Area — Time Efficient Hardware
Implementation of Elliptic Curve Cryptosystem.

Anissa Sghaier!, Medien Zeghid'-2, Belgacem Bouallegue', Adel Baganne®, and
Mohsen Machhout!

! Laboratory of Electronics and Microelectronics, Faculty of Sciences Monastir,
University of Monastir , Monastir 5019, Tunisia
sghaieranissa@yahoo.com, belgacem.bouallegue@fsm.rnu.tn, machhout@yahoo.fr
2 Higher Institute of Applied Sciences and Technology, Taffala city 4003 Sousse,
Tunisia, medien.zeghid@fsm.rnu.tn
3 Information and Communication Science and Technology Laboratory (Lab
STICC), CNRS: FRE2734 University of South Brittany, Lorient, France,
adel.baganne@univubs.fr

Abstract. The strength of ECC lies in the hardness of elliptic curve
discrete logarithm problem (ECDLP) and the hight level security with
significantly smaller keys. Thus, using smaller key sizes is a gain in term
of speed, power, bandwidth, and storage. Point multiplication is the most
common operation in ECC and the most used method to compute it is
Montgomery Algorithm. This paper describes an area-efficient hardware
implementation of Elliptic Curve Cryptography (ECC) over GF(2™). We
used the Montgomery modular multiplication method for low cost imple-
mentation. Then, to accelerate the elliptic curve point multiplication, we
firstly adopted projective coordinates, and then we reduced the number
of multiplication block used, so we have a gain at area occupation and
execution time. We detailed our optimized hardware architecture and
we prove that it outperform existing ones regarding area, power, and
energy consumption. Our hardware implementation, on a Xilinx virtex
5 ML 50 FPGA, used only 9670 Slices achieving maximum frequency
of 221 MHz, it computed scalar multiplication in only 2.58 us. FPGA
implementations represent generally the first step to obtain faster ASIC
implementations.Further, we implemented our design on an ASIC CMOS
45 nm technology, it uses 0.121 mm? of area cell, it runs at a frequency
of 990 MHz and consumes 39(mW).

Keywords: Elliptic Curves Cryptosystems(ECC), RSA, ASIC, Discrete
Logarithm (DL), Elliptic Curves Discrete Logarithm Problems (ECDLP),
memory resources.

1 Introduction

Since it’s apparition in 1976 [1], ECC did a revolution in public-key cryptogra-
phy because of its relatively short operand length compared to RSA which make
it the stronger public key cryptosystem. In addition, ECC have many other ad-
vantages compared with other cryptosystems, firstly their key exchange protocol

is based on the difficulty of solving the discrete logarithm (DL) problem over a
finite field. Secondly, there are a big number of available curves and ECC runs
in exponential time which deal with current attacks. Thus, ECC can be used in
various security services such as key exchange, authentification, digital signature
etc. For example,the cryptographical use of ECC is in Public Key Identity (PKI)
is to generate asymmetric(public/private) keys and encrypt/decrypt data. For
these reasons, elliptic curve cryptosystems (ECC) have been extensively studied
by the research community, Standards (like IEEE, ANSI, ISO) and also in in-
dustry.
ECC is particularly beneficial for application where computational power is lim-
ited, integrated circuit space is limited, high speed is required, intensive use of
signing, verifying or authenticating is required, signed messages are required to
be stored or transmitted and bandwidth is limited such as wireless communica-
tions devices, smart cards, PC cards etc.
Many Software and Hardware implementations are developed to give an effi-
cient and practical elliptic curve cryptosystem design. ECC cryptosysem is based
on computation of point addition and point doubling. The most crucial oper-
ation in ECC is the computation of point multiplication, i.e., computation of
kP = P+ P...+ P for given integer k£ and point P on elliptic curve. There
k times
are many available algorithms for the point multiplication, but the most used is
Montgomery Algorithm.
To implement an efficient Point Multiplication Cryptosystem we need a hard
study of modular arithmetic operation. We note that addition can be imple-
mented by bitwise Xoring, but the most costly operation is inversion then mul-
tiplication. However, to solve a problem of inversion cost we can use projective
coordinates. The LOpez-Dahab algorithm [14] is the most used algorithms if we
speak about binary field GF(2™) because it is a natural extension to binary
case of so called Montgomery Ladder Algorithm, which is especially suitable for
hardware implementation, so that point addition and point doubling data are
independent.
To implement elliptic curve cryptography, we can use prime fields GF(Z,), where
integers are defined between 1 and a prime p, or binary fields GF(2™), where
polynomials have a set number of bits. In [13],Erich Wenger and Michael Hutter
design both a binary and prime-field based ECC processor in order to compare
them in a fair environment, and they find that the GF(2") based processor
outperforms the GF'(p) based processor in area, runtime, power and energy.
ECC Hardware implementation presents better performance than software im-
plementation. Hardware implementations studies uses GF(2™), GF(p), the key
lengths varies from 163 bits to 233 bits, and different platforms was used FPGA,
ASIC, sensor, smart card etc. Let’s review some of the FPGA implementations
of ECC over GF(2™). In 2008, Chang Hoon Kim and all.[2] give an elliptic curve
cryptographic processor over GF(2163) based on the Lépez-Dahab point multi-
plication algorithm, and they parallelized their proposed architecture which is
greedy in term of used slices. In 2010, Yu Zhang and all.[15] propose an ECC

cryptographic processor over GF(2'%3), and they studied also parallelism, re-
garding both data dependency and critical path. They found best performance
comparing to [2]. In 2012, Sutter G.D. and all [16] used either field-programmable
gate array or application-specified integrated circuit technology to seed up point
multiplication for elliptic curve cryptography and they implement GF(2™) scalar
multiplication for m = 163, 233, 409, and 571. In 2013, Mahdizadeh H. and all.
[10] proposed an architecture for elliptic curve scalar point multiplication and
presented two implementations, the first suitable for speed-critical cryptographic
applications and the second is suitable for applications that may require speed-
area tradeoff. In 2014, Shuai Liu and all. [11] proposed hardware implementation
architecture of elliptic curve scalar multiplication over binary fields, based on the
Montgomery ladder method and uses polynomial basis for finite field arithmetics
and using Karatsuba multiplier. In 2015, Zia U.A.Khan and M.Benaissa [12] pro-
posed hardware design which used pipelined operations and cascaded operations.
In this paper, we will implement Point Multiplication Processor using the mini-
mum of components needed to compute the entire algorithm at time. The pro-
posed design was synthesized using Xilinx ISE 14.5 and simulated with ModelSim
XE IIT 6.4b.

The remainder of the paper is organized as follows.Section 2 gives a brief overview
of the mathematical background related to ECC. Section 3 summarizes contri-
butions dealing with previous implementations and comparisons of ECC and
RSA. Section 4 present our architecture design. Section 5 introduces the imple-
mentation of ECC on FPGA Platform. Finally, we end this contribution with a
discussion of our results and some conclusions.

2 Elliptic Curve Group Operation

In this section, we will give the definition of elliptic curve and we will present
the strength of it based on the Discrete Logarithm Problem (DLP). Then we
will give the elliptic curve encryption scheme.

2.1 Definition of an elliptic curve

An elliptic curve is the set of points (x, y) which are solutions of a bivariate cubic
equation over a field K (see [17]). An equation of the form:

Y2 + arxy + asy = 2% + asx® + ayx + ag (1)

Where a; € K, defines an elliptic curve over K. If char K # 2 and char
K # 3, equation 1 can be transformed to: 4?2 = 2> + ax + b with a,b € K.
In the field GF(2") of characteristic 2, equation (1) can be reduced to the form:
y? 4+ xy = 2% + ax® + b with a,b € K.

The set of points on an elliptic curve, together with a special point O called
the point at infinity can be equipped with an Abelian group structure by the
following addition operation:

Addition formula [6] for char K # 2,3 :

Let P = (z1,y1) # O be a point, the inverse of P is —P = (x1,—y1). Let
Q = (x2,y2) # O be a second point with @ # —P, the sum P + Q = (x3,y3)
can be calculated as:

Tr3 — /\2 — X1 — T2
ys = NMx1 —z3) — U1
With:

Y2—Y1 3 .
5o if P=qQ.
To subtract the point P = (z,y), one adds the point —P.
Addition formula for char K = 2:
Let P = (z1,y1) # O be a point, the inverse of P is —P = (1,21 + y1). Let
Q = (z2,y2) # O be a second point with Q # —P, the sum P + Q = (z3,y3)
can be calculated as:

3 =M 4+ A+z1+z+ta

ys = M@y +23) + 23+ Y1

N = Y1+ Y2
1+ o

if P# @ and:

z3=XN4+A+a
ys =23 + (A 4 1)z3
)\:.Z‘l—f—yf1
T
if P=Q.

Point addition and doubling each require 1 inversion and 2 multiplications. We
neglect the costs of squaring and addition. Montgomery noticed that the x-
coordinate of 2P does not depend on the y-coordinate of P.

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The strength of ECC is how to solve a discrete logarithm problem In modern
cryptography, one of the difficult problems to solve is ECDLP, when speaking
about public key cryptography.

We can resume the problem as follows, if we take a point P on the elliptic curve,
and @ a point defined as: = kP which is in the same elliptic curve. In this
way, ECDLP involves a scalar multiplication, so having k and P; it is very easy
to find Q. But, having point P and point @, it’s very hard to find the scalar
k. Furthermore, if scalar k becomes larger, it is computationally infeasible to
obtain it [19].

2.3 Elliptic Curve Encryption Scheme

Elliptic Curve Encryption Scheme is one of the Public-key encryption. Here,
message is encrypted with a public key and can’t be decrypted without pos-
sessing private key. In this section, we will present EC encryption scheme which
analogous to El-Gamal encryption [8].

System parameters:

— An elliptic curve E over GF(p) or GF(2").
— The order of F denoted F must be divisible by a large prime gq.
— G € E of order g.

Key generation:

— Secret key: d € R[1,q — 1].
— Public key: @ = dP.

Encryption of a message m:

- Pick k€ R[1,q— 1],
— Compute the points kP = (x1,y1) and kQ = (x2,92), and ¢ = 22 + m.
— The ciphertext is (x1, y1, ¢).

Decryption:

— Compute (xh,y5) = d(z1,y1) and m = ¢ — x5,

2.4 Projective coordinates

Two-dimensional projective space PZover K is given by the equivalence classes
of triples (z,y,z) with z,y, z in K and at least one of x,y, 2 nonzero.

Two triples (z1,y1,21) and (x2,ys, 22) are said to be equivalent if there exists a
non-zero element A in K:

- (-Tla Y1, Zl) = ()\an)\927 AZQ)
— The equivalence class depends only the ratios and hence is denoted by (x :

y:2)

Ifz#£0,(x:y:2)=(x/z:y/z:1), and if z = 0, we obtain the point at infinity.
The two dimensional affine plane over K:

A2 = {(z,y) € K x K}, henceusing, (z,y) — (X : Y : 1)
A? = P?

The number of inversions and multiplications for a group operation on EC heav-
ily depends on the chosen coordinate system. Assuming that the cost of one field
inversion is equivalent to m field multiplications, so from the implementation
point of view, there are advantages with projective coordinates. We used Lopez
and Dahab Projective Transformation to reduce Inverters: (X,Y,Z), Z # 0,
maps to (X/Z,Y/Z?)

In Projective Coordinates:

X3 _ {.CEZg + (X122 + XQZl) if P 75 Q;

X +bZ14 if P=Q.
T — (X125 4+ X2Z1)? if P # Q;
P 23Xt if P=Q.

Let P(z,y) be a point of the curve, and B a polynomial, change from affine
coordinates to projective coordinates is:

Xlzx
Zy =1
Xo=X*+B
Zy = X?

Then to return from projective coordinates to affine coordinates:

x3 = X1/7,
ys = (x + X1/Z0) (X1 + 0 Z1)(Xa + 0Z2) + (2 + y) (21 Z) (€21 Z2) " +y

This conversion requires 10 multiplications and one inverse operation.

3 Montgomery Point Multiplication Architecture

There are different algorithms to compute scalar multiplication. One of the most
used is Montgomery’s Algorithm which compute kP over non-supersingular El-
liptic Curve. In this section we will present the Montgomery Algorithm and
sub-algorithms used to compute it.

3.1 Montgomery Algorithm and Hierarchy of kP

The Montgomery method, as it’s shown in algorithm 1, is based on two opera-
tions: Point Addition (PA) and Point Doubling (PD). PA and PD perform point
mathematics operations of elliptic curve cryptosystem. Montgomery’s algorithm,
over a binary field, is based on parallel point multiplication. PA ad PD oper-
ations are calculated independently, for this reason they can be paralleled and
computed at the same time. Furthermore, complexity to compute PD is simpler
as that PA. The point addition is computed using arithmetic operations, thus
it need one squaring, four multiplications, and two additions. Similarly, point
doubling need one addition, two multiplications, and four squarings.

Algorithm 1 : Montgomery Point Multiplication
Input: £ = (knfhknfg, ...,khk’o)z with k,—1 =1, P(:c,y) S E(Fgm)
Output: Q = kP
Set X1 = ;721 = 1;X2 = 2* + b;Z> = 2?
for i from n-2 down to 0 do

if k; = 1 then
Madd(X1; Z1; Xg; Zg);
Mdouble(Xz2; Z5);
else
Madd(X2; Z2; X1; Z1);
MdOU.ble(Xl; Zl)
end if
end for
return (Q = Mzy(X1; Z1; Xo2; Z2)

Figure 1 present the hierarchy of scalar multiplication. As we can see the main
implementation of scalar multiplication relies on: firstly basic arithmetic oper-
ations which are square, multiplication and inversion, secondly, point doubling
and point addition based on arithmetic operations. So, the scalar multiplication
consists of basic arithmetic operations and point doubling and point addition.

Scalar Multiplication
Q=kP
[|
Point Addition Point Doubling
R=P+Q R=2Q

T |
: L — —_——r
;
i [Aadition] (square] [Muttiplication | | [' [aaition] [savare] | Muttiplication |
;
!
!
i

GF (2™} Arithmetics

Fig. 1. Hierarchy of scalar multiplication

Modular Inversion
An inversion is the most costly operation, is defined as follows: given a(x) €
GF(2™), find a(z)~! such that a(z) x a(x)™! = 1modI(z), where I(z) is the
irreducible polynomial. There are two known methods which are Fermat Algo-
rithm and Extended Euclidean Algorithm. But the most popular and most used
method is the Extended Euclidean Algorithm.

Modular multiplication
Performance of Public Key Cryptography, such as HECC, ECC and RSA is
strongly related to an important operation to compute them, which is modu-

lar multiplication, for this reason different implementation methods were pre-
sented in the literature. In ECC over binary field, polynomial multiplication is
simply a shift and Xoring operation. For this reason, we choose to implement
Montgomery’s algorithm to obtain an efficient modular multiplication. When
presenting the Montgomery multiplication algorithm, the main idea is define
different coordinate systems in order to have an efficient design with the best
performance related to area and execution time.

For implementing Montgomery modular multiplication, we proceed as follows:
let’s x = a X bmodn, the first procedure is converting all the operands to Mont-
gomery representations; then, performing Montgomery’s algorithm for each op-
erations; finally, converting all Montgomery representation of operands back to
their original representations [15]. R is represented as a power of two, R = 2¥,
where k is large enough so that R > N, so modulo R is a division by 2% which
is a k bits shift, it is very easy to determine its result.

3.2 Projective system choice

Let’s take a point P = (z,y), to transform (x,y) from affine to projective co-
ordinates (X,Y, Z) with Z # 0. Thus, z = X/Z%, y = Y/Z”, the elliptic curve
equation be:

Y., XY X X

— — =)= (= (= b
«a and [should be well chosen, in a way that scalar multiplication necessitate
only multiplication and addition in the finite field GF(2™).

Table 1. Number of operations needed in projective system

Projective System |[Multiplier| Square |Multiplexer
Number [Number| Number

Homogenous Additi‘on 16 1 16
Doubling 7 5 7
Jacobian Addition 11 4 11
Doubling 5 5 5
Addition 14 5 14
Standard 1p) | ling| 5 5 5
Montgomery Additi.on 3 1 3
Doubling 3 5 3

So to find the appropriate projective system and a good choice of a and g,
we have implemented four methods of projective system which are: standard
(¢ =1et f=1), Jacobian (oo = 2 et § = 3), Lopez-Dahab (o« =1 et 5 =2) et
Montgomery (¢ =1et g =1).

Table 1 present the number of needed operations to compute arithmetic calculus
in elliptic curve, using the different projective systems in term of multiplication,

squaring and multiplexing.

An optimized implementation to arithmetic operations using different pro-
jective systems was done, then we drew table 2 which represents the number of
needed operations, based in different projective system, to compute arithmetic
calculus in elliptic curve after reduction.

Table 2. Number of operations needed in proposed projective system

Projective System |Multiplier| Square |[Multiplexer
Number [Number| Number

Homogenous Additilon 5 3 10
Doubling 2 4 4
Jacobian Addition 3 4 6
Doubling 4 2 6
Addition 3 4 6
Standard Doubling 1 5 2
Montgomery Additi.on 1 1 2
Doubling 1 5 2

From results of Table 2, we remark that the most optimized projective system

is Montgomery, because it use the minimum number of operation to compute
Addition and Doubling operation in elliptic curve over GF(2™).
We will present implementation results of scalar multiplication over Fyies using
Certicom recommendation [31], of different projective systems mentioned ear-
lier. Performance results, shown in figure 2, 3, 4, are given in term of memory
occupation, execution time and power consumption. Scalar multiplication using
different projective systems was implemented on a FPGA VirtexEE XCV2600-
8fg1156.

Memory Occupation (CLB SLICES)

2500
a=2:0=3
2000 "8
a=1F=1

1500

a=1p6=1

a=15=1 P
1000 A
-] . .
U_ T T T
Jacobian Lopez & Dahab Standard Montgomery

Fig. 2. Memory occupation histogram of projective systems

10

Implementation results in figure 2 show that scalar multiplication using
Lopez-Dahab projective system is the most optimal in term of memory occupa-
tion, which is 7579 Slices.

Execution Time (ms)

a=2p4=3

3 ; ; a=tH=1

Jacobian Lopez & Dahab Standard Montgomery

Fig. 3. Execution time histogram of projective systems

Then, from figure 3, we note that scalar multiplication based on Montgomery
projective system is the most optimal in term of execution time, 2,618 ms and
power consumption 65.83 mW.

Power Consumption (mW)
120 ==

100

&0
60 =
40 4

20 +

g+ v
Jacobian Lopez & Dahab Standard Montgomery

¥ T 1

Fig. 4. Power consumption histogram of projective systems

Figure 4 gives the consumption of every method, we remark that the method
of Lopez-Dahab and Montgomery have the minimum consumption.
The choice of the appropriate method among the four methods cited below,
is determined by the target platform. Indeed, if we need speed, regardless of
occupation, we must choose the method of Montgomery; whereas if the platform

11

has a reduced memory space, as is the case with smart cards, we must opt for
the method of Lopez-Dahab. In our implementation we will choose ...

4 Montgomery Point Multiplication Processor Design
and Implementation

Montgomery Point Multiplication algorithm computes the point multiplication
in a fixed time, this can be a gain because it makes it more resilient to side-
channel attacks based on timing or power consumption measurements. In this
section, the properties of the our proposed cryptosystem is given. We will first
present the main blocks needed to compute scalar multiplication and then we
will detail the point addition and point doubling computation.

4.1 Montgomery Point Multiplication Processor Design

In this part, we will introduce the main blocks used to compute Montgomery
Point Multiplication. Then we will detail the data path of our cryptosystem in
figure 5 which shows the data manipulating by every component.

The seven based blocks required for executing scalar point multiplication are:

— Input Interface (II): in order to decrease input length and provide a word-by-
word operation, the input operands are divided into smaller bit length words,
data acquisition will be done step by step, as it’s shown in 5 we received the
163 x 2, 30-bits by 30-bits, in this way we don’t need larger number of I/0O
devices for our cryptosystem.

— Affine to project conversion (Aff vs Proj): this block transform the coordinate
of a point P(x,y) to a point P’(X,Y,Z). It used one multiplier and one register
to do the entire conversion, it’s based on the reuse of multiplier block and
the storage of result in every step. Scalar multiplication can’t be computed
if this block did’'nt sent the signal ”Start” to the controller.

— Controller: is the main block which interacts with the user to get inputs
data (k and point P), passing them to the Point Addition Block and Point
Doubling Block. It provides the necessary control signals to all components.
The controller wait that ” Aff vs Proj” block end its conversion, then receiving
”Start” signal, it begin to synchronize the other blocks.

— Montgomery Point Addition (MPA): it perform field addition. It uses mod-
ular arithmetic multiplication and Xoring operations, then it store results in
register files. To compute MPA, we need 5 multiplications, but we will use
only 2 multipliers because we have dependance in operation calculus and
also we have to find a compromise between area and speed.

— Montgomery Point Doubling (MPD): it compute field doubling. It is based
on modular arithmetic multiplication, Xoring operations and registers to
store results. MPD computation is based on 6 multiplications, but in our
case we will use only 2 multiplication blocks because calculus is independent
in some case and dependent in other cases, so if we study this dependance
we can decrease number of blocks need.

12

— Projective to affine conversion (Proj vs Aff): After doing all operations of
scalar multiplication, this block did the conversion from projective to affine
coordinates. Then it sent the result to the controller which sent it to the OI.
It uses two multiplication and two inversion blocks to compute the entire
conversion.

— Output Interface (OI): in order to decrease output length and used 1/0
devices, final results are divided into groups of smaller bit length of 30-
bits. In this way, final output will be send by the OI word by word. As it’s
mentioned in 5, we have two outputs Out-X and Out-Y, every one have a
length of 163-bits and they were sent by word of 30-bits.

The processor design is presented by the figure 5.

J6o.. [ResefcLr]x

(LK | Montgomery Point Addition |
RESETAD
PROJXI
CLEARAD
[PROJZT |
SYNCHROAD |

AFFINEX
126 3i | 163 Bits
AFFINEY
163 Bits

Input Interface

Fig. 5. ECC Hardware Processor Design

Addition of 2 points or Doubling require inversion computation which is the
most costly operation, and in affine coordinates, inversions are very expensive.
We used projective coordinates in order to replace inversions by the multiplica-
tion operations and then perform one inversion at the end.

In order to provide a word-by-word operation the input AFFINEX and AFFINEY

13

was divided into ten 30-bit words by the Input Interface which send data to the
Controller.

Based on Figure 5, receiving the scalar k, the point P and signals of activa-
tion (CLK, GO and Reset), the controller send affine coordinates (AFFINEX,
AFFINEY) and irreducible polynomial to the Aff vs Proj blocs with the signals
of activation (CLK, SYNCHROAP and Reset). Receiving the necessary data,
Aff vs Proj blocs convert affine coordinates to projective coordinates then it
send a signal ”Start” to the controller in order to activate simultaneously MPA
and MPD blocks by sending needed data and signals (CORDX1, CORDX2,
CORDZ1, CORDZ2, CLK, RESET and SYNCHRO). The MPA compute point
addition, it used two multiplier, so in every step it activate them, here we use
parallel approach and serial approach alternately. We applied the same approach
to point doubling so the MPD in the same step activate the two multiplier in
parallel, then in the next step it reactivate the same two multiplier till the MPD
block compute the entire calculus. After computing point addition and point
doubling, the MPA and MPD send results (PROJX1, PROJZ1, PROJX2 and
PROJZ2) to the controller. It the controller activate the Proj vs Aff blocs to
do the conversion from projective to affine coordinates. Having the results of
point addition from MPA and pont doubling from MPD, and following the same
methodology as the other blocks, the controller send needed data to the Proj vs
Aff blocs (PROJX1, PROJZ1, PROJX2 and PROJZ2) with activation signals
(CLK, Reset and SYNCHROPA). The Proj vs Aff blocs activate its basic oper-
ations to compute conversion which are multiplication and inversion.
Computing the entire scalar multiplication, final results will be sent from Output
Interface word-by-word, it will be split to a group of of 32-bits word to minimize
I/0O devices use.

More details about the implementation of the main components of ECC
scalar multiplication computation are provided in the following Section.

4.2 Montgomery Point Multiplication Processor Implementation

Our hardware design consists on components full time function. To achieve scalar
point multiplication operations, we need concurrent and cascaded operations.
Thus, we have dependent and independent operations. We will apply this ap-
proach in both Point Addition Operation and Point Doubling Operation.

We should note that the control of all operations is performed by the Controller
block. In this section we will details Controller function, Point Addition Opera-
tion and Point Doubling Operation.

Controller function. The Controller is the main component in our design, it
is the responsible of the communication between all components. In this section
we will describe the way that the controller synchronize between components.
Figure 6 gives the hard finite state machine of the Controller.

14

\'/‘ - e Y }’P‘l[h.r
Rer’a Begin \ ﬂpru
g _Siar= 4 CLK. gk P ‘;\ v‘?ese,pqi '
// RESB* \ Start 1, Reset=1 , / \\\\ Y
B -~ Proj_Done=1 \
- o
_?/ // / e 2o N \Qlear Proj=1 \
PN / Py ‘ |I : USSR |
~ Aﬁ Done=0| Affvs Proj L /// ne" f ‘ o\ ~— o G 1L
_Clear_Af=1 * 7 i Do e [2%\ _,,-/ProJ_Done_:[]'\\
e 4 Chedl - [%@% \ (_ Clear Projpl ™~~~
~ ." | e, %, — —
g/ A 33\
Sa/ . / VS LA
£ F/f g f \ S g
€ of e/ \ %Q\
g,? £/ fq? / N \
| df" &/ NG \
: £/ ‘
e N g
b Dnne PD= h\ Point Doubling Y

S Dune _PA= 05\ F’mm,ﬂ.ddmon r
L Clear F‘A 1 9 y

Clear PD=1

— 4

Fig. 6. State machine of Controller

Receiving data in (k and P) and signals CLK, Reset=1 and Start=1, the
Controller activate ”Aff vs Proj” block to convert P coordinates from affine
to projective coordinates. During conversion, Clear-Aff takes 1 and Aff-Done
takes 0. If ” Aff vs Proj” complete the conversion Clear-Aff takes 0 and Aff-Done
takes 1. Receiving Aff-Done=1, the Controller sends signals of activation to
Point Addition block and Point Doubling block respectively: SynchroPA=1, Re-
setPA=1, SynchroPD=1 and ResetPD=1. Starting point addition computation
and point doubling computation, signals Clear-PA and Clear-PD take 1 and
signals Done-PA and Done-PD takes 0. Point Addition component and Point
Doubling component are activated firstly by signals SynchroPA, ResetPA, Syn-
chroPD and ResetPD sent by the Controller, then they will be activated and
disabled by output signals Clear-PA and Clear-PD. When the scalar multiplica-
tion is completed, the Controller activate the conversion from projective to affine
coordinates. It sends signals SynchroProj=1 and ResetProj=1 to start conver-
sion. "Proj vs Aff” bloc makes: Clear-Aff=1 and Aff-Done=0. When finishing
conversion, Clear-Aff takes 0 and Aff-Done takes 1. During scalar multiplication
computation, operands are stored in different register files. Thus, in every step,
the Controller load operands then store results to be used in the next operands,
until the scalar multiplication is complete.

Point Addition Operation. In this section, we will illustrate point addition
operation. Let’s take two point defined as: Py, P, € EF[GF(2™)] and which are
presented in projective coordinates and P3 = P; + P». Point Addition Algorithm
are given by algorithm 2, so to compute point addition we need 5 multiplications
and 1 Xoring block. Point addition hardware architecture is illustrated in Figure
7.

15

Algorithm 2 : ECC Point Addition In Projective coordinates
Input: z, X1, Z1, X2, Z>
Output: X3, Z3

Stepl

X1= Xl X ZQ
71 = Zl X X2
Step2

T2 =X1x 271
Zs = (Z1+ X1)?
Step3

X1:Z3 X x

Xs=(Z3xz)+T2
return X3, Z3

Point Doubling Operation is the second main operation of scalar point mul-
tiplication, so it will be studied in the next section.

Point Doubling Operation. Point doubling is implemented using the same
approach used in point addition implementation. Let’s take a point P, € E[GF(2™)]
presented in projective coordinates. To compute P = 2 x P we use algorithm 3
and we need 6 multiplications and 1 Xoring. Figure 7 give the hardware archi-
tecture of Point doubling.

Algorithm 3 : ECC Point Doubling In Projective coordinates
Input: ¢, X1, 73
Output: X3, Z3

Stepl

X = X3

Z =273
Step2

X =Xx?

T1 =7 Xc
Step3
Z3=7xX
T, =17
Xs=X+1T1

return X3, Z3

To implement Point Addition and Point Doubling we have optimized the
components number needed to compute them, this optimization will be explained
in the next section.

Point Addition and Point Doubling optimization. The Figure 7 resumes
the parallel computation of point addition and point doubling. As we can see,

16

firstly, we compute the first step of point addition and point doubling respectively
which is based on two multiplications every one, so multiplierl, multiplier2, mul-
tiplier3 and multiplier4 are activated in parallel. Here, by analyzing Algorithms
3 and 2, in stepl, we calculated X1 and Z1 in point addition and X and Z in
point doubling using inputs values. Then, in step2 of respectively point addition
and point doubling, T2 and Z3 depends on X1 and Z1, X and T} depends on X
and Z. It’s the same approach for step3, so we remark that calculus in every step
depends on the previous one, and in the same step calculus is independent, from
this remark we had the idea to use only 2 multipliers to compute point Addition
and 2 multipliers to compute point doubling. In Every step, results are stored
in different registers, then they will be used in the next steps. Thus, step 2 will
be performed by reactivation of the four multipliers, and in step 3, we activate
only multiplierl, multiplier3 and multiplier4. The serialization here is done by
the use of the same component (Multl, Mult2, Mult3, Mult4 and XOR) in every
step. Our aim here is to handle robustly serialization approach and parallelism
approach in order to find a well compromise between area and execution time.

P
= ;
N
RegA RegE

&= = >§
D
T
!
2] : . o

J

3
°
- i o, |}
=t
=
=T = poz |3
.
\) Step 1 Step 2) <

Fig. 7. Sequence of ECC Point Addition and Point Doubling Operations

As it’s mentioned earlier, we will use only 4 multiplication blocks (2 for Point
Addition and 2 for Point Doubling).

The study of the calculus dependance in Algorithm 2 and Algorithm 3, let
as minimize number of blocs need and verify components full time function
as it mentioned in Table 3. The reduction of block number, decrease the area
occupation of both point addition and point doubling.

17

Table 3. Number of required operation in each step of both Point Addition and Point
Doubling

Point Addition [Point Doubling

Mult1 Mult2|Mult3| Mult4
Stepl|v’ v v v
Step2|v’ v v v
Step3|v’ v v

Let’s now take the example of Point Addition computation where we acti-
vated the 2 multipliers in every step and we reactivated them in the next step.
Figure 8 shows the chronogram of signals which make the synchronization be-
tween multipliers used to compute point addition operation.

CLK
Reak | l7J L I
End Mull] Ui 1 1
Ret | L |

e
w S

End Mul?2 1 T 1

Fig. 8. Point Addition Chronogram

As we can see in Figure 8, every multiplier receives two signals (Reset and
Go-Mult) from Controller to begin calculus and they make the signal Clear="1’
and End-Mult="0’". In the first step, Mult1 and Mult2 compute the first two mul-
tiplications. When they finish, the signal End-Mult takes 1’ and Clear takes ’0’
to indicate the end of multiplication. Then, the two multipliers will be disabled.
They will be reactivated in the next step by the signal Clear.

We applied the approaches presented earlier to compute Point Doubling. The
performance of our hardware implementation is presented in the next section,
and a comparison with the state of the art is given.

18

5 Experimental Results

We have synthesized the architecture using the ISE 14.5 FPGA and ASIC. Arith-
metic units were synthesized for the Koblitz curve recommended by NIST [20],
for the finite field GF(2™) using the irreducible polynomial f(x) = 2163 + 27 +
2% 4+ 23 + 1. Our synthesis results for ECC Point Multiplication over GF(2163)
field are summarized in Table 4. Results are given in term of area requirement,
frequency and time.

Table 4. ECC Point Multiplication Implementation results

Designs[Curve [Platform [Area Freq. [Time
(MHz) | (us)

Results1 [GF(27%)|virtexsML50]9670 Slices[221 [2.58

Results2 |GF(2'°%)|ASIC 0.121 mm?[990 [0.576

Using virtexbML50 FPGA platform, our design used only 9670 slices to per-
form scalar point multiplication, achieving maximum of frequency of 221 MHz
in 2.58 us. In ASIC platform, it used 0.121 mm? area cells with a frequency of
990 MHz and time of 0.576 us, it consumed 39 mW.

Table 5. ECC Implementation results comparison

Designs |Curve |FPGA Area|Freq. |Time|Time/Area
Slices | (MHz)|(us) [(107*)
Our Design|GF(27%%)|virtexsML50[9670 [221 [2.58 [2.667
Our Design|GF(27%%)[XC4VLX200[9300 (99 5.75 [6.18
Our Design|GF(2'%%)[XC4VLX80 (9213 [118 [4.83 [5.24
ECC [2] |GF(2™%%)|XC4VLX80 [24263[143 [10 [4.12
ECC [3] |GF(2'°%)|XC4VLX200]16209[153.9 [19.55 [12.06
ECC [4] |GF(2'%%)|XC4VSX35 [10488]99 144 [137.29
ECC [5] |GF(2™%)[XC2V2000 [3416 [100 [41 [120.02
ECC [6] |GF(2™%)|XC4VLX80 [20807[185 [7.7 [3.70
ECC [7] GF(2163) XC4VLX80 [8070 [147 [9.7 [12.02

ECC[S] |GF(2'%)|Virtex4 12834[196 [17.2 [13.40
ECC[9] |GF(2'%%)|Virtexs 6150 [250 [5.5 [8.94
ECC [10] |GF(2'%%)|XC4VLX200]14203[263 [11.6 [8.17
ECC [11] |GF(2'%%)[XC4VLX200[10417[121 |9 8.63
ECC [12] |GF(2'%%)|Virtex5 10363153 [5.1 [4.92

Table 5 give a comparison between our results and the state of the art im-
plementations of scalar multiplication. The different parameters used are Area,
Frequency and Time consumption.

We note that, comparing our results to the older implementations done in 2008,
such that [2], [3] and [4], we find that they used respectively 24263 slices, 16209

19

slices and 10488 slices. We present a gain, in area occupation, of 62.03%, 42.62%
and 12.16% respectively. [2] and [3] have a higher frequency, but with an impor-
tant execution time. Implementation in [5] used the less area occupation which
is 3416 slices, but our implementation outperform it in term of frequency and
time.

We implement our design in the same platform of [6] which is XC4VLX80, we
have gain of 55.71% in area and 66.49% in time with a decrease of frequency by
36.22%.

Results in [7] uses less memory of our design but they compute scalar multipli-
cation in 9.7 us whereas our design compute it in only 4.83 ps. We outperform
implementation in [8], [10] and [11] in term of area and necessary time to com-
pute scalar multiplication, with a loose in frequency.

Implementation of [12] is recent, it’s done in 2015 using Virtex5 platform, we
present better results comparing to them in all parameters. Thus, we decrease
the area by 6.68%, we increase frequency by 44.4% and we decrease time by
49.4%. Our architecture prove that it reaches high performance running in FP-
GAs circuit.

In order to have a relevant performance comparisons between our synthe-
sis results and related works results, we will add another parameter which is
Area/Time, it gives the ratio between Area and Time. Figure 9 gives different
ratios of the mentioned state of the art works.

Time/Area
140
135
130 WD1
1%
115 MD2
s mD3
H -z
90
85 LJE]|
2 i
é g [4]
gg ®[s]
to m[e]
23 W [7]
23 o [g]
25
20 [g]
15
D - T T ®[11]
D1 D2 D3 [21 [31 [4] [51 [6] [71 [81 [s1 [10] [11] [12]

Fig.9. Area/Time diagram of different works

It’s clear in Figure 9 that, using different platforms XC4VLX80, XC4VLX200
and Virtex5, our designs have the minimum ratio area per time. Our design (D1,
D2 and D3) focus on cost/area minimization, but also we should have a balance
between area and time.

20

Our implementations have the best Area/Time ratio, we prove that our design
is the most efficient comparing to other designs.

6 Conclusion and Future works

6.1 Conclusion

Elliptic curve cryptosystems give the most security per bit compared to the
other public-key cryptosystems. Thus, ECC have the same benefits of the other
cryptosystems, but it outperform them due to its shorter key lengths, speed and
memory saving. ECC is the most efficient for applications with lacks of power
and small storage memory. In this paper, we focus on area minimization with
a respect to the execution time. We proposed an efficient hardware architecture
to compute ECC scalar multiplication. Our architecture was implemented in
different FPGA platforms to do a comparison between our design and the state
of the art designs, and then in ASIC platform. We prove that our design have
better performance compared to the others.

6.2 Future works

The elliptic curve cryptosystems will be the most used in the future because of
its shorter key and its better security compared to the other public cryptosys-
tems. One of the applications that we can implement is the digital signature
system based on elliptic curve (ECDSA) which represents one of the main digi-
tal signature systems.

Furthermore, based on our proposed architecture described below, we can pro-
pose lightweight coprocessor for 16-bit microcontrollers that implements high
security elliptic curve cryptography and which is more suitable for Wireless Sen-
sor Networks (WSN), mobile phone, smart card etc.

References

1. W. Diflie and M. E. Hellman, New directions in cryptography. IEEE Transactions
on Information Theory, IT-22:644-654, 1976.

2. Chang Hoon Kim, Soonhak Kwon and Chun Pyo Hong. FPGA implementation of
high performance elliptic curve cryptographic processor over GF(2163). Journal of
Systems Architecture, 2008.

3. W.N. Chelton and M. Benaissa. Fast elliptic curve cryptography on FPGA, IEEE
Trans. Very Large Scale Integr. VLSI Syst. 16 (2) (2008) 198-205.

4. S. Antao, R. Chaves and L. Sousa. Efficient FPGA elliptic curve cryptographic
processor over GF(2™), ICECE Technology, FPT 2008, pp. 357-360. International
Conference on 2008.

5. B. Ansari and M. Anwar. High-performance architecture of elliptic curve scalar
multiplication, IEEE Transactions on Computers 57 (11) (2008) 1443-1452.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

21

Y. Zhang, D. Chen, Y. Choi, L. Chen and S. Ko. A high performance pseudo-
multicore ECC' processor over GF(2'%%), in: Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2010, pp. 701-704.

C. Rebeiro, S.S. Roy and D. Mukhopadhyay. Pushing the limits of high-speed
GF(2™) elliptic curve scalar multiplication on FPGAs, in: Cryptographic Hard-
ware and Embedded Systems, CHES 2012, vol. 7428, 2012, pp. 494-511.

R. Azarderakhsh and A. Reyhani-Masoleh. Efficient FPGA implementations of
point multiplication on binary edwards and generalized hessian curves using gaus-
sian normal basis, IEEE Trans. Very Large Scale Integr. VLSI Syst. 20 (8) (2012)
1453-1466.

G. Sutter, J. Deschamps and J. Imana. Efficient elliptic curve point multiplication
using digit-serial binary field operations, IEEE Trans. Ind. Electron. 60 (1) (2013)
217-225.

Mahdizadeh, H. and Masoumi, M. Nowel Architecture for Efficient FPGA Imple-
mentation of Elliptic Curve Cryptographic Processor Over GF(2'%%), Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on (Volume:21 , Issue: 12, p
2330-2333, IEEE Circuits and Systems Society, 2013.

Shuai Liu, Lei Ju, Xiaojun Cai, Zhiping Jia and Zhiyong Zhang. High Performance
FPGA Implementation of Elliptic Curve Cryptography over Binary Fields, Trust,
Security and Privacy in Computing and Communications (TrustCom), Beijing 2014
IEEE 13th International Conference.

Zia U. A. Khan and M. Benaissa. High Speed ECC Implementation on FPGA over
GF(2™). International Conference on Field-programmable Logic and Applications
(FPL)2-4th September, 2015.

Erich Wenger and Michael Hutter, Fxploring the Design Space of Prime Field vs.
Binary Field ECC-Hardware Implementations. Information Security Technology
for Applications Volume 7161 of the series Lecture Notes in Computer Science pp
256-271, 2012.

Julio Lépez and Ricardo Dahab, Fast Multiplication on FElliptic Curves over
GF(2™) Without Precomputation, In CHES 99, Proceedings of the First Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, London,
UK: Springer-Verlag, pp. 316-327, 1999.

Yu Zhang, Dongdong Chen, Younhee Choi, Li Chen and Seok-Bum Ko. A high
performance ECC hardware implementation with instruction-level parallelism over
GF(2'%%), Microprocessors and Microsystems 34 (2010) 228-236.

Sutter G.D., Deschamps J. and Imana, J.L. . Efficient Elliptic Curve Point Multi-
plication Using Digit-Serial Binary Field Operations, Industrial Electronics, IEEE
Transactions on (Volume:60 , Issue: 1), IEEE Industrial Electronics Society, p 217
- 225, 2012.

Alfred J. Menezes, Elliptic Curve Public Key Cryptosystems, The Springer Inter-
national Series in Engineering and Computer Science, 1993.

M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications,
January 1, 1998. https://www.manning.com/books/implementing-elliptic-curve-
cryptography

T. El Gamal. , A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Info. Theory, IT-31, 1985, pp 469-472.

IEEE 1363, Standard Specifications for Public key Cryptography, 2000.

N. Koblitz, Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209,
1987.

22

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

V. Miller, Uses of elliptic curves in cryptography. In H. C. Wllliams, editor, Ad-
vances in Cryptology CRYPTO ’85, volume LNCS 218, pages 417-426, Berlin,
Germany, 1986. Springer-Verlag.

D. Hankerson, J. Lopez Hernandez, and A. Menezes, Software Implementation of
Elliptic Curve Cryptography Over Binary Fields. In Cetin K. Kog¢ and Christof
Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems
CHES 2000, pages 1-24. Springer Verlag, August 2000. LNCS 1717.

J. Lopéz and R. Dahab, Improved algorithms for elliptic curve arithmetic in
GF(2"). In Selected Areas in Cryptography - SAC ’98, pages 201-212, 1999. LNCS
1556.

D.V. Chudnovsky and G.V. Chudnovsky, Sequences of numbers generated by ad-
dition in formal groups and new primality and factorization tests. In Advances in
Applied Mathematics, volume 7, pages 385-434, 1987.

H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation using
mized coordinates. In K. Ohta and D. Pei, editors, Advances in Cryptology, ASI-
ACRYPT 98, pages 51-65. Springer Verlag, 1998. LNCS 1514.

S. Baktri, E. Savas, Highly-Parallel Montgomery Multiplication for Multi-core
General-Purpose Microprocessors, Department of Computer Engineering, Bahce-
sehir University, 2011, http://eprint.iacr.org/2012/140.pdf

Praveen Bhide and Prof D.V Manjunatha. Design and Implementation of Elliptic
Curve Cryptographic Processor. Second International Conference on Recent Ad-
vances in Science and Engineering-2015.

M.N. Hassan and M. Benaissa. Efficient time-area scalable ECC processor using
coding technique, in: M.A. Hasan, T. Helleseth (Eds.), Arithmetic of Finite Fields,
vol. 6087, Springer, Berlin Heidelberg, 2010, pp. 250-268.

M. Benaissa and W.M. Lim. Design of flexible GF(2™) elliptic curve cryptography
processors, IEEE Trans. Very Large Scale Integr. VLSI Syst. 14 (6) (2006) 659-662.
Certicom Research, Recommended Elliptic Curve Domain Parameters, ” Standards
for Efficient Cryptography 2 (SEC2)”, January 27, 2010, Version 2.0

