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Abstract. A pseudo-random number generator (PRNG) is a deterministic algorithm that produces
numbers whose distribution is indistinguishable from uniform. In this paper, we extend the formal
model of PRNG with input defined by Dodis et al. at CCS 2013 to deal with partial leakage of
sensitive information. The resulting security notion, termed leakage-resilient robust PRNG with
input, encompasses all the previous notions, but also allows the adversary to continuously get some
leakage on the manipulated data. Dodis et al. also proposed an efficient construction, based on
simple operations in a finite field and a classical deterministic pseudo-random generator G. Here,
we analyze this construction with respect to our new stronger security model, and prove that with a
stronger G, it also resists leakage. We show that this stronger G can be obtained by tweaking some
existing constructions based on AES. We also propose a new instantiation which may be better in
specific cases. Eventually, we show that the resulting scheme remains quite efficient in spite of its
new security properties. It can thus be recommended in contexts where side-channel resistance is
required.
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1 Introduction

While most cryptosystems require access to a perfect source of randomness for their security, such
sources are extremely difficult to obtain in practice. For this reason, concrete implementations of
cryptographic schemes often use a pseudo-random number generator (PRNG). The latter allows
to generate a sequence of bits whose distribution is computationally indistinguishable from the
uniform distribution, when given as input a secret short random value, called seed.

To get around the need for a truly random seed, Barak and Halevi [5] proposed a tweaked
primitive, called PRNG with inputs, which still generates pseudo-random values but now remains
secure even in presence of a potentially biased random source. Moreover, they also proposed a
new security notion, called robustness, which states that a PRNG with inputs should meet three
security properties: resilience, forward security, and backward security. While resilience models
the inability of an adversary to predict future PRNG outputs even when manipulating the entropy
source, forward and backward security ensures that an adversary cannot predict past or future
outputs of the PRNG even when compromising its internal state. More recently, Dodis et al. [10]
extended the work of Barak and Halevi to integrate the process of accumulation of entropy into
the internal state. For this purpose, they refined the notion of robustness and proposed a very
practical scheme satisfying it. Under the robustness security notion, an adversary can observe
the inputs and outputs of a PRNG, manipulate its entropy source, and compromise its internal
state.

Side-Channel Resistance for PRNGs. While the notion of robustness seems reasonably
strong for practical purposes, it still does not fully consider the reality of embedded devices,
which may be subject to side-channel attacks. In these attacks, an attacker can exploit the
physical leakage of a device by several means such as power consumption, execution time or
electromagnetic radiation. In order to consider such attacks, a first and important step was made
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by Micali and Reyzin [18] who proposed the framework of physically observable cryptography. In
particular, they formally defined a classical assumption according to which only computation
leaks information. Later, Dziembowski and Pietrzak went a step further by defining the leakage-
resilient cryptography model [13]. In the latter, every computation leaks a limited amount of
information whose size is bounded by some parameter λ. It benefits from capturing most of the
known side-channel attacks and was consequently used to build many recent primitives [19,14,15].
In a different direction, we should mention a recent and important work which was proposed by
Prouff and Rivain [20] and then extended by Duc et al. [12] to formally prove the security of
masking implementations. In the latter works, the sensitive variables are split into different share
and the adversary needs to recover all of them to reconstruct the secret.

In the specific context of PRNGs and stream ciphers, several constructions have been proposed
so far and proved secure in the leakage-resilient cryptography model (e,g., [24,22,25]). The work
of Yu et al. [24], for instance, proposes a very efficient construction of a leakage-resilient PRNG.
Likewise, the work of Standaert et al. [22] shows how to obtain very efficient constructions of
leakage-resilient PRNGs by relying on empirically verifiable assumptions. None of these works,
however, consider potentially biased random sources, which is our main goal here.

Our Contributions. In this paper, we aim to build a practical and robust PRNG with input
that can resist side-channel attacks. Since the construction proposed by Dodis et al. [10] seems
to be a good candidate, we use it as the basis of our work. In doing so, we extend its security
model to include the leakage-resilient security and we prove the whole construction secure under
stronger requirements for the underlying deterministic pseudo-random generator1. Since it is
not obvious how to instantiate the construction to meet our stronger needs, we propose three
solutions based on AES in counter mode that are only slightly less efficient than the original
instantiation proposed in [10]. Two of them are tweaked existing constructions and the third one
is a new proposal which may be better in specific cases. All three instantiations only require that
the implementation of AES in counter mode is secure against Simple Power Analysis attacks
since very few calls are made with the same secret key.

Organization. From a theoretical side, we propose in Section 3 a new formal security model
for PRNGs with input, which, in addition to encompassing all previous security notions [10],
also guarantees security in the leakage-resilient cryptography model. In Section 4, we analyze
the robust construction based on polynomial hash functions given in [10] showing why its in-
stantiation may be vulnerable to side-channel attacks. We then prove that, under non-restrictive
conditions on the underlying deterministic pseudo-random generator, the generic construction
actually meets our stronger security property. Finally, in Section 5, we discuss the instantiations
of this construction.

2 Preliminaries

2.1 Notations and Definitions

Probabilities. When X is a distribution, or a random variable following this distribution, we
denote x $← X when x is sampled according to X. For a variable X and a set S, the notation
X

$← S denotes both assigning X a value uniformly chosen from S and letting X be a uniform
random variable over S. The uniform distribution over n bits is denoted Un.

Indistinguishability. Two distributions X and Y are said (t, ε)-computationally indistinguish-
able (and we denote this property by CDt(X,Y )), if for any distinguisher A running within
time t, its advantage in distinguishing a random variable following X from a random variable
1 A recent work by Dodis et al. in [11] also extends the robustness model to address the premature next attack
where the internal state has insufficient entropy and an output is generated. Our work is a different complement.
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following Y , denoted |Pr[A(X) = 1] −Pr[A(Y ) = 1]| is bounded by ε. When t = ∞, meaning
A is unbounded, we say that X and Y are ε-close.

Pseudo-Random Generators. A function G : {0, 1}m → {0, 1}n is a (deterministic) (t, ε)-
pseudo-random generator (PRG) if CDt(G(Um),Un) 6 ε.

Pseudo-Random Functions. A keyed family of functions F : {0, 1}µ × {0, 1}µ → {0, 1}µ is
a (t, q, ε)-pseudo-random function (PRF) if no adversary can have an advantage greater than ε,
within time t, in distinguishing, for a random key K $← {0, 1}µ, q answers FK(xi) for adaptively
chosen inputs (xi), from q random answers yi

$← {0, 1}µ, for i = 1, . . . , q.

Entropy. For a discrete distribution X, we denote its min-entropy by H∞(X) = minx∈X{− log
Pr[X = x]}.

Extractors. Let H = {hX : {0, 1}n → {0, 1}m}X∈{0,1}d be a hash function family. We say that
H is a (k, ε)-extractor if for any random variable I over {0, 1}n with H∞(I) > k, the distributions
(X,hX(I)) and (X,U) are ε-close where X is uniformly random over {0, 1}d and U is uniformly
random over {0, 1}m. We say that H is ρ-universal if for any inputs I 6= I ′ ∈ {0, 1}n we have
Pr

X
$←{0,1}d

[hX(I) = hX(I
′)] 6 ρ.

Lemma 1 (Leftover-Hash Lemma). [21, Theorem 8.37] Assume that H is ρ-universal where
ρ = (1 + α)2−m for some α > 0. Then, for any k > 0, it is also a (k, ε)-extractor for ε =
1
2

√
2m−k + α.

2.2 Basic Security Model

In this section, we recall notations and the security notion of a PRNG with input and of distri-
bution sampler, introduced in [10]. In Section 3, we will propose a stronger security model that
takes into account possible leakage of information in the context of side-channel attacks.

Definition 2 (PRNG with Input). A PRNG with input is a triple of algorithms G = (setup,
refresh, next), with n the state length, ` the output length, and p the input length:

– setup is a probabilistic algorithm that outputs some public parameters seed;
– refresh is a deterministic algorithm that, given seed, a state S ∈ {0, 1}n and an additional

input I ∈ {0, 1}p, outputs a new state S′ = refresh(S, I; seed) ∈ {0, 1}n;
– next is a deterministic algorithm that, given seed and a state S ∈ {0, 1}n, outputs a pair

(S′, R) = next(S; seed) where S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}` is the output
randomness.

The parameter seed is public and fixed in the system once for all. For the sake of clarity, we drop it
in the notations and we write S′ = refresh(S, I) instead of refresh(S, I; seed) and (S′, R) = next(S)
instead of next(S; seed). When a specific part of the seed will be required, we will explicitly add
it as input.

In practice, the global internal state contains all the PRNG features and some structured and
redundant information, such as counters, in addition to a random pool of length n. When the
adversary will have access to the state, this will be to all this information, with both reading
(get-state) and writing (set-state) capabilities. However, when we denote S in this paper, for the
sake of simplicity, we refer to the randomness pool, that we expect to be truly random, or with
as much entropy as possible.

Adversary.We consider an attacker divided in two parts: a distribution samplerD and a classical
attacker A. The former generates seed-independent inputs that will be used by the PRNG to
improve the quality of its entropy with the refresh algorithm. These inputs, potentially biased
under partial adversarial control, are generated in practice from the device activities (e.g., system
interrupts) and cannot consequently depend on the parameter seed. Note that as explained in
[10] and in [11], seed-independence is necessary to achieve security of the scheme.
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Definition 3 (Distribution Sampler). A distribution sampler D is a stateful and probabilistic
algorithm which, given the current state σ, outputs a tuple (σ′, I, γ, z) where

– σ′ is the new state for D;
– I ∈ {0, 1}p will be the next input for the refresh algorithm;
– γ is some entropy estimation of I, as discussed below;
– z is the possible leakage about I given to the adversary A2.

If q denotes an upper bound on the number of executions of D, such a distribution sampler is said
legitimate if the min-entropy of every input Ij is not smaller than the entropy estimate γj , even
given all the additional information:H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , Iq, z1, . . . , zq, γ1, . . . , γq) > γj ,
for all j ∈ {1, . . . , q} where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , q} and σ0 = 0.

Robustness.We now recall the security game ROB(γ∗), from [10], that defines the main security
notion for a PRNG with input, the robustness. We have slightly modified the initial definition,
but in an equivalent way (see Figure 1, without the leaking procedures nor the leakage function
f as input to the initialize procedure). In the security game,

– the parameter γ∗ defines the minimal entropy that is required in the internal state of the
PRNG so that the output looks random. Under this threshold, the PRNG has not accu-
mulated enough entropy in its internal state, and then is not considered safe for generating
random-looking outputs;

– the variable c is an estimation of the actual entropy collected in the internal state of the
PRNG. It does not make use of any entropy estimator, but just considers the lower-bound
provided by the distribution sampler on the entropy of the input. In case of a legitimate
distribution sampler, this lower-bound is correct;

– the flag/function compromised is a Boolean variable that is true if the actual entropy (the
parameter c) is under the threshold γ∗. In such a case, the PRNG is with an unsafe status,
and thus the adversary may have some control on it;

– the challenge b is a bit that will be used to challenge the adversary, whose goal is to guess it.

The game ROB(γ∗) starts with an initialize procedure, applies procedures to answer to oracle
queries from the adversary A, and ends with a finalize procedure. The procedure initialize sets
the parameter seed with a call to algorithm setup, the internal state S of the PRNG, as well as c
and b. After all oracle queries, the adversary A outputs a bit b∗, given as input to the procedure
finalize, which compares the response of A to the challenge bit b. The procedures used to answer
to oracle queries are the following:

– the procedures get-state/set-state allow the adversary A to learn or to fix the whole internal
state of the PRNG, including the structured part. However, as mentioned above, we just
model the impact on the random pool in this analysis;

– the procedure next-ror is used to challenge the adversary A on its capability to distinguish
the output of the PRNG from a truly random output. In the safe case (when c > γ∗),
the new estimated entropy of the internal state, in the variable c, is then set to the state
length, that is n. In the unsafe case, as explained in [10], the real value for R, which might
reveal non-trivial information about the weak internal state, is first output and then the new
estimated entropy of the internal state, in the variable c, is reset to 03.

– the procedure D-refresh allows the adversary A to call the distribution sampler D to get a
new input and to run the refresh algorithm with this specific input to improve the quality of
the internal state. In addition to the input I for the PRNG, the distribution sampler D also

2 This leakage is not related to side-channel attacks but represents the partial knowledge the adversary has on
the inputs because of its control on the distribution.

3 We could have strengthened this definition, by only reducing c by ` bits in this case, but we kept the conservative
notion.
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outputs the leakage z on input I that is given to A and an estimate γ of the entropy of the
input (with respect to all the other inputs and the leakage information z). We use a more
conservative definition, by considering that it really accumulates more entropy only if c was
below γ∗, otherwise, it stays unchanged. The new estimated entropy of the internal state, in
the variable c, is thus set to c+ γ if c was below γ∗, but of course with a maximum of n.

Note that we dropped the get-next procedure from [10], but as noted by [8,3], multiple calls to
next-ror are enough to capture a similar security level.

Definition 4 (Robustness of PRNG with Input). A pseudo-random number generator with
input G = (setup, refresh, next) is called (t, qr, qn, qs, γ

∗, ε)-robust, if for any adversary A running
within time t, that first generates a legitimate distribution sampler D (for the D-refresh procedure),
that thereafter makes at most qr calls to D-refresh, qn calls to next-ror, and qs calls to get-state/
set-state, the advantage of A in game ROB(γ∗) is at most ε.

2.3 Model for Information Leakage

In this paper, we aim to protect the construction of Dodis et al. against side-channel attacks. In
this purpose, we describe hereafter the leakage model.

Only Computation Leaks. From the axiom “Only Computation Leaks” of Micali and Reyzin [18],
we assume that only the data being manipulated in a computation can leak during this compu-
tation. This assumption actually well fits the reality of practical observations. As a consequence,
we can split our cryptographic primitives into small blocks that independently leak functions of
their inputs. We also authorize the adversary to choose different leakage functions for each block.

Bounded Leakage per Iteration. Since it is more suited for a PRNG [7], we follow the model of
leakage-resilient cryptography, with the strong requirement to preserve reasonable performances.
We let the adversary the choice of the polynomial time leakage functions with a bound λ on
their output length. This parameter is closely related to the security parameter of the underlying
cryptographic primitives and will be part of global scheme’s security bound.

Non-Adaptive Leakage. The choice of leakage functions left to the adversary reveals the
desire to consider every possible component whatever its way of leaking. However, we based our
work on the practical observation whereby leakage functions completely depend on the inherent
device. On the contrary, a few works (e.g., [13,19]) give the adversary the possibility to modify
its leakage functions according to its current knowledge. Even if this model aims to be more
general, it leads to unrealistic scenarios since the adversary is then able to predict further steps
of the algorithm through impossible leakage functions. For these reasons, this work, as many
others before [24,15,25,2], only consider non-adaptive leakage functions.

3 Leakage-Resilient Robustness of a PRNG with Input

In the security model of [10], recalled in the previous section, the distribution sampler D gen-
erates the external inputs used to refresh the PRNG and already gives the adversary A some
information about how the environment of the PRNG behaves when it generates these inputs.
This information is modeled by z. In order to model information leakage during the executions of
the PRNG algorithms refresh and next, we give the adversary the choice of the leakage functions,
that we globally name f , associated to each algorithm, or even each small block. Since we restrict
our model to non-adaptive leakage, we ask the adversary to choose them beforehand. So they are
provided as input to the initialize procedure by the adversary (see Figure 1). Then, each leakage
function will be implicitly used by our two new procedures named leak-refresh and leak-next that,
in addition to the usual outputs, also provide some leakage L about the manipulated data, as
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proc. initialize(D, f)
seed

$← setup

σ ← 0; S ← 0; c← 0; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗

RETURN 1
ELSE

RETURN 0

proc. compromised
OUTPUT (c < γ∗)

proc. D-refresh

(σ, I, γ, z)
$← D(σ)

S ← refresh(S, I)
IF compromised

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF compromised
c← 0
OUTPUT R0

ELSE
c← n
OUTPUT Rb

proc. get-state
c← 0
OUTPUT S

proc. set-state(S∗)
c← 0
S ← S∗

proc. leak-refresh

(σ, I, γ, z)
$← D(σ){

L← f(S, I, seed)
S ← refresh(S, I; seed)

}
c← max{0, c− λ}
IF compromised

c← 0
OUTPUT (L, γ, z)

proc. leak-next{
L← f(S, seed)
(S,R)← next(S; seed)

}
IF compromised

c← 0
ELSE

c← α
OUTPUT (L,R)

Fig. 1. Procedures in the Leakage-Resilient Robusteness Security Game LROB(γ∗, λ)

described in Section 2.3. We thus have a new parameter λ, that bounds the output length of the
leakage function. Our new Leakage-Resilient Robustness security game LROB(γ∗, λ) makes use
of the procedures described in Figure 1 and is described in details below:

– the parameter γ∗, the variable c, and the Boolean flag/function compromised are the same
as in Section 2.2 for the basic robustness;

– the new parameter λ fixes the maximal information leakage which can be collected during
the execution of operations refresh and next. Namely, for each operation (refresh or next),
the leakage functions globally output at most λ bits. Such a leakage will be available when
querying the leaking procedures leak-refresh and leak-next below;

– the new parameter α is an integer that models the minimal expected entropy of S after
a leak-next (next with leakage) call, in a safe case (compromised is false), that is when the
entropy of the internal state was assumed greater than γ∗. This captures both the creation
of computational entropy during a next execution and the smaller loss of entropy caused by
the leakage. We could expect α = n− λ, but it may depend on the explicit construction;

– the procedures initialize(D, f)/finalize(b∗) initiate the security game with the additional leak-
age function f , check whether the adversary has won the game and output 1 in this case or
0 otherwise. Contrary to the choice made in [10] (which is also valid), the initial state S is
here set to zero (as well as the entropy counter) so that no assumption needs to be made on
its initialization;

– the procedures get-state/set-state, D-refresh, and next-ror are the same as for the basic ro-
bustness;

– the procedure leak-refresh runs the refresh algorithm but additionally provides some informa-
tion leakage L on the input (S, I) and seed, as above. As for the next-ror-queries, the leakage
can reveal non-trivial information about a weak internal state even before the effectiveness
of the refresh, and then we reduce c by λ bits. And if it drops below the threshold γ∗, it
is reset to 0. Again, we could have strengthened this definition, but we preferred to keep a
conservative notion. Furthermore, this strict notion is important w.r.t. our new definitions
of recovering and preserving security with leakage. Note that if the D-refresh algorithm is
complex, several leakage functions can be defined at every step, but the global leakage is
limited to λ, hence the notation {. . .}, since they can be interleaved.

– the procedure leak-next runs the next algorithm but additionally provides some information
leakage L on the input S and seed, according to the leakage function f provided to the
initialize procedure. If the status was safe, then the new entropy estimate c is set to α,
otherwise, it is reset to 0 (as for the next-ror). As above, if the next algorithm is complex,
several leakage functions can be defined at each step, but the global leakage is limited to λ.

As in [10], attackers have two parts: a distribution sampler and a classical attacker with the
former only used to generate seed-independent inputs (potentially partially biased) from device
activities. Examples of the entropy’s traces for the procedures defined in [10] and in our new
model are provided in Figure 2. The threshold γ∗ has to be slightly higher in our new model,
because for a similar next algorithm, we need to accumulate a bit more of entropy to maintain
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security even in presence of leakage. Typically, it has to be increased by λ. Now we detailed
the new security game, we can define the notion of leakage-resilient robustness of a PRNG with
input.
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Fig. 2. Traces of entropy estimates in the model [10] (up) and in our new model (down)

Definition 5 (Leakage-Resilient Robustness of PRNG with Input). A pseudo-random
number generator with input G = (setup, refresh, next) is called (t, qr, qn, qs, γ

∗, λ, ε)-leakage-
resilient robust, if for any adversary A running in time t, that first generates a legitimate dis-
tribution sampler D (for the D-refresh/ leak-refresh procedure), that after makes at most qr calls
to D-refresh/leak-refresh, qn calls to next-ror/leak-next, and qs calls to get-state/set-state with a
leakage bounded by λ, the advantage of A in game LROB(γ∗, λ) is at most ε.

4 New Construction

In this section, we show how to modify the original construction of [10] to achieve the robustness
together with the resistance against side-channel attacks.

4.1 Original Construction

We first recall the robust PRNG construction of [10], named G. It makes use of a (t, ε)-secure
pseudo-random generator (PRG) G : {0, 1}m → {0, 1}n+`. The seed is a pair (X,X ′), n is
the state length, ` is the output length, and p = n is the input length. This construction uses
multiplication because it gives a proven seeded extractor that accumulates entropy, which we do
not know how to do with a hash function. Plus, it is more efficient:

– setup() outputs seed = (X,X ′)← {0, 1}2n;
– S′ = refresh(S, I;X) = S ·X + I, where all operations are over F2n ;
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– (S′, R) = next(S;X ′) = G(U), where U = [X ′ · S]m1 , the truncation of X ′ · S.

Unfortunately, even a secure PRG is not enough to resist information leakage. As shown below,
the instantiation proposed in [10] is vulnerable to side-channel attacks. However, with a secure
and leakage-resilient PRG, we prove that the whole construction remains secure even in the
presence of leakage.

4.2 Limitations of the Original Construction

In the original paper [10], G is instantiated with the pseudo-random function AES in counter
mode with the truncated product U as the secret key. Depending on the parameters, several
calls to the PRF are required. We show hereafter that when the implementation is leaking, this
construction faces vulnerabilities.

As shown in [6], on Figures 8 (left) and 13 (right) for software implementations of AES and on
Figure 10 (left) for hardware implementations of AES, several calls to AES with known inputs
and one single secret key may lead to very efficient side-channel attacks that can help to recover
the secret key. Because of the numerous executions of AES with the same key, one essentially
performs a differential power analysis (DPA) attack. Then, for the above construction, during a
leak-next, even with a safe state, the DPA can reveal the secret key of the internal AES, that is
also used to generate the new internal state from public plaintexts. This internal state, after the
leak-next, can thus be recovered, whereas it is considered as safe in the security game. A next-ror
challenge can then be easily broken.

Furthermore, even if we only make a few calls with the same key, with a counter as input, the
adversary can predict future randomness. This vulnerability applies to AES with predictable
inputs. As determined by the security games, the adversary chooses a leakage function f to
further collect the leakage during the product and the truncation between the internal state S
and the public seed X ′. Assume that this function is f(S,X ′) =[

AES([
X′·
(
AES[X′·S]m1

(C0)||...||AES[X′·S]m1 (C0+d nm e−1)
)]m

1

) (C0 +
⌈
n+`
m

⌉)]λ
1

with C0 an integer arbitrarily chosen by the attacker. With this leakage function set, the adversary
can make a set-state-call and fix the counter C to C0. Indeed, this counter is a part of the
global internal state which can be compromised by the adversary. Following this compromission,
sufficient calls to D-refresh are made to refresh S so that its entropy increases above the threshold
γ∗. Then, the attacker can ask a leak-next-query and gets back the leakage f(S,X ′) described
above. Eventually, the attacker asks a challenge next-ror-query, and either gets the real output or
a random one. The λ bits it got from the leakage are exactly the first λ bits of the real output.
The attacker has consequently a significant advantage in the next-ror challenge.

4.3 New Assumption

We slightly modify the requirements of [10] on the PRG G, to keep the PRNG secure even in the
presence of leakage: The PRG G : {0, 1}m → {0, 1}n+` instantiated with the truncated product
U = [X ′ · S]m1 is now required to be a (α, λ)-leakage-resilient and (t, ε)-secure PRG according
to Definition 6. In that definition, λ denotes the leakage during one execution of G, and α is the
expected entropy of the output, even given the leakage.

Definition 6. A PRG G : {0, 1}m → {0, 1}N is (α, λ)-leakage-resilient and (t, ε)-secure if it
is first a (t, ε)-secure PRG, but in addition, for any adversary A, running within time t, that
first outputs a leakage f with λ-bit outputs, there exists a source S that outputs couples (L, T ) ∈
{0, 1}λ × {0, 1}N , so that the entropy of T , conditioned on L being greater than α, and the
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advantage with which A can distinguish (f(Um),G(Um)) from (L, T ) is bounded by ε. Note that
f(Um) denotes the information leakage generated by f during this execution of G (on the inputs
at the various atomic steps of the computation, that includes Um and possibly some internal
values).

This definition ensures that for one execution of G, its output is indistinguishable from a source
of min-entropy α, with a leakage of size λ on the input of G.

4.4 Security Analysis

Theorem 7 shows that the PRNG G is leakage-resilient robust.

Theorem 7. Let m, n, α, and γ∗ be integers, such that n > m and α > γ∗, and G : {0, 1}m →
{0, 1}n+` an (α + `, λ)-leakage-resilient and (t, εG)-secure PRG. Then, the PRNG G previously
defined and instantiated with G is (t′, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust where t′ ≈ t, after
at most q = qr + qn + qs queries, where qr is the number of D-refresh/ leak-refresh-queries, qn
the number of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries, where
ε ≤ qqn ·

(
(qr

2 + 1) · εext + 3εG
)
and εext =

√
2m+1−δ for δ = min{n− log qr, γ

∗ − λ}.

To prove Theorem 7, we need to adapt the notions of recovering and preserving introduced
in [10] to also capture information leakage. We then prove an intermediate result (Theorem 13,
in Appendix A.1) which states that the combination of recovering and preserving, both with
leakage, imply leakage-resilient robustness. Finally, we show that the PRNG G satisfies both the
recovering security with leakage and the preserving security with leakage. Full details of the proof
are given in Appendix A.2.

5 Instantiations of the PRG G

In the previous section, we explained that the original instantiation in [10] was vulnerable to
side-channel attacks, and needs a stronger PRG G, namely a leakage-resilient PRG which takes
as input a perfectly random m-bit string U , and generates an (n+ `)-bit output T = (S,R) that
looks random. Even in case of leakage, S should have enough entropy. In this section, we first
discuss the use of existing primitives for such a leakage-resilient PRG G. Then, we propose a
new concrete instantiation that may achieve better performances in specific scenarios by taking
advantage of the PRNG design. Eventually, we provide a security analysis of our solution and
we implement it to give some benchmarks.

5.1 Existing Constructions

To instantiate the PRG G, we need a leakage-resilient construction which can get use of a
bounded part of the internal state. We recall here two leakage-resilient constructions which
can be tweaked to fit these requirements at a reasonable cost. The first one is a binary tree
PRF introduced by Faust, Pietzrak and Schipper at CHES 2012 [15] and the second one is a
sequential PRNG with minimum public randomness proposed by Yu and Standaert at CT-RSA
2013 [25]. We voluntarily ignore the chronological order and start the description with the second
instantiation since it will be used to complete the first one.

Sequential PRNG from [25]. The PRNG of Yu and Standaert comes with an internal state
made of two randomly chosen values : a secret key K0 ∈ {0, 1}µ and a public seed s ∈ {0, 1}µ.
The construction is made of two stages. In the upper stage, a (non leakage-resilient) generator
F′ is processed in counter mode to expand the seed s into uniformly random values p0, p1, . . . .
In the lower stage, a (non leakage-resilient) PRF F generates outputs with public values pi and
updates the secret so it is never used more than twice. The parameter s can be included in
our PRNG seed (under the notation X ′′) since it shares the same properties than X and X ′.
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However, the current counter is varying and thus need to be stored in the deterministic part
of the internal state. In the proof of [25], the counter is implicitly required to be different at
each use since the public values pi need to be independent. But in our model of leakage-resilient
robustness, the deterministic part of the internal state can be definitively compromised. Attacker
could, in this case, set the counter to a previous value, making the public pi not independent
anymore. To thwart this issue, we suggest to extend the internal state so that the truncated part
of full entropy can contain both the secret key K0 and a uniformly random counter used only
for a single execution of next. Hence, no parameter can be compromised and we are back to the
context of the original proof. The only difference in the security comes from the probability of
collisions when using a uniformly random counter at each call.

This two-stage instantiation is illustrated in Figure 3. One can note that the input U is split in
two slices, to initiate the secret key K0 and the counter C, each of size µ. In order to relate these
parameters with the parameters of our PRNG from Section 4 that provides an m-bit random
string U as input to the PRG G, and wants to receive back an N -bit string, where N = n + `,
that is κ = N/µ blocks generated with κ keys. The κ blocks of output and new internal state
are all generated using 2κ− 1 calls to F′ and 2κ− 1 calls to F.
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Fig. 3. Instantiation of Generator G from [25] with Random Input U = (C,K0)

Tweaked Binary Tree PRF from [15]. The second solution was proposed by Faust et al. at
CHES 2012 [15]. Thanks to its structure of binary tree, it requires less calls to F and consequently
overtakes the performances of the first solution. However, the original construction does not
provide sources for the required randomness. That is why we suggest to use the same upper
stage than [25] recommended in and proven secure in [25,2]. Plus, with the advantageous reuse
of the two same random values at each layer, the number of calls to F′ is limited to 2 log2(κ)
which is less than the the number of F calls. Eventually, for the reasons depicted above, we also
need to use a uniformly random counter, updated at each call to next. The tweaked construction
is depicted in Figure 4.

5.2 New Proposal

To thwart the first attack of Section 4.2, we still make use of a PRF with a regular re-keying
whose frequency depends on the parameters of the inherent device. To thwart the second attack
and for the needs of the proof, we continue to make use of unpredictable values as inputs of
the PRF. Combining these two solutions, we get close to the two stages exhibited by existing
constructions. However, while we keep the same upper stage, we modify the lower one to try to
achieve better performances in function next. The latter still makes several calls to the PRF F :
{0, 1}µ×{0, 1}µ → {0, 1}µ, with public but uniformly distributed inputs and κ distinct secret keys
(as in the second existing construction). However, the secret keys are all directly extracted from
the input value U = [X ′ ·S]m1 together with the counter C. In this way, there is no need to derive
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Fig. 4. Instantiation of Generator G from [15] with Random Input U = (C,K′0)

the next keys in function next but the internal state is much more larger: the extracted value U
is of length (κ + 1)µ instead of 2µ in previous constructions. The precise security requirements
are formalized in Definition 8 and the performances comparison with existing solutions is given
in Table 1, Section 5.3.

Definition 8 (leakage-resilient PRF). A PRF F : {0, 1}µ × {0, 1}µ → {0, 1}µ is (α, λ)-
leakage-resilient and (t, q, ε)-secure if it is a (t, q, ε)-PRF and if, for any adversary A, running
within time t, that first outputs a leakage f with λ-bit outputs, there exists a source S that outputs
(Li, Pi, Ti)i ∈ ({0, 1}λ × {0, 1}µ × {0, 1}µ)q, with a uniform distribution for the P ’s, so that the
entropy of (Ti)i, conditioned to (Li, Pi)i, is greater than α, and the advantage with which A can
distinguish the tuple (f(Ki, Pi), Pi,FK(Pi))i from (Li, Pi, Ti)i is bounded by ε.

When q is large, such a requirement implies security against DPA, but when q is small only
SPA is available which is limited in practice. Such an assumption is implicitly done in [25] with
α = µ−λ, since the loss of entropy in the output corresponds to the leakage. This new two-stage
instantiation is illustrated in Figure 5. The input U is split in κ+ 1 slices, to initiate the κ keys
{Ki}06i6κ−1 and the counter C, each of size µ. Theorem 9 shows that this proposal achieves the
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Fig. 5. New Instantiation of Generator G with Random Input U = (C,K0, . . . ,Kκ−1)

security requirements in Definition 6.

Theorem 9. Let µ and κ be paramaters such that νκµ = N . Let F : {0, 1}µ×{0, 1}µ → {0, 1}µ
be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure PRF and F′ : {0, 1}µ × {0, 1}µ → {0, 1}µ be
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a (t, qνκ, εF′)-secure PRF, where q is a bound on the global number of executions of G. The
instantiation proposed for G in Section 5.2 with F and F′ provides an (α, λ)-leakage-resilient
and (t, εG)-secure PRG where εG ≤ κ · εF + εF′ + q2νκ/2µ.

In the proposal, each call to G makes νκ calls to the PRF F: κ keys are used at most ν times.
The inputs of F are generated by F′ with the key X ′′ (randomly set in seed) on a counter C
randomly initialized, and then incremented for each F′ call in an execution of G. The details
of the proof which uses a similar argument as [25] in the minicrypt world [16], can be found in
Appendix A.3. However, for the global security, we need all the intermediate values (pij) to be
distinct and unpredictable to avoid the aforementioned attack. We thus require F′ to be secure
after qnνκ queries and the inputs to be all distinct: by setting the log(νκ) least significant bits
of C to zero, we just have to avoid collisions on the µ− log(νκ) most significant bits for the qn
queries. The probability of collision is thus less than qn2νκ/2µ and can appear once and for all
in the global security:

Corollary 10. Let us consider parameters n, m, and ` in the construction of the PRNG with
input G from Section 4.1, using the generator G as described in this section. Let µ and κ be
paramaters such that νκµ = n + `, and α > γ∗. Let F : {0, 1}µ × {0, 1}µ → {0, 1}µ be a
(α/κ, λ)-leakage-resilient and (t, ν, εF)-secure PRF, and F′ : {0, 1}µ × {0, 1}µ → {0, 1}µ be a
(t, qnνκ, εF′)-secure PRF. Then, G is (t, qr, qn, qs, γ

∗, λ, ε)-leakage-resilient robust after at most
q = qr + qn + qs queries, where qr is the number of D-refresh/leak-refresh-queries, qn the number
of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries, where ε ≤ qqn ·(
(qr

2 + 1) ·
√
2m+1−δ + 3(κ · εF + εF′)

)
+ qn

2νκ/2µ, for δ = min{n− log qr, γ
∗ − λ}.

It seems reasonable to have (α, λ)-leakage resilience with α = n+ `− νκλ: with a large γ∗, ε can
be made small.

5.3 Practical Analysis: Implementation and Benchmarks

We present some benchmarks of the construction of [10] and the three instantiations. Since our
leakage-resilient construction is based on [10], we use the latter as a reference when measuring
efficiency. Thus, we simply implemented them on an Intel Core i7 processor to show that the
new property does not significantly impact the performances. This is mainly due to the use of
SPA-resistant AES implementations instead of DPA-resistant (e.g., masked) ones. We used the
same public cryptographic libraries that in [10] and to achieve a similar security level as the
construction of [10], our experiments show that the tweaked binary tree construction is only less
than 4 times slower.

General Benchmarks. We recall that our construction is based on the construction of [10]:
refresh(S, I) = S · X + I ∈ F2n and next(S) = G(U), with U = [X ′ · S]m1 . In [10], the PRG G
is defined by G(U) = AESU (0)‖ . . . ‖AESU (ν − 1), where ν is the number of calls to AES with a
128-bit key U , and thus m = 128. For a security parameter k = 40, the security analysis leads
to n = 489, γ∗ = 449, and ν = 5. To acheive leakage-resilience, we need additional security
requirements for the PRG G. The three instantiations split G between two PRFs F and F′,
where F is used with public uniformly distributed inputs and κ different secret keys. In the
existing constructions, a first key is extracted from the truncated product U and the other ones
are derived through a re-keying process. In the new instantiation, all the secret keys are extracted
from U . The public inputs of F are generated by the PRF F′ in counter mode, with a secret
initial value for the counter also extracted from U : m = 2 · 128 for the existing constructions or
m = 128(κ + 1) for the new instantiation if both F = F′ = AES with 128-bit keys. To provide
the security bounds of the three constructions, we need to fix the security bounds of functions
F and F′. As far as we know, the best key recovery attacks on AES without leakage [9] require
a complexity of 2162.1 with 288 data. However, our functions being executed at most twice (resp.
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6 times) with the same secret keys for 2−40 security (resp. for 2−64 security), such a complexity
is unreachable. As for the leakage, we give the adversary λ bits of useful information by leaking
query. Nevertheless, until now it remains unclear how these λ bits of information in a single
trace may reduce the security bound of the AES. In [23] for instance, the authors show that
a single trace on the AES might give the adversary all the required knowledge to recover the
secret key, namely, when a sufficient number of noisy Hamming Weight values are available. But
summing the useful information of these noisy Hamming Weight values would give a very large
λ for which we cannot guarantee anything. However, we can expect either a larger amount of
noise, a desynchronization of the traces or a low leaking from the inherent component which
would result in a reasonable value for λ. In this case, we can fix εF = εF′ ≈ 2−127. The resulting
security bounds are given in Table 1 with the size n of the internal state, the number of 128 or
256-bit keys and the number of AES calls in function next, for 2−40 and 2−64 security.

Table 1. Security bounds and complexity of the three instantiations

Refs Security 2−40 Security 2−64 Security
Bound εG n keys (128) AES calls n keys (256) AES calls

[25] κεF + ε′F+ 768 7 26 1152 5 30
q2(νκ− 1)/2µ

[15] 2κεF + ε′F+ 896 4 20 1408 4 24
q2(νκ+ 2 log2(κ))/2

µ

New κεF + εF′ + q2νκ/2µ 1408 6 24 1792 5 30

The best instantiation in terms of complexity is the construction from [15]. This is not surprising
considering the advantageous binary shape of this function. However, if we relax the security
assumptions on the AES with εF = ε′F = 2−126, the conditions of the security proof are not met
and therefore we cannot guarantee its security based on Corollary 10. In these specific cases, our
construction seems to be the best one to use since it guarantees that the conditions of the security
proof are met. Note that for 2−64 security, as explained in Section 5.3, we cannot get a provable
security with 128-bits input blocks, and we need εF and εF′ to be smaller than 2−200, and then
use AES with 256-bit keys. Since the implementation built from [15] appears to be the best one
in the general case, we implement it to compare it with the instantiation of [10]. As in [10], we
use fb_mul_lodah and fb_add from RELIC open source library [4], extended with the necessary
fields (F2489 , defined with X489+X83+1 and F2896 , defined with X896+X7+X5+X3+1). We
use public functions aes_setkey_enc and aes_crypt_ctr from PolarSSL open source library [1].
As in [10], we measure the number of CPU cycles for a recovering process and a key generation
process. The CPU cycles count is done using ASM instruction RDTSC, our C code is optimized
with O2 flag. We simulate a full recovery of the PRNG for [15] and [10] implementations, with
an input containing one bit of entropy per byte. Then, 8 inputs of size 489 bits are necessary
to recover from a compromise for [10], whereas, for [15], 8 inputs of size 896 bits are necessary.
Then we simulate the generation of 2048-bit keys that each requires 16 calls to next, as every
call outputs 128 bits. Figure 6 gives the numbers of CPU cycles for 100 complete recovering
experiments (left) and 100 key generations (right) for [10] and [15]. Both processes require on
average 4 times less CPU cycles to perform for [15] implementation than for [10] implementation.
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The Tweaked Binary Tree Instantiation. We first recall the constraints (similar to Corol-
lary 10): the quality of the pseudo-random number generator is measured by

ε ≤ qqn ·
(
(qr

2 + 1) ·
√
2m+1−δ + 3(2κ · εF + εF′)

)
+ qn

2(2 log2(κ) + νκ)/2µ,

for δ = min{n− log qr, γ
∗ − λ}. With qr = qn = qs = 2k, we get:

ε ≤ 3 · 22k ·
(
(22k + 1) ·

√
2m+1−δ + 3(2κ · εF + εF′)

)
+ (2 log2(κ) + νκ) · 22k/2µ

≤ ε1 + ε2 + ε3 + ε4

with

– ε1 = 24k+2+(m+1−δ)/2;
– ε2 = 18κ · 22k · εF;
– ε3 = 9 · 22k · εF′ ;
– ε4 = 22k−µ · (2 log2(κ) + νκ).

2−v Security. With m = 256, µ = 128, εF = εF′ ≈ 2−127:

– ε1 < 2−v, as soon as 8k + 2v + 5 +m < δ, which is verified for n > 9k + 2v + 5 +m and
γ∗ > n+ λ− k;

– ε2 < 2−v, as soon as 2k + v < 127− log2(18κ);
– ε3 < 2−v, as soon as 2k + v < 127− log2(9) < 123;
– ε4 < 2−v, as soon as 2k + v < 128− log2(2 log2(κ) + νκ).

2−40 Security. For k = v = 40, the constraint on ε3 is satisfied. The constraints on ε1 are
satisfied as soon as n > 701 and γ∗ > n + λ − 40. With ν = 2, we need n = 256κ − 128 > 701
and thus κ = 4, which ensures that the contraints on ε2 and ε4 are satisfied . Finally, n = 896
and γ∗ = 858 for λ ≈ 2.

2−64 Security. Unfortunately, for k = v = 64, one cannot get a provable security with the size
of the input block µ = 128, because of the collisions on the counters. In order to increase the
size of the input blocks, one can XOR PRPs to get a PRF on larger inputs [17]. This makes ε4
negligible: 22k−2µ = 2−128, and thus the factor νκ will not affect it. On the other hand, to make
ε2 and ε3 small enough, we need εF and εF′ to be smaller than 2−200, and then use AES with
256-bit keys. But then we have to use the same key 6 times in order to extract 384 bits (see a
3-block extraction in Figure 7), where κ keys are used ν = 6 times, and two counters C0 and C1

are extracted: m = 3 · 128 = 384, n = 3× 128× κ− 128 = 384κ− 128. As for the constraint on
ε1, we need 384κ > 1221. We can take κ = 4. Then, n = 1408 and γ∗ = 1346.
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Fig. 7. Example of Instantiation of Generator G for Higher Security Bounds

6 Conclusion

We have put forward a new property for PRNGs with input, that captures security in a setting
where partial sensitive information may leak. Then, we have tweaked the PRNG with input
proposed by Dodis et al. to meet our new property of leakage-resilient robustness. Finally, we
have proposed three secure instantiations of the new PRNG with input including a new one
which provide the same level of security as the construction of [10] for a limited additional cost
in efficiency and size.

As further work, the security bounds could be made tighter if the construction was proven ro-
bust with leakage without going through the preserving-with-leakage and recovering-with-leakage
steps. Another interesting future work would be to implement the construction on constrained
devices.
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A Appendices

A.1 Recovering and Preserving Security with Leakage

To prove Theorem 7, we first adapt the notions of recovering and preserving introduced in [10] to
also capture information leakage. The former essentially deals with the capacity for the PRNG
to accumulate the entropy from the inputs in the internal state, with the refresh algorithm, and
then to recover a safe state even after being compromised. The latter deals with the quality of the
internal state, even with adversarially chosen and known inputs. The quality of the internal state
will then be measured by the ability of the adversary to distinguish the output randomness (by
the next algorithm) from a truly random output, using one next-ror query. Since more oracles are
available, contrarily to [10], our security games will be interactive and adaptive: the leak-refresh
and leak-next oracles are available during the recovering and preserving sequences, and not just
the D-refresh oracle.

Recovering Security with Leakage. It considers an adversary that compromises the state
to some arbitrary value S0, either by asking for the state (get-state), setting it (set-state) or
learning information with the collected leakage or with the output (leak-refresh, leak-next or
next-ror) when the internal state is unsafe. Afterwards, sufficient calls to D-refresh are made
to increase the entropy estimate c above the threshold γ∗. This is the recovering process, which
should make the bit b involved in the next-ror procedure indistinguishable: when the internal state
is considered as safe, the output randomness R should look indistinguishable from random. The
security game is defined hereafter, where D is the distribution sampler, and f = (frefresh, fnext)
denotes the union of the leakage functions related to the execution of refresh and next, both
proposed by the adversary. Note that even if leak-refresh and leak-next-queries are possible, they
are not allowed with compromised states, since it would make c drop to 0. In the recovery process,
the entropy should almost always increase, but never drop to 0.

1. The challenger generates a seed seed
$← setup and a bit b $← {0, 1} uniformly at random. It

sets σ0 = 0 and for k = 1, . . . , qD, it computes (σk, Ik, γk, zk)← D(σk−1). It then gives back
the seed and the values γ1, . . . , γqD and z1, . . . , zqD to the adversary.

2. The adversary can ask as many D-refresh queries as it wants, and gets back for each the input
Ik generated by the distribution sampler. Then, the adversary outputs a value S0 ∈ {0, 1}n,
to be the new internal state.

3. The challenger sets the new internal state to S0, sets c = 0, and allows queries to the
oracles D-refresh, leak-refresh, and leak-next. These queries are processed, respectively, as
{Sj = refresh(Sj−1, Ik); if c < γ∗, then c = c + γk}, {Lj = frefresh(Sj−1, Ik, seed);Sj =
refresh(Sj−1, Ik); c = c − λ; if c < γ∗, then c = 0}, and {Lj = fnext(Sj−1, seed); (Sj , Rj) =
next(Sj−1); if c < γ∗, then c = 0, else c = α}, with the new input Ik provided by the
distribution sampler for the k-th refresh-query.
These queries are answered, respectively, by nothing, by the information leakage Lj , and by
the information leakage Lj together with the randomness Rj ;

4. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S) and generates (S(1), R(1))

$← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary,
together with the next inputs Ik+1, . . . , IqD (if k was the number of refresh-queries asked up
to this point);

5. The adversary A outputs a bit b∗.

In this game, we define the advantage of the adversaryA as |2Pr[b∗ = b]−1|. Note that we restrict
our game to executions where c never dropped to 0, but one could have answered independently
to b otherwise (e.g., always using (S(0), R(0))).

Definition 11 (Recovering Security with Leakage). A PRNG with input is said (t, qr, qn, γ
∗,

λ, ε)-recovering with leakage if for any adversary A running within time t, its advantage in the
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above game with parameters qr (number of D-refresh and leak-refresh-queries), qn (number of
leak-next-queries), γ∗, and λ is at most ε.

Preserving Security with Leakage. This security notion considers a safe internal state. After
several calls to D-refresh and leak-refresh with known (and even chosen) inputs, the internal state
should remain safe. An initial state S0 is generated with entropy n. Then it is refreshed with
arbitrary many calls to either D-refresh or leak-refresh, as long as the leakage does not decrease
the entropy below the threshold γ∗. This is the preserving process, which should make the bit b
involved in the next-ror procedure indistinguishable: since the internal state is considered as safe,
the output randomness R should look indistinguishable from random. The security game is the
following, where D is the distribution sampler, and f = (frefresh, fnext) denotes the union of the
leakage functions during the execution of refresh and next, both proposed by the adversary.

1. The challenger generates an initial state S0
$← {0, 1}n, a seed seed ← setup, and a bit

b
$← {0, 1} uniformly at random. It sets c = n and then gives back the seed to the adversary;

2. The adversary A gets seed and can ask as many queries as it wants to the oracles D-refresh,
leak-refresh, and leak-next, but with chosen inputs I to the refresh-queries. These queries are
thus processed, respectively, as
– {Sj = refresh(Sj−1, I)},
– {Lj = frefresh(Sj−1, I, seed);Sj = refresh(Sj−1, I); c = c− λ; if c < γ∗, then c = 0}, and
– {Lj = fnext(Sj−1, seed); (Sj , Rj) = next(Sj−1); if c < γ∗, then c = 0, else c = α},

with the input I provided by the adversary. Theses queries are answered, respectively, by
nothing, by the information leakage Lj , and by the information leakage Lj together with the
randomness Rj ;

3. Eventually, under the restriction that c never dropped to 0, the challenger sets (S(0), R(0))←
next(S), and generates (S(1), R(1))

$← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary;
4. The adversary A outputs a bit b∗.

As above, we define the advantage of the adversary A as |2Pr[b∗ = b] − 1|, and the restriction
that c never dropped to 0 could have been dealt another way.

Definition 12 (Preserving Security with Leakage). A PRNG with input is said (t, qr, qn, γ
∗,

λ, ε)-preserving with leakage if for any adversary A running within time t, its advantage in the
above game with parameters qr, qn, γ∗, and λ is at most ε.

From these two security notions, one can prove the following theorem, inspired from [10].

Theorem 13. If a PRNG with input is (t, qr, qn, γ∗, λ, εr)-recovering with leakage and (t, qr, qn,
γ∗, λ, εp)-preserving with leakage then it is also (t′, qr, qn, qs, γ

∗, λ, qn ·(εr+q ·εp))-leakage-resilient
robust where t′ ≈ t, where the adversary can ask at most q = qr+ qn+ qs queries, where qr is the
number of calls to D-refresh/leak-refresh, qn the number of calls to next-ror/leak-next, and qs the
number of calls to get-state/set-state.

Proof. This proof follows the one from [10]. It splits the leakage-resilient robustness game in
preserving with leakage steps and recovering with leakage steps.

Queries. In the game of leakage-resilient robustness, we term next-queries the calls to the oracle
next-ror. Since qn is a bound on the next-ror and leak-next queries, this is also a bound on the next-
queries. Actually, there are unsafe/compromised next-queries, when the internal state is unsafe
and so the entropy estimate c is below the threshold γ∗ before the query and reset to 0 after the
query, and safe/uncompromised next-queries, when the internal state is safe before the next-ror-
query. For uncompromised next-queries, the output randomness R should look indistinguishable
from truly random, while for compromised next-queries, there is no guarantee. As in [10], we split
the uncompromised next-queries in two sets: the preserving with leakage queries, if the entropy
estimate is above the threshold γ∗ since the previous next-query; and the recovering with leakage
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queries, if the entropy estimate dropped below the threshold γ∗ and has thus been reset to 0. For
the latter queries, we reuse the notion of mRED (most recent entropy drain) to define the most
recent query to one of the oracles get-state, set-state, leak-refresh or leak-next that reset c to 0.

Sequence of Games. Let us now define the sequence of games. Let game G0 be the initial real-
or-random game. Game Gi modifies the first i uncompromised next-queries by outputting a
uniformly random R, and by setting the internal state S uniformly at random. We note that
Gqn is then independent of b, since all the safe next-ror-queries are answered randomly, while the
unsafe next-ror-queries are anyway always answered by the real value of R. Game Gi+1/2 acts
according to the nature of the (i + 1)th uncompromised next-query: If it is preserving, then it
acts as Gi+1, if it is recovering, it acts as Gi. Then, as in [10], one can show that:

– If the PRNG is (t, qr, qn, γ∗, λ, εp)-preserving with leakage, then |Pr[Gi = 1]− Pr[Gi+1/2 =
1]| ≤ εp. This applies thanks to our security games that make c evolve the same way if the
entropy of the input is assumed to be zero, when c is above γ∗;

– If the PRNG is (t, qr, qn, γ∗, λ, εr)-recovering with leakage, then |Pr[Gi+1/2 = 1]−Pr[Gi+1 =
1]| ≤ (qri+qni+qsi) ·εr, where qri, qni, and qsi are numbers of refresh, next and state queries
between the ith uncompromised next-queries and the (i + 1)th uncompromised next-query.
Again, this applies since c drops to zero as soon as it decreases below γ∗,and so this cannot
happen in a recovering phase.

Combining both results, we have |Pr[G0 = 1]−Pr[Gqn = 1]| ≤ qn · (εp+(qr+ qn+ qs) · εr), while
the former game G0 is the leakage-resilient robustness security game and the latter game Gqn is
independent of b.

Let prove now that if the PRNG is (t, qr, qn, γ
∗, λ, εp)-preserving with leakage, then |Pr[Gi =

1]−Pr[Gi+1/2 = 1]| ≤ εp. We therefore consider the distance between the games Gi and Gi+1/2.
We assume that we are in a preserving with leakage case, otherwise the two games are identical.
We build a reduction to the preserving with leakage security notion. We will thus define an
adversary A′ against the preserving with leakage security game. The adversary A′ emulates the
challenger for A. It thus runs the adversary A, to get a distribution sampler D and the leakage
functions f . A′ initiates its security game, and receives back the seed it transfers to A. Then A′
sets S = 0n and σ = 0, and simulates the answers to all the oracle calls that A makes in the
leakage-resilient robustness security game, but altered as in Gi, until the (i+1)th uncompromised
next-query. Note that after the ith uncompromised next-query, the internal state is assumed to
be the state S0 provided by the challenger, since it has full entropy n.
Since A′ knows the leakage functions, controls the internal state of the PRNG and has access
to the distribution sampler D, with the knowledge of its state, it can simulate all the calls
to get-state, set-state, D-refresh, leak-refresh, leak-next, and unsafe/compromised next-ror. The
uncompromised next-queries are answered with a truly random R (as in Gi) and the internal
state is renewed with a truly random S. All these new states are chosen, and thus known to A′,
until the ith uncompromised next-queries. After this last query the internal state is not known
any more to A′, but is assumed to be the state S0 provided by the challenger, which is also
uniformly random.
Between the ith uncompromised next-queries and the (i + 1)th uncompromised next-query, A′
can use its challenger to answer the queries asked by A, but providing the inputs for the refresh
queries (with or without leakage), using the distribution sampler D, since it still knows its state
σ. Indeed, during the preserving sequence, only oracles D-refresh, leak-refresh, and leak-next are
possible. At the end of this sequence, A′ receives the challenge (S(b), R(b)) it uses for the (i+1)th

uncompromised next-query: it answers A with R(b) and updates the internal state of the PRNG
with S(b) and continues to simulate the oracle calls made by A as in Gi, since it knows again
the internal state of the PRNG and has always known the state of the distribution sampler.
Eventually, A outputs the bit b∗. If the challenge bit b was 0 then (S(b), R(b)) is the real value so
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it perfectly simulates Gi for A. Otherwise, (S(1), R(1)) is a random value, as in Gi+1. Therefore,
the challenge of A′ is exactly the same as the challenge consisting in distinguishing both games
and we have, |Pr[Gi = 1]− Pr[Gi+1/2 = 1]| ≤ εp.

Let prove now that if the PRNG is (t, qr, qn, γ
∗, λ, εp)-preserving with leakage, then |Pr[Gi =

1] − Pr[Gi+1/2 = 1]| ≤ εp. We therefore consider the distance between the games Gi+1/2 and
Gi+1. We assume that we are in a recovering with leakage case, otherwise the two games are
identical.
We build a reduction to the recovering with leakage security notion. We will thus define an
adversary A′ against the recovering with leakage security game. The adversary A′ emulates the
challenger for A. It thus runs the adversary A, to get a distribution sampler D and the leakage
functions f . A′ initiates its security game, and receives back the seed it transfers to A, as well
as the values γ1, . . . , γqD and z1, . . . , zqD . Then A′ sets S = 0n, and simulates the answers to all
the oracle calls that A makes in the leakage-resilient robustness security game, but altered as in
Gi, until the (i+ 1)th uncompromised next-query. Actually, as above, the uncompromised next-
queries are answered with truly random R and the internal state is renewed with a truly random
S. To simulate the calls to D-refresh and leak-refresh queries from A, A′ asks for a D-refresh
query and gets back the input Ik, which allows it to evaluate the refresh algorithm itself, and
even compute the leakage information. Together with the values γk and zk it received above from
the challenger, it can answer appropriately to A. Since A′ knows the internal state of the PRNG
(and even controls it during the uncompromised next-query), it can easily simulate get-state,
set-state, unsafe/compromised next-ror, and leak-next queries.
After the ith uncompromised next-query, it continues the same way until the mRED query, it
has to guess among the possible queries (whose number is bounded by qri + qni + qsi, the sum
of the refresh, next and σ queries between the ith uncompromised next-queries and the (i+ 1)th

uncompromised next-query). For this guess (which might later revealed to be incorrect), A′
provides the current internal state, right after the mRED, as S0 to its challenger. A′ can use its
challenger to answer the queries asked by A. Indeed, during the recovering sequence, only oracles
D-refresh, leak-refresh, and leak-next are possible (without making c drop to 0). At the end of this
sequence, A′ receives the challenge (S(b), R(b)) it uses for the (i+1)th uncompromised next-query,
together the sequence of the next inputs: it answers A with R(b) and updates the internal state of
the PRNG with S(b) and continues to simulate the oracle calls made by A as in Gi, since it knows
again the internal state of the PRNG and knows the inputs to update it (as in the first part of the
simulation). Eventually, A outputs the bit b∗. If the challenge bit b was 0 then (S(b), R(b)) is the
real value so it perfectly simulates Gi for A. Otherwise, (S(1), R(1)) is a random value, as in Gi+1.
Therefore, the challenge of A′ is exactly the same as the challenge consisting in distinguishing
both games and we have, |Pr[Gi+1/2 = 1]− Pr[Gi+1 = 1]| ≤ (qri + qni + qsi) · εr.

A.2 Proof of Theorem 7

Following Theorem 13, we show that the PRNG G satisfies both the recovering security with
leakage and the preserving security with leakage. We also denote εext the bias of the distribution
of U = [X ′ ·S]m1 from uniform when the min-entropy of S is greater than γ∗−λ, and show that it
can be any value greater than

√
2m+1−δ for δ = min{n−log qr, γ∗−λ}. Let us recall that we denote

qr the number of calls to D-refresh/leak-refresh, qn the number of calls to next-ror/leak-next, and
qs the number of calls to get-state/set-state. We also denote q = qr + qn + qs, the global number
of queries.

As explained in Section 2.3 under the term granular model, we split the algorithm in atomic
procedures, with leakage on their manipulated data. In particular, in the above construction, the
refresh procedure can be considered atomic, while the next procedure should be split in two: the
truncation of the product, and the PRG evaluation. As a consequence, we consider three leakage
functions:
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– frefresh collects the leakage during the computation of the algorithm refresh, and thus takes
as inputs the internal state S, the sample I and the part X of the seed;

– fnext,Π collects the leakage in algorithm next, during the computation of the truncation of
the product, and thus takes as inputs the internal state S and the part X ′ of the seed;

– fnext,G collects the leakage during the PRG call. It takes as input the intermediate variable
U = [X ′ · S]m1 .

Lemma 14. The PRNG G satisfies the (t, qr, qn, γ
∗, λ, qn · (qr2 · εext + εG))-recovering security

with leakage.

Proof of Lemma 14. The proof extends the one built in [10] to integrate the impact of the leakage.
Game 0 [Recovering with Leakage Security Game]. This game is the original attack game
described in Section 3, where f is described by three leakage functions frefresh, fnext,Π and fnext,G.
Because of the restriction for the estimated entropy not to drop to 0, a first sequence includes
only D-refresh-queries, until c gets larger than γ∗. Thereafter, the leaking procedures leak-refresh
and leak-next are also allowed, in addition to the D-refresh, as soon as c remains above γ∗. With
the answer to the challenge next-ror, this game eventually outputs 1 if b∗ = b, and we want to
show that Pr[G0 = 1] is close to 1/2.
Game 1.a [First leak-next Query: Random U ]. In the first call to leak-next, we replace the
truncated product U by a truly random value. Using the same approach as in [10] with Lemma
1, we can show that the sequence of inputs (Ik)

d
k=1 generated by the distribution sampler, and

the polynomial evaluation followed by the m-truncation leads to a (N, ε)-randomness extractor
as long as the entropy in the source N ≥ m+2 log(1/ε)+ 1 and n ≥ m+2 log(1/ε)+ log(d)+ 1.
With the possible information leakage zk and Lk, the sequence (Ik)

d
k=1 has a min-entropy larger

than γ∗ − λ (because of the possible additional fnext,Π(S,X ′)), so we just need m ≤ γ∗ − λ −
2 log(1/εext) − 1 and m ≤ n − 2 log(1/εext) − log(qr) − 1 to guarantee εext indistinguishability
between the real U and a random value, with this sequence (Ik).
However, since the adversary can choose when it starts (among qr possibility), and how long it
lasts (again, qr possibilities), there is a factor loss qr2. Then, we then have |Pr[G0 = 1]−Pr[G1.a =
1]| ≤ qr2 · εext.
Game 1.b [First leak-next Query: Random State and Output]. In the first call to leak-next,
since fnext,G is fixed, and G is a leakage-resilient PRG, the source S generates indistinguishable
leakage, state and random as in the previous game with a truly random U . Then, we then have
|Pr[G1.a = 1]− Pr[G1.b = 1]| ≤ εG.
Game 2 [All leak-next Queries: Random States]. In an hybrid way, we replace all the
leak-next outputs by S. Then, we have |Pr[G2 = 1]− Pr[G0 = 1]| ≤ (qn − 1) · (qr2 · εext + εG).
Game 3 [The next-ror Query: Random U ]. If this was the first next-query, we have already
shown that U can be replaced by a truly random value. If it happens after a leak-next, the state
S has enough entropy for the extractor (the global output (S,R) from the source S had entropy
α+` when knowing the leakage, then knowing the `-bit randomness R, the remaining entropy for
S is above α ≥ γ∗ ≥ γ∗−λ): the truncated product in the field is a 2−m(1+2m−n)-universal, and
thus a (N, ε)-randomness extractor as long as the entropy in the source is N ≥ m+2 log(1/ε)+1.
The above constraint is enough for a bias bounded by εext between the real U and a random
value. We then have |Pr[G2 = 1]− Pr[G3 = 1]| ≤ εext.
Game 4 [The next-ror Query: Random Output]. Since G is a (t, εG)-secure PRG, we can
replace both the output and the random state by truly random values. And we have |Pr[G3 =
1]− Pr[G4 = 1]| ≤ εG.

From the above games, one gets, |Pr[G0 = 1] − Pr[G4 = 1]| ≤ qn · (qr2 · εext + εG), while
Pr[G4 = 1] = 1/2, for any εext ≥

√
2m+1−δ for δ = min{n− log qr, γ

∗ − λ}.

21



Remark 15. This proof with leakage shows the relevance of the adaptation of the generic con-
struction. Concretely, to ensure an internal state with enough entropy at the input of the final
next-ror, we established two measures to limit the negative impact of the leak-next calls. First,
the threshold γ∗ was set voluntary higher than the original one in [10] to capture the leakage in
the truncated product, given by the leakage function fnext,Π . Then, the generator G was defined
with security properties whereby, in a leak-next call, the final output comes with an entropy at
least equal to α despite the leakage.

Lemma 16. The PRNG G has (t, qr, qn, γ
∗, λ, qn · (εext + εG) + 2−n)-preserving security with

leakage.

Proof. This proof also extends the one in [10], with leaking queries.
Game 0 [Preserving with Leakage Security Game]. This is the original preserving with
leakage security game described in Section 3. The internal state starts uniformly at random, and
then the adversary can ask D-refresh and leak-refresh-queries with chosen inputs, and leak-next-
queries before the challenge next-ror, as soon as c remains above γ∗. With the answer to this,
this game eventually outputs 1 if b∗ = b, and we want to show that Pr[G0 = 1] is close to 1/2.
Game 1.a [First leak-next Query: Random U ]. As above, in the first call to leak-next, we
replace the truncated product U by a truly random value. But since the internal state started full
of randomness (but it would be true with any entropy level), following D-refresh and leak-refresh-
query maintain entropy or reduce it by λ at most, but remaining above γ∗, unless X = 0.
Then, since the truncated product in the field is a (γ∗, ε)-randomness extractor (with above
constraints), the bias is bounded by εext between the real U and a random value. Then, we have
|Pr[G1.a = 1]− Pr[G0 = 1]| ≤ εext + 2−n.

Game 1.b [First leak-next Query: Random State and Output]. In the first call to leak-next,
since fnext,G is fixed, and G is a leakage-resilient PRG, the source S generates indistinguishable
leakage, state and random as in the previous game with a truly random U . We then have
|Pr[G1.a = 1]− Pr[G1.b = 1]| ≤ εG.
Game 2 [All leak-next Queries: Random States]. In an hybrid way, we replace all the
leak-next outputs by S. Then, we then have |Pr[G2 = 1]−Pr[G0 = 1]| ≤ (qn−1)·(εext+εG)+2−n.
Game 3 [The next-ror Query: Random U ]. If this was the first next-query, we have already
shown that U can be replaced by a truly random value. If it happens after a leak-next, the
state S has enough entropy for the extractor: the truncated product in the field is a (γ∗, ε)-
randomness extractor. Since the state S has an entropy larger than γ∗, the above constraint
is enough for a bias bounded by εext between the real U and a random value. Then, we have
|Pr[G2 = 1]− Pr[G3 = 1]| ≤ εext.
Game 4 [The next-ror Query: Random Output]. Since G is (t, εG)-secure, we can replace
both the output and the random state by truly random values. And we have |Pr[G3 = 1] −
Pr[G4 = 1]| ≤ εG.
From the above games, one gets, |Pr[G0 = 1] − Pr[G4 = 1]| ≤ qn · (εext + εG) + 2−n, while
Pr[G4 = 1] = 1/2.

From above Lemma 14 and Lemma 16, we conclude that the PRNG G satisfies (t′, qr, qn, qs, γ∗, λ,
ε)-leakage-resilient robustness where t′ ≈ t, and

ε = qn ·
((
qn · (qr2 · εext + εG)

)
+ (qr + qn + qs) ·

(
qn · (εext + εG) + 2−n

))
,

which proves Theorem 7, since qn ≤ q and 2−n ≤ εext.

A.3 Proof of Theorem 9

We split the proof in two parts. We first show the security without leakage and then with leakage.
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Game 0 [Real Game without Leakage]. This game is referred to as the real game against a
(t, ε)-secure PRG. The input U is split to set the secret keys (Ki) and the counter C. C is made
public, and is used to generate the (pij), and then the keys are used to generate the outputs (T ij ).
According to the challenge bit b, either the (T ij ) are provided, or truly random values S.
Game 1 [Random Outputs (T ij )]. Since F is a (t, ν, εF)-secure PRF, used with truly random
keys and distinct inputs, with an hybrid proof, replacing the first sequences (T i0, . . . , T

i
ν−1),

for i = 1, . . . , k, by random sequences, in the k-th hybrid game, we can show that |Pr[G1 =
1]− Pr[G0 = 1]| ≤ κ · εF, and |Pr[G1 = 1] = 1/2.
Game 0 [Real Game with Leakage]. This game is referred to as the real game implicitly
defined in Definition 6. First, the adversary outputs a leakage function f , and it is given back
either (f(U),G(U)) for a truly random string U , or a pair (L, T ) from a random source S. It
has to guess in which case it is.

Leakage Functions. The adversary first chooses κ leakage functions (fF,i)
κ−1
0 with λ-bit global

output. Actually, the leakage function fF,i collects the leakage during the calls of the PRF F
instantiated with the secret key Ki and thus takes as inputs this secret key and the public inputs
(pi0, . . . , p

i
ν−1). Since the adversary can choose to get all the leakage from one block, we have to

protect all the blocks for a λ-leakage. But globally, the sum of the leakages is bounded by λ.
Note that since the upper-level is public, no leakage can be asked on F′-executions.

Challenge. The input U is split to set the secret keys (Ki) and the counter C. C is made public,
and is used to generate the pij , and then the keys are used to generate the outputs Sij . According
to the challenge bit b, either the real leakage and outputs are provided, or the values from a
random source S.
Game 1 [Secret X ′′]. In this game, instead of publishing X ′′, it is kept secret. Using a similar
proof as in [25] in the minicrypt world, if an efficient distinguisher would exist in G0 while G1

cannot be broken, then one could build a public-key encryption scheme from these PRFs, which
is very unlikely.
To conclude, we thus have to prove that Pr[G1 = 1] is close to 1/2.
Game 2 [Random Values pij]. Instead of generating the inputs pij with the PRF F′ with secret
key X ′′ in counter mode, we generate them uniformly at random. Since F′ is a (t, qnνκ, εF′)-
secure PRF, where qnνκ is the global number of calls to F′ during the qn next-queries, and there
is no leakage at this level (everything was public in the original scheme) then, unless there is a
collision on the inputs to F, then the two games are indistinguishable: |Pr[G2 = 1]−Pr[G1 = 1]| ≤
qn2νκ
2µ + εF′ . The collision probability is indeed bounded by qn2νκ/2µ as explained in Section 5.2.

Game 3 [High Entropy Outputs T ij ]. When there is some leakage, we want to show that G
outputs strings that are computationally indistinguishable from α-sources, even with the leakage.
Then, we use the (α/κ, λ)-leakage-resilience of F: for each leakage function with λ-bit outputs,
there are sources that generate random inputs (indistinguishable from the (pij)), as well as leakage
and outputs (T ij )j with entropy α/κ for each i. Then, for a maximal leakage of λ (since this is
the global allowed leakage) the global output has a minimal entropy of α. The concatenation of
these sources thus helps to conclude, with again an hybrid sequence, since the final game uses the
final source for both b = 0 and b = 1: |Pr[G3 = 1]−Pr[G2 = 1]| ≤ κ ·εF, and |Pr[G3 = 1] = 1/2.
For an appropriate choice for F, we can say that Pr[G1 = 1] is close to 1/2, and so this is the
same for Pr[G0 = 1] in the minicrypt world.
Conclusion. In any case (with or without leakage), the global advantage is bounded by κ · εF+
εF′ + qn

2νκ/2µ.
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