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Abstract. We define the new notion of a multilinear pseudorandom
function (PRF), and give a construction with a proof of security as-
suming the hardness of the decisional Diffie-Hellman problem. A direct
application of our construction yields (non-multilinear) PRFs with ag-
gregate security from the same assumption, resolving an open question
in [CGV15]. Additionally, multilinear PRFs give a new way of viewing
existing algebraic PRF constructions: our main theorem implies they too
satisfy aggregate security.

1 Introduction

Pseudorandom functions (PRFs) are of fundamental importance in modern cryp-
tography. A PRF is efficiently computable and succinctly described, but is indis-
tinguishable from a random function. But a random functions are too unstruc-
tured for many applications, and as a result many specialized pseudorandom
functions with more structure have emerged. Goldreich, Goldwasser, and Nuss-
boim [GGN03] define a general notion of pseudo-implementing huge random
objects with extra structure. In this paper, we define and construct multilin-
ear pseudorandom functions assuming the decisional Diffie-Hellman assumption
(DDH), and we show applications to prior work. Before presenting an informal
definition, we discuss the motivating applications.

The recent work of Cohen, Goldwasser, and Vaikuntanathan [CGV15] intro-
duced the notion of an aggregate pseudorandom function family F with extra
efficiency and security properties. First, the key K for a PRF f enables efficient
computation of Aggf (S) =

∑
x∈S f(x) for some class of succinctly described,

but possibly exponentially large, sets S. Second, no efficient algorithm can dis-
tinguish oracle access to f(·) and Aggf (·) from oracle access to g(·) and Aggg(·),
where g is a truly random function. The main constructions of [CGV15] were
proven secure assuming the subexponential hardness of DDH.

A different line of work studies a notion of algebraic pseudorandom functions
by Benabbas, Gennaro, and Vahlis [BGV11]. This notion is incomparable to ag-
gregate PRFs: algebraic PRFs generalize efficient aggregation, but provide no se-
curity guarantees when an adversary has an aggregation oracle. Algebraic PRFs
have a number of applications in verifiable computation and multiparty compu-
tation [BGV11,Haz15]. Because of their restricted security, algebraic PRFs have
thus far only been considered for polynomially-sized domains – security over
large domains would require subexponential hardness of DDH.



In both works, the reliance on subexponential hardness of DDH (or the small-
domain restriction) is unsatisfying. Subexponential hardness is a significantly
stronger assumption, and is, for example, false in Z∗p. Additionally, security re-
ductions from subexponential hardness assumptions necessitate larger security
parameters and thus lose efficiency.

We define a multilinear PRF family as a family of functions {F : V1 × · · · ×
Vn → Y } mapping a product of vector spaces Vi to another vector space Y ,
in which a random function from the family is indistinguishable from a ran-
dom multilinear function with the same domain and codomain. One case of
particular interest is when each Vi is F2

p. Then any multilinear function from
V1 × · · · × Vn → W is defined by 2n values, which we think of as inducing a
PRF mapping {0, 1}n → Y . Multilinearity allows us to efficiently compute spe-
cific weighted sums of exponentially many PRF values from the above works.
This encompasses “hypercube” aggregation from [CGV15] and the closed-form
efficiency requirements of [BGV11].

2 Preliminaries

Notation For a set S, we use x ← S to mean that x is sampled uniformly at
random from S. We denote the finite field of order p by Fp. All vectors v are
column vectors, and vt denotes the transpose.

2.1 Linear Maps

Given a vector spaces V and W over a field F, we say that a map T : V → W
is linear if T (c1v1 + c2v2) = c1T (v1) + c2T (v2) is a valid identity for all vectors
v1, v2 in V and scalars c1, c2 in F. We say that a map T : V1 × · · · × Vn → W
is multilinear if it is linear in each component.

When V and W have finite dimensions dV and dW (which is the only case
we consider in this paper), a linear map from V to W can be represented by a
matrix in FdW×dV . This representation depends on the choice of bases for V and
W . When F is a finite field (also the only case we consider), a random linear map
from V → W can be sampled by picking an arbitrary basis for V and W and
sampling a uniformly random matrix from FdW×dV . The set of all linear maps
from V to W will be denoted as WV .

2.2 Tensor Products of Vector Spaces

Given vector spaces V and W of dimensions dV and dW over F, the tensor
product V ⊗W is defined as a dV dW -dimensional vector space over F. For any
v ∈ V and w ∈ W , their tensor product v ⊗ w ∈ V ⊗W can be defined by the
following laws:

1. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2



3. For any c ∈ F, (cv)⊗ w = v ⊗ (cw) = c(v ⊗ w).

If V has a basis v1, . . . , vdV , and W has a basis w1, . . . , wdW , there is a natural
basis for V ⊗W , namely {vi⊗wj}i∈[dV ],j∈[dW ]. Expanding v =

∑
i∈[dV ] aivi and

w =
∑
j∈[dW ] bjwj in the respective bases of V and W , and applying the above

laws yields v ⊗ w =
∑
i∈[dV ],j∈[dW ] aibj(vi ⊗ wj). A simple tensor is defined as

one which can be written as v ⊗ w.
One can repeat the tensor product operation to obtain a space V1⊗ · · · ⊗ Vn

for any n vector spaces, with simple tensors of the form v1⊗ · · ·⊗ vn. Vectors in
such a space are sometimes called tensors, and the vector spaces in which they
reside are called tensor spaces.

It is easy to observe that the mapping φ : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn
given by φ(v1, . . . , vn) = v1⊗ · · · ⊗ vn is multilinear. In fact, this map is in some
sense the most general multilinear map on V1 × · · ·Vn. Given any other vector
space Z and a multilinear map h : V1 × · · ·Vn → Z, there exists a unique linear
map fh : V1 ⊗ · · · ⊗ Vn → Z such that h = fh ◦ φ. As a result, multilinear
functions mapping V1 × · · · × Vn → Z naturally correspond to linear functions
mapping V1 ⊗ · · · ⊗ Vn → Z, and vice versa. This is known as the universal
property of a tensor product space. This correspondence will be essential to
proving correctness of Algorithm 2 and thereby the main theorem of this work.

Abusing our notation for the set of linear maps, we will write Y V1⊗···⊗Vn to
denote the set of all multilinear functions mapping V1 × · · · × Vn into Y .

SpanSearch solver for simple tensors We will also need an algorithm which
can solve the following problem: Suppose we are given m + 1 simple tensors
u0, . . . ,um in V1 ⊗ · · · ⊗ Vn, with each ui given in the form vi1 ⊗ · · · ⊗ vin.
Can we find coefficients c1, . . . , cm ∈ F such that u0 =

∑m
i=1 ciu

i? Or is u0

independent of u1, . . . ,um? The standard linear algebra algorithm of Gaussian
elimination takes time which is poly(

∏
i dim(Vi)), which is exponential in the

problem description length n due to the simple tensors’ succinct representation.
[BW04] gives a deterministic polynomial-time algorithm solving this problem,

which we will use in our security proof. For completeness, we reproduce a version
of their simpler randomized algorithm in Section A.

2.3 Decisional Diffie-Hellman Assumption

We define an adversary’s advantage in distinguishing distributions:

Definition 1. We say that a probabilistic algorithm A has advantage |ε| in dis-
tinguishing distributions D0 and D1 if

Pr [A(xb) = b|x0 ← D0, x1 ← D1, b← {0, 1}] =
1

2
+ ε.

We now recall the standard DDH assumption. For self-consistency of notation
we will denote the group operation additively, even though the DDH assumption



is more commonly presented with a multiplicative group operation1. Suppose a
group G with generator g and prime order p are fixed, and denote by TG the
time to perform the group operation.

Definition 2. Define DDHR as the distribution of

(ag, bg, cg)

where a, b, and c are chosen independently and uniformly at random from Fp.

Definition 3. Define DDHPR as the distribution of

(ag, bg, abg)

where a and b are chosen independently and uniformly at random from Fp.

Assumption 1 ((τ, ε)-DDH) All probabilistic algorithms A running in time at
most τ have advantage at most ε in distinguishing DDHR from DDHPR.

The standard DDH assumption postulates an ensemble of groups {Gλ}λ∈N such
that when G← Gλ, G satisfies (poly(λ), negl(λ))-DDH.

(d×T )-Matrix DDH Our proof of security will use the Matrix DDH assump-
tion of Boneh et al. [BHHO08], which is known to follow from the standard DDH
assumption.

Definition 4. Define Id×TR as the distribution of Cg when C is chosen uni-
formly at random from Fd×Tp .

Definition 5. Define Id×TPR as the distribution of abtg where a and b are chosen
uniformly at random from Fdp and FTp respectively.

Boneh et al. prove the following (which in their paper is also Lemma 1).

Lemma 1 ([BHHO08]). For every (d, T ), if there is an adversary A distinguish-
ing Id×TPR from Id×TR with advantage ε in time τ , there is a distinguisher D which
distinguishes DDHPR from DDHR with advantage ε/d in time τ + O(TG · d ·
T log p), where TG is the time to perform the group operation in G.

3 Definition

The security definition for a multilinear pseudorandom function family parallels
the usual definition of a pseudorandom function family. That is, oracle access
to a multilinear pseudorandom function must be indistinguishable from oracle
access to a random multilinear function.

1 This is probably because the first groups suspected to satisfy the Diffie-Hellman
assumption were subgroups of Z∗

p.



Definition 6. Syntactically, a multilinear pseudorandom function family con-
sists of a probabilistic polynomial-time algorithm KeyGen and a deterministic
polynomial-time algorithm Eval.

– KeyGen(1λ): KeyGen takes a security parameter in unary. KeyGen outputs a
secret key K, and also outputs as public parameters a field F, input vector
spaces V1, . . . , Vn, and a codomain vector space Y .

– Eval(K,v1, . . . ,vn): Eval takes as input a secret key K and vectors (v1, . . . ,vn),
and outputs a vector y = FK(v1, . . . ,vn) in the codomain.

KeyGen and Eval must satisfy security: for all probabilistic polynomial-time al-
gorithms A,

Pr

[
AFb(PP, 1λ) = b

∣∣∣∣ (K,PP )← KeyGen(1λ), b← {0, 1}
F0 = Eval(K, ·), F1 ← Y V1⊗···⊗Vn

]
≤ 1

2
+ negl(λ)

Truthfulness While our definition only requires indistinguishability from a ran-
dom multilinear function, Construction 1 is actually multilinear itself. This fact
allows our construction to satisfy the definition of an aggregate PRF, as dis-
cussed in Section 5. We adopt the terminology of [GGN03], calling this property
“truthfulness”.

Remark 1. One can imagine variants on Definition 6. Specifically, we imagine
specifying the domain and codomain arbitrarily rather than receiving them as
outputs of KeyGen. Our construction achieves this in a limited sense; we can
specify n and dim(V1), . . . ,dim(Vn), but Y must always be a DDH-hard group
of large prime order, and F must be Fp. Constructing a multilinear pseudoran-
dom function family over arbitrary finite fields or rings is an intriguing open
question. A special case of this question was posed by [GGN03].Paraphrased
in our terminology, they asked whether there is a multilinear pseudorandom
function family mapping F2

2 × · · · × F2
2 → F2.

One might naively attempt to solve this by composing our construction with
a homomorphism from Y to F2. Unfortunately, in our construction Y must be
a DDH-hard group, so no such homomorphism can be efficiently computable.

4 Construction

We now construct a multilinear pseudorandom function family based on DDH-
hard groups. Given as public parameters a DDH-hard group G of order p with
generator g, and arbitrary dimensions d1, . . . , dn, we construct a multilinear
pseudorandom function family Fd1,...,dn mapping Fd1p × · · · × Fdnp → G. The
security of our construction is determined only by the choice of G, and so we
have no explicit security parameter, in contrast to Definition 6. To match the
definition, one can easily let KeyGen generate a group in which the (assumed)
hardness of the DDH problem corresponds to the given security parameter.



Construction 1 Fd1,...,dn is defined by

– KeyGen(): KeyGen samples vectors w1, . . . ,wn, where wi ← Fdip is sampled
uniformly at random. It returns the secret key K = (w1, . . . ,wn).

– Eval(K, (v1, . . . ,vn)): Eval returns (
∏n
i=1〈wi,vi〉) g, where 〈·, ·〉 denotes the

inner product.

Remark 2. This construction generalizes the Naor-Reingold PRF[NR04], but we
allow richer queries. Specifically, to recover the Naor-Reingold construction, set
each di = 2, and restrict each vi to be a basis vector.

Remark 3 (Truthfulness). Every function in Fd1,...,dn is truly multilinear (not
just indistinguishable from multilinear). This follows from the bilinearity of the
inner product and the multilinearity of multiplication (e.g. (x, y, z) 7→ xyz is
multilinear).

4.1 Proof of Security

Our main security proof is the following theorem.

Theorem 1. When instantiated with a DDH-hard group G, Construction 1 sat-
isfies Definition 6.

Specifically, if there is an algorithm A running in time T such that

Pr

[
AFb(1λ) = b

∣∣∣∣K ← KeyGen(), F0 = Eval(K, ·),
F1 ← GFd1

p ⊗···⊗F
dn
p , b← {0, 1}

]
=

1

2
+ ε

then there is a distinguisher D running in time poly(T, TG,
∑
i di) which distin-

guishes DDHPR from DDHR with advantage at least |ε|
n·maxi di

.

Proof Overview In this overview, we outline a proof by induction on n. In our
actual proof we “unroll” the induction and prove the theorem directly.

When n = 1, our construction is a truly random linear function mapping
V1 → G, given by v 7→ 〈w,v〉g for randomly chosen w and generator g.

We now show that an oracle implementing our construction is pseudorandom
for n > 1. By definition, F0(v1, . . . ,vn) is equal to 〈wn,vn〉

∏n−1
i=1 〈wi,vi, 〉g. By

the inductive hypothesis, oracle access to 〈wn,vn〉Rn−1(v1, . . . ,vn) is indistin-
guishable, where Rn−1 is a truly random multilinear function in GV1⊗···⊗Vn−1 .
Although dim(V1 ⊗ · · · ⊗ Vn−1) is exponential in n, we are able to efficiently
implement an oracle to Rn−1 in a stateful manner.

It remains to show that oracle access to 〈wn,vn〉Rn−1 is indistinguishable
from a random multilinear function F1 = Rn ← GV1⊗···⊗Vn . We show that
a distinguisher A of oracle access to Rn from oracle access to 〈wn,vn〉Rn−1
violates the Matrix DDH assumption. This indistinguishability relies on two
different ways of statefully implementing any Rn, given in Algorithm 1 and
Algorithm 2.



While we described the proof as an induction, directly applying these ideas in
our main proof does not yield an efficient reduction. Below, we use the standard
hybrid argument technique to avoid this pitfall.

Our proof relies on two different algorithms for statefully and efficiently im-
plementing oracle access to a random multilinear function, Rn from V1×· · ·×Vn
to G. We can instead consider Rn as a random linear function from V =
V1 ⊗ · · · ⊗ Vn to G, using the correspondence described in the preliminaries.
Because we consider linear functions on V1 ⊗ · · · ⊗ Vn only as a tool to describe
multilinear functions on V1 × · · · × Vn, we are able to restrict our attention to
simple tensors in the analysis.

Algorithm 1. We maintain a map M which stores a subset of a mapping V →
Y . That is M stores a collection of pairs (u 7→ y); we say that M(u) = y if such
an entry for u exists in M , and that M(u) = ⊥ otherwise. Initially M is the
empty set. A query v is answered by executing the following steps:

1. Check whether {v}∪{u : M(u) 6= ⊥} is linearly independent. If it is, sample
a random vector y← Y and add the mapping (v 7→ y) to M .

2. Compute v =
∑
j cjuj where for each j, M(uj) 6= ⊥.

3. Return
∑
j cjM(uj).

The efficiency of Steps 1 and 2 relies on the SpanSearch algorithm, which works
for simple tensors.

Proposition 1. Algorithm 1 implements a random linear function mapping
V → Y .

Proof. Suppose the queries up to time t are given by v1, . . . ,vt ∈ V . Let (vi1 7→
yi1), . . . , (vij 7→ yij ) be the first j entries in M . The vectors vi1 , . . . ,vij are a
basis for span(v1, . . . ,vt). It is easy to see that Algorithm 1 implements a linear
map on span(v1, . . . ,vt) which is given by a random matrix. In particular, this
matrix has columns yi1 , . . . ,yij .

We now give an alternate algorithm implementing a random linear function
mapping U ⊗W → Y for any vector spaces U , W , and Y . In particular, we will
take U = V1 ⊗ · · · ⊗ Vj−1 and W = Vj .

Algorithm 2. Queries are of the form u⊗w ∈ U ⊗W . We maintain a map M
which stores a subset of a mapping U → YW . That is M stores a collection of
pairs (z 7→ f), where each f is a linear map from W to Y . We say that M(z) = f
if such an entry for z exists in M , and that M(z) = ⊥ otherwise. Initially M is
the empty set. A query u⊗w is answered by executing the following steps:

1. Check whether {u}∪{z : M(z) 6= ⊥} is linearly independent. If it is, sample
a random linear map f : W → Y and add the mapping (z 7→ f) to M .

2. Write u =
∑
j cjzj where for each j, M(zj) = fj .

3. Return
∑
j cjfj(w).



Proposition 2. Algorithm 2 implements a random linear function mapping U⊗
W → Y .

Proof. A linear function mapping U to the space YW of linear functions from W
to Y can be equivalently viewed as a bilinear function mapping U ×W → Y . As
discussed in the preliminaries, there is a bijective correspondence between such
bilinear functions and linear functions mapping U⊗W → Y . Then Proposition 2
is just a special case of Proposition 1.

The main lemma used in the proof of Theorem 1 is that the following two
distributions on linear functions are indistinguishable.

Definition 7. For j > 0, let RF j denote GFd1
p ⊗···⊗F

dj
p . Let RF0 = G.

Definition 8. For j > 0, let PRF j denote the distribution of multilinear func-
tions defined by

(v1 ⊗ · · · ⊗ vj) 7→ 〈w,vj〉R(v1 ⊗ · · · ⊗ vj−1)

where w is sampled from F
dj
p and R is sampled from RF j−1.

Lemma 2. If there is an oracle algorithm A running in time T such that

Pr
[
AFb() = b

∣∣F0 ← PRF j , F1 ← RFj , b← {0, 1}
]

=
1

2
+ ε

then there is a distinguisher D running in time poly(T,
∑
i≤j di) such that D

breaks Matrix DDH with the same advantage. That is,

Pr
[
D(Mb) = b

∣∣∣M0 ← I
dj×T
PR ,M1 ← I

dj×T
PR , b← {0, 1}

]
=

1

2
+ ε.

The distinguisher D is defined to execute the following steps:

1. Take C̃g as input. Here C̃ is either equal to abt for random a ∈ F
dj
p and

b ∈ FTp or is sampled uniformly at random C ← F
dj×T
p . Denote the kth

column of C̃g by γk
2. Create an (initially empty) map M to store a subset of Fd1p × · · · ×F

dj−1
p →

Gdj . That is M stores a collection of pairs (v1 ⊗ · · · ⊗ vj−1 7→ g), where
each g ∈ Gdj . We will preserve the invariant that {u : M(u) 6= ⊥} is linearly
independent.

3. Run the adversary A(), answering queries as follows:
On the ith query vi1⊗· · ·⊗vij−1⊗vij , first define vi−j = vi1⊗· · ·⊗vij−1. Use

our SpanSearch solver to check whether {vi−j} ∪ {u : M(u) 6= ⊥} is linearly

independent. If it is, add the mapping (vi−j 7→ γi) to M .

Otherwise, our SpanSearch solver tells us how to write vi−j as
∑
k αkuk,

where eachM(uk) is not⊥.D then answersA’s query with
∑
k αk

〈
M(uk),vij

〉
.

4. Finally, D outputs the same answer that A outputs.



Lemma 2 follows from the following two claims.

Claim. When C̃ is uniformly random, then D answers queries according to the
same distribution as RF j .

Proof. This follows from Proposition 2. Namely, when C̃ is uniformly random,
the columns γi define independent and uniformly random linear maps from

F
dj
p → G. A’s queries are therefore answered according to a random multilinear

function, which is the same as RF j .

Claim. When C̃ is generated as abt, then D answers queries according to the
same distribution as PRF j .

Proof. Suppose that C̃ is abt. Then each γi is abi, where each bi is sampled inde-
pendently and uniformly at random from Fp. So D can equivalently change M to
only store (vi−j 7→ big) and now answers queries with 〈a,vij〉 (

∑
k αkM(uk)). By

Proposition 1, this is the same as 〈a,vij〉R(φ(vi−j)) with R sampled from RF j .
By definition, this is the same as answering queries with a randomly sampled R′

from PRF j .

We can now prove Theorem 1.

Proof (of Theorem 1). We define distinguishers DJ for each J ∈ {0, . . . , n} that
execute the following steps:

1. Prepare a stateful implementation R ← RFJ using Algorithm 1 backed by
our SpanSearch solver.

2. Sample wi uniformly at random from Fdip for each i ∈ {J + 1, . . . , n}.
3. RunA, answering its queries (v1, . . . ,vn) with

(∏n
i=J+1〈wi,vi〉

)
R(v1, . . . ,vJ).

4. Output whatever A outputs.

First, it is clear that the output of D0 is the same as the output of AEval(K,·)()
where K ← KeyGen(), and the output of Dn is the same as the output of
AF1() where F1 ← RFn. By a standard hybrid argument, there must exist
some j ∈ {0, . . . , n − 1} such that Dj and Dj+1 output 1 with probabilities
differing by at least |ε|/n.

But if we replace Dj+1’s (black-box) usage of F ← RFj+1 by F ← PRF j+1,
then Dj+1 is functionally equivalent to Dj . So Dj+1 can be used to distinguish
oracle access to RF j+1 from oracle access to PRF j+1. Lemma 2 implies that

Dj+1 can be used to distinguish I
dj+1×Q
R from I

dj+1×Q
PR with advantage at least

|ε|/n, where Q is any bound on the number of linearly independent queries made
byA. In particular Q ≤ T . Lemma 1 implies that Dj+1 can be used to distinguish

DDHR from DDHPR with advantage at least |ε|
n·dj+1

. ut



5 Applications

In this section, we show how our multilinear PRF simplifies and improves PRF
constructions in [BGV11] and [CGV15]. We instantiate the vector spaces F dip of
Construction 1 appropriately, and show that oracle access to a multilinear PRF
suffices to perfectly simulate oracle access to the functions from those works.

Aggregate PRFs [CGV15] are PRF families with extra efficiency and secu-
rity properties. First, the key K for a PRF f enables efficient computation of
Aggf (S) =

∑
x∈S f(x) for some class of succinctly described, but possibly ex-

ponentially large, sets S. Second, no efficient algorithm can distinguish oracle
access to f(·) and Aggf (·) from oracle access to g(·) and Aggg(·), where g is a
truly random function.

One specific setting that [CGV15] addresses is when S can be any “hyper-
cube”. A hypercubeHp ⊂ {0, 1}n is described by a pattern p ∈ {{0}, {1}, {0, 1}}n.
Hp is defined as {x ∈ {0, 1}n : xi ∈ pi}. Informally, Hp is the set obtained by
fixing the bits of x at particular indices, and allowing all other bits to vary freely.
[CGV15] showed a construction with efficent evaluation, but security relied on
the subexponential hardness of the DDH problem.

We show that the hypercube construction in [CGV15] is a special case of Con-
struction 1. The correctness of the aggregate queries is implied by the truthful-
ness of our construction. Thus we prove aggregate security of their construction
relying only on the standard DDH assumption.

Corollary 1. Assuming the (polynomial) hardness of DDH over the group G,
[CGV15]’s PRFs for hypercubes2 and decision trees 3 are secure aggregate PRFs.

Proof. As shown in [CGV15], it suffices to prove the case of hypercubes.
Let B denote the 2-dimensional vector space whose basis vectors are |0〉 and

|1〉. Our construction gives a pseudorandom multilinear function F mapping Bn

to G. This function F induces a pseudorandom function f : {0, 1}n → G given
by f(b1 . . . bn) = F (|b1〉 , . . . , |bn〉).

First observe we can compute the sum of f(x) for all x as

F
(
|0〉+|1〉 , . . . , |0〉+|1〉

)
.

To fix a bit xi to b – thus aggregating over a smaller hypercube – we replace
the ith argument of F above with |b〉. That is, to compute Aggf (Hp) for some
hypercube Hp, we evaluate

F

∑
b∈p1

|b〉 , . . . ,
∑
b∈pn

|b〉


This yields the correct aggregate value by the truthfulness (multilinearity) of
our construction. Therefore oracle access to Aggf can be simulated with even

2 Section 3.2
3 Section 3.3



a restricted oracle to F . Namely, we only make queries where each argument is
either |0〉, |1〉, or |0〉 + |1〉. Theorem 1 then implies aggregate PRF security of
f . ut

We can actually achieve the more generalized aggregation, as required in
the work of Benabbas, Gennaro, and Vahlis [BGV11] on algebraic PRFs, while
maintaining aggregate security. For example, efficiently evaluating

pf (z) =
∑

x∈{0,1}n
f(x)zn

has applications in verifiable and multiparty computation [BGV11,Haz15]. We
can achieve this functionality with oracle access to our multilinear PRF F , thus
keeping aggregate security. Specifically, instantiate Construction 1 as above. One
can then compute

pf (z) = F
(
|0〉+z2

n−1

|1〉 , . . . , |0〉+z |1〉
)
.

Correctness and security follow directly because F is a pseudorandom multilinear
function. This can easily be extended to cover the more general multivariable
algebraic PRF considered in [BGV11] (Section 4.2), along with a number of
other immediate generalizations.

Each of the above applications uses only the simplest of vector spaces. There
are many other ways in which a multilinear PRF can be invoked, but we high-
light these two examples as applications which have already appeared in the
literature.

6 Extensions

Two other classes of functions which are fundamental in mathematics are sym-
metric and skew-symmetric multilinear functions. Informally, a function from
V n → Y is symmetric if swapping any arguments xi and xj does not affect the
value, and is skew-symmetric if such a swap negates the value. Pseudorandom
implementations of these classes of functions are interesting open problems.

Definition 9. A function F : V n → Y is said to be symmetric if for all i 6= j,

F (x1, . . . , xn) = F (x′1, . . . , x
′
n),

where

x′k =


xi if k = j

xj if k = i

xk otherwise.

F is said to be skew-symmetric if F (x1, . . . , xn) = −F (x′1, . . . , x
′
n).

Given a group G of order p with generator g, we present a candidate con-
struction of a symmetric multilinear pseudorandom function family,



Construction 2 Fd,n is defined by

– KeyGen(): KeyGen samples a vector w uniformly at random from Fdp.
– Eval(w,v1, . . . ,vn)): Eval returns (

∏n
i=1〈w,vi〉) g, where 〈·, ·〉 denotes the

inner product.

This is a modification to Construction 1 in which w1 = · · · = wn, which clearly
yields symmetric multilinear functions, but security is less clear.

In case d = 2, security reduces to the n-Strong DDH assumption. This as-
sumption states that (h, xh, . . . , xnh) is indistinguishable from n + 1 random
elements of G, when h is a randomly chosen generator of G, and x is a random
element of Fp. This is because a symmetric multilinear function on (F2

p)
n is

defined by n + 1 “basis” values, which in the above construction correspond to
this tuple.

Conjecture 1. With a suitably chosen group G, Construction 2 defines a sym-
metric multilinear family of pseudorandom functions.
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A Randomized Algorithm for SpanSearch

The algorithm, closely adapted from [BW04], uses a linear code with special
properties to construct an efficient randomized algorithm.

Lemma 3. Let V1, . . . , Vn be vector spaces over Fq, and let d denote dim(V1) +
· · ·+ dim(Vn). Then there is a linear code C with relative distance 1/3 mapping

V = V1 ⊗ · · · ⊗ Vn into (Fq)
q′d+k

, where q′ = qk is the smallest power of q that
is greater than 3n. Furthermore, the jth symbol of the codeword for any simple
vector v is efficiently computable, and is denoted C(v)[j].

Proof. We structure the code as the composition of several injective linear maps.
First, we observe that there is an injective linear map from V1⊗· · ·⊗Vn to the

space of homogeneous polynomials of degree n over Fq as follows. Let dj denote
dim(Vj), and let xj,1, . . . , xj,dj denote a basis of Vj . Given a simple element

v = (
∑d1
k=1 c1,kx1,k)⊗· · ·⊗ (

∑dn
k=1 cn,kxn,k), it’s easy to form a polynomial. Just

treat each xj,k as a formal variable and replace tensor multiplication by field
multiplication. We shall denote this polynomial as pv. The mapping v 7→ pv is
injective because {x1,j1 ⊗ · · · ⊗ xn,jn}jk∈[dk] is a basis for V , and the degree-n
monomials {

∏
i xi,ji}j1∈[d1],...,jn∈[dn] are linearly independent.

Next, embed Fq in its field extension Fq′ . This is an injective linear map, as
is the embedding of pv into the space of polynomials over Fq′ .

This embedded polynomial (call it p′v) then defines a Reed-Muller codeword
C ′(v) ∈ Fq′ : we just enumerate the values of p′v on every input in Fdq′ . This is
an injective linear map, and furthermore it has a relative distance of 2/3 by the
Schwartz-Zippel lemma.

Finally we encode each symbol (in Fq′) of this codeword. First, because Fq′

is an extension of Fq, it is isomorphic to Fkq . The Hadamard encoding thus con-

siders the inner product of that symbol with every vector in Fkq . This encoding
incurs a multiplicative loss in relative distance of (1 − 1/q), which could be as
little as 1/2. So this final code has a relative distance of at least 2/3 · 1/2 = 1/3.

The resulting codeword C(v) is of length q′d + k and consists of symbols in
Fq.

Algorithm 3. Given an instance (v0, v1, . . . , vt) of SpanSearch, where vi is given
as vi = vi,1 ⊗ · · · ⊗ vi,n, our algorithm for computing c1, . . . , ct is as follows.

Our algorithm is a randomized solution to a search problem, so we cannot
use standard amplification techniques. Instead, we have a correctness parameter
λ such that the probability of error is bounded by 2−λ.

1. Let m = t · log3/2 q + λ · log3/2 2 and randomly sample r1, . . . , rm each from

[q′d + k].
2. Build the matrix

M =


C(v1)[r1] C(v2)[r1] . . . C(vt)[r1]
C(v1)[r2] C(v2)[r2] . . . C(vt)[r2]
...

...
. . .

...
C(v1)[rm] C(v2)[rm] . . . C(vt)[rm]





and solve the matrix equation

M ·


c1
c2
...
ct

 =


C(v0)[r1]
C(v0)[r2]
...
C(v0)[rm]

 (1)

for c1, . . . , ct over Fq. If no solution exists, return ⊥. Otherwise return
(c1, . . . , ct).

Correctness In order to show correctness, we must show that v0 = c1v1+. . .+ctvt
if and only if Equation 1 is satisfied. The forward implication is clear by the
linearity of our code: If v0 = c1v1+. . .+ctvt, then C(v0) = c1C(v1)+· · ·+ctC(vt).
We show that the converse holds with high probability by applying a union bound
over every choice of (c1, . . . , ct).

There are qt linear combinations of C(v1), . . . , C(vt). Each linear combina-
tion which differs from C(v0) in fact differs from C(v0) on at least 1

3 of the
indices by Lemma 3. Because r1, . . . , rm are chosen randomly, the probability
that this combination satisfies Equation 1 is at most ( 2

3 )m. By a union bound,
the probability that any linear combination of v1, . . . , vt which differs from v0
satisfies Equation 1 is at most

qt
(

2

3

)m
= qt

(
2

3

)t·log3/2 q+λ·log3/2 2

≤ 2−λs

so the “if and only if” holds with very high probability.

Efficiency This algorithm runs in time poly(n, d, log q, t, λ) where n is the number
of vector spaces (over a field of size q) whose tensor product we work with, and
d is their maximum dimension. t is the number of vectors given, and λ is the
correctness parameter.
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