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Abstract. Proxy re-encryption (PRE) allows a semi-trusted proxy to transform a ciphertext for Alice into a cipher-
text of the same message for Bob. The traditional security notion of PRE focuses on preventing the proxy with the
re-encryption key learning anything about the encrypted messages. However, such a basic security requirement is
clearly not enough for many scenarios where the proxy can collude with Bob. A desirable security goal is therefore
to prevent a malicious proxy colluding with Bob to re-delegate Alice’s decryption right. In 2005, Ateniese, Fu,
Green and Hohenberger first proposed this intriguing problem called non-transferability, in the sense that the only
way for Bob to transfer Alice’s decryption capability is to expose his own secret key. It captures the notion that
Bob cannot collude with the proxy and transfer Alice’s decryption right without compromising his own decryption
capability. However, over the last decade, no solutions have achieved this property.

In this paper, we positively resolve this open problem. In particular, we give the first construction of non-
transferable proxy re-encryption where the attacker is allowed to obtain one pair of keys consisting of Bob’s secret
key and the corresponding re-encryption key. Using indistinguishability obfuscation and k-unforgeable authentica-
tion as main tools, our scheme is provably secure in the standard model. The essential idea behind our approach is
to allow Bob’s secret key to be evoked in the process of decrypting Alice’s ciphertext while hiding the fact that only
Bob could decrypt it by the obfuscated program. In addition, we also show a negative result: a CPA secure proxy
re-encryption scheme with “error-freeness” property cannot be non-transferable.

1 Introduction

In 1998, Blaze et al. [5] first proposed the primitive of proxy re-encryption (PRE) in order to solve the
problem of delegating decryption rights. In a proxy re-encryption scheme, a semi-trusted proxy with re-
encryption keys can transform a ciphertext intended for Alice (delegator) into another ciphertext of the same
plaintext intended for Bob (delegatee). The proxy cannot, however, learn anything about the underlying
plaintext. According to the direction of transformation, PRE can be categorized into bidirectional PRE, in
which the proxy can transform ciphertexts from Alice to Bob and vice versa, and unidirectional PRE, in
which the proxy cannot transform ciphertexts in the opposite direction. There is also another method to
classify PRE schemes, namely, a scheme is multi-hop, if the ciphertext can be transformed from Alice to
Bob and then to Charlie and so on, otherwise it is single-hop. In this paper, we concentrate on single-hop
unidirectional PRE.

In the last decade, proxy re-encryption has attracted many researchers’ attention and has many intriguing
applications, such as email forwarding [7], distributed files systems [1][2], digital rights management [23]
and cloud data sharing [25]. In all these cases, the proxy is supposed to be semi-trusted and uncontrolled,
that is, the traditional security notions prevent the adversary who has the re-encryption key from learning
anything about the underlying messages. However, such a basic security requirement is clearly not enough
for some applications. For instance, in cloud service scenarios, Alice may be a data broker and she sells
sensitive data encrypted and stored in the cloud. Clearly, Alice has the data ownership and she does not hope
anyone including the cloud access the data without her authorization. If Bob asks for her data, he has to
pay first. Then Alice generates a re-encryption key for Bob and sends it to the cloud. With the re-encryption
key, the cloud could transform the ciphertext for Bob. A desirable security goal is therefore to prevent a
malicious cloud from colluding with Bob to further re-delegate Alice’s decryption rights to another unpaid



user Carol. Obviously, as soon as the cloud gets the re-encryption key, it could collude with Bob to decrypt
Alice’s ciphertext and forward the plaintext to Carol. However, this approach requires Bob to remain active
and online. Again, Bob can always send his secret key to Carol, but in doing so, he assumes a security risk
that is potentially injurious to himself.

In 2005, Ateniese et al. [1][2] first proposed this problem and introduced a notion of non-transferability.
A proxy re-encryption scheme is said to be non-transferable if the proxy and a set of colluding delega-
tees cannot re-delegate decryption rights to other parties without compromising any malicious delegatee’s
decryption capability. This property can be seen as a tradeoff solution to protect Alice’s “benefit” in del-
egating her decryption right: when a malicious delegatee Bob colludes with the proxy to transfer Alice’s
decryption capability to others, he must expose his own decryption capability as a pay. Informally speaking,
non-transferability requires that the only way for Bob to transfer decryption capability of Alice is to expose
his own secret key. More generally, if the proxy and Bob generate a useful decryption box La in decrypting
Alice’s ciphertext, then La is also useful in decrypting Bob’s ciphertext.

Non-transferability of PRE scheme is an interesting problem in practice as illegal transfers of delegation
may lead to financial loss and even worse, whereas the malicious user has very little risk of getting caught.
Obviously, discouraging such behaviors seems much easier than preventing them, so one of the solutions is
to trace the malicious proxy after its collusion with one or more delegatees. This means that the penalty can
only be applied “after-the-fact”, i.e., only after the unauthorized transfer has been finished. However, it is
more desirable to have a better way to prevent collusion than to just discourage collusion. Non-transferability
provides a proactive way of deterrence. In particular, if a malicious coalition transfers an unauthorized
pirate decryption capability, any recipient will be able to obtain the decryption capability of the malicious
delegatee. On the other hand, honest delegatees’ decryption capabilities are guaranteed to remain hidden.
How to construct a non-transferable PRE scheme is the main open problem left for PRE schemes.

Unfortunately, there are no solutions for this property since it was proposed. In fact, most known pro-
posals for PRE allow the proxy colluding with Bob to directly generate new re-encryption keys from Alice
to another user who has not been authorized by Alice, as pointed out in [13]. To achieve non-transferability,
we need Alice’s ciphertext has the property that only if a decryptor holds Bob’s secret key (and the related
re-encryption key), can it get the plaintext; otherwise, it will get nothing useful. In order to give a concrete
construction, we resort to indistinguishability obfuscator (iO) [3][12].

Indistinguishability obfuscation is a notion of general program obfuscation, proposed by Barak et al.
[3], the target of which is to make computer programs unintelligible while not changing their functional-
ity. Indistinguishability obfuscation requires obfuscations of any two (equal-size) programs that have the
same functionality are computationally indistinguishable. Since Garg et al. [12] introduced the first can-
didate indistinguishability obfuscation, indistinguishability obfuscation becomes a very important tool to
achieve unprecedented results. Unfortunately, their construction is built using some candidate graded en-
coding schemes [11] which are susceptible to the “zeroizing attacks” [11][10][16]. Recently, Lin [21] con-
structed a general-purpose indistinguishability obfuscation scheme for all polynomial-size circuits from only
constant-degree graded encodings, which makes the zeroing attacks more difficult [10]. In this paper, we use
generic indistinguishability obfuscation to resolve the problem of non-transferability in PRE.

1.1 Our Contributions

In this paper, we resolve the above open question and propose the first non-transferable PRE scheme. Our
construction is conceptually very simple, and it uses indistinguishability obfuscation and k-unforgeable
authentication [6] as main tools. Roughly, the ciphertexts are obfuscated programs and re-encryption keys
are generated by the specific authentication scheme [6]. The proposed PRE scheme is CPA secure at the 2nd
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level ciphertext and the 1st level ciphertext. We prove that our scheme satisfies non-transferability, in the
sense that the attacker is allowed to obtain one pair of keys consisting of a re-encryption key and the related
delegatee’s secret key, but it cannot transfer the delegator’s decryption right without exposing the delegatee’s
secret key. It captures the most likely transference attack in reality: the proxy leaks the re-encryption keys
carelessly and a malicious delegatee obtains the corresponding re-encryption key for himself.

Furthermore, we also demonstrate an interesting impossibility result in non-transferability. In particular
we show that if a CPA secure PRE scheme is “error-free”, then it cannot meet non-transferability. Informally,
a PRE scheme is error-free if the re-encryption algorithm itself does not introduce any error to the re-
encrypted ciphertext. This notion is formalized by Zhang et al. [26] and used to achieve CCA secure PRE
schemes. As far as we know almost all existing PRE schemes have error-freeness except the traceable PRE
scheme in [19]. This result rules out the possibility of constructing error-free and non-transferable PRE
schemes.

1.2 Our Techniques

When the proxy colludes with Bob, the proxy can use the relevant re-encryption key to transform Alice’s ci-
phertext to another ciphertext intended for Bob, so it’s clear that they are able to generate a pirate decryption
box in decrypting any ciphertext of Alice. To obtain the property of non-transferability, the crucial difficulty
is how to “extract” the decryption capability of Bob from the pirate decryption box. Generally speaking,
when the process of re-encryption and decryption can easily be “obfuscated” into a program without any
information about Bob’s private key, it is impossible to achieve non-transferability. In this paper, we show
both positive and negative results for the goal of constructing non-transferable PRE schemes.

The Negative Result. Zhang et al. formalized a strong correctness notion called “error-freeness” [26],
which requires the re-encryption algorithm itself does not introduce any error to the re-encrypted ciphertext.
That is, the correctness of re-encryption is preserved for all ciphertexts of Alice, even including malformed
ciphertexts. With error-freeness, given any ciphertext for Alice and the corresponding re-encrypted cipher-
text for Bob, Alice and Bob will always obtain the same message. Although this property is strongly desired
in constructing CCA secure PRE schemes, it does conflict with the property of non-transferability.

To see this, consider the generic attack where the proxy colludes with Bob and derives a decryption box
La which is an obfuscation of the program: when given Alice’s ciphertext, first re-encrypt it for Bob then
decrypt the re-encrypted ciphertext using Bob’s secret key. Due to error-freeness, La is indistinguishable
from the following obfuscated program: when given Alice’s ciphertext, decrypt it using Alice’s secret key.
In the second obfuscated program, there is no need of Bob’s secret key. Thus, intuitively we think that the
decryption box La hides all the private information of Bob and cannot be used to decrypt Bob’s ciphertext.
Furthermore, we also prove that it is impossible for a error-free PRE scheme to meet the non-transferability.

The Positive Result. To avoid the above impossibility result, our main goal is to give the first construc-
tion of non-transferable PRE.

In most previous works, although the colluding proxy and Bob cannot recover Alice’s secret key, they
can derive equivalent sub-keys that suffice to generate new re-encryption keys for unauthorized users, which
means that these unauthorized users can decrypt all transformable ciphertexts intended for Alice. Obviously,
such constructions cannot achieve non-transferability.

Motivated by this observation and the negative result, we propose a completely new approach to design
non-transferable PRE schemes. In particular, a re-encryption key is an authentication which is generated by
Alice to authenticate the identity of Bob, and both original ciphertexts and re-encrypted ciphertexts are the
obfuscated programs which take as input the corresponding private key and output the plaintext. Since k-
unforgeable authentication scheme can only authenticate the designated user, even though the proxy colludes
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with Bob, they can not recover any useful information about Alice’s private key and generate any new re-
encryption keys for other unauthorized users. Moreover, in order to avoid the mentioned negative result, we
generate ciphertexts with “policies” such that for a malformed ciphertext and its re-encrypted ciphertext,
Alice and Bob will get different plaintexts, which makes the transferability attack infeasible. Particularly,
we use obfuscated programs to hide the plaintext and the ciphertext’s “policies”. A detailed description of
our techniques follows.

For the construction of the ciphertexts, basically, our solution is to make Alice’s ciphertext has the
property that only if an adversary holds Bob’s secret key skb and the related re-encryption key rka→b, can
it get the plaintext m; otherwise, it will get nothing useful. Actually, it is somewhat like point-function
obfuscation [4], however, it is not sufficient for realizing re-encryption functionality. Recall that in order to
achieve non-transferability, Bob’s decryption capability should be extracted from any illegal decryption box
La generated by the proxy and Bob. Particularly, our solution is to evoke La to recover Bob’s ciphertext
and the main difficulties are how to embed Bob’s ciphertext into a fake ciphertext of Alice for invoking La.
Therefore, the ciphertext should have somewhat “self-contained” property and the resulting fake ciphertext
should be indistinguishable from the normal one. To overcome these obstacles, we adopt the punctured
programs technique [22] for applying indistinguishability obfuscation. In particular, the original ciphertext
is two obfuscated programs: the first one, which is for Alice to decrypt, takes as input Alice’s secret key and
outputs the plaintext m; the second one, which is for re-encryption, verifies the validity of a re-encryption
key and the corresponding delegatee’s secret key and then outputs the plaintext m.

For the construction of the user’s keys, basically, our solution is to make the re-encryption keys unforge-
able. Otherwise, an adversary could transfer Alice’s decryption right by forging a re-encryption key [13].
Furthermore, in order to use the security of indistinguishability obfuscation, the main difficulties are how to
ensure the re-encryption keys to be information-theoretically unforgeable. Besides, the re-encryption keys
should have a public verifiable algorithm for an encryptor to generate a ciphertext. To overcome the above
difficulties, we adopt the specific authentication scheme in [6]. In particular, we regard an authentication,
which is generated by Alice to authenticate Bob, as a re-encryption key.

Technique of Proof. For non-transferability, our primary challenge is to extract Bob’s decryption capa-
bility from the illegal decryption box La of Alice, which is generated by the collusion attack of proxy and
Bob.

Our solution is to embed Bob’s ciphertext in a fake ciphertext of Alice such that the fake ciphertext
is polynomial indistinguishable from a normal ciphertext of the same encrypted message. With the fake
ciphertext of Alice, we could run the illegal decryption box La and get the underlying message. Unfortu-
nately, though we use indistinguishability obfuscation to build the ciphertext, we could not directly obtain
the indistinguishability of the fake ciphertext and the normal ciphertext. That is because, the programs being
obfuscated in the fake ciphertext and the normal ciphertext have different functionalities. In particular, the
normal ciphertext takes as input the secret key of any delegatee and the corresponding re-encryption key;
while the fake ciphertext only takes as input Bob’s secret key and the corresponding re-encryption key.

In order to show the indistinguishability of the fake ciphertext and the normal ciphertext by using the
security of indistinguishability obfuscation, we build a hybrid experiment in which the normal ciphertext
could not be evoked by pairs of keys (rka→b′ , skb′) of any delegatee other than Bob. The key point to
make this switch is that there does not exist such a key pair (rka→b′ , skb′) leading to different outputs.
In more detail, we introduce a fake key generation mode, which is also used in [6]. The scheme has an
indistinguishable fake key generation mode, where there does not exist any secret keys of honest users
(including Alice) or any re-encryption keys from Alice to corrupted users except the one from Alice to Bob
(recall that Bob is a corrupted user). Under these restrictions, the fake ciphertext and the normal ciphertext

4



would have the same inputs/outputs and they are indistinguishable by indistinguishability obfuscation’s
security. This also indicates that if a decryption box La is useful in decrypting Alice’s ciphertext, it must run
with (rka→b, skb), thus Bob’s decryption capability could be extracted from it.

1.3 Related Works

Since the notion of non-transferability was introduced in 2005, there have been many attempts to prevent
the transferability of PRE. In 2008, Libert and Vergnaud [19] proposed traceable proxy re-encryption, where
malicious proxies that reveal their re-encryption key to third parties can be identified by the delegator.
Although it is one possible approach to the non-transferable PRE, it still cannot prevent colluding proxies
and delegatees from re-delegating the decryption rights. It is more desirable to have a better way to prevent
collusion, not just discourage collusion. In 2011, Wang et al. [24] proposed an identity-based proxy re-
encryption scheme to prevent collusion attacks. As the re-encryption key is generated using the master key
of the PKG (a fully trusted private key generator), the proxy and the delegatees cannot further delegate the
decryption right to others without the help of the PKG. However, this solution is undesirable since PKG
in their scheme can decrypt both original and re-encrypted ciphertexts. Furthermore, PKG can transfer any
re-encryption key for other users, that is, the transferable problem is still not solved. Later, Hayashi et
al. [14] also introduced a relaxed notion of non-transferability and proposed two concrete constructions.
Unfortunately, Isshiki et al. [17] pointed out that Hayashi et al.’s scheme is vulnerable to the forgeability
attack of re-encryption keys. Moreover, the security assumption employed in their proofs can be solved
efficiently. Later, Guo et al. [13] proposed an efficient PRE scheme with unforgeable re-encryption keys.
However, they pointed out their security model could not capture all attacks of transference of decryption
rights. Besides, there are several re-encryption constructions [8] [9] [15] achieving VBB obfuscation-based
security. However, due to collusion attacks, they still cannot meet non-transferability.

2 Preliminary

In this section, we describe some primitives that will be used in our construction. Let λ be the security
parameter.

2.1 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscator (iO) [3][12]. It has been recently realized by Lin
[21] from only constant-degree graded encodings under the assumption of constant-degree PRG and LWE,
which makes the zeroing attacks more difficult as discussed in [10]. Note that our scheme is constructed
from a generic iO, so it is suitable for other possible iO instantiation.
Definition 1 (Indistinguishability Obfuscator). An indistinguishability obfuscator iO for a circuit class
Cλ is a PPT uniform algorithm satisfying the following conditions:

– iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we compute C ′ = iO(λ,C), then
C ′(x) = C(x) for all inputs x.

– For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the circuits iO(λ,C0) and
iO(λ,C1) are indistinguishable. More precisely, for all pairs of PPT adversaries (Samp, D) there exists
a negligible function α such that, if

Pr[(C0, C1, τ)← Samp(λ) : ∀x,C0(x) = C1(x)] > 1− α(λ)
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then
|Pr[D(τ, iO(λ,C0)) = 1]− Pr[D(τ, iO(λ,C1)) = 1]| < α(λ).

In this paper, we will make use of such indistinguishability obfuscators for all polynomial-size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called an indis-
tinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits of size at most λ.
Then iO is an indistinguishability obfuscator for the class {Cλ}.

2.2 k-Unforgeable Authentication Scheme

We recall the definition of k-unforgeable authentication recently realized in [6] using k-cover-free sets [18]
and PRG. An authentication scheme over an identity space I consists of the following three algorithms:

– AuthGen(λ) : The algorithm takes as input a security parameter λ, and outputs a secret authentication
key ask and a public verification key avk.

– AuthProve(ask, id) : The algorithm takes as input a secret authentication key ask and a user’s identity
id, and outputs authid.

– Verify(avk, id, authid) : The algorithm takes as input a public verification key avk, a user’s identity id,
and an authentication value authid, and outputs 1 if authid is valid or 0 otherwise.

Correctness. For any identity id ∈ I, the following condition holds:

Pr[(avk, ask)← AuthGen(λ); authid ← AuthProve(ask, id) : Verify(avk, id, authid) = 1] = 1.

Definition 3 (k-Unforgeability of Authentication Scheme). An authentication scheme is said to be k-
unforgeable, if for any PPT adversary A and any set T of at most k identities, the following condition
holds:

Pr


(avk, ask)← AuthGen(λ);

authidj ← AuthProve(ask, idj), ∀idj ∈ T ;
(id∗, authid∗)← A(avk, {idj , authidj}idj∈T ) :

id∗ /∈ T ∩ Verify(avk, id∗, authid∗) = 1

 ≤ negl(λ),

where k is polynomially related to the security parameter.
Indistinguishable Fake Setup. The k-unforgeable authentication scheme constructed in [6] is accompanied
with a PPT indistinguishable fake algorithm of setup. The algorithm FakeAuthGen(λ, T ) takes as input a
security parameter λ and a set T including k identities, and outputs a key pair (ask, avk) such that it is only
possible to authenticate the identities in T and there does not exist any authentication for users outside of T .
Moreover, the real setup and fake setup should be indistinguishable to the adversary. Formally, the security
properties of algorithm FakeAuthGen are described as following:

– No authentication for id /∈ T :

Pr

[
(avk, ask)← FakeAuthGen(λ, T ) :

∀id /∈ T , ∀authid ∈ {0, 1}∗,Verify(avk, id, authid) = 0

]
> 1− negl(λ).
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– Indistinguishability: For any PPT adversaryA, and any set T of at most k identities, the following holds:

Pr

 (ask, avk)← AuthGen(λ);

authidj ← AuthProve(ask, idj), ∀idj ∈ T :

A(avk, {authidj}idj∈T ) = 1



≈ Pr

 (ask, avk)← FakeAuthGen(λ, T );
authidj ← AuthProve(ask, idj),∀idj ∈ T :

A(avk, {authidj}idj∈T ) = 1

 .

3 Proxy Re-Encryption

In this section, we first recall the definitions of PRE. Then, we introduce the non-transferability definition
against collusion attacks.

Let M denote the plaintext space. A single-hop unidirectional PRE scheme is a tuple of the following
algorithms [1]:

– KeyGen(λ) : The algorithm takes as input a security parameter λ, and outputs the user’s public-secret
key pair (pk, sk).

– ReKeyGen(ski, pkj) : The algorithm takes as input a secret key ski of user i (i.e., delegator) and a public
key pkj of user j (i.e., delegatee), and outputs a re-encryption key rki→j .

– Enc1(pkj ,m) : The algorithm takes as input a public key pkj and a plaintext m ∈ M, and outputs a first
level ciphertext that cannot be re-encrypted for another user.

– Enc2(pki,m) : The algorithm takes as input a public key pki and a plaintext m ∈ M, and outputs a
second level ciphertext that can be re-encrypted into a first level one (for a possibly different receiver)
using the suitable re-encryption key.

– ReEnc(rki→j , Ci) : The algorithm takes as input a re-encryption key rki→j and a second level ciphertext
Ci, and outputs a first level ciphertext C ′j re-encrypted for user j.

– Dec1(skj , C
′
j) : The algorithm takes as input a secret key skj and a first level ciphertext C ′j , and outputs

a plaintext m ∈ M or an error symbol ⊥.

– Dec2(ski, Ci) : The algorithm takes as input a secret key ski and a second level ciphertext Ci, and
outputs a plaintext m ∈ M or an error symbol ⊥.

Correctness. For any key pairs (pki, ski), (pkj , skj) ← KeyGen(λ), any re-encryption key rki→j ←
ReKeyGen(ski, pkj) and any message m ∈ M, the following conditions hold:

Dec1(skj ,Enc1(pkj ,m)) = m; Dec2(ski,Enc2(pki,m)) = m;

Dec1(skj ,ReEnc(rki→j ,Enc2(pki,m))) = m.
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3.1 CPA Security

The security of second level ciphertexts for single-hop unidirectional PRE schemes [1] is defined as follows.
Definition 4 (CPA Security of Second Level Ciphertext). A single-hop unidirectional PRE scheme is
chosen plaintext secure at level 2 if

|Pr[{(pkj , skj)← KeyGen(λ)}j∈C∪H; (pki∗ , ski∗)← KeyGen(λ);

{rki∗→j ← ReKeyGen(ski∗ , pkj)}j∈H; {rki→j ← ReKeyGen(ski, pkj)}i∈H,j∈C∪H∪{i∗};
(m0,m1, st)← A(pki∗ , {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈H, {rki→j}i∈H,j∈C∪H∪{i∗});

b← {0, 1};C∗ ← Enc2(pki∗ ,mb); b
′ ← A(C∗, st) : b′ = b]− 1/2| ≤ negl(λ)

for any PPT adversary A, where the target user’s key pair (pkj∗ , skj∗) and the challenge ciphertext C∗ is
generated by the challenger, st is the state information maintained by A, and C and H denote the set of
corrupted users and the set of honest users, respectively.
Remark 1. In the above security definition, we do not provide A with any re-encrypted ciphertext for
the following two reasons: (1) A can generate re-encrypted ciphertexts from user i∗ to user j (j ∈ H),
and re-encrypted ciphertexts from user i to user j (i ∈ H, j ∈ C ∪H ∪ {i∗}), by using {rki∗→j}j∈H and
{rki→j}i∈H,j∈C∪H∪{i∗}. (2) A cannot obtain re-encrypted ciphertexts from user i∗ to user j (j ∈ C), s-
ince such ciphertexts implicitly provide the second level decryption capability of user i∗, which we do not
consider in CPA security model.

Then we recall the security of first level ciphertexts for single-hop unidirectional PRE schemes. Since
first level ciphertexts cannot be re-encrypted, the adversary A is granted access to all re-encryption keys in
this definition.
Definition 5 (CPA Security of First Level Ciphertext). A single-hop unidirectional PRE scheme is chosen
plaintext secure at level 1 if

|Pr[{(pkj , skj)← KeyGen(λ)}j∈C∪H; (pkj∗ , skj∗)← KeyGen(λ);

{rkj→j′ ← ReKeyGen(skj , pkj′)}j,j′∈C∪H∪{j∗};
(m0,m1, st)← A(pkj∗ , {pkj , skj}j∈C, {pkj}j∈H, {rkj→j′}j,j′∈C∪H∪{j∗});

b← {0, 1};C∗ ← Enc1(pkj∗ ,mb); b
′ ← A(C∗, st) : b′ = b]− 1/2| ≤ negl(λ)

for any PPT adversary A, where the target user’s key pair (pkj∗ , skj∗) and the challenge ciphertext C∗ is
generated by the challenger, st is the state information maintained by A, and C and H denote the set of
corrupted users and the set of honest users, respectively.

A PRE scheme is said to be CPA secure, if it is CPA secure at both level 1 and level 2.

3.2 Non-Transferability

Intuitively, non-transferability requires that the only way for a delegatee to transfer delegator’s decryption
capability is to expose his own second level decryption capability. To formalize this intuition, we first in-
troduce a notion of ε-useful second level decryption box, which is viewed as a PPT algorithm that takes as
input a 2nd level ciphertext and outputs a message or ⊥. Such a decryption box does not need to be perfect,
namely, we only require it to be able to decrypt with non-negligible success probability ε.
Definition 6 (ε-Useful Second Level Decryption Box). For non-negligible probability value ε, a PPT algo-
rithm Li,ε is an ε-useful second level decryption box for user i, if Pr[m ← M, C ← Enc2(pki,m),m′ ←
Li,ε(C) : m = m′] ≥ ε, where M is the plaintext space.
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Definition 7 (Non-Transferability). A single-hop unidirectional PRE scheme is non-transferable against
collusion attacks if for any PPT adversary A, there exists a PPT algorithm I such that

Pr[{(pkj , skj)← KeyGen(λ)}j∈C∪H; (pki∗ , ski∗)← KeyGen(λ);

{rki∗→j ← ReKeyGen(ski∗ , pkj)}j∈D;
Li∗,ε ← A(pki∗ , {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈D) :

Lj∗,ε ← I(Li∗,ε, pki∗ , {pkj}j∈C∩D), j∗ ∈ C ∩ D] > 1− negl(λ)

where A outputs an ε-useful decryption box Li∗,ε for user i∗, I outputs an ε-useful decryption box Lj∗,ε
for user j∗, C denotes the set of corrupted users, H denotes the set of uncorrupted users, and D ⊂ C ∪H
denotes the set of delegatees whose corresponding re-encryption keys are corrupted.

If |C ∩ D| = 1, the scheme is said to be non-transferable against one-pair-of-keys collusion attacks.
Remark 2. Non-transferability is considered as an advanced security requirement. In other words, it is
meaningless for a PRE scheme to be non-transferable, unless the PRE scheme is CPA secure.
Remark 3. In our proposed scheme, the adversary A is allowed to obtain one pair of keys (rki∗→j , skj) in
collusion attacks, e.g. |C ∩ D| = 1. Nevertheless, it captures the most common attack in reality: the proxy
leaks the re-encryption keys carelessly, and a malicious delegatee obtains the corresponding re-encryption
key for himself.

From another point of view, ifA obtains more than one pair of keys, non-transferability might be hardly
satisfied. Without loss of generality, A obtains (rki∗→j1 , skj1) and (rki∗→j2 , skj2), and there might be a
decryption box L′i∗,ε with defending policy as follows. Taking a ciphertext as input, L′i∗,ε re-encrypts it to
Cj1 using rki∗→j1 and decrypts Cj1 using skj1 ; it repeats the re-encryption and the decryption by using
(rki∗→j2 , skj2), and it rejects if the two executions have different results. Intuitively, such L′i∗,ε might hardly
be utilized in a black-box manner to decrypt either user j1’s or user j2’s ciphertexts.
Remark 4. In previous model [14], Bob and the proxy derive a re-encryption box R which can re-encrypt
Alice’s ciphertext to another user Carol. In fact, a re-encryption box of [14] and a decryption box Li∗,ε
defined in this paper could be mutually transformed. If Li∗,ε is leaked, we can use it to decrypt Alice’s
ciphertext and encrypt the message to Carol. IfR is leaked, we can use it to re-encrypt Alice’s ciphertext and
decrypt it with Carol’s secret key (i.e. Carol use R to extract Bob’s decryption capability). The decryption
box adopted in this paper is more simple and essential.
Remark 5. For convenience, we only consider the second level decryption capabilities of the malicious
delegatees. Obviously, for delegatees, the second level ciphertext is more important while the first level
ciphertext might be transformed ciphertext from other users.

4 Construction

In this section we present our construction of a non-transferable proxy re-encryption scheme.
Intuitively, to ensure the delegatee can decrypt the re-encrypted ciphertext using his own private key, the

existing constructions require the delegator’s private key “included” in the re-encryption key. Specifically,
using the re-encryption key and the delegatee’s private key, even though the delegator’s private key itself
cannot be disclosed, the adversary can obtain the partial information about the delegator’s private key such
as it’s one-way transformation, using which the adversary can generate a new re-encryption key. Therefore,
the scheme cannot be non-transferable. On the other hand, in almost all the existing constructions, the cor-
rectness of re-encryption is preserved for all ciphertexts of Alice. Thus, with the re-encryption key rka→b and
the delegatee’s private key skb, the adversary can obfuscate the re-encryption algorithm ReEnc(rka→b, Ca)
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and decryption algorithm Dec1(skb, C
′
b) into a program La which reveals no information about Bob’s secret

key skb. More details can be found in Section 6. We believe that such attacks are the principle reasons that
the existing constructions cannot provide non-transferability.

To overcome the above difficulties, we present a new methodology by applying the tools of indistin-
guishability obfuscation and k-unforgeable authentication. In our construction, a re-encryption key is an
authentication which is generated by the delegator to authenticate the identity of a delegatee, and the cipher-
texts (original and re-encrypted) are both the obfuscated programs which take as input the corresponding
private key and output the plaintext. Since k-unforgeable authentication scheme can only authenticate the
designated delegatee, even though the proxy colludes with a delegatee, they can not recover any useful in-
formation about the delegator’s private key and generate any new re-encryption keys for other delegatees.
Moreover, we use obfuscated program to generate ciphertexts with “policies” such that for a malformed ci-
phertext and its re-encrypted ciphertext, Alice and Bob will get different plaintext messages. The difference
in the resulting messages makes the latter attack infeasible. In particular, the obfuscated program hides the
plaintext and the ciphertext’s “policies”. This gives an intuition why our scheme achieves non-transferability.

Let Auth = (AuthGen,AuthProve, Verify) be the k-unforgeable authentication scheme over an identity
space I = {0, 1}2λ of [6] 1, iO be a program indistinguishability obfuscator, and PRG be a pseudo-random
generator that maps {0, 1}λ to {0, 1}2λ. The message spaceM = {0, 1}λ. The description of our single-hop
unidirectional PRE scheme is given below.

– KeyGen(λ) : Given the security parameter λ, the user i randomly chooses si and computes ti =
PRG(si). It also generates (avki, aski) ← AuthGen(λ). Return the key pair (pki = (ti, avki), ski =
(si, aski)).

– ReKeyGen(ski, pkj) : Given a secret key ski and a public key pkj , compute authj ← AuthProve(aski, tj)
and set rki→j = authj . Return the re-encryption key rki→j .

– Enc1(pkj ,m) : Given a public key pkj , a message m ∈ M, build the program Cipher-I in Figure 1.
Return the ciphertext C ′j = iO(Cipher-I). Note that C ′j is an obfuscated program, whose size is padded
to be the maximum of itself and those of Figure 4 and Figure 5.

Cipher-I

Constants: m, tj .
Input: sj .

1. If PRG(sj) = tj , output m and exit.
2. Output “⊥”.

Fig. 1. The program Cipher-I

– Enc2(pki,m) : Given a public key pki, a message m ∈M, build the programs Cipher-II-L and Cipher-
II-R in Figure 2, and create cl = iO(Cipher-II-L) and cr = iO(Cipher-II-R). Return the ciphertext
Ci = (cl, cr). Note that cl and cr are two obfuscated programs, whose sizes are padded to the appropriate
length.

1 For any id ∈ {0, 1}2λ, it can be interpreted as an element in Fd+1
q , where q = kλ, d = q − 1/k, as required in [6]. In our

scheme, k is the bound of the number of corrupted re-encryption keys for a delegator.
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Cipher-II-L

Constants: m, ti.
Input: si.

1. If PRG(si) = ti, output m and exit.
2. Output “⊥”.

Cipher-II-R

Constants: m, avki.
Input: (rki→j , sj , tj).

1. If Verify(avki, tj , rki→j) = 1 and PRG(sj) = tj output m and exit.
2. Output “⊥”.

Fig. 2. The programs Cipher-II-L and Cipher-II-R

– ReEnc(rki→j , pkj , (cl, cr)) : Given a re-encryption key rki→j , a public key pkj and a ciphertext Ci =
(cl, cr), build the program Re-Cipher in Figure 3. Return the ciphertext C ′j = iO(Re-Cipher). Note that
C ′j is an obfuscated program, whose size is padded to the appropriate length.

Re-Cipher

Constants: rki→j , tj , cr .
Input: sj .

1. Evaluate cr with (rki→j , sj , tj) as input.

Fig. 3. The program Re-Cipher

– Dec1(skj , C
′
j) : Given a secret key skj and a first level ciphertext C ′j , run the program C ′j on skj to

obtain the plaintext m or ⊥.

– Dec2(ski, Ci) : Given a secret key ski and a second level ciphertext Ci = (cl, cr), run the program cl on
ski to obtain the plaintext m or ⊥.

Correctness. A second level ciphertext Ci under pki has a form (cl, cr) where cl and cr are two obfuscated
programs. Given a re-encryption key rki→j , Ci can be transformed into a first level ciphertext C ′j under pkj ,
where C ′j is also an obfuscated program. Also, the decryption algorithm runs the obfuscated program on
inputting a secret key for either level ciphertext, the correctness is obvious.

5 Security

In this section, we prove the CPA security and non-transferability of the proposed construction.

5.1 CPA Security

First, we consider the CPA security.

Theorem 1. If PRG is a secure pseudo-random generator, Auth a k-unforgeable authentication scheme,
and iO a secure indistinguishability obfuscator, then our PRE scheme is CPA secure at the first and second
level ciphertext.

The theorem is obtained by combining the following Lemma 1 and Lemma 2.
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Lemma 1. If PRG is a secure pseudo-random generator and iO a secure indistinguishability obfuscator,
then our PRE scheme is CPA secure at the first level ciphertext.

Proof. We describe a proof as a sequence of hybrid experiments where the first hybrid experiment corre-
sponds to the original CPA security experiment of the 1st level ciphertext. We prove that the attacker A’s
advantage must be negligibly close between each successive hybrid experiment and that the attacker has
negligible advantage in the final experiment. Table 1 roughly describes the hybrid experiments.

• Hyb0 The first hybrid is the real experiment.
1. The challenger generates the keys {pkj , skj}j∈C∪H, {rkj→j′}j,j′∈C∪H∪{j∗} and pkj∗ as follows.

(a) Pick (pkj , skj)← KeyGen(λ), ∀j ∈ C ∪H.
(b) Pick sj∗ at random and compute tj∗ = PRG(sj∗). Pick (avkj∗ , askj∗) ← AuthGen(λ). Set

pkj∗ = (tj∗ , avkj∗).
(c) For all j, j′ ∈ C ∪H ∪ {j∗}, generate rkj→j′ ← AuthProve(askj , tj′).
It returns {pkj , skj}j∈C, {pkj}j∈H, {rkj→j′}j,j′∈C∪H∪{j∗} and pkj∗ .

2. The attacker obtains {pkj , skj}j∈C, {pkj}j∈H, {rkj→j′}j,j′∈C∪H∪{j∗} and pkj∗ . It choosesm0,m1 ∈
M and returns them to the challenger.

3. The challenger picks b ∈ {0, 1} at random, and generates the challenge ciphertext C∗ as an obfus-
cation of the program Target-Cipher-I in Figure 4.

4. A receives C∗ and outputs a guess b′.

Target-Cipher-I

Constants: mb, tj∗ .
Input: sj∗ .

1. If PRG(sj∗) = tj∗ , output mb and exit.
2. Output “⊥”.

Fig. 4. The program Target-Cipher-I

• Hyb1 This hybrid experiment is the same as Hyb0 except that tj∗ is randomly chosen.
– This hybrid experiment is indistinguishable from the previous one by the pseudo-randomness property
of PRG.

• Hyb2 This hybrid experiment is the same as Hyb1 except that we let the challenge ciphertext C∗ be an
obfuscation of the program Target-Cipher-I* in Figure 5.
– Since tj∗ is chosen at random, with high probability it is true tj∗ is not in the image of the PRG and
the program Target-Cipher-I will always output “⊥”. Therefore, the replacement will not change the
functionality of the program Target-Cipher-I. Thus, the indistinguishability of Hyb1 and Hyb2 follows
from the iO security property.

Experiments Description Reduction to
Hyb0 the real experiment –
Hyb1 tj∗ is randomly chosen security of PRG

Hyb2
the challenge ciphertext C∗ is an obfuscation
of the program Target-Cipher-I* in Figure 5 iO security

Table 1. Description of the experiments in the proof of Lemma 1
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Target-Cipher-I*

Constants: tj∗ .
Input: sj∗ .

1. If PRG(sj∗) = tj∗ , output 0 and exit.
2. Output “⊥”.

Fig. 5. The program Target-Cipher-I*

In the last hybrid experiment, since the challenge ciphertext C∗ contains no information of mb, the
probability that the attacker will output a correct guess b′ is negl(λ) + 1/2.

Thus, the lemma follows. ut

Lemma 2. If PRG is a secure pseudo-random generator, Auth a k-unforgeable authentication scheme,
and iO a secure indistinguishability obfuscator, then our PRE scheme is CPA secure at the second level
ciphertext.

Experiments Description Reduction to
Hyb0 the real experiment –
Hyb1 use FakeAuthGen(λ, {tj}j∈H) for user i∗ security of authentication
Hyb2 ti is chosen at random for all i ∈ H ∪ {i∗} security of PRG

Hyb3
the challenge ciphertext C∗ is the obfuscations of the programs

Target-Cipher-II-L* and Target-Cipher-II-R in Figure 7 iO security

Hyb4
the challenge ciphertext C∗ is the obfuscations of the programs

Target-Cipher-II-L* and Target-Cipher-II-R* in Figure 8 iO security

Table 2. Description of the experiments in the proof of Lemma 2

Proof. We describe a proof as a sequence of hybrid experiments where the first hybrid experiment corre-
sponds to the original CPA security experiment of the 2nd level ciphertext. We prove that the attacker A’s
advantage must be negligibly close between each successive hybrid experiment and that the attacker has
negligible advantage in the final experiment. Table 2 roughly describes the hybrid experiments.

• Hyb0 The first hybrid is the real experiment.
1. The challenger generates {pkj , skj}j∈C∪H, {rki∗→j}j∈H, {rki→j}i∈H,j∈C∪H∪{i∗} and pki∗ as fol-

lows.
(a) For all j ∈ C, pick (pkj , skj)← KeyGen(λ).
(b) For all j ∈ H, pick sj at random and compute tj = PRG(sj). Pick (avkj , askj)← AuthGen(λ).

Set pkj = (tj , avkj).
(c) For user i∗, pick si∗ at random and compute ti∗ = PRG(si∗). Pick (avki∗ , aski∗)← AuthGen(λ).

Set pki∗ = (ti∗ , avki∗).
(d) For all j ∈ H, generate rki∗→j ← AuthProve(aski∗ , tj).
(e) For all i ∈ H, j ∈ C ∪H ∪ {i∗}, generate rki→j ← AuthProve(aski, tj).
It returns {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈H, {rki→j}i∈H,j∈C∪H∪{i∗} and pki∗ .

2. The attacker receives {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈H, {rki→j}i∈H,j∈C∪H∪{i∗} and pki∗ . It
chooses m0,m1 ∈ M and returns them to the challenger.
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3. The challenger picks b ∈ {0, 1} at random and generate the challenge ciphertext C∗ = (c∗l , c
∗
r) as

two obfuscations of the programs in Figure 6, separately.
4. A receives C∗ and outputs a guess b′.

Target-Cipher-II-L

Constants: mb, ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output mb and exit.
2. Output “⊥”.

Target-Cipher-II-R

Constants: mb, avki∗ .
Input: (rki∗→j , sj , tj).

1. If Verify(avki∗ , tj , rki∗→j) = 1 and PRG(sj) = tj output mb and exit.
2. Output “⊥”.

Fig. 6. The programs Target-Cipher-II-L and Target-Cipher-II-R

• Hyb1 This hybrid experiment is the same as Hyb0 except that we change the key generation algorithm
for user i∗ to use FakeAuthGen(λ, {tj}j∈H) instead of AuthGen(λ).
– This hybrid experiment is indistinguishable from the previous one by the security of the authentication
scheme.

• Hyb2 This hybrid experiment is the same as Hyb1 except that for all i ∈ H∪{i∗}, ti is randomly chosen.
– The indistinguishability of Hyb2 from Hyb1 follows from the pseudo-randomness property of PRG.

• Hyb3 This hybrid experiment is the same as Hyb2 except that we let the challenge ciphertext be the
obfuscations of the programs in Figure 7.
– Since ti∗ is chosen at random, with high probability it is true ti∗ is not in the image of the PRG and
the program Target-Cipher-II-L will always output “⊥”. Therefore, the replacement will not change
the functionality of the program Target-Cipher-II-L. Thus, the indistinguishability of Hyb3 and Hyb2
follows from the iO security property.

Target-Cipher-II-L*

Constants: ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output 0 and exit.
2. Output “⊥”.

Target-Cipher-II-R

Constants: mb, avki∗ .
Input: (rki∗→j , sj , tj).

1. If Verify(avki∗ , tj , rki∗→j) = 1 and PRG(sj) = tj output mb and exit.
2. Output “⊥”.

Fig. 7. The programs Target-Cipher-II-L* and Target-Cipher-II-R

• Hyb4 This hybrid experiment is same as Hyb3 except that we let the challenge ciphertext be the obfus-
cations of the programs in Figure 8.
– Since (avki∗ , aski∗) ← FakeAuthGen(λ, {tj}j∈H), with high probability it is true that there is no
authentication for user j /∈ H. Since for all j ∈ H, tj is chosen at random, with high probability it is true
tj is not in the image of the PRG. Therefore with high probability it is true the program Target-Cipher-II-
R will output “⊥” and the replacement will not change the functionality of the program Target-Cipher-
II-R. Thus, the indistinguishability of Hyb4 and Hyb3 follows from the iO security property.

In the last hybrid, since C∗ contains no information of mb, the probability that the attacker will output a
correct guess b′ is negl(λ) + 1/2.

Thus, the lemma follows. ut
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Target-Cipher-II-L*

Constants: ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output 0 and exit.
2. Output “⊥”.

Target-Cipher-II-R*

Constants: avki∗ .
Input: (rki∗→j , sj , tj).

1. If Verify(avki∗ , tj , rki∗→j) = 1 and PRG(sj) = tj output 0 and exit.
2. Output “⊥”.

Fig. 8. The programs Target-Cipher-II-L* and Target-Cipher-II-R*

5.2 Non-Transferability

Theorem 2. If PRG is a secure pseudo-random generator, Auth a k-unforgeable authentication scheme,
and iO a secure indistinguishability obfuscator, then our PRE scheme is non-transferable against one-pair-
of-keys collusion attacks.

Keys Ciphertext Experiments Description Reduction to
Normal

Fake
Hyb0 the real experiment –

Normal
→Fake

Hyb1 use FakeAuthGen(λ, {tj}j∈D) for user i∗ security of authentication
Hyb2 ti is chosen at random for all i ∈ H ∪ {i∗} security of PRG

Fake Fake→
Normal

Hyb3
the fake ciphertext Cf is the obfuscations of the programs

Fake-Cipher-II-L and Fake-Cipher-II-R* in Figure 11 iO security

Hyb4
the fake ciphertext Cf is the obfuscations of the programs
Fake-Cipher-II-L and Fake-Cipher-II-R** Cf in Figure 12 iO security

Hyb5
the fake ciphertext Cf is the obfuscations of the programs
Fake-Cipher-II-L* and Fake-Cipher-II-R** in Figure 13 iO security

Fake→
Normal Normal Hyb6

ti = PRG(si), where si is randomly chosen,
for all i ∈ H ∪ {i∗} security of PRG

Hyb7 use AuthGen(λ) for user i∗ security of authentication

Table 3. Description of the hybrid experiments in the proof of Theorem 2

Proof. The proposed construction allows one-pair-of-keys collusion attacks, that is |C ∩ D| = 1, where C
denotes the set of corrupted users and D denotes the set of delegatees whose corresponding re-encryption
keys are corrupted. Let {j∗} = C ∩ D.

For any polynomial time algorithm A which outputs an ε-useful decryption box Li∗,ε for user i∗, we
construct a PPT algorithm Lj∗,ε which uses Li∗,ε as a subroutine to invert any given second level ciphertext
C∗ ← Enc2(pkj∗ ,m) of user j∗ with probability ε, where m← M.

To complete the proof, we describe the rest of the proof as a sequence of hybrid experiments and prove
that Lj∗,ε’s advantage is negligibly close between each successive experiment. In the first hybrid experiment,
the key generation is in the normal mode and the ciphertext for extracting j∗’s decryption capability is a fake
ciphertext. In Hyb1 and Hyb2, we change the key generation algorithm from the normal mode to the fake
mode. In Hyb3 to Hyb5, the fake ciphertext is changed to a normal one. In Hyb6 and Hyb7, the key generation
algorithms are back to the normal mode. In the final experiment, the decryption box Lj∗,ε would output the
encrypted message m with non-negligible probability ε. Table 3 roughly describes the hybrid experiments.

• Hyb0 The first hybrid experiment is the real experiment.
1. The challenger generates the keys {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈D and pki∗ as follows.

(a) For all j ∈ C, pick (pkj , skj)← KeyGen(λ).
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Target-Cipher-II-L

Constants: m, tj∗ .
Input: sj∗ .

1. If PRG(sj∗) = tj∗ , output m and
exit.

2. Output “⊥”.

Target-Cipher-II-R

Constants: m, avkj∗ .
Input: (rkj∗→j′ , sj′ , tj′).

1. If Verify(avkj∗ , tj′ , rkj∗→j′) = 1 and PRG(sj′) = tj′ output m and
exit.

2. Output “⊥”.

Fig. 9. The programs Target-Cipher-II-L and Target-Cipher-II-R (of user j∗)

Fake-Cipher-II-L

Constants: 0, ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output 0 and
exit.

2. Output “⊥”.

Fake-Cipher-II-R

Constants: iO(Target-Cipher-II-L), avki∗ , tj∗ .
Input: rki∗→j , sj , tj .

1. If tj = tj∗ and Verify(avki∗ , tj , rki∗→j) = 1, go to step 2; Else, output
“⊥” and exit.

2. Compute iO(Target-Cipher-II-L) with sj as input.
3. Output “⊥”.

Fig. 10. The programs Fake-Cipher-II-L and Fake-Cipher-II-R (of user i∗)

(b) For all j ∈ H, pick sj at random and compute tj = PRG(sj). Pick (avkj , askj)← AuthGen(λ).
Set pkj = (tj , avkj).

(c) For user i∗, pick si∗ at random and compute ti∗ = PRG(si∗). Pick (avki∗ , aski∗)← AuthGen(λ).
Set pki∗ = (ti∗ , avki∗).

(d) For all j ∈ D, generate rki∗→j ← AuthProve(aski∗ , tj).
It returns {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈D and pki∗ .

2. A receives {pkj , skj}j∈C, {pkj}j∈H, {rki∗→j}j∈D and pki∗ . It outputs an ε-useful decryption box
Li∗,ε of user i∗.

3. I generates a PPT algorithm Lj∗,ε which runs Li∗,ε as a subroutine. It performs as follows.
(a) When given C∗ = (iO(Target-Cipher-II-L), iO(Target-Cipher-II-R)) as shown in Figure 9

where m ← M, use iO(Target-Cipher-II-L) to generate the programs Fake-Cipher-II-L and
Fake-Cipher-II-R in Figure 10.

(b) Obfuscate the programs and generate a fake ciphertext of user i∗

Cf = (iO(Fake-Cipher-II-L), iO(Fake-Cipher-II-R)).

(c) Run Li∗,ε with Cf as input and output what Li∗,ε outputs.
• Hyb1 This hybrid experiment is the same as Hyb0 except that we change the key generation algorithm

for user i∗ to use FakeAuthGen(λ, {tj}j∈D) instead of AuthGen(λ).
– This hybrid is indistinguishable from the previous one by the security of the authentication scheme.

• Hyb2 This hybrid experiment is the same as Hyb1 except that ti is chosen at random for all i ∈ H∪{i∗}.
– The indistinguishability of Hyb2 from Hyb1 follows from the pseudo-randomness property of PRG.

• Hyb3 This hybrid experiment is the same as Hyb2 except that we let the fake ciphertext Cf be the
obfuscations of the programs Fake-Cipher-II-L and Fake-Cipher-II-R* in Figure 11.
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– In this hybrid experiment, we modify the fake ciphertext Cf by replacing iO(Target-Cipher-II-L) in
program Fake-Cipher-II-R with the corresponding unobfuscated program without changing its function-
ality. Thus, Hyb3 and Hyb2 are indistinguishable from the iO security.

Fake-Cipher-II-L

Constants: 0, ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output 0 and
exit.

2. Output “⊥”.

Fake-Cipher-II-R*

Constants: m, avki∗ , tj∗ .
Input: rki∗→j , sj , tj .

1. If tj = tj∗ and Verify(avki∗ , tj , rki∗→j) = 1, go to step 2; Else, output
“⊥” and exit.

2. If PRG(sj) = tj output m and exit.
3. Output “⊥”.

Fig. 11. The programs Fake-Cipher-II-L and Fake-Cipher-II-R* (of user i∗)

• Hyb4 This hybrid experiment is the same as Hyb3 except that we let the fake ciphertext Cf be the
obfuscation of the program Fake-Cipher-II-L and Fake-Cipher-II-R** in Figure 12.
– In this hybrid experiment, we remove the check tj = tj∗ in the program Fake-Cipher-II-R*. Since
(avki∗ , aski∗) ← FakeAuthGen(λ, {tj}j∈D), with high probability it is true that there is no authentica-
tion for user j /∈ D. Since for all j ∈ H, tj is chosen at random, with high probability it is true tj is
not in the image of the PRG. Therefore with high probability it is true that only when j ∈ C ∩ D (i.e.
tj = tj∗) could the tuple (rki→j , sj , tj) pass the check tj = tj∗ . Thus, the remove will not change the
functionality of the program Fake-Cipher-II-R*. This hybrid is indistinguishable from the previous one
by the iO security.

Fake-Cipher-II-L

Constants: 0, ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output 0 and exit.
2. Output “⊥”.

Fake-Cipher-II-R**

Constants: m, avki∗ .
Input: rki∗→j , sj , tj .

1. If Verify(avki∗ , tj , rki∗→j) = 1 and PRG(sj) = tj output m and exit.
2. Output “⊥”.

Fig. 12. The programs Fake-Cipher-II-L and Fake-Cipher-II-R** (of user i∗)

• Hyb5 This hybrid experiment is the same as Hyb4 except that we let the fake ciphertext Cf be the
obfuscation of the programs Fake-Cipher-II-L* and Fake-Cipher-II-R** in Figure 13.
– Since ti∗ is chosen at random, with high probability it is true ti∗ is not in the image of the PRG and the
program Fake-Cipher-II-L will output “⊥”. Therefore, the replacement will not change the functionality
of the program Fake-Cipher-II-L. Thus, the indistinguishability of Hyb5 and Hyb4 follows from the iO
security property.

• Hyb6 This hybrid experiment is the same as Hyb5 except that for all i ∈ H ∪ {i∗} we compute ti =
PRG(si), where si is randomly chosen.
– The indistinguishability of Hyb6 and Hyb5 follows from the pseudo-randomness property of PRG.

• Hyb7 This hybrid experiment is same as Hyb6 except that we change the key generation algorithm for i∗

to use AuthGen(λ).
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Fake-Cipher-II-L*

Constants: m, ti∗ .
Input: si∗ .

1. If PRG(si∗) = ti∗ , output m and exit.
2. Output “⊥”.

Fake-Cipher-II-R**

Constants: m, avki∗ .
Input: rki∗→j , sj , tj .

1. If Verify(avki∗ , tj , rki∗→j) = 1 and PRG(sj) = tj output m and exit.
2. Output “⊥”.

Fig. 13. The programs Fake-Cipher-II-L* and Fake-Cipher-II-R** (of user i∗)

– This hybrid is indistinguishable from the previous one by the security of the authentication scheme.

In the last hybrid, Cf is a normal ciphertext that encrypts m for user i∗. Since Li∗,ε is an ε-useful
decryption box for user i∗, the probability that Lj∗,ε would output m′ such that m′ = m is ε. Therefore, in
the real experiment Lj∗,ε would be an ε-useful second level decryption box with overwhelming probability.

Thus, the theorem follows. ut

6 Impossibility Result for Non-Transferability

In this section, we show that a PRE scheme which is error-free cannot achieve non-transferability.
The notion of error-freeness is a strong correctness requirement introduced by Zhang et al. [26] to

achieve CCA security for PRE schemes. Many existing schemes such as [2][7][20] are actually error-free. It
is also worth noting that error-freeness requires the correctness of re-encryption is preserved for all cipher-
texts of Alice, even including malformed ciphertexts, while the correctness of a PRE scheme only requires
the correctness of re-encryption is preserved for all valid ciphertexts of Alice.
Definition 8 (Error-Freeness). A PRE scheme Π is said to be error-free, if for any second level ciphertext
Ci under pki, m = Dec2(ski, Ci), and any re-encryption key rki→j , we have the probability

Pr[Dec1(skj ,ReEnc(rki→j , Ci)) = m] = 1.

Theorem 3. Under the assumption of indistinguishability obfuscators, for any CPA secure PRE scheme, if
it is error-free, then it cannot be non-transferable.

Proof. Assume Π ′ = (KeyGen′,ReKeyGen′,Enc′1,Enc
′
2,ReEnc

′,Dec′1,Dec
′
2) is a CPA secure and error-

free PRE scheme. Suppose user i∗ delegates his decryption rights to user j∗, and an adversaryA corrupts the
proxy and user j∗. A’s goal is to construct an ε-useful decryption box Li∗,ε such that Li∗,ε doesn’t contain
any useful information for decrypting any ciphertext of user j∗.

When A obtains pki∗ , pkj∗ , skj∗ , rki∗→j∗ , it generates Li∗,ε as the obfuscation of the program Transfer
in Figure 14. It is obvious that Li∗,ε is useful in decrypting user i∗’s ciphertexts. The rest is to see that Li∗,ε
brings no advantages for decrypting j∗’s ciphertexts. Consider another programL′i∗,ε which is an obfuscation
of the program Transfer* in Figure 15.

The outputm = Dec1(skj∗ ,ReEnc(rki∗→j∗ , Ci∗)) in the program Transfer is replaced bym = Dec2(ski∗ , Ci∗)
in the program Transfer*. Since Π ′ is error-free, the replacement would not change the functionality of the
program Transfer. Thus, Li∗,ε is indistinguishable from L′i∗,ε by the iO security.

Since L′i∗,ε is generated without skj∗ and Π ′ is CPA secure, the probability of using L′i∗,ε to generate
j∗’s decryption box Lj∗,ε is negligible, which completes our proof. ut
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Transfer

Constants: skj∗ , rki∗→j∗ .
Input: Ci∗ .

1. Output m = Dec1(skj∗ ,ReEnc(rki∗→j∗ , Ci∗)).

Fig. 14. The program Transfer

Transfer*

Constants: ski∗ .
Input: Ci∗ .

1. Output m = Dec2(ski∗ , Ci∗).

Fig. 15. The program Transfer*

7 Conclusion

Non-transferability is an intriguing problem both in practice and theory. In this paper, we formalized the
notion of non-transferability and proposed the first non-transferable PRE construction based on indistin-
guishability obfuscation and k-unforgeable authentication scheme, which allows to leak one pair of keys
consisting of a re-encryption key and the related delegatee’s secret key. Indeed, the realization of non-
transferable PRE scheme answers the open problem proposed by Ateniese et al. in 2005. Also, we proved
the impossibility of non-transferability for “error-free” PRE schemes. Our negative result rules out a large
class of construction methods for achieving non-transferability. Since this is the first step in formal investiga-
tion of non-transferable PRE, it would be interesting to see other methodologies for concrete constructions,
e.g., getting rid of iO.
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