
A Bounded-Space Near-Optimal Key

Enumeration Algorithm for Multi-Dimensional

Side-Channel Attacks

Liron David1, Avishai Wool2

School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
1lirondavid@gmail.com, 2yash@eng.tau.ac.il

Abstract. Enumeration of cryptographic keys in order of likelihood
based on side-channel leakages has a signi�cant importance in crypt-
analysis. Previous algorithms enumerate the keys in optimal order, how-
ever their space complexity is Ω(nd/2) when there are d subkeys and n
candidate values per subkey. We propose a new key enumeration algo-
rithm that has a space complexity bounded by O(d2w + dn), when w
is a design parameter, which allows the enumeration of many more keys
without exceeding the available space. The trade-o� is that the enumer-
ation order is only near-optimal, with a bounded ratio between optimal
and near-optimal ranks.
Before presenting our algorithm we provide bounds on the guessing en-
tropy of the full key in terms of the easy-to-compute guessing entropies
of the individual subkeys. We use these results to quantify the near-
optimality of our algorithm's ranking, and to bound its guessing entropy.
We evaluated our algorithm through extensive simulations. We show that
our algorithm continues its near-optimal-order enumeration far beyond
the rank at which the optimal algorithm fails due to insu�cient memory,
on realistic SCA scenarios. Our simulations utilize a new model of the
true rank distribution, based on long tail Pareto distributions, that is
validated by empirical data and may be of independent interest.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosystem
based on leakage information gained from physical implementation of the cryp-
tosystem on di�erent devices. Information provided by sources such timing [12],
power consumption [11], electromagnetic emulation [18], electromagnetic radia-
tion [2, 9], and other sources, can be exploited by SCA to break cryptosystems.

Most of the attacks that have been published in the literature are based
on a �divide-and-conquer� strategy. In the �rst �divide� part, the cryptanalyst
recovers multi-dimensional information about di�erent parts of the key, usually
called subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In

the �conquer� part the cryptanalyst combines the information all together in an
e�cient way. In the attacks we consider in this paper, the information that the
SCA provides for each subkey is a probability distribution over the n candidate
values for that subkey.

Much attention has been paid to the �divide� part of side channel analysis,
aiming to optimize its performance: Kocher et al.'s Di�erential Power Analysis
(DPA) [11], Brier et al.'s Correlation Power Analysis (CPA) [6] and Chari et
al.'s Template Attacks [7] are some examples. In contrast, less attention has
been paid to the �conquer� part.

1.2 Related work

The problem of merging two lists of subkey candidates was encountered by Junod
and Vaudenay [10]. The simple approach of merging and sorting the subkeys
lists was tractable thanks to the small size of the lists (up to 213). By decreasing
the order of the probabilities, given partial information obtained for each key bit
individually, Dichtl [8] considered a faster enumeration of key candidates. A more
general and challenging problem is enumerating keys from lists that cannot be
merged, exploiting any partial information on subkeys. For this, a probabilistic
algorithm was proposed in [14]. In this work the attacker has no access to the
subkey distributions but is able to generate them. The proposed solution is to
enumerate keys by randomly choosing subkeys according to these distributions.
This implementation requires O(1) memory but most keys may be chosen many
times, leading to useless repetitions.

A deterministic enumeration algorithm was described by Pan et al [16]. It
enumerates key candidates in the optimal order, but large memory requirements
prevent the application of this, when the number of keys to enumerate increases.

A best optimal algorithm was proposed by Veyrat-Charvillon, Gérard, Re-
nauld and Standaert, [20], which we denote by OKEA. This algorithm signi�-
cantly improves the time and memory complexity thanks to clever data struc-
tures and a recursive decomposition of the problem. However, its worst case
space complexity is Ω(nd/2) when d is the number of subkey dimensions and n
is the number of candidates per subkey�and the space complexity is Ω(r) when
enumerating up to a key at rank r ≤ nd/2. Thus its space complexity becomes a
bottleneck on real computers with bounded RAM in realistic SCA attacks.

Recently two improved key enumeration algorithms were proposed by Bog-
danov et al. [5] and Martin et al. [13]. Similar to us, both papers improve upon
OKEA [20] by suggesting bounded-memory algorithms.

Bogdanov et al. [5] uses a score-based enumeration, rather than the probability-
based enumeration that OKEA and our algorithm use, producing an enumeration
that is suboptimal in terms of output order. The focus of Martin et al. [13] is on
rank estimation and parallelization, via a reduction to #knapsack. Like [5] they
also manipulate the side-channel leakages, but into di�erent weights.

However, neither paper provides any analytical bound on the distance be-
tween their order and the optimal order: they only provide empirical evidence
based on one dataset. Further, both use additive scoring (the scores of di�erent

subkeys are added to score a full key): [5] suggests scores that are scaled-and-
truncated probabilities, whereas [13] skirts this issue. This makes it di�cult to
compare apples to apples: the quality of their order would have been compa-
rable to the optimal (OKEA) order and to our order only if they had used
log-probabilities (whose addition is semantically equivalent to multiplication of
probabilities). Moreover, with scores, standard metrics such as the Guessing En-
tropy, which we analyze, cannot be computed, since they require probabilities.
Finally, giving our algorithm more memory greatly improves its order quality
and its runtime, whereas their algorithms do not.

Ye et al. [22] take a di�erent approach: they limit the key enumeration to a
hypercube of the top e candidates for every subkey. They do not explain how to
enumerate inside the hypercube. Their KSF fails if the true key is outside this
hypercube. This is unlike all previously mentioned papers, which always �nd the
correct key if given enough time. In some sense KSF is analogous to the �rst
step of our algorithm: instead of giving up, our algorithm continues to adjacent
volumes wrapping the hypercube, and uses the OKEA inside the hypercube and
in the adjacent volumes, while maintaining a bound on the memory complexity.

The paper of Poussier et al. [17] is primarily a taxonomy and comparison of
rank estimation algorithms, suggesting new algorithmic combinations. It contin-
ues the work of Veyrat [21] and Bernstein [4], and also of Martin et al. [13]. Rank
estimation is a closely related, yet di�erent, question, to the key enumeration
we address: It doesn't necessarily require to enumerate all the keys candidates
ranked before the correct key, as it is only necessary to estimate how many there
are.

1.3 Contributions

We propose a new key enumeration with bounded memory requirement, which
allows the enumeration of a large number of keys without exceeding the available
space. The trade-o� is that the enumeration order is only near-optimal, with a
bounded ratio between optimal and near-optimal ranks. Our algorithm has space
complexity of O(d2w + dn) where w is a design parameter.

Another contribution is an extension to the evaluation framework [19]. Before
presenting our algorithm we provide bounds on the guessing entropy of the full
key in terms of the easy-to-compute guessing entropies of the individual subkeys.
We use these results to quantify the near-optimality of our algorithm's ranking,
and to bound its guessing entropy.

We then evaluated our algorithm through extensive simulations. On our lab
equipment we found that the optimal algorithm fails due to insu�cient mem-
ory when attempting to enumerate beyond rank 233, while our bounded-space
algorithm continued its near-optimal-order enumeration unhindered.

We based our simulation on a new model of the ranking provided by an
SCA, that may be of independent interest: We compared the empirical subkey
distributions of an actual SCA with the true rank distribution, and discovered
that the probabilities predicted by the SCA are overly optimistic. We found
that the true rank distribution is long-tailed and is well modeled by a Pareto

Fig. 1. Geometric representation of the key space

distribution, whose guessing entropy is signi�cantly greater than that predicted
by the SCA.

Organization: In Section 2 we describe the optimal-order key enumeration
algorithm of [20]. In Section 3 we introduce some bounds on the guessing en-
tropy of the full key based on the guessing entropies of the individual subkeys.
In Section 4 we introduce our w-layer key enumeration algorithm and analyze
its properties. In Section 5 we describe a new model of the subkey true rank
probability distribution. In Section 6 we present our performance analysis, and
we conclude in Section 7.

2 Preliminaries

The key enumeration problem: The cryptanalyst obtains d independent sub-
key spaces k1, ..., kd, each of size n, and their corresponding probability distri-
butions Pk1 , ..., Pkd . The problem is to enumerate the full-key space in deceasing
probability order, from the most likely key to the least, when the probability of
a full key is de�ned as the product of its subkey's probabilities.

The best key enumeration algorithm so far was presented by Veyrat-Charvillon,
Gérard, Renauld and Standaert in [20]. To explain the algorithm, we will use a
graphical representation of the key space�the case of d = 2 is depicted in Fig-
ure 1. In this �gure, we see two subkeys k1 and k2 along the axes of the graph,
both sorted by decreasing order of probability. The width and the height corre-

spond to the probability of the corresponding subkey. Let k
(j)
i denote the j'th

likeliest value for the i'th subkey. Then, the intersection of row j1 and column

j2 is a rectangle corresponding to the key (k
(j1)
1 , k

(j2)
2) whose probability is equal

to the area of the rectangle.
The algorithm outputs the keys in decreasing order of probability. The al-

gorithm maintains a data structure F of candidates to be the next key in the
sorted order. In each step the algorithm extracts the most likely candidate from

F , (k
(j1)
1 , k

(j2)
2), and outputs it. F is then updated by inserting the potential

Fig. 2. Geometric representation of the �rst two steps of key enumeration.

successors of this candidate: (k
(j1+1)
1 , k

(j2)
2) and (k

(j1)
1 , k

(j2+1)
2). An important

observation made by [20] is that F should never include 2 candidates in the
same column, or in the same row: one candidate will clearly dominate the other.
Thus the algorithm maintains auxiliary data structures (�bit vectors�) to indi-
cate which rows and columns currently have member in F . This observation has
a crucial e�ect on the size of the data structure, |F |.

We can see in Figure 2 the �rst steps of the algorithm: the most likely key

is (k
(1)
1 , k

(1)
2), therefore this is the key that is output �rst (represented in dark

gray in step 1). Now, the only possible next key candidates are the successors

(represented in light gray in step 1) (k
(2)
1 , k

(1)
2) and (k

(1)
1 , k

(2)
2), which are inserted

into F . Then again, the most likely key is extracted, but this time only one
successor is inserted because there is already a key in column 2.

In general the number of dimensions d > 2 and we need to enumerate over
more than two lists of subkeys. For AES, typically d = 16 for byte-level side
channels or d = 4 for 32-bit subkeys as in [15]. To do this, [20] suggested a
recursive decomposition of the problem. The algorithm described above is only
used for merging two lists, and its outputs are used to form larger subkey lists
which are in turn merged together. In order to minimize the storage and the
enumeration e�ort, these lists are generated only as far as required by the key
enumeration. Therefore, whenever a new subkey is inserted into the candidate
set, its value is obtained by applying the enumeration algorithm to the lower
level, (for example 64-bit subkeys obtained by merging two 32-bit subkeys), and
so on.

3 Bounding the Guessing Entropy

An important security metric for the evaluation of a side channel attack [19] is
the Guessing Entropy, which intuitively corresponds to the average number of

keys to test before reaching the correct one, based on the probabilities assigned
to key candidates by the side channel attack.

De�nition 1 (Guessing Entropy). For a random variable X with n values,
denote the elements of its probability distribution PX by PX(xi) for xi ∈ X such
that PX(x1) ≥ PX(x2) ≥ ... ≥ PX(xn). The guessing entropy of X is:

G(X) =

n∑
i=1

i · PX(xi).

The case d = 2: Let the key be split into 2 independent subkey spaces X and Y,
each of size n, thus a key is a vector xy s.t. x ∈ X and y ∈ Y . A side channel
attack produces 2 separate distributions PX(xi) for xi ∈ X and PY (yj) for
yj ∈ Y . Assume that the subkey distributions are sorted: PX(x1) ≥ PX(x2) ≥
... ≥ PX(xn) and similarly for PY , then G(X) and G(Y) are well de�ned.

Let XY denote the list of (full) keys sorted in decreasing order of proba-
bility, where PXY (xi, yj) = PX(xi)PY (yj) since the subkeys are independent.
Thus G(XY) is well de�ned. However, calculating G(XY) requires a time and
space complexity of Ω(n2). Therefore bounding G(XY) in terms of the easy-to-
compute G(X) and G(Y) is a useful goal. To this end, let rank(xi, yj) be the
position of key (xi, yj) in XY . Clearly, rank(x1, y1) = 1 and rank(xn, yn) = n2.
By de�nition we get:

G(XY) =

n∑
i=1

n∑
j=1

rank(xi, yj) · PX(xi)PY (yj). (1)

Theorem 1. The guessing entropy of XY , G(XY), is bounded by:

G(X)G(Y) ≤ G(XY) ≤ n(G(X) +G(Y))−G(X)G(Y). (2)

Proof. As mentioned in [21], and as depicted in Figure 3 given a key (xi, yj), all
the key candidates with higher indexes in both indexes, have a lower probability
and higher rank, and all the key candidates with lower indexes, have a lower
rank.

Taking advantage of this fact, rank(xi, yj) can be bounded as follows:

ij ≤ rank(xi, yj) ≤ n2 − (n− i)(n− j). (3)

Fig. 3. Another geometric representation of the key space

We use this observation in order to bound G(XY). First, we prove the lower
bound. By substituting Eq. (3) in Eq. (1) we get:

G(XY) =

n∑
i=1

n∑
j=1

rank(xi, yj) · PX(xi)PY (yj)

≥
n∑
i=1

n∑
j=1

ij · PX(xi)PY (yj)

=

n∑
i=1

i · PX(xi)

n∑
j=1

j · PY (yj)

= G(X)G(Y).

Second, we prove the upper bound of G(XY). By Eq. (3),

rank(xi, yj) ≤ n2 − (n− i)(n− j)
= n2 − [n2 − n(i+ j) + ij]

= n(i+ j)− ij.

By substituting Eq. (3) in Eq. (1) we get:

G(XY) =

n∑
i=1

n∑
j=1

rank(xi, yj) · PX(xi)PY (yj)

≤
n∑
i=1

n∑
j=1

(
n(i+ j)− ij

)
· PX(xi)PY (yi)

= n

n∑
i=1

n∑
j=1

(i+ j) · PX(xi)PY (yj)−
n∑
i=1

n∑
j=1

ij · PX(xi)PY (yj)

= n

n∑
i=1

n∑
j=1

(i+ j) · PX(xi)PY (yj)−G(X)G(Y). (*)

We calculate separately the summation at Eq. (*),

n∑
i=1

n∑
j=1

(i+ j) · PX(xi)PY (yj) =

n∑
i=1

PX(xi)

n∑
j=1

(i+ j) · PY (yj)

=

n∑
i=1

PX(xi)
[n∑
j=1

i · PY (yi) +
n∑
j=1

j · PY (yj)
]

=

n∑
i=1

i · PX(xi)

n∑
j=1

PY (yj)︸ ︷︷ ︸
1

+

n∑
j=1

PX(xi)

n∑
j=1

j · PY (yi)︸ ︷︷ ︸
G(Y)

= G(X) +G(Y).

By substituting the results in Eq. (*) we get:

G(XY) = n
(
G(X) +G(Y)

)
−G(X)G(Y) (4)

Which concludes the proof of the theorem. We can see that in general G(XY)
is not multiplicative:

Corollary 1 G(X)G(Y) ≤ G(XY) ≤ 2n ·max
(
G(X), G(Y)

)
.

Proof. Without loss of generality, we assume that G(X) ≥ G(Y) ≥ 1 then
Eq. (4) can be bounded by:

G(XY) ≤ n · 2G(X)−G(X) = (2n− 1)G(X) ≤ 2n ·max
(
G(X), G(Y)

)
.

These bounds can be expanded for d > 2. In this case it holds:

d∏
m=1

im ≤ rank(x(1)i1 , x
(2)
i2
, ..., x

(d)
id

) ≤ nd −
d∏

m=1

(n− im).

Therefore we obtain

Theorem 2. The guessing entropy G(X(1)X(2)...X(d)), is bounded by:

d∏
m=1

G(X(m)) ≤ G(X(1)X(2)...X(d)) ≤ nd −
d∏

m=1

(n−G(X(m))).

As an example of using these bounds, with byte-level SCA on AES we have
d = 16. If the SCA discards 128 values per byte and returns a probability
distribution over the remaining 128 candidates we have n = 128. Assuming that
G(X(m)) = 8 for all 16 subkeys we get that

248 = 816 ≤ G(X(1)X(2)...X(d)) ≤ 12816 − (128− 8)16 = 2111.36.

Note that the upper bound is rather weak, especially when G(X) is low�which
is usually the case in successful SCA scenarios.

4 Key Enumeration algorithm

The key enumeration in [20] enumerates the key candidates in optimal order, but
has a signi�cant drawback, its memory requirements may exceed the available
memory. Its worst-case space complexity is Ω(nd/2) since it needs to store the full
sorted distribution of the 2 top-level dimensions (in addition to the data structure
F). Moreover, in order to enumerate until a key of rank r ≤ nd/2 it has a space
complexity of Ω(r). In this section, we present a new key enumeration algorithm
with bounded memory requirements, which therefore allows to enumerate a large
number of key candidates.

To achieve the desired memory bound, we relax the �optimal order� require-
ment: our algorithm enumerates the keys in near-optimal order, and we are able
to bound the ratio between the optimal rank of a key and our algorithm's rank
of that key.

4.1 The layering approach

In order to explain our algorithm, we start with the case d = 2. We divide the key-
space into layers of width w, as depicted in Figure 4. The �rst layer contains the

keys (k
(i)
1 , k

(j)
2) such that (i, j) ∈ {1, ..., w}×{1, ..., w}. The second layer contains

the keys (k
(i)
1 , k

(j)
2) such that (i, j) ∈ {1, ..., 2w}×{1, ..., 2w}\{1, ..., w}×{1, ..., w}

and so on. More formally:

De�nition 2. Given w > 0 and l > 0, let

layerwl = {(k(i)1 , k
(j)
2)|(i, j) ∈ {1, ..., l·w}×{1, ..., l·w}\{1, ..., (l−1)·w}×{1, ..., (l−1)·w}}.

A key observation is that we can run the optimal enumeration algorithm of
[20] within a layer: we seed the algorithm data structure F by inserting the two
�corners� (see Figure 4), and then extract candidates and insert their successors
as usual - limiting ourselves not to exceed the boundaries of the layer. Moreover,
within a layer of width w, we can bound the space used by F :

Fig. 4. Geometric representation of the key space divided into layers of width w = 3.
The keys in cells (1, 7) and (7, 1) are the algorithm's seeds for layer

(3)
3

Proposition 1. For every l > 0 and w > 0, applying the optimal key enumer-
ation of [20] on layerwl , the number of next potential key candidates is bounded
by 2w, i.e., |F | ≤ 2w.

Proof. The proof is directly derived from the key enumeration algorithm [20].
The algorithm extracts the highest probability key candidate from the data
structure F , and inserts its successors into F , while keeping the rule that F may
contain at most one element in each row and column of layerwl . Looking at the
geometrical representation, layerwl is a union of a horizontal rectangle Hw

l and
a vertical rectangle V wl , such that

Hw
l = {(k(i)1 , k

(j)
2) ∈ layerwl |(l − 1) · w < i ≤ l · w},

V wl = {(k(i)1 , k
(j)
2) ∈ layerwl |(l − 1) · w < j ≤ l · w}.

layerwl = Hw
l ∪ V wl .

Therefore, the size of F , for every layerwl is:

|F | ≤ |F ∩Hw
l |+ |F ∩ V wl |

Because F may contain at most one element in each column and row, the
size of |F ∩Hw

l | is the minimum between Hw
l 's two dimensions:

|F ∩Hw
l | ≤ min{w, l · w} = w,

and similarly for |F ∩ V wl |. Therefore, we get

|F | ≤ 2w.

Importantly, the bound on |F | is independent of n, and depends only on the
design parameter w which we can tune.

Fig. 5. Geometric representation of the key space divided into squares of width w = 3.

4.2 The Two-Dimensional Algorithm

Proposition 1 leads us to our w-layer key enumeration algorithm: Divide the
key-space into layers of width w. Then, go over the layerws, one by one, in
increasing order. For each layerwl , enumerate its key candidates, by applying the
optimal key enumeration [20]. Following the proposition, the number of potential
next candidates, F , that our algorithm should store is bounded by 2w.

For d = 2, the sorted orders of keys in the 2 subkey spaces are given explic-
itly. However, for d > 2 during the recursive descent, we need to generate the
ordered lists on the �y as far as required. We do this by applying a recursive de-
composition of the problem. The length of these generated subkey spaces grows
and eventually becomes too large to store. Therefore, instead of naively storing
the full subkey order, we only store the O(w) candidates which were computed
recently.

To do this, we divide each layerw in the geometrical representation, into
squares of size w × w, as depicted in Figure 5. Our algorithm still enumerates
the key candidates in layerw1 �rst, then in layerw2 and so on, but in each layerwl
the enumeration will be square-by-square.

More speci�cally, let Swx,y be a set of the key candidates in the square Swx,y =

{(k(i)1 , k
(j)
2)|(x − 1) · w < i ≤ x · w and (y − 1) · w < j ≤ y · w}. We say that

two squares, Sx,y and Sz,w are in the same row if y = w, and are in the same
column if x = z.

Now let's describe the enumeration at each layerwl . We know that the most
likely candidate in layerwl is either at S1,l or Sl,1. Therefore, we enumerate �rst
the key candidates in S1,l∪Sl,1 by applying the key enumeration in [20] on them
(represented in dark gray in step 1 in Figure 6). Let S denote the set of squares
that contain potential next candidates in this layer. At some point, one of the
two squares is completely enumerated. Without loss of generality, we assume
this is S1,l. At this point, the only square that contains the next key candidates
after S1,l is the successor S2,l (represented in dark gray in step 2 Figure 6).

Fig. 6. Geometric representation of the key enumeration at layer33.

In general case, the successor of Sx,y is either Sx+1,y or Sx,y+1, only one of
which is in layerwl . Therefore, when one of the squares is completely enumerated,
it is extracted from S, and its successor is inserted, as long as S doesn't contain
a square in the same row or column.

Notice that only after a square is completed we continue to it's successor.
Without loose of generality, we assume that the successor is in the same row as

the current one. Therefore, for all candidates (k
(i)
1 , k

(j)
2) we intend to check next,

the j index is higher than the j index of any candidate in the current square,
therefore these j indexes of the current square are useless hence are not stored.

It is simple to see that S contains at most 2 squares of size w×w each step,
therefore only the subkeys at each dimension should be stored, which means a
space complexity of O(w).

4.3 Generalization to multi-dimensional Algorithm

Similarly to [20] we apply a recursive decomposition of the problem. Whenever a
new subkey is inserted into the candidate set, its value is obtained by applying the
enumeration algorithm to the lower level, (for example 64-bit subkeys obtained
by merging two 32-bit subkeys). For example, let's look at d = 4. In order to
generate the ordered full-key, we need to generate the 2 ordered lists of the lower
level on the �y as far as required. In the worst case the space complexity of these
2 lists is Ω(n2). Although the size of the data structure F is bounded by 2w,
we still have a bottleneck of Ω(n2). Therefore, instead of naively storing the full
subkey order, we only store the O(w) candidates which computed recently. We
store 2w subkeys of the �rst low-level list, and another 2w subkeys of the second
low-level list.

Algorithm 1: w-Layer Key Enumeration Algorithm.

Input: Subkey distributions {ki}1≤i≤d.
Output: The correct key, if exists, NOT-FOUND otherwise.

1 currentLayer = 1;
2 found = false;
3 while (currentLayer is not out of range) do
4 S ← S1,currentLayer ∪ ScurrentLayer,1;
5 while (S 6= ∅) do
6 candidate = nextCandidate(S, {ki}1≤i≤d);
7 found = isCorrectKey(candidate);
8 if (found) then
9 return candidate;

10 end

11 end

12 currentLayer ++

13 end

14 return NOT-FOUND;

4.4 Bounding the Rank and the Guessing Entropy

Let vw denote the vector resulting from enumerating all key candidates, ap-
plying our w-layer key enumeration, for �xed w, and let v denote the vec-
tor resulting from applying the optimal order enumeration. Additionally, let

rankw(i1, i2, .., id) denote the order statistic of key (k
(i1)
1 , k

(i2)
2 , ..., k

(id)
d) in vw,

and rank(i1, i2, .., id) be the order statistic of key (k
(i1)
1 , k

(i2)
2 , ..., k

(id)
d) in v . Now,

we want to bound the rank of the w-layer algorithm, and the guessing entropy
of vw, G(vw), related to G(v).

Theorem 3. Consider a key (k
(i1)
1 , ..., k

(id)
d). Let i∗ = max{i1, ..., id}, and let

αm = im/i
∗ for m = 1, ..., d (αm ≤ 1). Then,

rankw(i1, ..., id) ≤
d∏

m=1

(2

αm

)
· rank(i1, ..., 1d).

Proof. According Eq. (3), it holds that:

rank(i1, i2, ..., id) ≥
d∏

m=1

im.

Without loss of generality, we assume that the maximal index i∗ = i1. Using
that, we get:

rank(i1, i2, ..., id) ≥
d∏

m=1

im = id1 ·
d∏

m=1

αm. (5)

Our goal is to upper-bound rankw(i1, i2, .., id). We divide the analysis into
two cases based on the value of i1.

Algorithm 2: nextCandidate.

Input: Set of squares with potential candidates S and Subkey distributions
{ki}1≤i≤d.

Output: The next key candidat in S.
1 main , {1, ..., d};
2 x , {1, ..., d/2};
3 y , {d/2 + 1, ..., d};
4 (k

(i)
x , k

(j)
y)← most likely candidate in Fmain;

5 F1,d ← F1,d \ {(k(i)x , k
(j)
y)};

6 Si,j ← the square which (k
(i)
x , k

(j)
y) is inside;

7 if Si,j is completely enumerated then

8 S ← S \ Si,j ;
9 if no square in same row/column as Successor(Si,j) then

10 S ← S ∪ Successor(Si,j);
11 Fmain ← Fmain ∪ {most likely candidate in Successor(Si,j)};
12 end

13 else

14 if (k
(i+1)
x , k

(j)
y) ∈ S and no candidate in row i+1 then

15 if k
(i+1)
x hasn't calculated yet then

16 nextCandidate({ki}i∈x);
17 k

(i+1)
x ← the most likely candidate in Fx ;

18 end

19 Fmain ← Fmain ∪ {(k(i+1)
x , k

(j)
y)};

20 end

21 if (k
(i)
x , k

(j+1)
y) ∈ S and no candidate in column j+1 then

22 if k
(j+1)
y hasn't calculated yet then

23 nextCandidate({ki}i∈x);
24 k

(j+1)
y ← the most likely candidate in Fy ;

25 end

26 Fmain ← Fmain ∪ {(k(i)x , k
(j+1)
y)};

27 end

28 end

29 return (k
(i)
x , k

(j)
y) ;

Fig. 7. Geometric representation of key (k
(i1)
1 , k

(i2)
2) at layer32 with i1 = 8, i2 = 3 and

w = 3.

case 1: i1 ≥ w. In this case, the key (k
(i1)
1 , k

(i2)
2 , ..., k

(id)
d) is at some layerwl such

that l > 1. According to our w-layer key enumeration, we enumerate all the keys
in the current layer, before we continue to the next layer. Therefore, the rank
of this key is bounded by the total number of keys in layers 1, .., l. As we can
see in Figure 7, for the bi-dimensional case, the distance between i1 and the
high bound of the layer l is at most w. Since i1 was maximal, the high bound
of the layer l is at most i1 + w for all d dimensions, and rankw(i1, i2, ..., id) is
upper-bound by

rankw(i1, i2, ..., id) ≤ (i1 + w)d. (6)

Using our assumption that i1 ≥ w, we get:

(i1 + w)d ≤ (2 · i1)d = 2d · id1. (7)

Plugging Eq. (6) and Eq. (7) into Eq. (5) yields

rankw(i1, i2, ..., id) ≤
d∏

m=1

(2

αm

)
· rank(i1, i2, ..., id).

case 2: i1 < w. In this case, the key (k
(i1)
1 , k

(i2)
2 , ..., k

(id)
d) is at the �rst layer

layerw1 . Therefore, our w-layer key enumeration, enumerates the keys in the
same order the optimal key enumeration does, possibly skipping the keys which
are outside this layer. Therefore:

rankw(i1, i2, ..., id) ≤ rank(i1, i2, ..., id)

and in particular,

rankw(i1, i2, ..., id) ≤
d∏

m=1

(2

αm

)
· rank(i1, i2, ..., id).

since 2
αm

> 1 for all m.

Theorem 4. The boundary of the guessing entropy of vw, G(vw), related to
G(v) is:

G(vw) ≤ 2dnd−1 ·G(v).

Proof. Each subkey contains n values, therefore, i1 is at most n times bigger
than any of i2, ..., id, means for each m ∈ {2, ..., d}, αm ≥ 1/n. Applying this on
Theorem 3, we get:

rankw(i1, i2, ..., id) ≤ 2d · nd−1 · rank(i1, i2, ..., id).

Therefore,
G(vw) ≤ 2d · nd−1 ·G(v).

4.5 Space Complexity Analysis

The algorithm needs to store for each level a list, of size w, of subkeys obtained
from applying the algorithm on lower level. For this, it needs to store 2 squares
of size w ×w for the 2 top-level dimensions, which means 4 lists. In addition, it
needs to store, for the current level, a data structure F which bounded by 2w and
2 data structures (�bit vectors�) to indicate which rows and columns currently
have member in F . Totally we get the following space recurrence relation:

S(d) = 4S(d/2) + cw,

for some constant c, which sums to O(d2w). Taking into account the input, whose
space is O(dn), we get a total space complexity of O(d2w + dn).

5 Modeling the subkey probability distribution

Probabilistic side channel attacks such as template attacks [7] produce a proba-
bility distribution for each subkey, interpreted as the probability that a particular
subkey value is correct. However, with data sets such as the DPAv4 [1] we know
the true correct keys over traces from many di�erent keys. Hence, it is possible
to compare to SCA-predicted probability distribution with reality.

Assuming that the SCA-distribution P kX for a subkey X on key instance
k, is sorted in decreasing order, hence P kX(xi) is the SCA probability that the
correct key of instance k has rank i. However, we also know the true rank r∗

of the correct key for each instance k, according to the order implied by P kX .
Thus we can calculate the true rank probability distribution: let P ∗

X(r) be the
frequency of subkey instances such that the subkey at position r according to
the SCA-order is the correct subkey.

Figure 8 shows the SCA-predicted probability distribution versus the true
rank distribution, using the data of Oren, Weisse and Wool in [15].

The �gure shows that the SCA distribution is too optimistic: the cdf grows
much faster than that of P ∗

X . This also leads to a signi�cant di�erence in the

Fig. 8. The cdf of the average SCA-predicted probability distribution (top curve -
blue), the true empirical rank probability distribution P ∗X (red) and the synthetic
Pareto distribution (green) as function of the rank. Note that the cdf curves for the
empirical and synthetic distributions overlap almost completely.

guessing entropy, with G(X) = 1.2 to the SCA-predicted compared to 135 for
the true rank probability distribution.

We can see that the true distribution has a long tail: large ranks do appear
with non-negligible probability. A good distribution which models long-tail dis-
tributions is the Pareto Distribution [3]. If X is a random variable with a Pareto
distribution, then the PDF is given by:

fX(x) =
α

xα+1
, for x ≥ 1.

In order to simulate the true rank distribution, we choose parameters that
lead the expected value to equal the guessing entropy of the rank distribution,
135, by solving the following equations:

β

n∑
x=1

fX(x) = β ·
n∑
i=1

α

xα+1
= 1

and

E(X) = β

n∑
x=1

x · fX(x) = β

n∑
x=1

α

xα
= 135.

For d = 4 and n = 217 (as in the results of [15]), we obtain α = 0.575, and
β = 0.738 . Figure 8 also shows a curve for this Pareto distribution demonstrating
the �t.

This observation leads to two conclusions. First, it shows that, at least for
the method of [15], the SCA-predicted distribution and the claimed guessing
entropy are overly optimistic - it would be interesting to evaluate other SCA
attacks using this methodology. Second, using Pareto distributions as a model
we can simulate various scenarios for the key enumeration algorithms without
creating an actual SCA attack.

6 Performance Analysis

We evaluated the performance of our w-layer key enumeration algorithm through
an extensive simulation study. We implemented the optimal algorithm [20] and
our algorithm in Java, and ran both algorithms on a 3.07GHz PC with 24GB
RAM running Microsoft windows 7, 64bit. Note that the code of the optimal
algorithm is used as a subroutine in the w-layer algorithm, thus any potential
improvement in the former's implementation would automatically translate into
an analogous improvement in the latter.

We used synthetic SCA distributions with d = 8 dimensions and n = 212 for
a total enumeration space of 296. The 8 probability distributions were generated
according to the model of Section 5: Pareto distributions �tting G(X) = 135,
with α = 0.575 and β = 0.738. We analyzed our w-layer algorithm for two
di�erent values of w: (i) w = n = 212 and (ii) w = 225.

We also evaluated the algorithm's performance for d = 16 dimensions and n =
26, again for a total enumeration space of 296. The 16 probability distributions
were Pareto distributions �tting G(X) = 8, with α = 0.3 and β = 1.1197. We
analyzed our w-layer algorithm for two di�erent values of w: (i) w = n = 26 and
(ii) w = 225. The obtained results are similar to those with d = 8. Graphs are
omitted.

We conducted the experiments as follows. We ran the optimal algorithm on
di�erent (optimal) ranks starting from 212, and measured its time and space
consumption. For each optimal rank, 2x, we extracted the key corresponding to
this rank, and ran each of our w-layer key enumeration algorithm variants until
it reached the same key, and measured its rank, time and space. We repeated
this simulation for 64 di�erent ranks near 2x � the graphs below display the
median of the measured values.

6.1 Runtime Analysis

Figure 9 illustrates the time (in minutes) of the 3 algorithms: optimal-order
(green triangles), w-layer with w = n (red squares) and w-layer with w = 225

(blue diamonds) for di�erent ranks. The �gure shows that, crucially, the optimal-
order key enumeration stops at 233. This is because of high memory consumption
which exceeds the available memory.

For ranks beyond 222 we noticed that the w-layer enumeration with w = n =
212 became signi�cantly slower than the others. The red squares in Figure 9 are
misleadingly low, since as Figure 10 shows, a large fraction of runs timed-out

Fig. 9. Time, in minutes, of optimal-order key enumeration (green triangles), w-layer
key enumeration with w = 225 (blue diamonds) and w-layer key enumeration with
w = n (red squares) on di�erent ranks.

at the 2 hour mark, and we stopped experimenting with this setting beyond
rank 232. It is important to remark that we chose to stop because of the time
consumption - the algorithm doesn't stop till it gets to the correct key.

For the w-layer with w = 225 we can see excellent results. For small ranks it
takes exactly the same time consumption as the optimal-order, (hidden by the
green triangles in Figure 9), and for high ranks, its bounded space complexity
enables it to enumerate in reasonable time.

Note that for ranks beyond 233, the optimal algorithm failed to run, so we
could not identify the keys with those ranks. In order ro demonstrate the w-layer
algorithm's ability to continue its enumeration we let it run until it reached a rank
r in its own near-optimal order (for r = 234, .., 237) - and for those experiments
we removed the 2 hour time out.

6.2 Space Utilization

Figure 11 illustrates the space (in bytes) used by the 3 algorithms' data structures
for di�erent ranks. As we can see again, the optimal-order key enumeration stops
at 233 because memory shortage. For the w-layer algorithm with w = n we can
clearly see the bounded space consumption leveling at around 1MB. For the w-
layer algorithm with w = 225 we see that its space consumption levels around
4GB and remains steady - allowing the algorithm to enumerate further into the
key space, limited only by the time the cryptanalysis is willing to spend.

Fig. 10. Frequency of the keys whose time consumption applying the w-layer key enu-
meration with w = n is higher than 2 hours.

6.3 The Di�erence in Ranks

Figure 12 illustrates the ranks detected by the 3 algorithms as a function of
the optimal rank. By de�nition the optimal algorithm �nds the correct ranks.
Despite the somewhat pessimistic bounds of Theorem 4, the �gure shows that
with w = n the ratio between the optimal rank are rankw is approximately 5
(again, beyond 228 too many runs timed out for meaningful data). For w = 225

the discovered ranks are almost identical to the optimal ranks (the symbols in
the �gure overlap) - and beyond 233 the optimal algorithm failed so comparison
is not possible.

7 Conclusion

In this paper, we investigated the side channel attack improvement obtained by
adversaries with non-negligible computation power to exploit physical leakage.
For this purpose, we presented a new w-layer key enumeration algorithm that
trades-o� the optimal enumeration order in favor of a bounded memory con-
sumption. We analyzed the algorithm's space complexity, guessing entropy, and
rank distribution. We also evaluated its performance by extensive simulations. As
our simulations show, our w-layer key enumeration allows stronger attacks than
the order-optimal key enumeration [20], whose space complexity grows quickly
with the rank of the searched key�and exceeds the available RAM in realistic
scenarios. Since our algorithm can be con�gured to use as much RAM as avail-
able (but no more) it can continue its near optimal enumeration unhindered.

Fig. 11. Space, counting the data structure elements, of optimal-order key enumeration
(green triangles), w-layer key enumeration with w = 225 (blue diamonds) and w-layer
key enumeration with w = n (red squares) on di�erent ranks.

Along the way we provided bounds on the full key guessing entropy in terms
of the guessing entropies of the individual subkeys. We also observed a signi�cant
gap between the predicted and the true rank distributions of a real SCA�we
showed that the true rank distribution is long-tailed, and well modeled by a
Pareto distribution.

Finally, an open-source Java implementation for both our w-layer key enu-
meration and the order-optimal enumeration [20] are available via the authors'
home pages.

References

1. DPA contest v4. http://www.dpacontest.org/v4/.

2. Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. The
EM side-channel (s). In Cryptographic Hardware and Embedded Systems-CHES
2002, pages 29�45. Springer, 2003.

3. Barry C Arnold. Pareto distribution. Wiley Online Library, 1985.

4. Daniel J Bernstein, Tanja Lange, and Christine van Vredendaal. Tighter, faster,
simpler side-channel security evaluations beyond computing power. Cryptology
ePrint Archive, Report 2015/221, 2015. http://eprint.iacr.org/.

5. Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and
Marc Witteman. Fast and memory-e�cient key recovery in side-channel attacks.
In Selected Areas in Cryptography (SAC), 2015.

Fig. 12. Rank of optimal-order key enumeration (green triangles), w-layer key enu-
meration with w = 225 (blue diamonds) and w-layer key enumeration with w = n (red
squares) on di�erent ranks.

6. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems-CHES
2004, pages 16�29. Springer, 2004.

7. Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Cryp-
tographic Hardware and Embedded Systems-CHES 2002, pages 13�28. Springer,
2003.

8. Markus Dichtl. A new method of black box power analysis and a fast algorithm
for optimal key search. Journal of Cryptographic Engineering, 1(4):255�264, 2011.

9. Karine Gandol�, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: Concrete results. In Cryptographic Hardware and Embedded Systems�CHES
2001, pages 251�261. Springer, 2001.

10. Pascal Junod and Serge Vaudenay. Optimal key ranking procedures in a statistical
cryptanalysis. In Fast Software Encryption, pages 235�246. Springer, 2003.

11. Paul Kocher, Joshua Ja�e, and Benjamin Jun. Di�erential power analysis. In
Advances in Cryptology�CRYPTO'99, pages 388�397. Springer, 1999.

12. Paul C Kocher. Timing attacks on implementations of di�e-hellman, rsa, dss, and
other systems. In Advances in Cryptology�CRYPTO'96, pages 104�113. Springer,
1996.

13. Daniel P. Martin, Jonathan F. O'Connell, Elisabeth Oswald, and Martijn Stam.
Counting keys in parallel after a side channel attack. In Advances in Cryptology�
ASIACRYPT 2015, pages 313�337. Springer, 2015.

14. Willi Meier and Othmar Sta�elbach. Analysis of pseudo random sequences gener-
ated by cellular automata. In Advances in Cryptology�EUROCRYPT'91, pages
186�199. Springer, 1991.

15. Yossef Oren, O�r Weisse, and Avishai Wool. A new framework for constraint-
based probabilistic template side channel attacks. In Cryptographic Hardware and
Embedded Systems�CHES 2014, pages 17�34. Springer, 2014.

16. Jing Pan, Jasper GJ Van Woudenberg, Jerry I Den Hartog, and Marc F Witteman.
Improving DPA by peak distribution analysis. In Selected Areas in Cryptography
(SAC), pages 241�261. Springer, 2011.

17. Romain Poussier, Vincent Grosso, and François-Xavier Standaert. Comparing ap-
proaches to rank estimation for side-channel security evaluations. In Smart Card
Research and Advanced Applications (CARDIS). Springer, 2015.

18. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In Smart Card Programming and
Security, pages 200�210. Springer, 2001.

19. François-Xavier Standaert, Tal G Malkin, and Moti Yung. A uni�ed framework
for the analysis of side-channel key recovery attacks. In Advances in Cryptology-
EUROCRYPT 2009, pages 443�461. Springer, 2009.

20. Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-Xavier
Standaert. An optimal key enumeration algorithm and its application to side-
channel attacks. In Selected Areas in Cryptography (SAC), pages 390�406. Springer,
2013.

21. Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Security
evaluations beyond computing power. In Advances in Cryptology�EUROCRYPT
2013, pages 126�141. Springer, 2013.

22. Xin Ye, Thomas Eisenbarth, and William Martin. Bounded, yet su�cient? how to
determine whether limited side channel information enables key recovery. In Smart
Card Research and Advanced Applications (CARDIS), pages 215�232. Springer,
2014.

