-
dom leaf node v, € BT . It obtains a private set PV, = {S’; ,..., S’ } by running CS.Assign(BT,u) and
retrieves {7}, ..., ¥, } from BT where S;k is associated with a node v;, and v;, is assigned to the node
vj,. For 0 <k <d, it sets MK}, 5 = 7;, and obtains SKspg 4 by running CP-ABE.GenKey (S, MK,
PP,pg). It outputs a private key SKs , = (PVL,, SKABE 05 - ,SKABE,d).

RS-ABE.UpdateKey(7,R,MK,PP): Let MK = (MKapr,MKsyg, o, BT). It obtains a covering set CVg =
{Si,,---,S; } by running CS.Cover(BT,R) and retrieves {¥,,...,%,} from BT where S; is asso-
ciated with a node v;, and 7, is assigned to the node v;,. For 1 <k <m, it sets MKg,; = 0t — %,
and obtains SKgy g x by running SUE.GenKey(T,MKgU £ PPsyE). It outputs an update key UKy g =

(CVk,SKsuE,1- -, SKsugm)-

RS-ABE.Del‘iVCKey(SKSM, UKT/7R,PP): Let SKS’M = (PVM, SKABEy(), e ;SKABE,d) and UKTQR = (CVR, SKSUE,I,
...,SKsyg m). If u ¢ R, then it obtains (S;,S;) by running CS.Match(CVk, PV,). Otherwise, it outputs
L. Tt selects arandom exponent 8 € Z, and obtains SKpg by running CP-ABE.RandKey (3, SK4sE
PPygE). It also obtains SKgyr by running SUE.RandKey(—0,SKsyk i, PPsyg). It outputs a decryp-
tion key DK&T/ = (SKABE,SKSUE) .

19

RS-ABE.Encrypt(A, T, PP): Itselects arandom exponent ¢ € Z, and obtains CHygg and CHgy g by running
CP-ABE.Encrypt(A, 7, PPyggr) and SUE.Encrypt(7T,t, PPsyg) respectively. Note that it ignores two
partial session keys that are returned by CP-ABE.Encrypt and SUE.Encrypt. It outputs a ciphertext
header CHy 7 = (CHupg,CHsyg) and a session key EK = Q'

RS-ABE.UpdateCT(CHy 1, T + 1,PP): Let CHy 7 = (CHape,CHsyg). It first obtains CHg,, by run-
ning SUE.UpdateCT(CHsyg,T + 1,PPsyg). It outputs an updated ciphertext header CHy 741 =
(CHase,CHgyr).

RS-ABE.Decrypt(CHAI,DngT/,PP): Let CHAJ“ = (CHABE,CHSUE) and DK&T/ = (SKABE,SKSUE)- Let
CHypg = (Co,...) and CHsyr = (CH),...) where CH®) = (C},...). It first checks Cy = C}. If the
check fails, then it outputs L. If S € A and T < T, then it obtains EKspr and EKsyg by running
CP-ABE.DeCl‘ypt(CHABE,SKABE,PPABE) and SUE.DeCl‘ypt(CHSUE,SKSUE,PPSUE) respectively. If
EKupg #1 and EKsyg # L, then it outputs a session key EK = EKpr - EKsyg. Otherwise, it outputs
1.

Remark 4.9. In contrast to CPA-secure RS-ABE schemes [13}|14}123], our RS-ABE scheme does not pro-
vide a ciphertext re-randomization algorithm RandCT. Because of this, the outputted (future) ciphertext
header of UpdateCT maybe correlated to the original (past) ciphertext header. Thus, the (past) original ci-
phertext header should be deleted after running the UpdateCT algorithm to remove the correlation between
ciphertext headers.

4.4 Correctness

We first show the correctness of the above CP-ABE scheme. Compared to the original CP-ABE scheme
of Rouselakis and Waters [22], the above CP-ABE scheme additionally contains elements ug, g in public
parameters and an element C; in a ciphertext header. The validity of C3 can be easily checked by using
bilinear maps since C3 is a DDH tuple. Thus the above CP-ABE scheme is correct since the ciphertext
header can pass CP-ABE.VerifyCT and the original CP-ABE scheme is correct.

The correctness of the above RS-ABE scheme can be shown by using the correctness of the CP-ABE
scheme, SUE scheme, and CS scheme. Let SK; , be a private key and U K7 g be an update key. If u & R, then
there are SKypr in SKs,, and SKsyr in UKr g that are associated with the same node v; by the correctness
of the CS scheme. The decryption key DK 7/ = (SKA BE,SKgU) is obtained from SKypr and SKgyr after
additional randomization. Note that the master key part of SK), 5 - is %+ 8 and the master key part of SK¢;, 5 is
o—%—9. Let CHy r = (CHape,CHsy) be a ciphertext header. If S € A, then CP-ABE.Decrypt can derive
a partial session key EKpg from the correctness of the CP-ABE scheme. If T < T’, then SUE.Decrypt can
derive a partial session key EKgsyg from the correctness of the SUE scheme. By multiplying two partial
session keys, we obtain a valid session key since the original master key ¢ can be derived from the master
key parts of ABE and SUE.

4.5 Security Analysis

To prove the TEC-CCA security of the above RS-ABE scheme, we use the n-RW1 assumption introduced
by Rouselakis and Waters [22]]. Rouselakis and Waters proposed an efficient CP-ABE scheme and prove
its CPA security under the n-RW1 assumption. The definition of n-RW1 assumption and the security of the
original CP-ABE scheme are given as follows:

20

Assumption 4.10 (n-RW1, [22])). Let (p,G,Gr,e) be a description of the bilinear group of prime order p.
Let g be a random generator of G. The n-RW1 assumption is that if the challenge tuple

todi oed; odid; djd? '/d;
D == ((p9G7GT7€)7g7gC7 {gd Jg J7gc j7ga j7ga/ J}ng,jgn’{ga/ I}V1§i§2n,i7ﬁn+1,V1§j§n’

{ga’ ;/d>

7 aicdj/d 4 a[cd_,‘/dz.
! }V1§i§2n,V1§j,j’§n,j’7éj’ {s "8 !

!
Yorzijjrngzy) @l Z,

are given, no PPT algorithm A can distinguish Z = Zy = e(g, g)”"“c fromZ =7, = e(g,g)’ with more than
a negligible advantage. The advantage of A s defined as Adv'{™' (1) = | Pr[A(D, Zy) = 0] — Pr[A(D,Z;) =
OH where the probability is taken over random choices of a,c,{d;}1<j<n,f € Zp.

Lemma 4.11 ([22])). The n-RW1 assumption holds in the generic bilinear group model.

Theorem 4.12 ([22]). The original CP-ABE scheme is selectively secure under chosen plaintext attacks if
the n-RW1 assumption holds where n is the number of columns in the challenge matrix.

To prove the TEC-CCA security of the above CP-ABE scheme, we use the meta-simulation technique
that uses the previous CPA simulator in Theorem 4.12] as a sub-simulator. As pointed by Lee [13], the
simulator in Theorem cannot be directly used as a sub-simulator in meta-simulation since it sets Y =
a"*!' + v and wy = g To use this simulator in meta-simulation, we modify the simulator to set y = "'
and wy = g“gwl by selecting a random exponent w'. Note that this modification is easy. To handle decryption
queries of an adversary, we use a variation of the CHK transformation, in which a CPA secure IBE scheme
can be converted to a CCA secure PKE scheme [4}/6]. The CCA security of the above CP-ABE scheme is
given as follows:

Theorem 4.13. The above CP-ABE scheme is selectively secure under chosen ciphertext attacks if the n-
RWI assumption holds. That is, for any PPT adversary A, we have that AdviBE (L) < AdvE®V1 (1) +
negl(A) where n is the number of columns in the challenge matrix.

Proof. Suppose there exists an adversary .4 that attacks the above RS-ABE scheme with a non-negligible
advantage. A meta-simulator 3 that solves the n-RW1 assumption using A is given: a challenge tuple
D= ((p7 G, GTa e)agagcv {gaiagdjangj7gaidj7gat/djz}’ {gai/dj}a {ga’dj/di/ }7 {galCdj/dj, 7galCdj/d?I }) and Z where
Z=27y=e(g, g)””“c or Z =17 € Gr. Let Bagg be a modified simulator in the security proof of Theorem
Then B that interacts with A is described as follows:

Init: A initially submits a challenge access structure A*. 3 first runs Bpg by giving D and Z.

Setup: B submits A* to Bagg and receives PPypr = ((p,G,Gr,e),g,wa,va,ua, ha, A = e(g,g)"'Hl). Tt also
requests a challenge ciphertext to Bspg and receives a challenge ciphertext header CHy- = (C(, {C7 1,C75,C 5})
and a challenge session key EK* where Cj = g and EK* = Z. It selects a random index z for a hash
function H%. It computes ©* = H*(C,Cy,...,Cr3) and sets up = g ¢"s,hg = (g*) " g"s by select-
ing random exponents uj,hy € Z,. It implicitly sets ¥ = a""! and gives the public parameters PP =
((p,G,GT,e),g,wA,vA,uA,hA,z,uB,hB,A) to A.

Query 1: A adaptively requests a polynomial number of private key and decryption queries. If this is a
private key query for a set of attributes S, then B receives a private key SKs from Bspr by requesting a
private key query and gives SKj to \A.

If this is a decryption query for a ciphertext header CHy, then BB proceeds as follows:

21

1. Let CHy = (Co,{C;1,Cj2,C;3},C3). Itfirst checks the validity of CHy by running CP-ABE. VerifyCT
(CHy, PP). If the ciphertext header is not valid, then it responds the query with L. Otherwise, the
ciphertext header is valid and formed as CHy = (Co = g',{C}1,C}2,C;3},C3 = (ufhg)") for some
unknown t € Z,.

2. It calculates © = H*(Cy,C\ 1,...,C;3). If = m*, then it terminates the simulation with A and
outputs a random bit since it cannot response. If m # x*, the it can use the IBE technique of
Boneh and Boyen [3] to decrypt the ciphertext header. It sets Dy = (g%)~ (s +4s)/(F=7") (4)"
and D3 = (g¢)~ 1/ (7=7") g" by selecting a random exponent 1’ € Z, and it computes the session key as

an+| an+ 1 t

EK = ¢(Cy,Dy) -e(C5,D3) = e(gt,g (ughg)r) -e((ughg)’,g_r) =e(g,8)

3. It responses the query with EK as a decapsulated session key.

Challenge: A requests a challenge ciphertext header and a challenge session key. B computes C; =
(g°)"s™ *hs since (uf hp)® = (g) (™ 7 (g) W™ His)e It sets CH* = (C§,{C},,C}5,C;5},C}) and EK*
and gives the challenge tuples to .A.

Query 2: Same as Query 1. Note that A cannot request the decryption query on the challenge ciphertext
header CH*.

Guess: A outputs a guess u’. B also outputs u’.

To finish the proof, we show that B can handle decryption queries correctly. The decryption of B only
fails when @ = ©t* even if CH, # CH*. However, the probability of this collision event is negligible since
H? is a collision resistant hash function. This completes our proof. O

To prove the TEC-CCA security of the above RS-ABE scheme, we also apply the partitioning method
by using the meta-simulation technique. As mentioned before, we use the CCA simulator of the CP-ABE
scheme and the TEC-CCA simulator of the SUE scheme as sub-simulators to simplify the description of a
reduction algorithm (meta-simulator). Compared with the security proof of Lee’s RS-ABE scheme in [[13]],
the security proof of our RS-ABE scheme shows the TEC-CCA security instead of the CPA security and
proves the security in the selective model instead of the selective revocation list model. An adversary should
submit a challenge access structure A* and a challenge time 7* before he receives the public parameters in
the selective model, whereas the adversary additionally submits a set of revoked users RL* on the challenge
time before he receives the public parameters in the selective revocation list model. The selective revocation
list model was introduced by Boldyreva et al. [2] to prove the security of their revocable ABE scheme and
used in other systems in [[13,|14,|19].

The main idea of proving the security in the selective model instead of the selective revocation list
model is to assigning a user index to a random leaf node in a binary tree and to predicting the number of
the adversary’s private key queries with the condition S € A* where S is a set of attributes in a private key.
The meta-simulator can easily generate a private key with § ¢ A* since it can use the CP-ABE simulator by
creating an ABE private key that contains the master key «. However, it simply cannot generate a private key
with § € A* by using the CP-ABE simulator because of the restriction in the CP-ABE security model. Thus
it creates a private key by setting a random %; in a binary tree as the master key part of CP-ABE. To preserve
the consistency of private key and update key generations, the meta-simulator should know the positions of
user’s private keys with S € A* in a binary tree. If the number of private key with § € A* is known, then the
simulator can handle the private key queries by assigning user indexes to random leaf nodes. The TEC-CCA
security proof of our RS-ABE scheme is described as follows:

22

Theorem 4.14. The above RS-ABE scheme is selectively secure under time extended challenge chosen ci-
phertext attacks if the n-RW1 assumption holds. That is, for any PPT adversary A, we have thatAdvﬁS -ABE (L)<
q-AdvERYY(L) 4+ negl(A) where n is the number of columns in the challenge matrix and q is the number of

private key queries.

Proof. Suppose there exists an adversary .4 that attacks the above RS-ABE scheme with a non-negligible
advantage. A meta-simulator B that solves the n-RW1 assumption using A is given: a challenge tuple
D= ((p,G,Gr,e),g,8 {g° 8%, g1, g gV {gdldi} { @Iy foaedifdy o edi/TiNY and 7 where
Z=7Zy= e(g,g)“"“c or Z=Z; € Gr. Note that a challenge tuple Dpgpy = (g,¢ g% ,¢¢) for the DBDH
assumption can be easily derived from the challenge tuple D of the n-RW1 assumption by setting b = a”".
Let Bage be a modified simulator in the security proof of Theorem [.13] and Bsyg be a simulator in the
security proof of Theorem [3.12] Then B that interacts with A is described as follows:

Init: A initially submits a challenge access structure A* and a challenge time 7*. B first runs Bagg by
giving D and Z, and it also runs Bsyg by giving Dpgpy and Z. Let g be the maximum number of private
key queries of .A. Let ¢ be the number of private key queries for a set of attributes S and a user index u that
satisfy S € A*. B randomly guesses g by selecting a random integer in {0,...,q}. Note that it can correctly
guess ¢ with 1/(g+ 1) probability. Next, it obtains B7 by running CS.Setup(N,zx) Where Ny > g and
assigns a random exponent ¥ € Z, to each node v; € BT. Let SN* be a set of random leaf nodes in BT
with |[SN*| = ¢. Recall that Path(v) is the set of path nodes from the root node to the leaf node v. That
is, Path(v) = {vj,...,v;,} where vj, is the root node and vj, = v. Let SteinerTree(SN*) be the minimal
subtree that connects the root node to all leaf nodes in SN*. That is, SteinerTree(SN*) = U, csy- Path(v;).
Setup: B submits A* to Bpg and receives PPagg, and it submits T* to Bsyg and receives PPsyg. It
queries an ABE challenge ciphertext header to Bagg and receives CH, g, and EK}p.. It also queries an
SUE challenge ciphertext header to Bsyg and receives CHgy, and EKg;, . It randomizes A of PPpg and
A of PPsyf by selecting random exponents Y, 8’ € Z,,. It implicitly sets o = a"*! and gives the public
parameters PP = (PPygg, PPsyp,Q = e(g%,g")) to A.

Query 1: A adaptively requests a polynomial number of private key, update key, decryption key, and de-
cryption queries.

If this is a private key query for a set of attributes S and a user index u, then B proceeds as follows:

e Case S € A*: In this case, it can creates ABE private keys for path nodes by using ¥; of BT for the
master key of ABE.

1. If there is an unassigned leaf node in SN*, then it randomly assigns a leaf node v, € SN* to u.

Otherwise, it aborts the simulation since it failed to guess 4.

2. It obtains PV, by running CS.Assign(B7 ,u). Let Path(v,) = {vj,,...,vj,} be the set of nodes
that is associated with PV, where v, is the leaf node assigned to u and v;, = v,. It retrieves
exponents {¥j,,...,7;,} from BT that are associated with Path(v,).

3. For all v;, € Path(v,), it obtains SK4pg x by running CP-ABE.GenKey(S, ¥;,, PPagr)
4. It responses the query with the private key SK , = (PVM,SKABED, - ,SKABE,d).

e Case S ¢ A*: In this case, it can use Bapg to generate ABE private keys since A can only request S
such that § ¢ A™.

1. It randomly assigns a leaf node v, € SN* to u.

23

2. It obtains PV, by running CS.Assign(B7 ,u). Let Path(v,) = {vj,,...,vj,} be the set of nodes
that is associated with PV, where v, is the leaf node assigned to u and v;, = v,. It retrieves
exponents {Yj,,...,7;,} from BT that are associated with Path(v,).

3. It queries an ABE private key for S to Bygg and receives SK.

4. For each v;, € Path(v,), it performs the following steps: If v; & SteinerTree(SN*), then it
obtains SKupg x by running CP-ABE.GenKey(S, 7;,, PPage). Otherwise, it obtains SKapg x by
running CP-ABE.RandKey (SK¢, —7;,, PPagE)-

5. It responses the query with the private key SKs , = (PVM,SKABED, e ,SKABE,d).
If this is an update key query for a time T and a revoked set R, then 5 proceeds as follows:
e Case T < T*: In this case, it can use Bsyg to generate SUE private keys since T < T*.

1. It obtains CVg by running CS.Cover(57,R). Let Cover(R) = {vj,...,v;,} be the set of nodes
that is associated with CVx. It retrieves exponents {7, ..., %, } from BT that are associated with
Cover(R).

2. It queries an SUE private key for T to Bsyg and receives SK éU £

3. For each v; € Cover(R), it performs the following steps: If v; & SteinerTree(SN*), then it
obtains SKsy x by running SUE.RandKey(SK¢;, -, —%,, PPsuE). Otherwise, it obtains SKgyg «
by running SUE.GenKey(7, 7, , PPsyE).

4. Tt responses the query with the update key UKy g = (CVg,SKsuEg 1, - - -, SKsug m)-
e Case T > T*: In this case, it can create SUE private keys by using 7 for the master key of SUE. Let
R* be the set of revoked users on the time 7* and RN* be the set of revoked leaf nodes on the time
T*. We first have SN* C RN™ since a revealed private key for S € A* should be revoked at some time

T < T*. We also have SteinerTree(RN*) N Cover(R) = 0 since R* C R if T > T*. Thus, we have
SteinerTree(SN*) N Cover(R) =0 if T > T*.

1. If T = T*, then it counts the number of leaf nodes ¢’ in RN* that satisfy S € A* and stops the

simulation if ¢’ # § since it failed to guess ¢'.

2. It obtains CVg by running CS.Cover(B7,R). Let Cover(R) = {v;,...,v;, } be the set of nodes
that is associated with CVx. It retrieves exponents {¥;,, ..., %, } from BT that are associated with
Cover(R).

3. For each v;, € Cover(R), it obtains SKsy x by running SUE.GenKey(T', %, , PPsuE).
4. Tt responses the query with the update key UKy g = (CVg,SKsuEg 1, - - -, SKsug m)-

If this is a decryption key query for a set of attributes S and a time 7', then 3 proceeds as follows:
e Case S ¢ A*: In this case, it can use Bapg to generate an ABE private key since S ¢ A*.

1. It queries an ABE private key for S to Bagg and receives SK) ..

2. Itselects arandom exponent 8 € Z, and obtains SKxgr and SKsy £ by running CP-ABE.RandKey
(SK§,—6,PPspe) and SUE.GenKey(7, 8, PPsy) respectively.

3. It responds the query with the decryption key DK 7 = (SKapg, SKsuE).

24

e Case S € A*: In this case, it uses Bsyg to generate an SUE private key since 7 < T* from the
restriction of the security model.

1. It queries an SUE private key for 7' to Bsyg and receives SKg, .

2. Itselects arandom exponent 6 € Z p» and obtains SKypr and SKsy g by running CP-ABE.GenKey
(S,0,PPypr) and SUE.RandKey(SK§,, , — 8, PPsy) respectively.

3. It responds the query with the decryption key DKg 7 = (SKABE,SKSUE).
If this is a decryption query for a ciphertext header CHy r = (CHage,CHsuk), then B proceeds as follows:

1. Let CHppg = (Cp,...) and CHsyg = (CH©,...) where CH") = (Cps--.). It first checks Cy = Cj.
If the check fails, then it responds with L. It checks the validity of CHspg and CHsyg by run-
ning CP-ABE.VerifyCT(CHypg, PPsgr) and SUE.VerifyCT(CHsyg, T, PPsyE) respectively. If two
ciphertext headers are not valid, then it responds with 1.

2. If CHppe # CH g, then it queries the decryption of CHypg to Bagg and receives EK. Otherwise, it
queries the decryption of CHgy g to Bsyg and receives EK.

3. It responses the query with EK as a decapsulated session key.

Challenge: A requests a challenge ciphertext header and a challenge session key for A* and 7*. It sets the
challenger ciphertext header CH* = (CH 5, ,CHg,, ;) and the challenge session key EK* = Z. Recall that
CHpp and CHg,, were received from sub-simulators Bage and Bsyr at the setup stage. It gives CH* and
EK* to A.

Query 2: Same as Query 1.
Guess: A outputs a guess y’. B also outputs u’.

To finish the proof, we show that the meta-simulator B correctly handles the queries of A. We first show
that private keys are correctly generated. A user with an index u is randomly assigned to a unique leaf node
v, in BT and the private key of the user consists of ABE private keys, in which each ABE private key is
associated with a node v;, in path nodes from the root node to the leaf node. If v;, € SteinerTree(SN*), an
ABE private key for v}, is generated by setting ¥;, as the master key of ABE. Otherwise, an ABE private key
for v;, is generated by setting ot — 7;, as the master key of ABE. If § € A* where S is the set of attributes
in a private key, then B simply uses ¥;, stored in BT although it cannot use Bapg. If S ¢ A*, then B can
use Bape to generate an ABE private key with the master key o and then it can later add —Y;, in the master
key part. Thus, ABE private keys for private key generation are consistently generated depending on the
condition vj, € SteinerTree(SN*).

We next show that update keys are correctly generated by presenting that the master key parts of SUE
private keys in update keys are consistent with those of ABE private keys in private keys. An update key
for T and R consists of SUE private keys, in which each SUE private key is associated with a node v;, in
Cover(R). If v;, € SteinerTree(SN*), then an SUE private key should be generated by setting ¢ — ¥, as the
master key of SUE. If v;, ¢ SteinerTree(SN*), then an SUE private key should be generated by setting ¥,
as the master key of SUE. In this case, the consistency of private keys and update keys is preserved since
the master key o can be derived from the master keys o — ¥;, and y;, of ABE private key and SUE private
key for the same node v;,. If T < T, then B can easily generate SUE private keys since it can use Bsyg.
If T > T*, then B should generate SUE private keys by using ¥;, stored in B7 since it cannot use Bsyg
from the restriction of SUE. However, there is no problem to generate SUE private keys from the fact that

25

Cover(R) N SteinerTree(SN*) = 0 if T > T*. Thus, SUE private keys are also consistent with ABE private
keys.

Decryption keys are correctly generated since B can use Bapg if S & A* or Bsyg if T < T* by the
restriction of the security model. The decryption queries are also correctly handled since both B4pg and
Bsyg can handle their own decryption queries with non-negligible probability. The challenge ciphertext
header is correctly generated since CH ;- and CHg;,; are generated by Bapg and Bsy g respectively and two
sub-simulators set Cy = g°. This completes our proof. O

4.6 Discussions

Efficiency Analysis. Our RS-ABE scheme is similar to the RS-ABE scheme of Lee [13] in terms of effi-
ciency except that the size of public parameters is increased and pairing operations are added to check the
validity of the ciphertext header in our RS-ABE scheme. That is, our RS-ABE scheme has O(log 7,4,) group
elements in public parameters, O(10g Ny, * |S|) group elements in a private key, O(r1og(Nyqx/7) *10g Tnax)
group elements in an update key, and O(l +10g T,,,,) group elements in a ciphertext header. The decryption
algorithm of SUE requires O(|S|+log 7,4 pairing operations since the SUE ciphertext verification can be
done in O(log T},) pairing operations.

Key-Policy ABE. Our RS-ABE scheme combines the CP-ABE scheme of Rouselakis and Waters [22] and
our SUE scheme. There is another kind of ABE, called key-policy ABE (KP-ABE) in which a private key is
associated with an access structure and a ciphertext is associated with a set of attributes [[12[]. We can build
a TEC-CCA secure RS-ABE scheme with key-policy by using a CCA secure KP-ABE scheme instead of
using a CCA secure CP-ABE scheme. For instance, a CCA secure KP-ABE scheme can be derived from
the KP-ABE scheme of Rouselakis and Waters [22]. This RS-ABE scheme with key-policy can be proven
to be selectively TEC-CCA secure under a g-type assumption. We omit the details of the construction and
the security proof.

Revocable ABE. A revocable ABE (R-ABE) scheme is an ABE scheme with user revocation. Boldyreva
et al. [2]] introduced the concept of R-ABE and they presented an R-ABE with key-policy and claimed it
security in the selective revocation list model. R-ABE is a special type of RS-ABE since R-ABE only
supports user revocation whereas RS-ABE supports both user revocation and ciphertext updating. Thus an
R-ABE scheme can be built by combining an ABE scheme, an IBE scheme, and the CS scheme. Note that an
SUE scheme for RS-ABE is replaced by an IBE scheme for R-ABE. Boldyreva et al. [2] originally claimed
that their R-ABE scheme can be secure in the selective model, but they later corrected it by claiming that
their R-ABE scheme is secure in the selective revocation list model, in which an adversary should submit a
challenge set of attributes, a challenge time, and a set of revoked users on the challenge time [2]]. If we use
the proof technique of our RS-ABE scheme, we can prove the security of the R-ABE scheme in the selective
model instead of the selective revocation list model.

5 Conclusion

In this paper, we focused on the CCA security of SUE and RS-ABE since previous SUE and RS-ABE
schemes only provide CPA security. In the first part of this work, we defined TEC-CCA security for SUE,
and then we proposed an efficient SUE scheme and proved its TEC-CCA security under the DBDH as-
sumption. In the second part of this work, we also defined TEC-CCA security for RS-ABE and proposed
a TEC-CCA-secure RS-ABE scheme in the selective model instead of the selective revocation list model.
Our SUE and RS-ABE schemes are the first constructions that achieve (relaxed) CCA security.

26

There are many interesting problems. The first one is to construct SUE and RS-ABE schemes that
support (perfect) ciphertext re-randomization. As mentioned before, encryption schemes with ciphertext
re-randomization cannot be proven in TEC-CCA security model since there is no relation between a re-
randomized ciphertext and the original one. The second one is to build an RS-ABE scheme that supports a
designated entity who can update ciphertexts by using his private key. Note that the designated entity can
update the ciphertexts, but he cannot decrypt the ciphertexts. In cloud storage, we may require the cloud
sever only to update the ciphertexts instead anyone to update the ciphertexts.

References

[1] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In
Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 83—107. Springer, 2002.

[2] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with efficient
revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM Conference on Com-
puter and Communications Security, pages 417-426. ACM, 2008. Full version available at http:
//eprint.iacr.org/2012/052.

[3] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223-238. Springer, 2004.

[4] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-based
techniques. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM Conference on Computer
and Communications Security, pages 320-329. ACM, 2005.

[5] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In
Eli Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
255-271. Springer, 2003.

[6] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 207-222. Springer, 2004.

[7] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, CCS 2007, pages 185-194. ACM,
2007.

[8] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 565-582.
Springer, 2003.

[9] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO 98,
volume 1462 of Lecture Notes in Computer Science, pages 13-25. Springer, 1998.

27

http://eprint.iacr.org/2012/052
http://eprint.iacr.org/2012/052

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Fully secure self-updatable encryption in
prime order bilinear groups. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui, and
Siu-Ming Yiu, editors, ISC 2014, volume 8783 of Lecture Notes in Computer Science, pages 1-18.
Springer, 2014.

Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key cryptosys-
tems. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 65-82. Springer, 2002.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani

di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89-98.
ACM, 2006.

Kwangsu Lee. Self-updatable encryption with short public parameters and its extensions. Designs
Codes Cryptogr., 2015. http://dx.doi.org/10.1007/s10623-015-0039-09.

Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti Yung. Self-updatable
encryption: Time constrained access control with hidden attributes and better efficiency. In Kazue Sako
and Palash Sarkar, editors, ASTACRYPT 2013, volume 8269 of Lecture Notes in Computer Science,
pages 235-254. Springer, 2013.

Kwangsu Lee, Dong Hoon Lee, and Jong Hwan Park. Efficient revocable identity-based encryption via
subset difference methods. Cryptology ePrint Archive, Report 2014/132, 2014. http://eprint.
iacr.org/2014/132.

Benoit Libert and Damien Vergnaud. Adaptive-id secure revocable identity-based encryption. In
Marc Fischlin, editor, CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages 1-15.
Springer, 2009.

Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 41-62.
Springer, 2001.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext at-
tacks. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting, pages 427-437. ACM, 1990.

Seunghwan Park, Kwangsu Lee, and Dong Hoon Lee. New constructions of revocable identity-based
encryption from multilinear maps. IEEE Trans. Inf. Forensic Secur., 10(8):1564-1577, 2015.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO 91, volume 576 of
Lecture Notes in Computer Science, pages 433—444. Springer, 1991.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release crypto.
Technical Report MIT/LCS/TR-684, 1996.

Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
Conference on Computer and Communications Security, pages 463-474. ACM, 2013.

28

http://dx.doi.org/10.1007/s10623-015-0039-9
http://eprint.iacr.org/2014/132
http://eprint.iacr.org/2014/132

[23] Amit Sahai, Hakan Seyalioglu, and Brent Waters. Dynamic credentials and ciphertext delegation for
attribute-based encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 199-217. Springer, 2012.

[24] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 457-473. Springer, 2005.

[25] Jae Hong Seo and Keita Emura. Efficient delegation of key generation and revocation functionalities
in identity-based encryption. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of Lecture Notes in
Computer Science, pages 343-358. Springer, 2013.

[26] Jae Hong Seo and Keita Emura. Revocable identity-based encryption revisited: Security model and
construction. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of Lecture
Notes in Computer Science, pages 216-234. Springer, 2013.

[27] Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive,
Report 2001/112, 2001. http://eprint.iacr.org/2001/112|

[28] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of Lecture Notes in Computer Science, pages 53—70. Springer, 2011.

[29] Rui Zhang, Goichiro Hanaoka, Junji Shikata, and Hideki Imai. On the security of multiple encryption
or cca-security+cca-security=cca-security? In Feng Bao, Robert H. Deng, and Jianying Zhou, editors,
PKC 2004, volume 2947 of Lecture Notes in Computer Science, pages 360-374. Springer, 2004.

29

http://eprint.iacr.org/2001/112

	Introduction
	Our Results
	Our Techniques
	Related Work

	Preliminaries
	Full Binary Tree
	Bilinear Groups
	Complexity Assumptions

	Self-Updatable Encryption
	Definitions
	Managing the Time Structure
	Construction
	Correctness
	Security Analysis
	Discussions

	Revocable-Storage Attribute-Based Encryption
	Definitions
	Subset Cover Framework
	Construction
	Correctness
	Security Analysis
	Discussions

	Conclusion

