Improved Test Pattern Generation for Hardware
Trojan Detection using Genetic Algorithm and
Boolean Satisfiability

Sayandeep Sahal, Rajat Subhra Chakraborty!, Srinivasa Shashank Nuthakki?,
Anshul’, and Debdeep Mukhopadhyay"

! Department of Computer Science and Engineering
2 Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology Kharagpur
Kharagpur-721302, India
E-mail: {sahasayandeep91, rschakraborty, debdeep}@cse.iitkgp.ernet.in

Abstract. Test generation for Hardware Trojan Horses (HTH) detec-
tion is extremely challenging, as Trojans are designed to be triggered by
very rare logic conditions at internal nodes of the circuit. In this paper,
we propose a Genetic Algorithm (GA) based Automatic Test Pattern
Generation (ATPQG) technique, enhanced by automated solution to an
associated Boolean Satisfiability problem. The main insight is that given
a specific internal trigger condition, it is not possible to attack an ar-
bitrary node (payload) of the circuit, as the effect of the induced logic
malfunction by the HTH might not get propagated to the output. Based
on this observation, a fault simulation based framework has been pro-
posed, which enumerates the feasible payload nodes for a specific trig-
gering condition. Subsequently, a compact set of test vectors is selected
based on their ability to detect the logic malfunction at the feasible pay-
load nodes, thus increasing their effectiveness. Test vectors generated by
the proposed scheme were found to achieve higher detection coverage
over large population of HTH in ISCAS benchmark circuits, compared
to a previously proposed logic testing based Trojan detection technique.

1 Introduction

Modern electronic design and manufacturing practices make a design vulnerable
to malicious modifications. Malicious circuitry embedded as a result of such
modifications, commonly referred to as Hardware Trojan Horses (HTHs), have
been demonstrated to be potent threats [6]. The stealthy nature of HTHs help
them to evade conventional post-manufacturing testing. Once deployed in-field,
HTHs get activated under certain rare conditions (depending on internal or
external stimulus), and can potentially cause disastrous functional failure or
leakage of secret information.

Recent research on HTHs mainly focuses on the modelling and detection of
HTHs [4[13,/16l/17{19)21]. A vast majority of the detection mechanisms proposed
till date utilizes the anomaly in the side-channel signatures (e.g. delay, transient

Coverage (%)

1

10

l:'Trigger Coverage

0
l:' Trigger Coverage
-'I'm'an Coverage
| It rag

Trojan Coverage
o I} o

F.
=

3
<
- T
=
b
4 1z
Q

e
=

=

=

“&&&ﬂ&ﬂﬂ

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.3 U001 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 0.1 015 02 03
Rareness Threshold (6) Rareness Threshold (0)
(a) (b)

Fig. 1. Motivational example: variation of trigger and Trojan coverage with rareness
threshold (6) by the MERO [5| technique for c7552 (a) on sets of Trojans considered
as in ; (b) on a set of rarely triggered Trojans (effective triggering probability below
107%).

and leakage power) in the presence of HTH in the circuit . However,
side-channel approaches are susceptible to experimental and process variation
noise. Thus, detection of small Trojans, especially combinatorial ones, becomes
challenging through these approaches. Another approach is to employ design
modification techniques to either prevent Trojan insertion or to make inserted

Trojans more easily detectable .

An adversary may use very rare internal logic conditions to trigger a HTH,
so that it remains well hidden during testing. Usually, it is assumed that the
attacker will generate the trigger signal form a combination of internal nets of
the circuit whose transition probability is very low. She may try to activate them
simultaneously to their rare values thus achieving an extremely low triggering
probability. Based on this assumption, several Trojan detection techniques have
been proposed till date which try to activate the Trojans either fully
or partially by triggering the rare nodes, thus creating anomaly at the output
logic values, or in some side channel signals viz. transient power. In the
authors proposed a design-for-testability (DFT) technique which inserts dummy
scan flip-flops to make the transition probability of low transition nets higher in a
special “authentication mode”. However, it was found that careful attackers can
evade this scheme easily . Another powerful DFT technique is obfuscating
or encrypting the design by inserting some extra gates in it [3,[7], so that the
actual functionality of the circuit is hidden, consequently making it difficult for
an adversary to estimate the actual transition probabilities at the internal nodes.
However, such “logic encryption” schemes have been recently broken .

Observing the vulnerability of DFT techniques against intelligent attackers,
in a test pattern generation scheme called MERO was proposed. MERO
uses the philosophy of N-detect test to activate individually a set of nodes in
a circuit to their less-probable values whose transition probabilities are below
a specific threshold (termed rareness threshold and usually denoted by 6). The

test generation is continued until each of the nodes gets activated to their rare
values at least N-times. It was shown through simple theoretical analysis and
experimental results that if N is sufficiently large, then a Trojan whose trigger
condition is composed jointly of rare values at these rare nodes, is highly likely
to be activated by the application of this test set.

Although MFERO proposes a relatively simple heuristic for test generation it
is found to have the following shortcomings:

1. When tested on a set of “hard-to-trigger” Trojans (with ¢riggering probability
in the range of 1076 or less), the test vector set generated by MERO was
found to have poor coverage both over triggering combinations and Trojans.
Fig. b) presents the variation of trigger and Trojan coverage with the
rareness threshold (0) value for the ISCAS-85 circuit ¢7552, where the Trojan
trigger probability is the effective Trojan triggering probability considering
all the nodes together, unlike in [5], which considered trigger probability
at individual nodes (see Fig. [I(a)). It was found that best coverage was
achieved for # in the range 0.08 — 0.12, and this trend was consistent for all
the benchmark circuits considered. However, the best achievable coverage
was still below 50%, for even circuits of moderate size like c7552.

2. Although individual activation of each individual rare nodes at least N-times
increases the activation probability of rare node combinations on average,
there is always a finite probability that combinations with extremely low
activation probability will not be triggered for a given value of N. As a
result, even for small ISCAS—85 circuits like ¢432, the MERO test generation
method misses some rare node patterns even after several independent runs.
This fact can be utilized by an intelligent adversary.

3. MERO explores a relatively small numbers of test vectors, as the heuristic
perturbs only a single bit at a time of an obtained test vector to generate
new test vectors.

4. Another problem with the MERO algorithm is that, while generating the
test vectors, it only considers the activation of the triggering con-
ditions, and ignores whether the triggered Trojan actually caused
any logic malfunction at the primary output of the circuit under
test.

1.1 Main Idea and Our Contribution

Motivated by the above mentioned shortcomings of [5], in this paper we propose
an improved ATPG scheme to detect small combinational and sequential HTHs,
which are otherwise often difficult to detect by side channel analysis, or can
bypass design modification based detection schemes. We note that for higher
effectiveness, a test generation algorithm for Trojan detection must
simultaneously consider trigger coverage and Trojan coverage. Firstly,
we introduce a combined Genetic Algorithm (GA) and Boolean satisfiability
(SAT) based approach for test pattern generation. GA has been used in the
past for fault simulation based test generation [15]. GA is attractive for getting

reasonably good test coverage over the fault list very quickly, because of the
inherent parallelism of GA which enables relatively rapid exploration of a search
space. However, it does not guarantee the detection of all possible faults, specially
for those which are hard to detect. On the other hand, SAT based test generation
has been found to be remarkably useful for hard-to-detect faults. However, it
targets the faults one by one, and thus incurs higher execution time for easy-to-
detect faults which typically represent the majority of faults [8]. It has another
interesting feature that it can declare whether a fault is untestable or not.

In case of HTH, the number of candidate trigger combinations has an ex-
ponential dependence on the number of rare nodes considered. Even if we limit
the number of Trojan inputs to four (because of VLSI design and side—channel
information leakage considerations), the count is quite large. Thus, we have a
large candidate trigger list and it is not possible to handle each fault in that list
sequentially. However, many of these trigger conditions are not actually satisfi-
able, and thus cannot constitute a feasible trigger. Hence, we combine the “best
of both worlds” for GA and SAT based test generation. The rationale is that
most of the easy-to-excite trigger conditions, as well as a significant number of
hard-to-excite trigger conditions will be detected by the GA within reasonable
execution time. The remaining unresolved trigger patterns are input to the SAT
tool; if any of these trigger conditions is feasible, then SAT returns the corre-
sponding test vector. Otherwise, the pattern will be declared unsolvable by the
SAT tool itself. As we show later, this combined strategy is found to perform
significantly better than MFERO. In the second phase of the scheme, we refine the
test set generated by GA and SAT, by judging its effectiveness from the perspec-
tive of potency of the triggered Trojans. For each feasible trigger combination
found in the previous step, we find most of the possible payloads using a fault
simulator. For this, we model the effect of each Trojan instance (defined
by a combination of a feasible trigger condition and the payload node)
as a stuck-at fault, and test whether the fault can be propagated to
the output by the same test vector which triggered the Trojan. This
step helps to find out a compact test set which remarkably improves
the Trojan coverage. To sum up, the following are the main contributions of
this paper:

1. An improved ATPG heuristic for small combinational and sequential HTH
detection is presented which utilizes two well known computational tools, GA
and SAT. The proposed heuristic is able to detect HTH instances triggered
by extremely rare internal node conditions, while having acceptable execu-
tion time. Previous work has reported that partial activation of the Trojan
with accompanying high sensitivity side channel analysis is quite effective
in detecting large HTHs [17], but not so effective for ultra-small Trojans.
Hence, our work fills an important gap in the current research.

2. The tuning of the test vector set considering the possible payloads for each
trigger combination makes the test set more compact, and increases its ef-
fectiveness of exploring the Trojan space.

A—3I_ C -o=--- _C __________________ Crodted
B Craea | _THOGET o= ;

:Generato

()
el

Trigger
Generator

Inserted
Trojan Gate:

(a) Combinational Trojan (b) Sequential (counter-based) Trojan

Fig. 2. Example of (a) combinational and (b) sequential (counter-like) Trojan. The
combinational Trojan is triggered by the simultaneous occurrence of logic—1 at two
internal nodes. The sequential (counter-like) Trojan is triggered by 2* positive (0 — 1)
transitions at the input of the flip-flops.

3. The relative efficacy of the proposed scheme with respect to the scheme
proposed in [5] has been demonstrated through experimental results on a
subset of ISCAS-85 and ISCAS-89 circuits.

4. Since the triggering condition, corresponding triggering test vectors, as well
as the possible payload information for each of the feasible triggers are gen-
erated during the execution, a valuable Trojan database for each circuit is
created, which may be utilized for diagnosis purposes too. This database
is enhanced for multiple runs of the algorithm, because of the inherent ran-
domized nature of the GA which enables newer portions of the Trojan design
space to be explored.

The rest of the paper is organized as follows. Section{2] presents a brief intro-
duction to GA and SAT, as relevant in the context of ATPG for Trojan detection.
The complete ATPG scheme is described in Section{3] Experimental results are
presented and analyzed in Section{d along with discussions on the possible ap-
plication of the proposed scheme for Trojan diagnosis and side channel analysis
based Trojan detection. The paper is concluded in Section{d} with directions of
future work.

2 GA and SAT in the Context of ATPG for Trojan
Detection

2.1 Hardware Trojan Models

We consider simple combinational and sequential HTHs, where a HTH instance
is triggered by the simultaneous occurrence of rare logic values at one or more
internal nodes of the circuit. We find the rare nodes (R) of the circuit with
a probabilistic analysis. Details of this analysis can be found in [17,]21]. Once
activated, the Trojan flips the logic value at an internal payload node. Fig.
shows the type of Trojans considered by us.

Notice that it is usually infeasible to enumerate all HTHs in a given circuit.
Hence, we are forced to restrict ourselves to analysis results obtained from a ran-
domly selected subset of Trojans. The cardinality of the set of Trojans selected

depends on the size of the circuit being analyzed. Since we are interested only
in small Trojans, a random sample S of up to four rare node combinations is
considered. Let us denote the set of rare nodes as R, with |R| = r for a specific
rareness threshold (). The set of all possible rare node combinations is then
the power set of R, denoted by 2%). Thus, the population of Trojans under
consideration is the set K, where K C 2% and |K| is (;) + (g) + (g) + (2) Thus,
SCK.

We intentionally chose 8 = 0.1 for our experiments, which is lower than the
value considered in [5] (# = 0.2). The choice is based on the observed coverage
trends of our experiments on “hard-to-trigger” Trojans in Section[I} where it was
observed that the coverage is maximized for 6 values in the range 0.08 —0.12 for
most ISCAS benchmark circuits.

2.2 Genetic Algorithm (GA) for ATPG

Genetic algorithm (GA) is an well known bio-inspired, stochastic, evolutionary
search algorithm based upon the principles of natural selection [10]. GA has been
widely used in diverse fields to tackle difficult non-convex optimization problems,
both in discrete and continuous domains. In GA, the quality of a feasible solu-
tion is improved iteratively, based on computations that mimic basic genetic
operations in the biological world. The quality of the solution is estimated by
evaluating the numerical value of an objective function, usually termed the “fit-
ness function” in GA. In the domain of VLSI testing, it has been successfully
used for difficult test generation and diagnosis problems [15]. In the proposed
scheme, GA has been used as a tool to automatically generate quality test pat-
terns for Trojan triggering. During test generation using GA, two points were
emphasized:

— an effort to generate test vectors that would activate the most number of
sampled trigger combinations, and,
— an effort to generate test vectors for hard-to-trigger combinations.

However, as mentioned in the previous section, the major effort for GA was
dedicated to meet the first objective.

To meet both of the goals, we used a special data structure as well as a proper
fitness function. The data structure is a hash table which contains the triggering
combinations and their corresponding activating test vectors. Let & denote the
sampled set of trigger conditions being considered. Each entry in the hash table
(D) is a tuple (s, {¢;}), where s € S is a trigger combination from the sampled set
(8) and {t;} is the set of distinct test vectors activating the trigger combination
s. Note that, a single test vector ¢; may trigger multiple trigger combinations
and thus can be present multiple times in the data structure for different trigger
combinations (s). The data structure is keyed with trigger combination s. Ini-
tially, D is empty; during the GA run, D is updated dynamically, whenever new
triggering combinations from S are found to be satisfied. The fitness function is
expressed as:

F() = Reoune(t) + w11 (1)

where f(t) is the fitness value of a test vector ¢; Reount(t) counts the number of
rare nodes triggered by the test vector ¢; w (> 1) is a constant scaling factor,
and I(¢) is a function which returns the relative improvement of the database D
due to the test vector t. The term “relative improvement of the database” (I(t))
can be explained as follows. Let us interpret the data structure D as a histogram
where the bins are defined by unique trigger combinations s € S, and each bin
contains its corresponding activating test vectors {¢;}. Before each update of the
database, we calculate the number of test patterns in each bin which is to be
updated. The relative improvement is defined as:

(1) =y) @

seS ’/7,2(5)

where: nj(s) is the number of test patterns in bin s before update, and ns(s) is
the number of test patterns in bin s after update.

Note that for each test pattern ¢ that enters the database D, the numera-
tor will be either 0 or 1 for an arbitrary trigger combination s. However, the
denominator will have larger values with the minimum value being 1. Thus, for
any bin s, when it gets its 1% test vector, the above mentioned ratio achieves
the maximum value 1, whereas when a bin gets its n'” test vector, the fraction
is % The value gradually decreases as the number of test vectors in s increases.
This implies that as a newer test vector is generated, its contribution is
considered more important if it has been able to trigger an yet un-
activated trigger condition s, than if it activates a trigger condition
that has already been activated by other test vector(s). Note that, for
bins s having zero test vectors before and after update (i.e. trigger conditions
which could not be activated at the first try), we assign a very small value 10~7
for numerical consistency. The scaling factor w is proportional to the relative
importance of the relative improvement term; in our implementation, w was set
to have the value 10.

The rationale behind the two terms in the fitness function is as follows.
The first term in the fitness function prefers test patterns that simultaneously
activate as many trigger nodes as possible, thus recording test vectors each of
which can potentially cover many trigger combinations. The inclusion of the
second term has two effects. Firstly, the selection pressure of GA is set towards
hard-to-activate patterns by giving higher fitness value to those test patterns
that are capable of hard—to—trigger conditions. Secondly, it also helps the GA to
explore the sampled trigger combination space evenly. To illustrate this, let us
consider the following example.

Suppose, we have five rare nodes r1, 19, 73,74, 5. We represent the activation
of these five nodes by a binary vector r of length five, where r; = 1 denotes that
the i*? rare node has been activated to its rare value and r; = 0 otherwise. Thus,
a pattern 11110 implies the scenario where the first four rare nodes have been
simultaneously activated. Now, the test vector ¢, which generates this rare node
triggering pattern also triggers the patterns 10000, 01000, 00100, 00010, 11000,
..., 11100, i.e. any subset of the triggered rare nodes. Mathematically, if there

Two random | Random mutation
cri)ssover Iocatitins : locations

(e « To o T [ie oononoononinonoanoonon

: Chromosome

|0|0|0 1|1|o|o 1|1|1| |0|o|o|1|0|o|1|1|1|1|| before mutation

Two random crossover Two siblings chr :

locations after crossover I|1|ll|1|0|1|0|1|1|0|1|

Two parents chromosomes ! Chromosome

before crossover : after mutation

(@ ! (b)

Fig. 3. Example of two—point crossover and mutation in Binary Genetic Algorithm.

are in total r rare nodes and 7’ rare nodes are simultaneously triggered
in a pattern (' < r) by a test vector ¢, then the 2" subsets of the
triggered rare nodes are also triggered by the same test vector. Hence,
maximizing r’ increases the coverage over the trigger combination
sample set.

The test generation problem is modelled as a maximization problem, and
solved using a variation of GA termed Binary Genetic Algorithm (BGA) [10].
Each individual in the population is a bit pattern called a “chromosome”, which
represents an individual test vector. Two operations generate new individuals by
operating on these chromosomes: crossover and mutation. Crossover refers to
the exchange of parts of two chromosomes to generate new chromosomes, while
mutation refers to the random (probabilistic) flipping of bits of the chromosomes
to give rise to new behaviour. Fig. [3| shows examples of two—point crossover and
mutation in BGA. We used a two—point crossover and binary mutation, with a
crossover probability of 0.9 and mutation probability of 0.05, respectively. The
collection of individuals at every iteration is termed a population. A population
size of 200 was used for combinatorial circuits and 500 for sequential circuits.
Two terminating conditions were used: i) when the total number of distinct
test vectors in the database crosses a certain threshold value #T, or ii) if 1000
generations had been reached. The initialization of the population is done by
test vectors satisfying some rare node combinations from the sample set. These
rare node combinations are randomly selected and the test vectors were found
using SAT tools (details are given in the following subsection). Algorithm
shows the complete test generation scheme using GA. Notice that the initial test
vector population is generated by solving a small number of triggering conditions
using SAT.

Among the sampled trigger instances, many might not be satisfiable, as we
do not have any prior information about them. Moreover, although GA traverses
the given trigger combination sample space reasonably rapidly, it cannot guaran-
tee to be able to generate test vectors that would activate all the hard-to-trigger
patterns. Thus, even after the GA test generation step, we were left with some
trigger combinations among which some are not satisfiable and others are ex-

Algorithm 1 TESTGEN_GA

/*

Generate Triggering Test Vectors Using Genetic Algorithm */

Input: Circuit Netlist, Set of rare nodes (R), Set of sampled trigger combina-

tions (S), Gmaz, Tmaz, crossover probability, mutation probability, (empty)
trigger database (D)

Output: Data structure (D) filled with triggering test vectors, set of unsatisfied

25:
26:

27

trigger combinations (S’ C S)
Fill D with tuples (s, ¢), Vs € S
Select a random subset S;p;+ C S, such that [Sinit| = k % |S]|
/* k is 0.025 for combinatorial and 0.055 for sequential circuits */
Solve all trigger combinations s € S;,;: using SAT tool and generate corre-
sponding set of test vectors (Tjnt)
Update D with tuples (s, t). where s € Sipnit and t € Tyt
set vectcount < |Tipit|
set gencount < 0
set S’ < ¢
Initialize the population of GA (P) with Tj,.
repeat
for allt € P do
Simulate the circuit with test vector ¢ and find the corresponding rare
node activation pattern (r).
Search D for all triggering patterns covered by r.
Compute the fitness using Equation []
Update D with all tuples (s,t), where s is a triggering pattern covered
by r.
set vectcount < vectcount + 1
end for
Perform Crossover on P
Perform Mutation on P
Update P with the best individuals
. set gencount < gencount + 1
: until (gencount < Gpaz || vectcount < Traq)
: for all (s, {t;}) € D do
if ({t;} = ¢) then
Include s in &
end if
: end for

Fi

:l) rare 1
j > rare 0
j) rare 1

()

Satisfy Logic-1 here

g. 4. llustration: formulation of a SAT instance which activates 3 rare nodes simul-

taneously.

tremely hard to detect. However, as the number of such remaining combinations

10

Algorithm 2 TESTGEN_SAT
/* Solve the triggering patterns which remain unsolved by GA (§’) using SAT
tool */

Input: Set of triggering patterns unsolved by GA (§’), Data structure D
Output: Updated D with triggering patterns generated by SAT tool
1: for all s € &’ do

2: Input the triggering combination to SAT tool.
3: if (SAT(s) = SOLVED) then
4: Retrieve corresponding test vector ¢.
5: Update D with tuple %s, t)
6: Ssat — {S}
7. else
8: Sunsat {5}
9: end if
10: end for

are quite less (typically 5-10% of the selected samples) we can apply SAT tools
to solve them. We nest describe the application of SAT in our ATPG scheme.

2.3 SAT for Hard—to—Activate Trigger Conditions

Boolean Satisfiability (SAT) tools are being used to solve ATPG problems since
the last decade [8]. They are found to be robust, often succeeding to find test
patterns in large and pathological ATPG problems, where traditional ATPG
algorithms have been found wanting. Unlike classical ATPG algorithms, SAT
solver based schemes do not work on the circuit representation (e.g. netlist of
logic gates) directly. Instead, they formulate the test pattern generation problem
as one or more SAT problems. A n-variable Boolean formula f(z1,zs,...,2,) in
Congunctive Normal Form (CNF) is said to be satisfiable if there exists a value
assignment for the n variables, such that f = 1. If no such assignment exists,
f is said to be unsatisfiable. Boolean satisfiability is an NP-Complete problem.
Sophisticated heuristics are used to solve SAT problems, and powerful SAT solver
software tools have become available in recent times (many of them are free).
The ATPG problem instance is first converted into a CNF and then input to a
SAT solver. If the solver returns a satisfiable assignment within a specified time
the problem instance is considered to be satisfiable and unsatisfiable, otherwise.

As mentioned previously, we apply the SAT tool only for those trigger com-
binations for which GA fails to generate any test vector. Let us denote the set
of such trigger combinations as &’ C S. We consider each trigger combination
s € &, and input it to the SAT tool. This SAT problem formulation is illustrated
by an example in Fig. 4l Let us consider the three rare nodes shown in Fig. a)
with their rare values. To create a satisfiability formula which simultaneously
activates these three nodes to their rare value, we construct the circuit shown in
Fig. [l|(b). The SAT instance is thus formed which tries to achieve a value 1 at
wire(node) d.

After completion of this step, most trigger combinations in the set S’ will be
found to be satisfiable by the SAT tool, which will also return the corresponding

11

(a)

Fig. 5. Impact of Trojan payload selection: (a) golden circuit; (b) payload-1 which has
no effect on output; (c) payload-2 which has effect on the output.

test vectors. However, some of the trigger combinations will still remain unsolved,
which would be lebelled as unsatisfiable. Thus the set S’ is partitioned into
two disjoint subsets Ssqr and Sypsat- The first subset is accepted and the data
structure D is updated with the patterns in this subset, whereas the second
subset is discarded. This part of the flow has been summarized in Algorithm-2]

The basic ATPG mechanism now in place, we next describe the refinement
of the scheme to take the impact of the payload into consideration, and also
achieve test compaction in the process.

3 Improving the Proposed Scheme: Payload Aware Test
Set Selection and Test Compaction

3.1 Payload Aware Test Vector Selection

Finding out proper trigger-payload pairs to enumerate feasible HTH instances
a is non-trivial computational problem. In combinational circuits, one necessary
condition for a node to be a payload is that its topological rank must be higher
than the topologically highest node of the trigger combination, otherwise there is
a possibility of forming a “combinational loop”; however, this is not a sufficient
condition. In general, a successful Trojan triggering event provides no guarantee
regarding its propagation to the primary output to cause functional failure of
the circuit. As an example, let us consider the circuit of Fig. a). The Trojan
is triggered by an input vector 1111. Fig. b) and Fig. c) show two potential
payload positions. It can be easily seen that independent of the applied test
vector at in circuit input, for position-1 the Trojan effect gets masked and cannot
be detected. On the other hand, the Trojan effect at position-2 can be detected.

It is important to identify, for each trigger combination, the constrained
primary input values. For this, we consider each Trigger combination and their
corresponding set of trigger test vectors at a time. To be precise, we consider
the entries (s, {t;}) from the database D, one at a time. Let us denote the set
of test vectors corresponding to a specific s as {t7}. Next, for each test vector
t € {t7}, we find out which of the primary inputs, if any, remains static at a
specific value (either logic—0 or logic—1). These input positions are the positions
needed to be constrained to trigger the triggering combination. We fill the rest of
the input positions with don’t-care (X) values, thus creating a single test-vector
containing 0, 1 and X values. We call such 3-valued vectors Pseudo Test Vector

12

10100011
/ » : -
Vi 11010117
41110101 ——l 1XXXXXX1
“ 41111104
\ 11100101
\ - —
41101104
Triggering Set of Test Pseudo Tost
Pattern Vectors Vector (PTV)

Fig. 6. PTV generation example: (a) triggering pattern; (b) corresponding set of test
vectors; (c) generated PTV.

Algorithm 3 SELECT_TEST_VECT

/* Select Payload Aware test vectors */

Input: Data structure D, circuit netlist
Output: Final test set (Tfinar)
1: set Tpinal < ¢

2: for all (s,{t;}) € D do
3: Retrieve the test vector set {¢;}
4: Compute the corresponding PTV
5: do 3-value logic simulation and create the initial fault list Fj
6: if [{t{}| > 5 then
7 set Test_set < {t7}
8: else
9: Generate extra test vectors {t3,,} by randomly filling the X positions
of the PTV
10: Simulate the circuit with {¢{,,} and keep vectors satisfying s
11: set Test_set + {5} U{ts,.}
12: end if
13: do fault simulation using HOPE with inputs Fs and Test_set
14: Retrieve Fj, ;. 10q C© Fs and Test_setgetectea C Test_set
15: Keep the subset Test_setcomp of T'est_setjetected, Which completely covers
‘Fjetected'
16: set T'pinar < Test_setcomyp
17: end for

18: return Ty

(PTV). Fig. |§| illustrates the process of PTV generation with a simple example,
where the leftmost and the rightmost positions of the vectors are at logic-1.

At

the next step, we perform a three-value logic simulation of the circuit

with the PTV and note down values obtained at all the internal wires (nodes)
which are at topologically higher positions from the nodes in the trigger combi-
nation. Then for each of these nodes we consider a stuck-at fault according to
the following rule:

1.
2.
3.

If
If
If

ze

the value at that node is 1, we consider a stuck-at-zero fault there.

the value at that node is 0, we consider a stuck-at-one fault there.

the value at that node is X, we consider a both stuck-at-one and stuck-at-
ro fault at that location.

13

Input: Circuit Netlist, Trojan sample size, # GA parameters

I

| Determine Rare Nodes by Probabilistic Analysis |

I

| Select Trojan S les using Rand. ling ($) |

|

Generate Test vectors with GA for the Trigger Patterns in
(Algorithm 1)

]

Generate Test vectors for the Patterns in §' unsolved by GA (S’) using
SAT (Algorithm 2)

Select Test Vectors which Propagates the Trojan Compact set of Test
Effect to the Output (Algorithm 3) Patterns (Tyina)

‘ Select Random Trojan Sample Sets with different @ values{S? } |

!

I Generate Feasible Trojan Sample Sets {S7 } |

I

| Filter out Trojans below Pxfrom each S/, forming set S, |

I Evaluate Effectiveness over S/ I*

Fig. 7. The complete test generation and evaluation flow.

At the next step, this fault list (Fs) and the set of test vectors considered
({t$}) is input to a fault simulator. We used the HOPE [12] fault simulator in
diagnostic mode for this purpose. The output will be the set of faults that are
detected (Fj iecreq © Fs) as well as the corresponding test vectors which detect
them. The detected faults constitutes the list of potential payload positions for
the trigger combination. Thus, after detecting the feasible payloads, we greedily
select a subset of the test vector set Ty C {¢;} which achieves complete cover-
age for the entire fault list. The test vectors belonging to the rest of {7}, i.e.
{t{} — Ts, can be discarded to be redundant. Although a greedy selection, we
found that this step reduces the overall test set size significantly. Further test
compaction can be achieved, at the cost of additional computational overhead,
using specialized test compaction schemes.

One important point worth noting is that, it is not guaranteed by the pro-
posed test generation scheme that all possible test vectors which trigger a par-
ticular trigger combination will get generated. As the fault list (F;) is calculated
only based on the test vectors in {¢{}, it might not cover all possible payloads for
a trigger combination s. However, for each test vector ¢ € {t{}, it is guaranteed
that all feasible payloads will be enumerated. Further, it can be deterministi-
cally decided if a test vector ¢ € {¢7} will have any payload or not. In fact, for
most of the trigger combinations, we got test vectors which are either redun-

14

dant, or doesn’t have any payload. It is also observed that the number of test
vectors for some hard-to-activate trigger combinations are really low (typically
1 to 5 vectors). For these cases, the fault coverage may be poor and many pay-
loads for the trigger combination remains unexplored. To resolve this issue, we
add some extra test vectors derived by filling the don’t care bits (if any) of the
PTV. This is only done for those trigger combinations for which the number of
triggering vectors are less than five. These newly generated vectors are needed
to be checked by simulation so that they successfully trigger the corresponding
triggering combination, before their inclusion to the test set {¢t}. This step is
found to improve the test coverage. The compacted test vector selection scheme
is described in Algorithm{3] At the end of this step, we obtain a compact set of
test vectors with high trigger and Trojan coverage.

3.2 Evaluation of Effectiveness

It is reasonable to assume that an attacker will be only interested in Trojans with
low effective triggering probability, irrespective of the individual rareness values
of the constituent rare nodes. Thus, a natural approach for an attacker would be
to rank the Trojans according to their triggering probability and select Trojans
which are below some specific triggering threshold (P,). Intuitively, an attacker
may choose the Trojan which is rarest among all, but it may lead to easy detec-
tion as very rare Trojans are often found to be significantly small in number and
are expected to be well tracked by the tester. Thus, a judicious attacker would
select a Trojan that will remain well-hidden in the pool of Trojans, but achieves
extremely low Triggering probability at the same time. To simulate the above
mentioned behaviour of the attacker, we first select new samples of candidate
Trojans from the Trojan space with varying range of 6 values. We denote each of
such samples as SY,., and ensure that |SP.,,| = |S|. Subsequently, each of these
sets is refined by the SAT tool by selecting only feasible Trojans. By feasible Tro-
jans we mean the Trojans which are triggerable and whose impacts are visible at
the outputs. We denote the set of such feasible Trojan sets obtained for different
0 values as {Stfest}. Next, we filter out Trojans from these sets which are below a
specified triggering threshold P;,.. Finally, all these subsets are combined to form
a set of Trojans Sf.,. This set contains Trojans whose triggering probabilities
are below Py, and is used for the evaluation of the effectiveness of the proposed
methodology. The value of P, is set to 1075 based on the observation that for
most of the benchmark circuits considered, there are roughly 30% Trojans which
have triggering probabilities below 1076, Also, below the range (10~7 — 10~%)
the number of Trojans are extremely low, which may leave the attacker only
with a few options.

4 Experimental Results and Discussion

4.1 Experimental Setup

The test generation scheme, including the GA and the evaluation framework,
were implemented using C++. We used the zchaff SAT solver [9] and HOPE

15

Table 1. Comparison of the proposed scheme with MERQO with respect to testset
length.

Ckt. |Gates|Testset (before Algo.-3)|Testset (after Algo.-3)|Testset (MERO)|Runtime (sec.)
c880 | 451 6674 5340 6284 9798.84
c2670 | 776 10,420 8895 9340 11299.74
c3540 | 1134 17,284 16,278 15,900 15720.19
c5315 | 1743 17,022 14,536 15,850 15877.53
c7552 | 2126 17,400 15,989 16,358 16203.02
s15850| 9772 37,384 37,052 36,992 17822.67
$35932| 16065 7849 7078 7343 14273.09
$38417| 22179 53,700 50,235 52,735 19635.22

Table 2. Trigger and Trojan coverage at various stages of the proposed scheme. at
0 = 0.1 for random sample of Trojans upto 4 rare node triggers (Sample size is 100, 000
for combinational circuits and 10,000 for sequential circuits).

Ckt. GA only GA + SAT GA + SAT + Algo. 3
Trig. Cov.| Troj. Cov.|Trig. Cov.|Troj. Cov.|Trig. Cov.| Troj. Cov.
c880 92.12 83.59 96.19 85.70 96.19 85.70
c2670 81.63 69.27 87.31 75.17 87.15 75.82
¢3540 80.58 57.21 82.79 59.07 81.55 60.00
¢h315 83.79 64.45 85.11 65.04 85.91 71.13
c7552 73.73 64.05 78.16 68.95 77.94 69.88
s15850] 64.91 51.95 70.36 57.30 68.18 57.30
535932 81.15 71.77 81.90 73.52 81.79 73.52
s38417| 55.03 29.33 61.76 36.50 56.95 38.10

fault simulator [12]. We restricted ourselves to a random sample of 100,000
trigger combinations [5], each having up to four rare nodes as trigger nodes.
We also implemented the MFERO methodology side by side for comparison. We
evaluated the effectiveness of the proposed scheme on a subset of ISCAS-85 and
ISCAS-89 benchmark circuits, with all ISCAS-89 sequential circuits converted
to full scan mode. The implementation was performed and executed on a Linux
workstation with a 3 GHz processor and 8 GB of main memory.

4.2 Test Set Evaluation Results

Table [1] presents a comparison of the testset lengths generated by the proposed
scheme, with that generated by MFERO. It also demonstrates the impact of
Algo-3, by comparing the test vector count before Algo-3 (T'Cgasar) and af-
ter Algo-3 (T'Cy). As would be evident, for similar number of test patterns the
proposed scheme achieves significantly better trigger as well as Trojan coverage
than MERO. The gate count of the circuits and the time required to generate the
corresponding testsets is also presented to exhibit the scalability of the ATPG
heuristic.

Table [2| presents the improvement in trigger and Trojan coverage at the end
of each individual step of the proposed scheme, to establish the importance of
each individual step. From the table, it is evident that the first two steps consis-
tently increase the trigger and Trojan coverage. However, after the application of

16

Table 3. Comparison of trigger and Trojan Coverage among MERQ patterns and
patterns generated with the proposed scheme with 6 = 0.1; N = 1000 (for MERO)
and for trigger combinations containing up to four rare nodes.

Ckt. MERO Proposed Scheme
Trigger Coverage|Trojan Coverage|Trigger Coverage|Trojan Coverage

880 75.92 69.96 96.19 85.70
c2670 62.66 49.51 87.15 75.82
¢3540 55.02 23.95 81.55 60.00
c5315 43.50 39.01 85.91 71.13
c7552 45.07 31.90 77.94 69.88
s15850 36.00 18.91 68.18 57.30
$35932 62.49 34.65 81.79 73.52
s38417 21.07 14.41 56.95 38.10

payload aware test set selection (Algo-3), the trigger coverage slightly decreases
for some circuits, whereas the Trojan coverage slightly increases. The decrement
in trigger coverage is explained by the fact that some of the trigger combinations
do not have any corresponding payload — as a result of which they are removed.
In contrary, the addition of some “extra test vectors” by Algo-3 helps to improve
the Trojan coverage.

Table[3| presents the trigger and Trojan coverage for eight benchmark circuits,
compared MERO test patterns with N = 1000 and # = 0.1. In order to make
a fair comparison, we first count the number of distinct test vectors generated
by MERO (TCygro) with the above mentioned setup, and then set GA to
run until the number of distinct test vectors in the database becomes higher
than TChrgro. We denote the number of distinct test vectors after GA run as
TCga. Note that, the SAT step is performed after the GA run, and thus the
total number of test vectors after the SAT step (T'Cgasar) is slightly higher
than T'Cpgro. The test vector count further reduces after the Algo-3 is run.
We denote the final test vector count as T'C';.

To further illustrate the effectiveness of the proposed scheme, in Fig. [§] we
compare the trigger and Trojan coverage obtained from MFERQO with that of the
proposed scheme, by varying the rareness threshold (6) for the ¢7552 benchmark
circuit. It is observed that the proposed scheme outperforms MERO to a signifi-
cant extent. Further, it is interesting to note that both MERO and the proposed
scheme achieve the best coverage at § = 0.09. The coverage gradually decreases
towards both higher and lower values of 6. The reason is that for higher 6 val-
ues (e.g 0.2, 0.3), the initial candidate Trojan sample set (S), over which the
heuristic implementation is tuned, contains a large number of “easy-to-trigger”
combinations. Hence, the generated test set remains biased towards “easy-to-
trigger” Trojans and fails to achieve good coverage over the “hard-to-trigger”
evaluation set used. On the other hand, at low 6 values the cardinality of the
test vector set created becomes very small as the number of potent Trojans at
this range of 6 is few, and they are sparsely dispersed in the candidate Trojan
set S. As a result, this small test set hardly achieves significant coverage over the
Trojan space. The coverage for Trojans constructed by combining some easily
triggerable nodes with some extremely rare nodes also follows a similar trend

100

Trigger Coverage (%)

®
=3

3
=2

=
=

"
=

]

17

100

[CITrigger Coverage (MERO) I:lTrnjnn Coverage (MERO)
_.'I'rigger(‘o\‘erage (Proposed Scheme) | *; s“7|:|Trnj).m Coverage (Proposed Scheme)

<
]
50

1 Fe
2
>
=]
O 40+
c
£

1 Bl
=

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.3 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 0.2 0.3
Rareness Threshold (0) Rareness Threshold (0)
(a) Trigger Coverage (b) Trojan Coverage

Fig. 8. Comparison of trigger and Trojan coverage of the proposed scheme with MERO,
with varying triggering threshold ().

-
=)
S

DTrigger Coverage
-Trﬂjan Coverage

Coverage (%)
5 2 g

15
=3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.15 02 0.3
Rareness Threshold (0)

Fig. 9. Trigger and Trojan coverage of the proposed scheme on a set of special Trojans,
which combine some easily triggerable nodes with some extremely rare nodes.

(shown in Fig. E[) It can be thus remarked that the tester should choose a 0
value, so that the initial set S contains a good proportion of Trojans with low
triggering probability, while also covering most of the moderately rare nodes.
Finally, we test our scheme with sequential Trojans. The counter based Tro-
jan model as described in was considered. We consider Trojans up to four
states, as larger Trojans have been reported to be easily detectable by side chan-
nel analysis techniques . It can be observed form Table [4| that as for the
combinational circuits, the the proposed scheme outperforms MERO.

4.3 Application to Trojan Diagnosis

Diagnosis of a Trojan once it gets detected is important for system-level relia-
bility enhancement. In , the authors proposed a gate-level-characterization
(GLC) based Trojan diagnosis method. The scheme proposed in this paper can
be leveraged for a test diagnosis methodology. The data structure D can be ex-
tended to a complete Trojan database, which will contain four-tuples (s, V, P, O),

18

Table 4. Coverage comparison between MERQO and the proposed Scheme for sequential
Trojans. The sequential Trojan model considered is same as [5].

Ckt. | Trig. Cov. for Proposed Scheme|Trig. Cov. for MERO
Trojan State Count Trojan State Count
2 4 2 4
$15850(64.91 45.55 31.70 26.00
$35932|78.97 70.38 58.84 49.59
$38417(48.00 4217 16.11 8.01
Ckt. |Troj. Cov. for Proposed Scheme|Troj. Cov. for MERO
Trojan State Count Trojan State Count
2 4 2 4
$15850(46.01 32.59 13.59 8.95
$35932(65.22 59.29 25.07 15.11
$38417/30.52 19.92 9.06 2.58

where s is a trigger combination, V is the set of corresponding triggering test
vectors, P is the set of possible payloads, and O is the set of faulty outputs
corresponding to the test patterns in V', due to the activation of some Trojan
instance. Based on this information, one can design diagnosis schemes using sim-
ple cause-effect-analysis, or other more sophisticated techniques. The complete
description of a diagnosis scheme is however out of the scope of this paper.

4.4 Application to Side Channel Analysis based Trojan Detection

Most recent side-channel analysis techniques target the preferential activation of
a specific region of the circuit, keeping the other regions dormant [1,19], since side
channel analysis is more effective if the Trojan is activated, at least partially [17].
Hence, the proposed technique, with its dual emphasis on test pattern generation
directed towards triggering of Trojans, as well as propagation of the Trojan effect
to the primary output, can be a valuable component of a side channel analysis
based Trojan detection methodology.

5 Conclusions

Detection of ultra small Hardware Trojans has traditionally proved challenging
by both logic testing and side channel analysis. We have developed an ATPG
scheme for detection of HTHs dependent on rare input triggering conditions,
based on the dual strengths of Genetic Algorithm and Boolean Satisfiability. The
technique achieves good test coverage and compaction and also outperforms a
previously proposed ATPG heuristic for detecting HTHs for benchmark circuits.
Future research would be directed towards developing comprehensive Trojan
diagnosis methodologies based on the database created by the current technique.

Acknowledgments. The authors would like to thank the anonymous review-
ers and Dr. Georg T. Becker of Ruhr-Universitit Bochum for their valuable
suggestions regarding this work. The authors also wish to thank Indian Insti-
tute of Technology, Kharagpur for providing partial funding support through
the project named “Next Generation Secured Internet of Things” (NGI).

19

References

10.
11.

12.

13.

14.

15.

16.

17.

Banga, M., Hsiao, M.: A region based approach for the identification of hardware
Trojans. In: Proc. of Int. symposium on HOST. pp. 40-47 (2008)

Banga, M., Chandrasekar, M., Fang, L., Hsiao, M.S.: Guided test generation for
isolation and detection of embedded Trojans in ICs. In: Proceedings of the 18th
ACM Great Lakes symposium on VLSI. pp. 363-366. ACM (2008)

Chakraborty, R.S., Bhunia, S.: Security against hardware Trojan through a novel
application of design obfuscation. In: Proceedings of the 2009 International Con-
ference on Computer-Aided Design. pp. 113-116. ACM (2009)

Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: Threats and
emerging solutions. In: Proc. of IEEE Int. Workshop on HLDVT. pp. 166-171.
IEEE (2009)

Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: A
statistical approach for hardware Trojan detection. In: Cryptographic Hardware
and Embedded Systems-CHES 2009. pp. 396-410. Springer (2009)

DARPA: TRUST in Integrated Circuits (TIC). [Online]. Available:
http://www.darpa.mil/MT0/solicitations/baa07-24 (2007)

Dupuis, S., Ba, P.S., Di Natale, G., Flottes, M.L., Rouzeyre, B.: A novel hardware
logic encryption technique for thwarting illegal overproduction and Hardware Tro-
jans. In: On-Line Testing Symposium (IOLTS), 2014 IEEE 20th International. pp.
49-54. IEEE (2014)

Eggersglii}, S., Drechsler, R.: High Quality Test Pattern Generation and Boolean
Satisfiability. Springer Science & Business Media (2012)

Fu, Z., Marhajan, Y., Malik, S.: Zchaff sat solver. [Online]. Available:
http://www.princeton.edu/chaff| (2004)

Goldberg, D.E.: Genetic algorithms. Pearson Education (2006)

Jin, Y., Makris, Y.: Hardware Trojan detection using path delay fingerprint. In:
Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE International
Workshop on. pp. 51-57. IEEE (2008)

Lee, H.K., Ha, D.S.: HOPE: An efficient parallel fault simulator for synchronous
sequential circuits. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 15(9), 1048-1058 (1996)

Mingfu, X., Aiqun, H., Guyue, L.: Detecting Hardware Trojan through Heuris-
tic Partition and Activity Driven Test Pattern Generation. In: Communications
Security Conference (CSC), 2014. pp. 1-6. IET (2014)

Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic ob-
fuscation. In: Proceedings of the 49th Annual Design Automation Conference. pp.
83-89. ACM (2012)

Rudnick, E.M., Patel, J.H., Greenstein, G.S., Niermann, T.M.: A genetic algorithm
framework for test generation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 16(9), 1034-1044 (1997)

Salmani, H., Tehranipoor, M., Plusquellic, J.: A layout-aware approach for im-
proving localized switching to detect hardware Trojans in integrated circuits. In:
Information Forensics and Security (WIFS), 2010 IEEE International Workshop
on. pp. 1-6. IEEE (Dec 2010)

Salmani, H., Tehranipoor, M., Plusquellic, J.: A novel technique for improving
hardware Trojan detection and reducing Trojan activation time. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 20(1), 112-125 (2012)

http://www.darpa.mil/MTO/solicitations/baa07-24
http://www.princeton.edu/chaff

20

18.

19.

20.

21.

Shekarian, S.M.H., Zamani, M.S., Alami, S.: Neutralizing a design-for-hardware-
trust technique. In: Computer Architecture and Digital Systems (CADS), 2013
17th CSI International Symposium on. pp. 73-78. IEEE (2013)

Wei, S., Potkonjak, M.: Scalable hardware Trojan diagnosis. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on 20(6), 1049-1057 (2012)
Zhang, X., Tehranipoor, M.: RON: An on-chip ring oscillator network for hard-
ware Trojan detection. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011. pp. 1-6. IEEE (2011)

Zhou, B., Zhang, W., Thambipillai, S., Teo, J.: A low cost acceleration method
for hardware Trojan detection based on fan-out cone analysis. In: Proceedings of
the 2014 International Conference on Hardware/Software Codesign and System
Synthesis. p. 28. ACM (2014)

	Improved Test Pattern Generation for Hardware Trojan Detection using Genetic Algorithm and Boolean Satisfiability
	Introduction
	Main Idea and Our Contribution

	GA and SAT in the Context of ATPG for Trojan Detection
	Hardware Trojan Models
	Genetic Algorithm (GA) for ATPG
	SAT for Hard–to–Activate Trigger Conditions

	Improving the Proposed Scheme: Payload Aware Test Set Selection and Test Compaction
	Payload Aware Test Vector Selection
	Evaluation of Effectiveness

	Experimental Results and Discussion
	Experimental Setup
	Test Set Evaluation Results
	Application to Trojan Diagnosis
	Application to Side Channel Analysis based Trojan Detection

	Conclusions

