
Block-wise Non-malleable Codes

Nishanth Chandran∗1, Vipul Goyal†1, Pratyay Mukherjee‡2, Omkant Pandey§3, and Jalaj
Upadhyay¶4

1Microsoft Research India
2Aarhus University, Denmark

3University of Illinois at Urbana-Champaign, USA and Center for Encrypted
Functionalities (UCLA), USA

4University of Waterloo, Canada

February 17, 2015

Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzak, and Wichs (ICS ’10), provide
the guarantee that if a codeword c of a message m, is modified by a tampering function f to c′,
then c′ either decodes to m or to “something unrelated” to m. It is known that non-malleable
codes cannot exist for the class of all tampering functions and hence a lot of work has focused
on explicitly constructing such codes against a large and natural class of tampering functions.
One such popular, but restricted, class is the so-called split-state model in which the tampering
function operates on different parts of the codeword independently.

In this work, we remove the above restriction by considering a stronger adversarial model
that we call the block-wise tampering model. In this model, the adversary can tamper every
block of the codeword, with the only restriction being that he can tamper every block at most
once. As an example, if a codeword c = (c1, c2), then the first tampering function f1 could
produce a tampered part c′1 = f1(c1) and the second tampering function f2 could produce
c′2 = f2(c1, c2) which can depend on both c2 and c1. An example is when the blocks are being
sent one by one and the adversary must temper and send the first block before the second block
comes along.

• Surprisingly, defining non-malleability in the block-wise tampering model is challenging. Our
first contribution is that of providing a relaxed, yet meaningful definition of non-malleability
for this model. Unfortunately, we show, that even this notion is impossible to achieve in the
information-theoretic setting (i.e., when the tampering functions can be unbounded) and we
must turn our attention towards computationally bounded adversaries.

• Next, we provide an interesting connection between block-wise non-malleable codes and non-
malleable commitments. We show that any block-wise non-malleable code can be converted
into a non-malleable (wrt opening) commitment. In the other direction, we show that any

∗E-mail: nichandr@microsoft.com
†E-mail: vipul.goyal@gmail.com
‡Research partially supported by a European Research Commission Starting Grant (no. 279447), the CTIC and

CFEM research center (under the Sino-Danish grant no. 61061130540), work done in part while visiting Microsoft
Research India. E-mail: pratyay85@gmail.com
§Work done in part while visiting Microsoft Research India. E-mail: omkant@gmail.com
¶Work done in part while visiting Microsoft Research India. E-mail: jalaj.upadhyay@uwaterloo.com

1

non-interactive non-malleable (wrt opening) commitment can be used to construct a block-
wise non-malleable code (with 2 blocks).

• While the above transformation gives us a construction of a block-wise non-malleable code,
it is based on the highly non-standard assumption of adaptive one-way functions (which
can only be realized based on assumptions such as Oracle DDH). As our main result, we
show, how to construct a block-wise non-malleable code from any sub-exponentially hard
one-way permutations. Our techniques, quite surprisingly, also give rise to a non-malleable
commitment scheme (secure against so-called synchronizing adversaries), in which only the
committer sends messages. We believe this result to be of independent interest.

Contents

1 Introduction 3

1.1 Our results and techniques. . . . 4

1.2 Related Works 6

1.3 Organization of the paper. 7

2 Preliminaries and Basic Primitives 7

2.1 Notations and Basic Definitions . 7

3 Definition of Block-wise Non-
malleable Codes 8

3.1 Block-wise Encoding Scheme . . 8

3.2 Block-wise Non-Malleable Encod-
ing Scheme 9

3.3 Uniqueness Property of BNMC . 10

3.4 Impossibility of Information-
theoretic BNMC 12

4 Strong BNMCs 12

5 Relation between Non-Malleable
Commitment and BNMC 15

5.1 Non-malleable Commitment from
BNMC 16

5.2 BNMC from Non-malleable Com-
mitment 19

6 Our Block-wise Non-malleable
Code 23
6.1 Tag-based non-malleability . . . 24
6.2 Non-malleability amplification . . 29

6.2.1 One-many non-malleability 29
6.2.2 Applying DDN-XOR trick 31

6.3 The full construction by removing
tags 36

6.4 Putting everything together . . . 40

A Proof of Theorem 4.4 42

B Building Blocks 47
B.1 One-time Signatures 47
B.2 Commitment Schemes 47
B.3 Non-malleable Codes 48

2

1 Introduction

Non-malleable codes. Error correcting codes allow a message m to be encoded into a codeword
c, such that m can be decoded even from a corrupted (or tampered) codeword c′. The class of
tampering functions, Fconst, tolerated by traditional error correction codes are ones that erase or
modify only a constant fraction of the symbols of the codeword c. In particular, no guarantees are
provided on the output of the decoding algorithm when the tampering function f /∈ Fconst. Error
detection codes allow the decoder to also output a special symbol ⊥, when m is unrecoverable
from c′, but here too, the codes can only tolerate tampering functions f ∈ Fconst. To address this
shortcoming of error correction/detection codes, Dziembowski, Pietrzak, and Wichs [14], introduced
a more flexible notion of non-malleable codes (NMC). Informally, an encoding scheme Code :=
(Enc,Dec) is a NMC against a class of tampering functions, F , if the following holds: the decoded
message m′ = Dec(c′) is either equal to the original message m or is completely unrelated to m,
when c′ = f(Enc(m)) for some f ∈ F . In general, NMC cannot exist for the set of all tampering
functions Fall. To see this, observe that a tampering function that simply runs the decode algorithm
to retrieve m, and then encodes a message related to m, trivially defeats the requirement above.
However, somewhat surprisingly, Dziembowski et al. [14] showed the (probabilistic) existence of a
NMC against a function family, Falmost, that is only slightly smaller than the set of all functions.
They also constructed an efficient NMC against the class of tampering functions, Fbit, that can
tamper each bit of the codeword independently.

Split-state Tampering. Arguably, one of the strongest class of tampering functions for which
explicit constructions of NMC are known, is in the so called split-state model. Informally, a split-
state model with ` states has the following attributes: (i) the codeword is assumed to be partitioned
into `-disjoint blocks (c1, · · · , c`), and (ii) the class of tampering functions, F `split, consists of all the

functions (f1, · · · , f`) where fi operates independently on ci
1. Dziembowski et al. [14] gave a con-

struction of a NMC against the tampering class F2
split in the random oracle model. Constructions

of NMC against F2
split are now known both in the computational [22]2 and information-theoretic

settings [2, 8, 13], with Chattopadhyay and Zuckerman [6] showing an explicit information-theoretic
NMC against F10

split. The split-state model has found several applications in tamper-resilient cryp-
tography [22, 16, 15].

Block-wise Tampering. A severe restriction of split-state tampering functions, is that every
block of the codeword can only be tampered independently of all other blocks. In particular fi
tampers ci with absolutely no knowledge about cj , for all j 6= i. In this work, we address the above
restriction. As is in the split-state model, in our model, a codeword consists of ` blocks (c1, · · · , c`).
However, now, we allow the tampering adversary to corrupt every block of the codeword, with the
only restriction being that he can tamper every block at most once. More formally, we call a code,
a strong block-wise NMC, if it is a NMC against the class of tampering functions F `block. A set of
functions (f1, · · · , f`) ∈ F `block, if and only if, there exists a permutation π : [`]→ [`], such that for
all 1 ≤ i ≤ `, fi operates only on (cπ(1), · · · , cπ(i)). In the special case, when the permutation π
is the identity permutation, we note that fi operates on codeword blocks c1, · · · , ci, and in such a
case, we call the code simply a block-wise non-malleable code (BNMC). A natural example is when
the blocks are coming in one by one and the adversary must tamper with and send across the first
block before the next block comes along.

1Note that the class Fbit can be viewed as Fnsplit, where n is the length of the codeword c.
2In the computational setting, the functions fi are assumed to probabilistic polynomial time computable.

3

1.1 Our results and techniques.

Our work makes several contributions:

• Definitions: Formalizing the non-malleability of a code against such F `block tampering functions,
is a surprisingly non-trivial task3. For example, if we try to work with the same notion of non-
malleability as that which is used for the tampering class F `split, then there is a “trivial” tampering
function that can defeat non-malleability. In particular, consider a tampering function, where
the first `−1 functions, (f1, . . . , f`−1), are identity functions and the function f` (that has access
to the entire codeword c) simply decodes the message and depending on the message, outputs a
block c′` that either keeps the resultant codeword “valid” or makes it “invalid” (i.e., the decode
algorithm outputs a ⊥). Note, that in this case, the distribution of the decode algorithm on
the tampered codeword will indeed depend on the message, thus violating non-malleability. In
particular, such a tampering attack makes the decoder output ⊥ with a probability distribution
that depends on the message being encoded. Note, that such an attack is unavoidable for the
class of tampering functions F `block under consideration.

However, we think that this is a rather “trivial impossibility” because in such attack the adversary
breaks non-malleability by making the codeword “invalid”. Hence, in order to overcome that we
(slightly) relax the notion of non-malleability as follows: if the adversary is able to produce
some“valid” codeword (i.e., which does not decode to ⊥) via tampering, then this codeword
must contain some message unrelated to the original message. This ensures that if at all the
tampering function tampers the codeword in some “related way” to the encoded message, then
the resulting codeword will indeed be “invalid” (would decode to ⊥). We formalize this intuition,
through the notion of a (possibly inefficient) replacer algorithm (see Defintion 3.4 for a formal
treatment) that is allowed to be called in the event whenever the corrupt codeword is “invalid”.

– Next, we show a generic transformation from BNMC against F `block imply strong BNMC
against F `block without any additional assumption. (Recall that strong BNMC are secure
even against block-wise adversaries that choose to tamper the codeword blocks in any arbi-
trary order).

– We then proceed to show that, unfortunately, BNMC cannot exists against information-
theoretic adversaries (i.e., such codes do not exist when the fi functions can be unbounded).

• Connections to Non-malleable Commitments: We show new connections of non-malleable codes
to non-malleable commitments, which are briefly presented below.

– We show that a BNMC against F `block can be used to construct an `-round commitment
scheme that is non-malleable with respect to opening. This is surprising as there is no
notion of a non-malleable code being binding or hiding! Our proof works by first showing
that any BNMC must have a property (that we define) called uniqueness, which informally
states that there must be some index ζ < ` such that ζ blocks of the codeword completely
define the entire codeword. This helps us to show that the commitment we construct must
be binding. We also show that any BNMC must have (what we call) a reveal index. This
informally states that there must be some index η ≤ `, such that η−1 blocks of the codeword
(computationally) reveal no information about the encoded message. This helps us to show
that the commitment we construct must be (computationally) hiding.

3For ease of exposition, the rest of this discusion will only focus on the special case of BNMC; we shall construct
a generic compiler converting a BNMC into a strong BNMC.

4

– In the other direction, we show that any non-interactive non-malleable commitment (that
is non-malleable with respect to opening) can be used to construct a BNMC against F2

block.

• Constructions: The connection between non-malleable commitments and BNMC (described
above) already gives us a construction of a BNMC against F2

block. This code is obtained from
any non-interactive commitment that is non-malleable with respect to opening. Unfortunately,
the only assumptions under which we know how to construct such commitments are either in the
(non-tamperable) Common Reference String (CRS) model based on one-way functions [11] or in
the standard model under the highly non-standard assumption of adaptive one-way functions [23].

In search of BNMC from more standard assumptions, we turn to constructing such codes against
F `block, for ` > 2. Unfortunately, in this case, the approach of constructing a non-malleable code
from a non-malleable commitment does not extend rendering the task a non-trivial one. And
this is for a good reason: as opposed to (interactive) non-malleable commitments, BNMC do not
allow for any communication from the receiver to the sender.

– Let κ be the security parameter. We then show, for any constant ϕ > 0 (of our choice), how
to construct a BNMC against F `block, where, ` = Θ(κϕ). The security (i.e. non-malleability)
of the construction is based on “sub-exponentially” hard one-way permutations which says
that there exists one-way permutations which are “hard-to-invert” even against an adversary
running in sub-exponential time, precisely in time O(2κs) such that κs = O(κε/2) for some
0 < ε < 1. In particular, as key-techniques we use one level of complexity leveraging
and any perfectly binding non-interactive commitment scheme in standard model. The
key technical challenge, as remarked earlier, is that BNMC is not an interactive primitive
that allows bi-directional communication. This limitation renders the previously proposed
techniques for designing non-malleable protocols inherently unusable. This is because these
previous techniques are based on having “challenge-response” rounds similar to the type
also used in designing zero-knowledge protocols. Thus, techniques like rewinding the sender
are not useful in this setting at all: since there are no receiver messages, every time one
would end up with the same transcript. Thus, a priori, it seems unclear what advantage
one could get by having multiple blocks. Our final construction is quite clean and in fact,
also gives arguably the simplest known construction of non-malleable commitments.

We now describe the idea behind our construction. First fix a parameter µ (such that
µ = Θ(κϕ) for any constant ϕ > 0 of our choice) such that we encode a message m using
` = (2µ+ 1)-blocks of codeword for some parameter µ . At a very high level, our encoding
is as follows. Let us first fix some index (or tag) for the encoder i ∈ [µ]. The encoder then
chooses a perfectly binding commitment scheme COM.

Let COMκs(·) and COMκ(·) denotes COM is computationally hidden with respect to security
parameters κs and κ respectively, where κs is mentioned above. The encoder then computes
commitments to the message using COMκs and COMκ. The first 2µ blocks of the encoding
of m are blocks of all zeroes, except for block i and block (2µ−i) which are the commitments
COMκ and COMκs , respectively. The (2µ+ 1)th block of the encoding contains the openings
to COMκs and COMκ. The decoding algorithm checks if (i) the openings are consistent with
the commitments and (ii) the messages committed are equal. Now, for a moment, assume
that adversary’s index i′ is not equal to i (this can be removed later on). Then if i′ < i, then
the adversary has provide its first commitment before the first commitment on the left comes
along (and hence it has only seen blocks of all zeroes as input so far). Thus, his commitment
is independent of the commitment on the left. If i′ > i, then the second commitment of the
adversary has to come before the second commitment on the left comes along. Here, we

5

rely on a complexity leveraging to prove non-malleability. Using this key-observation one
can prove the non-malleability except one fact: when the index chosen by the adversary i′

is equal to i. To prevent mauling in this case we use one-time signature. The encoder signs
the entire codeword using i as a public-key and thus leaving the adversary either to forge
the signature or change the index. However, there is still one problem remains. To use i as
a public-key we need it to be sufficiently long, namely Ω(κϕ) for any constant ϕ > 0 of our
choice. But note that, we have i ∈ [µ] and ` = 2µ + 1. Trying to set the size of the index
|i| = log(µ) to Ω(kϕ) would result in an “inefficient” construction with ` = 2Ω(kϕ) blocks
which is not acceptable. We solve this problem by using a “well-known” technique from non-
malleable commitment, so-called DDN-XOR trick. Through that, it is possible to use a long
tag of size t = Θ(κϕ) keeping the number of blocks also Θ(κϕ) just by computing t shares
(XOR’s) of messages and and applying the above construction simultaneously on the shares.
So, our final construction would require a one-time signature which works with a public-key
of bit-length µ = Θ(κϕ). Then using the generic transformation we can construct a strong
block-wise non-malleable encoding schemefrom that without any additional assumption.
The main result we present below as an informal theorem.

Theorem (Main Result (informal)). Assuming the existence of sub-exponentially hard one-
way permutations, for any constant ϕ > 0 of our choice we can explicitly construct a strong
block-wise non-malleable encoding scheme with Θ(κϕ) blocks.

We refer to Sec 6 for full details.

1.2 Related Works

The theory of non-malleable code was introduced by Dziembowski, Pietrzak, and Wichs [14], who
gave the first explicit construction of non-malleable codes for a family of function Fbit, which
can tamper every bit of the codeword independently. They also gave an existential proof for
the existence of non-malleable codes for almost the whole set of all functions, Falmost. Recently,
Cheraghchi and Guruswami [8] gave a construction with improved rate and efficiency than [14] for
Fbit. On the other extreme is the situation when there are exactly two disjoint blocks of codewords,
i.e, the split-state model. Dziembowski, Pietrzak, and Wichs [14] also gave a construction in
this model under the random oracle assumption. Since then, there has been a series of work
that proposed efficient construction of non-malleable code in the split-state model in both the
computational setting [22] and in the information theoretic setting [2, 8, 13]. In a recent work,
Coretti et al. [9] applied split-state non-malleable codes with n-states to get a weaker notion of
multi-bit CCA security.

In a recent work, Faust et al. [17] showed an efficient code for a tampering function of size 2s(n)

for some polynomial function s(n) in the information-theoretic setting. Concurrently, Cheraghchi
and Guruswami [7] improved the probabilistic method construction of Dziembowski, Pietrzak, and
Wichs [14] to show that one can have some level of efficient encoding and decoding if we restrict
the size of the tampering functions to a set of size at most 2s(n) for some polynomial s(n).

Apart from the split-state model and Fbit, many recent works have studied non-malleable code
in various models. Faust et al. [15] studied non-malleable code when the tampering function is
allowed to tamper codeword as long as it does not decodes to a special symbol ⊥. They gave a
necessary condition and a construction of such codes. This work was further improved by Jafarholi
and Wichs [19]. Agarwal et al. [4] studied a class of tampering function that can permute the bits of
the encoding and (optionally) perturb them. They proposed an efficient and explicit construction
of non-malleable codes in the information theoretic setting. In the follow-up work, the authors [3]

6

demonstrated a rate-optimized compiler for NMC against bit-wise tampering and permutations.
Dachman-Soled et al. [10] initiated the study of locally decodable and updatable non-malleable
codes. They gave two constructions of such codes that are secure against continual tampering,
where their concept of continuity is different from Faust et al. [15] in the sense that they allow an
updater that updates the codeword. Chattopadhyay and Zuckerman [6] showed a construction of
non-malleable code in an extension of the split-state model, where codewords is partitioned in to
c = o(n) equal sized blocks.

The study of non-malleable commitments was initiated by Dolev, Dwork, and Naor [12]. They
showed a n-round non-malleable commitment assuming the existence of one-way function and no
trusted set up. Since then, many follow up works improved the round-complexity of the original
construction with some trusted infrastructure. Damgard and Groth [11] showed non-interactive
non-malleable commitments based on only one-way functions in presence of some trusted infras-
tructure. The work of Barak [5] was the first constant round non-malleable commitments; however,
their security relied on existence of trapdoor permutations and collision resistant hash function
against sub exponential size circuits and the proof is non-black box. Pandey, Pass, and Vaikun-
tanathan [23] were the first to prove a construction of a non-interactive non-malleable commitment
with a black-box proof; however, their construction was based on a new hardness assumption with
a strong non-malleable flavour. Lin and Pass [20] showed an almost constant round non-malleable
commitment scheme based on one-way functions and had a black-box proof of security. Pass and
Wee [25] gave a constant round non-malleable commitment using sub-exponential hard one-way
function. Subsequently, Goyal [18] and Lin and Pass [21] concurrently showed a constant round
non-malleable commitments assuming one-way functions using different techniques.

A concurrent and independent work. We note that in a concurrent and independent work [1]
Aggarwal et al. considered (Def. 17 in [1]) a class of tampering functions similar to the block-wise
tampering. In that they call it Look-ahead model. However, they used it for a different purpose
than ours, in particular to show some non-malleable reduction from one tampering to another.
Importantly they did not intend to construct an explicit construction for this particular class. So,
our focus and the results are orthogonal to theirs.

1.3 Organization of the paper.

We begin with the preliminaries and a description of the basic primitives that we use, in Section
2. In Section 3.2, we define BNMC. We show the impossibility of information-theoretic BNMC in
Section 3.4 and how to convert a BNMC into a strong BNMC in Section 4. Section 5.1 describes
how to construct a non-malleable commitment (wrt opening) from a BNMC and Section 5.2 proves
the converse for ` = 2. Finally, Section 6 provides our BNMC construction in three steps.

2 Preliminaries and Basic Primitives

2.1 Notations and Basic Definitions

Let N = {1, 2, . . . , . . .} be the set of natural numbers. For n ∈ N, we write [n] = {1, 2, · · · , n}.
Given a set A, we write a ← A to denote that element a is sampled from the set A. If A is an
algorithm, y ← A(x) denotes an execution of A with input x and output y. For a randomized
algorithm A(·, ·), the output y ← A(x; r) is a random variable when the input is x and randomness
r. For a set X, we use the symbol |X| to denote the size of the set X. When it is clear from the
context, we only write A(x) instead of A(x; r). For a number j ∈ N, we use the notation BIT(j) to

7

denote the bit-wise representation of the number j. For a string s, we let s[i] denote the i-th bit of
s and s[i....j] to be the bits of s starting from i-th index to the j-th index. A function δ(·) : N→ N
is negligible if for every polynomial p(·) for all large enough n, it holds that δ(n) < 1/p(n). We
generically denote any negligible function by negl(·).

In general, throughout the paper we denote the “standard” security parameter by κ (we use
another one κs in Sec 6 for complexity levering). Let X be a random variable. Then we sometimes
abuse notations and denote the corresponding probability distribution also by X. An ensemble of
probability distributions is a sequence of {Xκ}k∈N of probability distributions. For two probability
ensembles {X}κ and {Y }κ defined over a finite support S, we use the notation {X}κ ≈ {Y }κ if the
two distributions are computationally indistinguishable, i.e., for all probabilistic polynomial time
distinguishers D, there exists a negligible function negl(·) such that for every κ ∈ N,

|Prx←Xκ [D(x) = 1]− Pry←Yκ [D(y) = 1]| ≤ negl(κ).

We use the notation Xκ ≈c Yκ as a shorthand for computationally indistinguishable ensembles.
Similarly, two probability ensembles {Xκ}κ and {Y }κ, defined over a finite support S, are called

statistically indistinguishable if there exists a negligible function negl(·) such that for every κ ∈ N,

1

2

∑
s∈S
|Pr[Xκ = s]− Pr[Yκ = s]| ≤ negl(κ).

We use the notation Xκ ≈s Yκ as a shorthand for statistically indistinguishable ensembles. In this
paper, wherever the subscript under ≈ is not mentioned, it is implicit that the two distributions
are computationally indistinguishable.

In Appendix B we provide definitions of a few well-known primitives which we use as building
blocks in the paper.

3 Definition of Block-wise Non-malleable Codes

In this section, we mainly present the formal definition of block-wise non-malleable codes and state
(and prove) some basic properties of them including the information theoretic impossibility.

3.1 Block-wise Encoding Scheme

For modularity we begin this section with the definition of block-wise encoding scheme and then
we present the definition of block-wise non-malleable encoding scheme based on that.

Definition 3.1 (Block-wise encoding scheme). An (`, k, n)-block-wise encoding scheme consists
of two efficient algorithms: a randomized encoding algorithm Enc : {0, 1}k → {0, 1}n, and a de-
terministic decoding algorithm Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that, each string output by
Enc is an `-tuple: (c1, . . . , c`) where |ci| = ni, with

∑`
i=1 ni = n, and for every m ∈ {0, 1}k,

Pr[Dec(Enc(m)) = m] = 1.

We begin by defining the following property of a block-wise encoding scheme called reveal index,
that will be useful later on.

Definition 3.2. (Reveal Index) Let Code = (Enc,Dec) be an (`, k, n)-block-wise encoding scheme.
Then Code is said to have reveal index η if η − 1 ∈ [`] is the largest index for which the following
condition holds:

8

• For all pair of messages m0,m1 ∈ {0, 1}k if (c
(0)
1 , . . . , c

(0)
`) ← Enc(m0) and (c

(1)
1 , . . . , c

(1)
`) ←

Enc(m1) then (c
(1)
1 , . . . , c

(1)
η−1) ≈ (c

(1)
1 , . . . , c

(1)
η−1).

Remark 3.3. This definition formalizes the fact that, for any encoding scheme, there is an index
η which reveals some information about the encoded message for the first time in the sequence
and before that the sequence (c1, . . . , cη−1) hides the encoded message. The indistinguishability
denoted by “≈” in the above definition can refer to computational indistinguishability or statistical
indistinguishability depending on whether we are in the computational or information-theoretic
setting respectively. Obviously η ≤ ` for any block-wise encoding scheme.

3.2 Block-wise Non-Malleable Encoding Scheme

Now, we are ready to present our main definition of a block-wise non-malleable encoding scheme.

Definition 3.4 (Block-wise non-malleable codes). Let Code = (Enc,Dec) be an (`, k, n)-block-wise
encoding scheme. Let f = (f1, . . . , f`) be any tuple of functions specified as follows: ∀i ∈ [`], fi :
{0, 1}νi → {0, 1}ni where νi =

∑i
j=1 nj. Then Code is called an (`, k, n)-block-wise non-malleable

code (BNMC in short) if, for any such tuple f , there exists an algorithm called the replacer Rf ,
such that, for any pair of messages (m0,m1) ∈ {0, 1}k, the following holds:

Tamperfm0
≈ Tamperfm1

.

where Tamperfm for any m ∈ {0, 1}k is defined as:

Tamperfm =



c = (c1, . . . , c`)← Enc(m);
∀i ∈ [`] : c′i = fi(c1, · · · , ci);

Let c′ = (c′1, . . . , c
′
`); If c′ = c then set m′ := same?;

Else decode m′ ← Dec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← Rf (c1, . . . , c`);
Output m′


Remark 3.5. A few remarks are in order.

1. As usual the indistinguishability depends on the setting (information theoretic or computa-
tional). Also we emphasize that in the computational setting the tampering functions must be
efficient (runs in poly-time), but can otherwise be arbitrary.

2. The definition considers two special symbols, namely same? and ⊥. These are conventionally
used to denote special scenarios: the output same? denotes that the tampering functions were
the identity functions and ⊥ denotes invalidity of a codeword.

3. It is easy to see that any BNMC has reveal index ≥ 2.

On the necessity of the replacer. Notice that, in contrast to the “standard” definition of
non-malleable codes, in our definition of BNMC we additionally introduce an algorithm called the
replacer Rf for any tuple of functions f . The replacer comes into play only when the tampered
codeword is “invalid”. In that case, it takes the entire codeword (original) as input and outputs
a value in the set {0, 1}k ∪ {same?,⊥}. We stress that the replacer is actually necessary for this
kind of tampering. To see this, consider the tuple of functions f? where the first ` − 1 functions
f?1 , . . . , f

?
`−1 are identities. Now consider f?` which gets the entire codeword as input and hence

9

can decode. Therefore, depending on the decoded message it chooses to tamper to some “invalid”
codeword or leave it as it is. For such a set of tampering functions f?, the standard definition of non-
malleable codes (i.e., Def. B.1) is bound to fail as the output of the experiment Tamperf

?
depends

on the message. More precisely, it outputs same? in one case (say when the decoded message in
m0) and ⊥ in another (when the message is m1). However, one may observe that this is not a
“real mauling attack” in a sense that, by tampering to an “invalid” codeword, the adversary is not
really modifying the encoded message in a “meaningful way”. Intuitively, the adversary should be
considered to be successful in mauling only when, by tampering with the “original” codeword, it
can produce a new codeword which encodes a message “related” to the original one. The replacer
provides a security definition to bypass this impossibility result: if the function f?` provokes an
input dependent ⊥ , then the replacer takes care of this case by replacing ⊥ with anything of its
choice4.

Remark 3.6. We also remark that even if we are in the computationally bounded scenario, where
the adversary is PPT, the replacer is not required to be a PPT algorithm. This assumption is
justified because, essentially the replacer is required only to establish the meaningfulness of the
definition without affecting the natural intuition. However, in computational scenario, all the other
algorithms involved are considered to be PPT and the tampering functions are restricted to be PPT
as usual.

3.3 Uniqueness Property of BNMC

We now define a a uniqueness property of BNMC which will be very useful later (for example, in
Theorem 5.2). This is similar in spirit to the uniqueness defined in [15] in the context of continuous
non-malleable codes. However to differentiate between the two, we call this one-sided uniqueness.

Definition 3.7. (One-sided uniqueness) Let Code = (Enc,Dec) be an (`, k, n)-block-wise non-
malleable encoding scheme. Let ζ ∈ [`] be the minimum index such that there does not exist any
pair of codewords c = (c1, . . . , c`) and c′ = (c′1, . . . , c

′
`) for which the following holds:

• ci = c′i, ∀ i ∈ {1, . . . , ζ − 1} ;

• ⊥ 6= Dec(c) 6= Dec(c′) 6= ⊥.

Then, we call ζ the uniqueness index of a block-wise non-malleable encoding scheme and call such
a code a ζ-unique code5.

We now show the simple fact that the uniqueness index of a block-wise non-malleable encoding
scheme must always be strictly less than its reveal index. Formally:

Lemma 3.8. Let Code = (Enc,Dec) be an (`, k, n)-block-wise non-malleable encoding scheme with
reveal index j + 1 and uniqueness index j′. Then j′ ≤ j.

Proof. The proof is by contradiction. Assume that j′ ≥ j + 1. This implies the following:

4In particular, in the above example, in experiment Tamperf (m1), the replacer would replace ⊥ with same?. The
replacer can decide to do this by applying the first `− 1 tampering functions to the corresponding blocks. Whenever
it sees that the first `−1 tampered blocks are identical to the original one it replaces ⊥ with same? whence rendering
indistinguishability of the experiments Tamperf (m0) and Tamperf (m1),.

5From the correctness property of the code, it follows that ζ ≤ `. Also, note that, if a block-wise non-malleable
encoding scheme has ζ-uniqueness, then for any valid codeword, the first j ≥ ζ blocks uniquely determine the encoded
message.

10

• From the definition of reveal index, we know that j is the maximum index for which the first j-
blocks of codewords for any two messages are indistinguishable. In other words, there exists
a pair of messages (m0,m1) and an admissible6 adversary A that can distinguish between

distributions (c
(0)
1 , . . . , c

(0)
j+1) and (c

(1)
1 , . . . , c

(1)
j+1) where c0 = (c

(0)
1 , . . . , c

(0)
`) ← Enc(m0) and

c1 = (c
(1)
1 , . . . , c

(1)
`) ← Enc(m1). Without loss of generality assume that A outputs the bit

b ∈ {0, 1} to signal the encoding is generated from mb.

• From the definition of one-sided uniqueness, there exists a pair of codewords c =
(c1, . . . , cj′ , cj′+1, . . . , c`) and ĉ = (c1, . . . , cj′ , ĉj′+1, . . . , ĉ`) (for j′ ≥ j+ 1) such that Dec(c) =
m 6= ⊥, Dec(ĉ) = m̂ 6= ⊥ and m 6= m̂.

When the above two statements hold, we shall construct another admissible adversary B that
can distinguish between any two tampering experiments Tamperfm0

and Tamperfm1
using A, thus

violating the non-malleability of the code. The details follows.
Let t = (τ1, . . . , τ`)← Enc(mb) be the target codeword where b ∈ {0, 1}.

Description of BA(·,·):

• Gets the pair c and ĉ as auxiliary inputs.

• Fix the random tape of A(·, ·) to some randomness r. Now A(r, ·) becomes a deterministic
algorithm.

• Design function tuple f = (f1, . . . , f`) as follows:

– Each function fi is hard-wired with the pair (c, ĉ) and the adversary A(r, ·) as a sub-
routine.

– For i ∈ [j′] each fi is a constant function that disregards the input and always tampers
the ith codeword block to ci.

– For i ∈ {j′ + 1, . . . , `} each fi runs A(r, ·) on the tuple (τ1, . . . , τj+1) (this is possible as
j′ ≥ j + 1, by assumption). If A(r, (τ1, . . . , τj+1)) outputs 0, then fi overwrites with ci;
otherwise it overwrites with ĉi.

Clearly for such functions f , Tamperfm0
would always output m and Tamperfm1

would always output
m̂ unless the tuple (τ1, . . . , τj) is the same as one of the tuples (c1, . . . , cj) and (ĉ1, . . . , ĉj). However,
since the encoding procedure is randomized and the length of the first j-block is polynomial in the
security parameter κ, this happens with negligible probability (in κ) and hence the above adversary
can distinguish between Tamperfm0

and Tamperfm1
, thus violating the non-malleability of the code.

Hence j′ ≤ j.

Similar in spirit to [15], we state the following corollary that any block-wise non-malleable
encoding scheme has a uniqueness index of at most `− 1.

Corollary 3.9. Let Code = (Enc,Dec) be an (`, k, n)-block-wise non-malleable code having ζ-one-
sided uniqueness. Then ζ ≤ `− 1.

6An admissible adversary refers to a PPT algorithm in the computationally setting and unbounded in the
information-theoretic setting.

11

3.4 Impossibility of Information-theoretic BNMC

We now show that it is impossible to construct BNMC against unbounded (block-wise) adversaries
(i.e. in the information-theoretic setting). This is formally stated in the form of following lemma.

Lemma 3.10. It is impossible to construct an information-theoretic block-wise non-malleable code.

Proof. Assume for the sake of contradiction that Code is an information-theoretically secure
(`, k, n)-block-wise non-malleable code. From Corollary 3.9, we can assume that Code has j-
uniqueness for some j ≤ ` − 1. This implies that there must exist a pair of codewords
c = (c1, . . . , cj−1, cj , . . . , c`) and ĉ = (c1, . . . , cj−1, ĉj , . . . , ĉ`) such that they are valid and decode to
different messages ⊥ 6= m← Dec(c), ⊥ 6= m̂← Dec(ĉ)7

Consider the experiments Tamperfm0
and Tamperfm1

for a pair of messages m0,m1 ∈ {0, 1}k
such that m0,m1 /∈ {m, m̂}8. The unbounded adversary, finds the pair (c, ĉ) by brute force. Let
t = (τ1, . . . , τ`) ← Enc(m) be the target codeword. The adversary’s set of tampering functions
f = (f1, . . . , f`) are described as follows:

1. For i ∈ [j − 1], fi overwrites τi to ci.

2. For i ∈ {j, . . . , `}, fi first determine the unique encoded message m̃ by trying all possibilities.
Note that this is indeed possible as the target codeword is valid (encodes one of m0,m1) and
by j-one-sided uniqueness, the message m̃ is uniquely determined by the first j blocks of the
target codeword. If m̃ = m0, then it tampers to m; otherwise, if m̃ = m1, then it tampers to
m̂.

Clearly the experiment Tamperfm0
would always outputs m whereas Tamperfm1

would always outputs
m̂; hence they can be easily distinguished. This shows the impossibility of information-theoretic
block-wise non-malleable encoding schemes.

Henceforth, from now on we focus only on computationally bounded scenario where the adver-
saries are PPT and the functions are efficient; however, as mentioned in Remark 3.6, we do not
put any restriction on the efficiency on the replacer, in particular it is allowed ot run in super-poly
(or even exponential) time even in computationally bounded scenario. In fact, later in this paper,
we often encounter a replacer which is running in exponential time. Nonetheless, since we are in
computationally bounded scenario we must restrict the reduction to be PPT. We are indeed able
to achieve such “efficient” reductions even when the replacer is “highly inefficient” which is one of
the main technical hurdle we overcame in the proofs.

4 Strong BNMCs

In this section, we introduce a stronger definition of block-wise non-malleable code, in which the
adversary can tamper the blocks in any order of its choice. We call this notion strong block-wise
non-malleable code (SBNMC in short) and show how to build such codes generically based on a
weaker BNMC (here weaker refers to a code satisfying Def. 3.4) and a secret-sharing scheme in
a black-box manner without any additional assumptions. Note that, since the transformation is
generic, any result which we obtain for BNMC can be extended to SBNMC with a (quadratic)
blow up in the size of the codeword. In particular, our construction presented in Section 6 can be
extended to a SBNMC using the generic transformation we provide in this section.

7In particular here we use the fact (see Def. 4.2) that j is the minimum such index.
8This is in order to avoid any possibility of getting same?.

12

We formalize this notion by a permutation (mapping within the set of block indexes) controlled
by the adversary along with the tampering functions.

Definition 4.1 (Strong block-wise non-malleable codes). Let Code = (Enc,Dec) be an (`, k, n)-
block-wise encoding scheme. Let f = (f1, . . . , f `) be any tuple of functions and π : [`]→ [`] be any
permutation such that ∀i ∈ [`], fπ(i) : {0, 1}νi → {0, 1}nπ(i) where νi =

∑i
j=1 nπ(j). Then Code is

called an (`, k, n)-strong-block-wise non-malleable code if, for any such tuple f and any permutation
π, there exists an algorithm Rf ,π with output domain {⊥, same?} ∪ {0, 1}k such that, for any pair

of messages m0,m1 ∈ {0, 1}k, the following holds:

STamperf ,πm0
≈ STamperf ,πm1

.

where STamperf ,πm is defined as:

STamperf ,πm =



c = (c1, . . . , c`)← Enc(m);

∀i ∈ [`] : c′π(i) = fπ(i)(cπ(1), · · · , cπ(i));

Let c′ = (c′1, . . . , c
′
`); If c′ = c then set m′ := same?;

Else m′ ← Dec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← Rf ,π(m, c1, . . . , c`);

Output m′


.

It is not hard to see that, in order to achieve such strong non-malleability, a block-wise code
must satisfy a stronger version of uniqueness which we call any-sided uniqueness.

Definition 4.2. (Any-sided uniqueness) Let SCode = (SEnc, SDec) be an (`, k, n)-SBNMC. Let
ζ ∈ [`] be the minimum index such that there does not exist a pair of codewords c = (c1, . . . , c`) and
c′ = (c′1, . . . , c

′
`) and a permutation π : [`]→ [`] for which the following holds:

• cπ(i) = c′π(i), ∀ i ∈ {1, . . . , ζ − 1} ;

• ⊥ 6= Dec(c) 6= Dec(c′) 6= ⊥.

Then, we call ζ the uniqueness index of a SBNMC and such a code, a ζ-unique code9.

The following corollary is a straightforward extension of Corollary 3.9.

Lemma 4.3. Let SCode = (SEnc,SDec) be an (`, k, n)-SBNMC which is ζ-any-sided-unique. Then
ζ ≤ `− 1.

Proof. Assume for the sake of contradiction that ζ = `. This implies that there is an adversary
which outputs two valid codewords c = (c1, . . . , c`−1, c`), c′ = (c1, . . . , c`−1, c

′
`) and a permutation

π : [`]→ [`] such that

• cπ(i) = c′π(i), ∀ i ∈ {1, . . . , `− 1} ;

• Dec(c) 6= Dec(c′).

so that Dec(c) 6= Dec(c). Let Dec(c) = m and Dec(ĉ) = m̂. Then the adversary can execute the
following attack for any pair of messages (m0,m1) on the target codeword t = (τ1, . . . , τ`) (which
is encoding of either m0 or m1):

9From the property of correctness of the code, it follows that ζ ≤ `. Also, note that, if a SBNMC has ζ-uniqueness,
then for any valid codeword, the first j ≥ ζ blocks uniquely determine the encoded message.

13

1. For all i ∈ [`− 1], fπ(i) are constant functions, each of which overwrites τi to ci disregarding
the input.

2. Note that fπ(`) gets the entire codeword t as input. It first decodes the codeword m̃ ←
Dec(τ1, . . . , τ`). If m̃ = m0, then it overwrites to c`; else, if m̃ = m1, it overwrites to ĉ`.

Clearly, in the above case, STamperf ,πm0
will always output m whereas STamperf ,πm1

will output

m1 which makes the experiments STamperf ,πm0
and STamperf ,πm1

easily distinguishable which is a
contradiction.

Now we present a general transformation from any block-wise non-malleable code to a strong
block-wise non-malleable code.

The transformation: Let Code = (Enc,Dec) be a block-wise encoding scheme. Let SSHi,` be
an p-out-of-` secret-sharing scheme which takes any λ-bit secret as input to produce shares each of
size O(λ)-bit10. It consists of three efficient algorithms: (i) a randomized algorithm Sharep,` which
takes any secret s as input and outputs ` shares sh = (sh1, . . . , sh`); (ii) a deterministic algorithm
Reconi,` which takes any p shares from the set of all shares sh as input and outputs the secret s
and (iii) a deterministic algorithm Verifyp,` which takes at least p shares (it can take more shares,
basically any number between p and `) from sh as input, checks if they form a “valid” secret-
sharing and outputs 1 if and only if the check succeeds and 0 otherwise. Let Code = (Enc,Dec)
be an (`, k, n)-BNMC. We build an (`, k, n)-SBNMC SCode using Code and SSHi,` for all i ∈ [`] (`
instances of the secret-sharing scheme) as follows:

1. SEnc. Start with encoding the message m ∈ {0, 1}k with the underlying code Code. Let
(c1, . . . , c`) ← Enc(m). For each i ∈ [`], secret-share the i-th block using SSHi,` as follows:
(shi1, . . . , sh

i
`) ← Sharei,`(ci). Then construct the i-th block of SCode as follows: sci =

(sh1
i , . . . , sh

`
i).

2. SDec. On input a codeword (sc1, . . . , sc`), parse each sci as (sh1
i , . . . , sh

`
i). Check if the secret

shares form a valid secret-sharing by running Verifyi,`(sh
i
1, . . . , sh

i
`) for each i ∈ [`]. If any of

them outputs 0, then output ⊥. Otherwise, reconstruct the shares as follows: recover ci by
running Reconi,` for each i ∈ [`] on any i shares among (sci1, . . . , sc

1
`). Then decode with the

decoding process of the underlying code: m← Dec(c1, . . . , c`) and output m.

Theorem 4.4. If the underlying block-wise encoding scheme Code is an (`, k, n)-BNMC, then
SCode = (SEnc,SDec) is an (`, k, n′)-SBNMC where n′ = Θ(`n).

Intuitively there are two key reasons why the above transformation work: (i) the tampering
function fπ(i) can only re-construct just i-blocks of the underlying weaker code (c1, . . . , ci) and
“does not know anything” about the remaining blocks; thus tampering with them would result in
values independent of the original values; (ii) moreover, at this point, it has already “committed”
to tampering with the first i − 1 blocks (c1, . . . , ci−1) 11 and trying to change any of them would
result in an invalid secret-sharing and outputting ⊥. So, the only thing it can do is to tamper with
ci, i.e. the i-th block of the original codeword (of the underlying weaker code) with the knowledge
of the first i blocks which eventually reduces the tampering in this model to the tampering in the
weaker model. The detailed proof is provided in Appendix A.

10Concretely using Shanir’s secret sharing would give a 2λ-bit share.
11Since for j-th block, any j shares determine the block, when j ≤ i−1 the first i−1 blocks are already determined

at this stage.

14

5 Relation between Non-Malleable Commitment and BNMC

In this section, we show that given a BNMC, it is possible to construct a non-malleable commitment
scheme with respect to opening. Moreover, for the case of two blocks (i.e., when ` = 2), the other
direction also holds, that is, we can build a BNMC from any non-malleable commitment scheme
(we only require the commitment scheme to be non-malleable with respect to opening). We follow
the definition of non-malleable commitments introduced by Pass and Rosen [24] (these in turn are
built on the original definition of Dolev et al. [12]). We will work with notion of non-malleability
with respect to opening.

We formalize the definition by comparing a man-in-the-middle and a stand-alone execution.
Consider a commitment scheme 〈C,R〉, and a polynomial-time relation R ⊆ {0, 1}km × {0, 1}km .
We consider man-in-the-middle adversaries that simultaneously participate in a left and a right
interaction in which a commitment scheme is taking place. The adversary is said to succeed in
mauling a left commitment to a value m if it is able to come up with a commitment m̃ (and
its opening) on the right such that R(m, m̃) = 1. The man-in-the-middle and the stand-alone
executions are defined belows.

Man-in-the-middle Execution. In the man-in-the-middle execution, the adversary M simulta-
neously participates in a left and a right interaction. In the left interaction, the man-in-the-middle
adversary M interacts with C acting as a receiver to a commitment of m. In the right interaction,
M interacts with R attempting to commit to a related value m̃. We assume the man-in-the-middle
adversary M is synchronizing,12 which means that as soon as it receives a message from the com-
mitter in the left interaction, it sends a message immediately in the right interaction. Prior to the
interaction, the value m is given to C as local input. M may also have an auxiliary input z, which
in particular might contain a-priori information about m. The success of M is defined using the
following boolean random variable:

• MimM(R,m, z) = 1 if and only if A decommits to a value m̃ such that R(m, m̃) = 1.

The stand-alone execution. In the stand-alone execution only one interaction takes place. The
stand-alone adversary S (a.k.a. simulator) directly interacts with R. As in the man-in-the-middle
execution, the value m is chosen prior to the interaction and S receives some a-priori information
about m as part of its an auxiliary input z. S first executes the commitment phase with R. Once
the commitment phase has been completed, S receives the value m and attempts to decommit to
a value m̃. The success of S is defined using the following boolean random variables:

• StaS(R,m, z) = 1 if and only if S decommits to a value m̃ such that R(m, m̃) = 1.

Similar to earlier works, we shall work with the tag-based definition of non-malleable commit-
ments, in which every interaction is associated with a tag tg. If the tag tg for the left interaction is
equal to the tag t̃g for the right interaction, the output is 0 in both the experiments. This is why
we do allow R to be reflexive i.e. R(m,m) = 1.

12It is sufficient to consider synchronizing adversary as Wee [26] constructed a generic compiler which transforms
any non-malleable commitment scheme against synchronizing adversaries to a non-malleable commitment against
asynchronous adversaries. Though Wee only considered specifically the stronger notion (non-malleability w.r.t. com-
mitment), we conjecture that, the same also works for our definition of non-malleability (w.r.t. opening) with
necessary adjustments.

15

Block-wise NMC: Let Code = (Enc,Dec) be an (`, k, n)-block-wise non-malleable encod-
ing scheme with the reveal index `.

Tag: Let tg ∈ {0, 1}kt be the tag of the interaction.

Secret input to the committer: Message m ∈ {0, 1}km such that km + kt = k.

Protocol:

• Initialize: The committer C encodes the message concatenated with the tag:

(c1, . . . , c`)← Enc(tg‖m)

• Commit: The commitment consists of `− 1 rounds where in the i-th round C sends
ci for all i ∈ [`− 1].

• Decommit: C sends the last block c` as decommitment all at once. The receiver R
decodes the codeword m̃← Dec(c1, . . . , c`) and output m̃ as the committed value.

Figure 1: Non-malleable Commitment from BNMC.

Definition 5.1 (Non-malleable commitment with respect to opening). A commitment scheme
〈C,R〉 is said to be non-malleable w.r.t. opening if for every probabilistic polynomial-time man-
in-the-middle adversary M, there exists a (possibly expected) PPT stand-alone simulator S and
a negligible function negl(·) : N → N, such that for every polynomial-time computable relation
R ⊆ {0, 1}km × {0, 1}km, every message m ∈ {0, 1}km, and every z ∈ {0, 1}?, it holds that:∣∣∣Pr

[
MimM(R,m, z) = 1

]
− Pr

[
StaS(R,m, z) = 1

]∣∣∣ ≤ negl(κ).

We remark that, in this section we consider strictly PPT simulators.

5.1 Non-malleable Commitment from BNMC

We provide a simple construction of a perfectly binding non-malleable commitment scheme (w.r.t.
opening) against synchronizing adversary solely from a BNMC. More concretely, given an (`, k, n)-
block-wise non-malleable encoding scheme Code = (Enc,Dec) with reveal index `, we design a
commitment scheme 〈C,R〉 as follows: C encodes the input message to generate the codeword
c = (c1, . . . , c`) and sends each block ci in the i-th round for all i ∈ [` − 1] in the commitment
phase. Finally, C sends the final block c` as decommitment. On receiving the final block R decodes
c. If the decoder outputs ⊥ then R rejects, otherwise accepts the decoded message. The scheme
is described in Figure 1. Note that, there is no message from R except some “acknowledgement”
after each new message received.

Our construction of BNMC, provided in Section 6 has reveal index `. We formally prove the
following theorem:

Theorem 5.2. Suppose there is a BNMC with reveal index `. Then the protocol described in Fig. 1
is a (`−1)-round perfectly binding non-malleable commitment scheme with respect to opening against
a synchronizing man-in-the-middle adversary.

Proof. In order to prove the theorem we need to show three properties:

16

1. Perfect binding.

2. Computational hiding.

3. Non-malleability against synchronizing adversary.

Perfect binding. By Lemma 3.8 we have that Code has j-one-sided uniqueness where j ≤ `− 1.
Perfect binding follows in a straightforward manner from that, which guarantees that the encoded
message is uniquely defined by the first `− 1 blocks of any codeword.

Computational hiding. This follows easily from the fact that Code has reveal index j which
intuitively says that for any codeword c = (c1, . . . , c`), the first `− 1 blocks (c1, . . . , c`−1) reveal no
information to a computationally bounded adversary about the message encoded by c.

Non-malleability. Without any loss of generality we can assume the man-in-the middle M to
be deterministic. Let tg be the tag of the commitment and z be the auxiliary input. Now for all
i ∈ [`], fi : {0, 1}νi → {0, 1}ni has the tag tg, the auxiliary input z, and the code of M hardwired,
and works as follows:

• Parse the input as a tuple (c1, . . . , ci) where |cj | = nj for all j′ ∈ [i].

• Run M(·) on z and (c1, . . . , ci) to generate the tampered value c′i ← M (rM; (c1, . . . , ci)), where
rM is the internal randomness of M.

• Output c′i.

To show non-malleability, we need to show the existence of an PPT simulator S for any M. We
explicitly construct such a simulator as follows:

SM(tg, z):

1. Start with committing to the message 0k by first encoding c = (c1, . . . , c`)← Enc(tg‖0k), and
then setting the left commitment to cmt = (c1, . . . , cj−1).

2. Apply the functions (f1, . . . , f`−1) defined above to generate the messages (in the right inter-
action) for the commitment cmt′ = (c′1, . . . , c

′
`−1).

3. Finally decommit in the right by sending c′` ← f`(c1, . . . , c`).

Now we prove that this simulation satisfies Definition B.1. We reduce our problem to the
underlying block-wise non-malleable encoding scheme. Assume for the sake of contradiction that
there exists a man-in-the-middle M, an auxiliary input z and a value m such that the following
holds for some non-negligible function ε(κ) : N→ N.

Pr
[
MimM(R,m, z) = 1

]
− Pr

[
StaS(R,m, z) = 1

]
> ε. (1)

We describe the executions in detail below:

MimM(R,m, z). Let the tag of committer be tg. We split the execution into two phases:
(i) commitment phase and (ii) decommitment phase.

1. Commitment Phase.

17

• The committer C generates the encoding (c1, . . . , c`)← Enc(tg‖m) and set the commit-
ment to be cmt = (c1, . . . , c`−1). In round-i of the commitment phase, it sends block
ci.

• M has as an input the auxiliary value z. Then in the i ∈ [` − 1]-th round, it receives a
block ci and sends a block c′i in the right to R.

2. Decommitment Phase

• C sends the final block c` as decommitment. M, on receiving c`, sends c′` to R.

• R decodes v ← Dec(c′1, . . . , c
′
`). If v 6= ⊥ then it parses t̃g‖m̃ := v and sets θR := 1 if and

only if t̃g 6= tg and R(m, m̃) = 1. In all other cases, it sets θR := 0.

Finally output θR.

StaS(R,m, z). Let the tag of committer be tg. Like above, we again split the execution
into two phases: (i) commitment phase and (ii) decommitment phase.

1. Commitment Phase.

• The simulator SM(tg, z), described above produces the transcript of the right interac-
tion (c′1, . . . , c

′
`) by first encoding (c1, . . . , c`) ← Enc(tg‖0km) and applying functions f ,

described above, on them accordingly. In round-i of the commitment phase, it sends a
c′i to R.

2. Decommitment Phase

• S gets the message m. However, without using m, it sends the final block c′` produced
earlier to R.

• R decodes v ← Dec(c′1, . . . , c
′
`). If v = ⊥ then the replacer is invoked v ← Rf (c1, . . . , c`).

Now if v = ⊥ then R sets θR := 0. Otherwise it parses t̃g‖m̃ := v. It sets θR := 1 if and
only if t̃g 6= tg and R(m, m̃) = 1 and θR := 0 otherwise.

Finally output θR.

We will now construct a PPT adversary A which can distinguish between the distribution
Tamperftg‖m and Tamperftg‖0km using the above man-in-the-middle M, where f is the function tuple
defined above, with probability at least ε. Without loss of generality, we can assume that A outputs
1 when it detects the experiment to be Tamperftg‖m and 0 otherwise. The description of A follows:

• It tampers the experiment with functions f and receives the response v from the experiment
Tamperftg‖m? (say) where m? ∈ {m, 0km}.

• It parses v as t̃g‖m̃. It outputs 1 if t̃g 6= tg and R(m, m̃) = 1, and a random bit otherwise.

Now clearly,

Pr [A outputs 1 | m? = m]− Pr
[
A outputs 1 | m? = 0km

]
= Pr

[
Tamperftg‖m = t̃g‖m̃ ∧ (t̃g 6= tg) ∧ (R(m, m̃) = 1)

]
− Pr

[
Tamperftg‖0km = t̃g‖m̃ ∧ (t̃g 6= tg) ∧ (R(m, m̃) = 1)

]
(2)

≥ Pr
[
MimM(R,m, z) = 1

]
− Pr

[
StaS(R,m, z) = 1

]
> ε. (3)

18

Eq. 2 follows from the description of adversary A in a straightforward manner since for all the other
cases A outputs a random bit in both the experiments. The first inequality in Eq. 3 is more tricky.
Note that, if the replacer is not invoked in the experiment Tamperfm, then the equality holds clearly
from the description of the executions. However, consider the case when replacer is invoked in the
experiment Tamperfm and it replaces the ⊥ with some valid value t̃g‖m̃ such that tg 6= t̃g and
R(m, m̃) = 1. In that case, Tamperfm would output 1 whereas MimM(R,m, z) would output 0, since
there is no replacer in MimM. Clearly, in this case we would have

Pr
[
Tamperftg‖m = t̃g‖m̃ ∧ (t̃g 6= tg) ∧ (R(m, m̃) = 1)

]
≥ Pr

[
MimM(R,m, z) = 1

]
.

On the other hand, since in the execution StaS, the replacer is also use, the probabilities for the
second quantities are always the same, i.e.,

Pr
[
Tamperftg‖0km = t̃g‖m̃ ∧ (t̃g 6= tg) ∧ (R(m, m̃) = 1)

]
= Pr

[
StaS(R,m, z) = 1

]
.

The final inequality uses the assumption Eq. 1. This completes the proof.

5.2 BNMC from Non-malleable Commitment

Next we show that it is possible to construct a (2, k, n)-BNMC from a perfectly binding non-
interactive non-malleable commitment with respect to opening. Combining this with the above
we can conclude that when ` = 2 then block-wise non-malleable is actually equivalent to perfectly
binding commitments that are non-malleable w.r.t. opening. The construction is given below:

The construction: Let Com be a perfectly binding non-interactive (1-round) non-malleable com-
mitment scheme (w.r.t. opening) whose input is a k-bit message and output is an n-bit commitment.
Let OTSig = (KGen,Sign,Verify) be a one-time signature scheme which produces a signature of ns
bits while applied on any (k+ nr + n)-bit message, where nr is the number of random bits used to
generate the commitment. Then the encoding scheme is defined as follows:

• Encode: First generate the signing and public-key pair for the one-time signature scheme:
(pk, sk) ← KGen(1κ). Let pk ∈ {0, 1}np be the tag of the commitment scheme. On input
message m, run the commitment algorithm with random coins r ← {0, 1}nr to produce
the commitment cmt = Com(m, r), where r is an nr bits random number. Then produce
the signature σ ← Sign(sk, (m, r, cmt)) of length ns. The codeword consists of two parts
(c1, c2) = ((cmt, pk), (m, r, σ)). The length of the codeword is n′ = n+ ns + np + k + nr.

• Decode: On input c ∈ {0, 1}n′ parse c as a tuple (cmt, pk,m, r, σ) such that |cmt| = n,
|pk| = np, |m| = k, |r| = nr and |σ| = ns. Then check if σ verifies as a signature of
(m, r) w.r.t. the public key pk; i.e., Verify(pk, (m, r, cmt), σ) = 1, and the commitment and
decommitment are consistent. Output ⊥ if either of them fails and output m otherwise.

Theorem 5.3. The above encoding scheme is a (2, k, n′)-BNMC.

19

Proof. To prove the theorem, we need to show that, for any two messages m0,m1 ∈ {0, 1}k and any
pair of tampering functions f := (f1, f2) with f1 : {0, 1}n1 → {0, 1}n1 and f2 : {0, 1}n′ → {0, 1}n2

(let n1 = n + np and n2 = k + nr + ns), there exists a replacer Rf1,f2 such that the experiments
defined in Def. 3.4 are computationally indistinguishable:

Tamperf1,f2m0
≈ Tamperf1,f2m1

.

The replacer Rf1,f2 can be constructed as follows: on receiving the codeword c = (c1, c2) =
((cmt, pk), (m, r, σ)), it works as follows:

Replacer Rf1,f2:

• First generate the tampered codeword c′1 = f1(c1) and c′2 = f2(c1, c2). Parse c′1 as (cmt′, pk′)
and c′2 as (m′, r′, σ′). If c′1 = c1 output same?. Otherwise go to the next step.

• Check if the signature verifies: Verify(pk, (m′, r′, cmt′), σ) = 1 and the commitment cmt′ is
consistent with the opening (m′, r′). If either of them fails, then “extract” the unique message
m̂ corresponding to the commitment cmt′ by trying all possibilities (note that, the replacer
is allowed to be inefficient and we use perfectly binding non-malleable commitment). If there
is no such message, then output ⊥; otherwise output m̂.

We next show that for the above replacer, we can make a reduction to the non-malleability
of the underlying commitment scheme. Assume for the sake of contradiction that there exists a
PPT adversary A who specifies f1 and f2 such that A can distinguish Tamperf1,f2m0

from Tamperf1,f2m1

with probability more than ε for some non-negligible function ε : N → N. Further, assume that A
outputs b when it detects the message to be mb. So formally we have for any random bit b ∈ {0, 1}:

Pr
[
(Tamperf1,f2mb

� A) = b
]
> 1/2 + ε. (4)

We shall construct a man-in-the-middle M that can break the non-malleability of the com-
mitment scheme Com for either m0 or m1 with respect to a polynomial relation R to be defined
later.

For some message mb ∈ {m0,m1} we recall the original tampering experiment from Def. 3.4 for
this particular scheme and the above replacer:

Tamperf1,f2mb
:

1. Encode: Generate the signing key-pair (pk, sk) ← KGen(1κ). Produce the commitment:
cmt ← Com(m, r) with pk as the tag. Sign with the signing key σ ← Sign(sk, (m, r, cmt)).
Let the codeword be c = (c1, c2) = ((cmt, pk), (m, r, cmt)).

2. Tamper: Apply the tampering functions: c′1 ← f1(c1) and c′2 ← f2(c1, c2). Let c′ = (c′1, c
′
2).

3. Decode: Parse (cmt′, pk′) := c′1 and (m′, r, σ′) := c′2. If c′ = c set m̃ := same?,

• Otherwise, check if the signature verifies Verify(pk′, (m′, r′cmt′), σ′) = 1 and also if the
commitment in cmt′ and decommitment (m′, r′) are consistent. If not then set m̃ := ⊥.

• Otherwise, if both the check succeeds then set m̃ = m′.

4. Replace: If m̃ = ⊥ call the replacer m̃← Rf1,f2(c1, c2).

5. Output: Finally output m̃.

20

Before going into the reduction, first consider the event when f2 tampers to some c′2 such that
either of the checks fail. Let us call this event Fail. Note, that this event is simply the event
that the decoder outputs ⊥. Observe that Pr

[
Tamperf1,f2mb

= m̃
]

is completely independent of c′2.
This follows from the fact that commitment cmt′ is perfectly binding and the replacer extracts the
unique message m̃ only from cmt′ (without using anything from c′2). In particular, c′2 can only
determine whether or not the decoder outputs ⊥. Hence, the output of the experiment Tamperf1,f2mb
will remain same irrespective of the value of c′2, in particular whether or not Fail happens. Hence
we can have for any m̃ ∈ {0, 1}km ∪ {same?,⊥} and any random b ∈ {0, 1},

Pr
[
Tamperf1,f2mb

= m̃ | Fail
]

= Pr
[
Tamperf1,f2mb

= m̃ | ¬Fail
]

and hence we can have:

Pr
[
(Tamperf1,f2mb

� A) = b | Fail
]

= Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail
]
.

So combining this with Eq. 4 we get:

Pr
[
(Tamperf1,f2mb

� A) = b
]

= Pr
[
(Tamperf1,f2mb

� A) = b | Fail
]

Pr [Fail]

+ Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail
]

Pr [¬Fail]

= Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail
](

Pr [Fail] + Pr [¬Fail]

)
= Pr

[
(Tamperf1,f2mb

� A) = b | ¬Fail
]

> 1/2 + ε. (5)

Next consider the event when pk′ = pk. Call this event TagEq. Then continuing from Eq. 5
we can get:

Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail
]

= Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧TagEq
]

Pr [TagEq | ¬Fail]

+ Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧ ¬TagEq
]

Pr [¬TagEq | ¬Fail]

> 1/2 + ε.

By averaging argument we can have at least one of the following two equations must hold:

Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧TagEq
]
> 1/2 + ε (6)

or

Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧ ¬TagEq
]
> 1/2 + ε. (7)

Now, when TagEq happens, then the entire codeword must be the same, otherwise the functions
(f1, f2) can be used to forge the signature. This is formalized in Claim 5.4.

21

Claim 5.4. If Eq. 6 or Eq. 7 holds, then there exists a PPT adversary B which can forge the
underlying one-time signature scheme OTSig.

Proof. Suppose the above equation holds then we construct the forger B as follows:

• Run the tampering adversary A to receive the function pairs (f1, f2).

• Generate the commitment cmt = Com(mb, r). Query the signing oracle to receive the signa-
ture σ ← Sign(pk, (mb, r, cmt)). Set the codeword to:

c = (c1, c2) := ((cmt, pk,), (mb, r, σ)) .

• Apply the tampering functions to generate the tampered codeword c′1 = f1(c1) and c′2 =
f2(c1, c2).

• Parse (cmt′, pk′) := c′1 and (m′, r′, σ′) := c′2. Let c′ = (c′1, c
′
2). Now, if c = c′, then return

same? to A and abort. Otherwise output ((m′, r′, cmt′), σ′) as the forgery.

From above, it is clear that B succeeds whenever c′ 6= c. However, when c′ = c, then (f1, f2)
are identity functions, and, for such functions, it is obviously impossible for A to distinguish the
experiments Tamperf1,f2m0

and Tamperf1,f2m1
. So, A must make c′ 6= c in order to win the experiment.

This implies that B can forge with probability at least ε. Notice that we implicitly use the fact
that Fail does not happen; otherwise the tampering might result in an invalid signature leaving B
unsuccessful.

Hence, we conclude that Eq. 7 holds. Finally we prove that if Eq. 7 holds then it is possible
to contradict the non-malleability of the underlying commitment scheme Com. Formally we prove
the following claim.

Claim 5.5. If Eq. 7 holds, then there exists a man-in-the-middle adversary M, a relation R ⊆
{0, 1}k × {0, 1}k, an auxiliary input z, and a message mb for which the following holds:

Pr
[
MimM(R,mb, z) = 1

]
− Pr

[
StaS(R,mb, z) = 1

]
≥ ε.

Proof. Set the auxiliary input z = (pk, sk)← KGen(1κ). For a message m̃ ∈ {0, 1}k, let us denote
by

pm̃ := Pr

[
(Tamperf1,f2mb

� A) = b

∣∣∣∣ ¬Fail ∧ ¬TagEq
∧(Tamperf1,f2mb

= m̃)

]
.

Now from Eq. 7 we get:

Pr
[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧ ¬TagEq
]

=
∑

m̃∈{0,1}k

pm̃ · Pr
[
Tamperf1,f2mb

= m̃ | ¬Fail ∧ ¬TagEq
]

> 1/2 + ε. (8)

22

Hence by the averaging argument, there must exists a m̃ ∈ {0, 1}k such that13,∑
m̃∈{0,1}k

Pr

[
(Tamperf1,f2mb

� A) = b

∣∣∣∣ ¬Fail ∧ ¬TagEq
∧(Tamperf1,f2mb

= m̃)

]
> 1/2 + ε. (9)

The relation R is defined as follows: R(x, y) = 1 if and only if x = mb and y = m̃.
The construction of M is straightforward and given below:

• On receiving the commitment cmt from the left, it first applies f1 on (cmt, pk) to generate
(cmt′, pk′). It sends cmt′ as the right commitment.

• On receiving the opening (mb, r) from the left, it applies f2 on
(
(cmt, pk), (mb, r, σ)

)
where

σ ← Sign(sk, (mb, r, cmt)) and then gets (m′, r′, σ′) as a output. It sends the values (m′, r′)
in the right as opening.

It is clear from the description that,

Pr
[
MimM(R,mb, z) = 1

]
= Pr

[
(Tamperf1,f2mb

� A) = b | ¬Fail ∧ ¬TagEq
]
. (10)

Also note that, by perfect binding property,

Pr
[
StaS(R,m0, z) = 1

]
= Pr

[
StaS(R,m1, z) = 1

]
.

This follows because the distributions of the simulator output is identical for both messages in
the commitment phase, since S gets exactly the same information in both cases. However, in the
decommitment phase it gets the actual message, but in that phase it can not open to another
messages due to perfect binding of the commitment scheme.

So, we have for a random b,

Pr
[
StaS(R,mb, z) = 1

]
= 1/2. (11)

Combining Eq. 10 and Eq. 11 we have the claim.

This concludes the proof of the theorem.

6 Our Block-wise Non-malleable Code

In this section, we provide our construction of a block-wise non-malleable code based on sub-
exponentially hard one-way permutations. We construct the code in three steps:

1. In Sec 6.1 we begin by constructing a weaker non-malleable code that we call Tag-based block-
wise non-malleable encoding scheme (tag-based BNMC). In such a code, every codeword has
a tag associated with it and the tampering function must change the tag of a codeword in
order to successfully maul a codeword. In other words, we allow an adversary to create a
related codeword only when the tag remains the same. The tag used here is an index of the
block and hence is only of size log(κ).

13Note that even if we condition on ¬Fail it is possible that f1 tampers in such a way that the output of Tamperf1,f2mb

becomes ⊥, e.g. f1 outputs a c′1 containing string of 0. However, in that case Pr
[
Tamperf1,f2mb

= ⊥
]

is independent of
b otherwise the computational hiding property of Com would be violated. This implies that for m̃ = ⊥, the adversary
A can not be able to distinguish Tamperf1,f2m0

and Tamperf1,f2m1
with probability > 1/2+ε. Therefore we do not include

⊥ in the domain of m̃

23

2. Then in Sec. 6.2 we use a technique, commonly known as the DDN trick [12], to construct a
tag-based BNMCwith tags of length poly(κ).

3. Finally in Sec. 6.3 we construct a BNMC which achieves Def. 3.4, by using the public key of
a one-time signature scheme as the tag of the above code, and by signing the entire codeword
using the corresponding signing key.

6.1 Tag-based non-malleability

In this section we diverge from our original definition and construct an encoding scheme which
meets a weaker definition of non-malleability. Although the concept of tag (or identity) is well-
established in non-malleable commitment literature, it is not clear how that can be extended to
the non-malleable code scenario due to its inherent non-interactive nature. Below we import the
concept of tags in non-malleable code as well, albeit in a very particular and construction-specific
way only for better modularity and simplicity.

First we define the tag of a codeword to be the first block.

Definition 6.1 (Tag of a codeword). Let Code be an (`, k, n)-block-wise encoding scheme. Then
for any codeword c = (c1, . . . , c`), the tag of the codeword, denoted by Tag(c) is defined to be the
first block Tag(c) = c1.

Now we define Tag-based block-wise code which is defined for a fixed tag, in that the encoding
algorithm always outputs a codeword with the tag (i.e. the first block) is equal to that fixed tag.

Definition 6.2 (Tag-based block-wise code). For any tag tg ∈ N, a (`, k, n)-block-wise encoding
scheme Code = (Enc,Dec) is called a (tg, `, k, n)-tag-based block-wise encoding scheme if for all
messages m ∈ {0, 1}k, for any codeword generated by the encoding algorithm, c← Enc(m) we have
Tag(c) = tg

Definition 6.3 (Tag-based block-wise non-malleable codes). Let TCode = (TEnc,TDec) be an
(tg, `, k, n)-tag-based block-wise encoding scheme. Let f̂ = (f̂1, . . . , f̂`) be any tuple of functions
such that ∀i ∈ [`], f̂i : {0, 1}νi → {0, 1}ni where νi =

∑i
j=1 nj. Then TCode is called a (tg, `, k, n)-

tag-based-block-wise non-malleable code (tag-based BNMC in short) if for any such tuple f̂ there
exists a replacer R̂

f̂
such that for any pair of messages (m0,m1) ∈ {0, 1}k, the following holds:

TBTamperf̂m0
≈ TBTamperf̂m1

where TBTamperf̂m for any m ∈ {0, 1}k is defined as:

TBTamperf̂m =



c = (c1, . . . , c`)← TEnc(m);

∀i ∈ [`] : c′i = f̂i(c1, · · · , ci);
Let c′ = (c′1, . . . , c

′
`);

If Tag(c′) = tg then set m′ := same?

Else decode m′ ← TDec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← R̂
f̂
(c1, . . . , c`);

Output m′


Remark 6.4. Note that this definition is strictly weaker than BNMC (Def. 3.4) as it does not
allow tampering of any other part of the codeword when the tag (i.e. the first block) is unchanged.

24

Using complexity leveraging. We assume that sub-exponentially hard one-way permutations
(OWP) exist, which are considered to be hard to break even if the adversary is allowed to run
in sub-exponential time, namely in O(2κs) such that κs = κε/2 for some constant ε ∈ (0, 1). We
crucially need this in the proof as we use one level of complexity leveraging in that, while reducing
to such OWP, we assume the adversary (the reduction in this case) is unable to break the one-way
permutation (the hiding of a commitment scheme in this case) even when it is allowed to run in
time O(2κs) (but in time o(2κ)).

Our basic tag-based construction. We use a non-interactive commitment Com that is perfectly
binding. We write Comκs and Comκ to denote the commitment scheme has computational hiding
with the security parameters κs and κ, respectively. In particular, Comκ is a computationally
hiding commitment scheme even against an adversary running in O(2κs) time. We stress that such
commitments can be constructed from sub-exponentially hard one-way permutations.

First we give a brief overview of the construction. Let µ ∈ N be a parameter. We will now
construct a TBNMC with ` blocks where ` = 2µ + 2. For now, assume ` to be a even number.
Now for any tag tg ∈ [µ] we construct the encoding scheme as follows: we put strings of 0 in all
the blocks except the 4 “special” blocks: the first block is set to tg, the (tg + 1)-th block is set
to the “bigger” commitment Comκ(m), the (` − tg)-th block is set to the “smaller” commitment
Comκs(m) and the `-th (and final) block is set to the openings of the commitments. Now, for odd
`, one can just append one dummy block (string of 0’s) right before the final block. So, without
loss of generality we would assume ` to be even in this section. The detail construction is presented
in Fig. 2.

Remark 6.5. From the computational hiding property of the commitment scheme, it follows that
the construction has reveal index ` = 2µ+ 2 for any PPT adversary.

Now we prove that the construction is a TBNMC.

Theorem 6.6. Let µ ∈ N be some parameter. Assume that sub-exponentially hard one-way-
permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N, the (tg, `, k, n)-TBC TCode =
(TEnc,TDec) described in Fig. 2 is an (tg, `, k, n)- tag-based BNMC against all PPT adversary
such that n = Θ(k + µ · poly(κ)) and ` = 2µ+ 2.

Proof. Fix a function tuple f̂ = (f̂1, . . . , f̂`) and a pair of message (m0,m1) ∈ {0, 1}k. To prove the
theorem we need to show the existence of a replacer R̂

f̂
such that no PPT adversary can distinguish

between the experiments TBTamperf̂m0
and TBTamperf̂m1

.

Constructing the replacer: We construct the replacer as follows:

R̂
f̂
(c1, . . . , c`):

On input a tuple c = (c1, . . . , c`), the replacer first generates the tampered codeword c′ =
(c′1, . . . , c

′
`) as in the real experiment. Let tg(c) = tg and tg(c′) = t̃g. Then, depending on

the values of t̃g it works as follows:

1. If t̃g = tg, then output same?.

2. Otherwise first check if the structure is correct (Step-1 of decoding). If not, then it outputs
⊥.

25

Parameters: Let Comκs takes a k-bit message as input and us-bit randomness to produce
a vs-bit commitment and Comκ takes a message of the same length, but randomness of
u-bit to produce a v-bit commitmenta. Let tg ∈ [µ] be the tag of the encoding scheme
for some µ ∈ N. We define a (`, k, n)-block-wise encoding scheme where ` = 2µ + 2 and
n = k + us + u+ µ(vs + v) + blogµc+ 1 as follows:

Encoding TEnc(m): The encoder gets a message m ∈ {0, 1}k as input and do as follows:

1. Initialize: Choose randomnesses rs
$←− {0, 1}us and r

$←− {0, 1}u for commitment
scheme. Set the first block c1 := tg.

2. Stage-1: For all i ∈ {2, . . . , µ+ 1}, define the i-th block of codeword ci as follows:

ci :=

{
0v i 6= tg + 1

Comκ(m, r) i = tg + 1

3. Stage-2: For all i ∈ {µ + 2, . . . , 2µ + 1}, define the i-th block of codeword ci as
follows:

ci :=

{
0vs i 6= 2µ+ 2− tg

Comκs(m, rs) i = 2µ+ 2− tg

4. Final stage: Define the last block as the decommitments i.e. the message and the
randomnesses in the order of commitments are sent:

c2µ+1 := (m, r, rs)

Decoding TDec(c): On receiving a codeword c parse it as c = (c1, . . . , c2µ+2) such that
|c1| = bµc+ 1, for i ∈ {2, . . . , µ + 1}, |ci| = v, for i ∈ {µ + 2, . . . , 2µ + 1}, |ci| = vs and for
i = 2µ+ 2, |ci| = k + us + u. Then do as follows:

1. Correctness of Structure: First check if the structure is correct: that is if c1 6= 0
and there are exactly two indexes i1 ∈ {2, . . . , µ+ 1}, i2 ∈ {µ+ 2, 2µ+ 1} such that:

(a) ci1 6= 0v and ci2 6= 0vs .

(b) for all other indexes i ∈ {2, . . . , µ + 1} \ {i1}, ci = 0v and i ∈ {µ + 2, . . . , 2µ +
1} \ {i2}, ci = 0vs .

(c) i1 + i2 = 2µ+ 1.

if any of them fails, then the structure of the tampered codeword is incorrect and
therefore output ⊥, else go to the next step.

2. Consistency of commitment: Parse c2µ+2 as (m, r, rs) := c2µ+2 such that |m| = k,
|r| = u and |rs| = us. Then check the validity of the commitment-decommitment pair
(ci1 , (m, r)) and (ci2 , (m, rs)), if any of them are invalid output ⊥, otherwise output
the committed message m.

aWe assume |vs|, |v| = poly(κ)

Figure 2: The construction of (`, k, n)- tag-based BNMC for tag size log κ.

26

3. If the structure is correct and t̃g 6= tg, then perform the following checks:

(a) If t̃g < tg, then compute the message committed in the first stage of the tampered
codeword by brute-force and output it. Note that, this message is unique by perfect
binding of Com.

(b) If t̃g > tg, then compute the message committed in the second stage of the tampered
codeword by brute-force and output it.

The reduction using one-level complexity leveraging. Our aim is to prove that, for the

above replacer, the distributions TBTamperf̂m0
and TBTamperf̂m1

are computationally indistinguish-
able. The key idea is to reduce to the hiding property of the commitment with respect to the bigger
security parameter κ and allow the reduction to run in time O(2κs) hence relying crucially on com-
plexity leveraging.

Assume, for the sake of contradiction, that there exists a PPT adversary A which can distinguish

between experiments TBTamperf̂m0
and TBTamperf̂m1

while running in o(2κs)-time. We say that A

outputs a bit b while it detects the experiment to be TBTamperf̂mb . Therefore, following holds for
a randomly chosen b ∈ {0, 1}:

Pr
[
(TBTamperf̂mb � A) = b

]
> 1/2 + ε(κs) (12)

for some non-negligible function ε(·) : N→ N of the security parameter κs.

Denote the encoding of mb in experiment TBTamperf̂mb by c(b), the tampered codeword by c̃(b).

The i-th block of any codeword c(b) is denoted by c
(b)
i .

Formally we prove the following claim.

Lemma 6.7. If Pr
[
(TBTamperf̂mb � A) = b

]
> 1/2 + ε(κ) for some non-negligible function ε :

N → N then there exists a PPT adversary B which can break hiding of the commitment scheme
Comκ (with probability at least ε(κ)) if B is allowed to run in O(2κs) (but o(2κ)) time.

Proof. We start with the observation that, for any tuple of functions f̂ , the tampered tags are the
same in both the experiments since they are deterministically computed as a function of the original
tag tg as t̃g = f1(tg). Now we describe the reduction B: B receives a commitment cmt? = Comκ(mb)
for some randomly chosen bit b ∈ {0, 1} and some auxiliary input z. It will run the tampering

adversary A, hence the main task of B is to simulate the experiment TBTamperf̂mb correctly which
it does as follows:

• B creates a dummy commitment Comκs(0
k) and defines the first ` − 1 blocks of the input

codeword as follows:

– c1 := tg.

– For all i ∈ {2, . . . , µ+ 1}, define the i-th block of codeword ci as follows:

ci :=

{
0v i 6= tg + 1

cmt? i = tg + 1

– For all i ∈ {µ+ 2, . . . , 2µ+ 1}, define the i-th block of codeword ci as follows:

ci :=

{
0v i 6= 2µ+ 2− tg

Comκs(0
k) i = 2µ+ 2− tg

27

• Then it runs the adversary A to receive the tampering function tuple f̂ = (f̂1, . . . , f̂`). Using

f̂ , it computes the first ` − 1 tampered blocks (c̃
(b)
1 , . . . , c̃

(b)
`−1) where c̃

(b)
1 = t̃g = f1(tg) is the

tag of the tampered code.

• Depending on the value of t̃g, B proceeds as follows:

– If t̃g = tg, then return same? to A.

– Otherwise, B checks if the structure of c̃(b) is correct (Note that the structure of any
codeword is determined by the first `−1 blocks). If not, then return ⊥ to A. Otherwise,
B checks if t̃g < tg.

∗ If it is, then B returns the auxiliary input z.

∗ If it is not, then B runs in O(2κs) time to compute the committed messages m′ inside

the block c̃
(b)

2µ+1−t̃g by brute force, and return m′ to A. This is the part of the proof

where we use complexity leveraging.

• Finally it outputs the decision bit returned by A.

In order to proceed with the proof, we need to argue that B correctly simulates the experiment

TBTamperf̂mb to A. We analyze this case by case.

1. If t̃g = tg, then the replacer would also output same?. Hence the simulation is correct.

2. If t̃g 6= tg, then we split into the following sub-cases.

(a) When the structure of c̃(b) is incorrect. It is easy to see that the simulation is correct

in this case. This is because if the replacer R̂
f̂

is invoked in either TBTamperf̂m0
or

TBTamperf̂m1
, then it would output ⊥. On the other hand, note that the structure of

c̃(b) is determined entirely by three values: the tag and the two commitments; all the
other values are set to be string of 0. However, B replaces the second commitment with
a dummy commitment. Here the hiding property of Comκs comes to our rescue. Due to
the hiding property of the scheme Comκs , the PPT adversary A can not distinguish this

change from the actual experiment TBTamperf̂mb .

(b) When the structure of c̃(b) is correct. This can be further split into following two sub-
cases according to the value of the tag.

i. t̃g < tg. In this case, the tampering function puts the first-stage commitment in

the t̃g-th block c̃
(0)

t̃g
. Now in the experiment TBTamperf̂m0

, c̃
(0)

t̃g
= ft̃g(tg‖0νt̃g) where

νt̃g =
∑t̃g

i=1 ni. Therefore, in the experiment TBTamperf̂m1
, it deterministically use

exactly the same value as the committed value in the t̃g-th block since the input
tg‖0νt̃g to the t̃g-th tampering function is the same. In other words, we would have

c̃
(1)

t̃g
= ft̃g(tg‖0νt̃g). In this case, B returns the auxiliary input z. Now, it is possible

to fix the auxiliary input z to a value such that Comκ(z) = ft̃g(tg‖0νt̃g). This is
possible as it depends only on tg which is also fixed a priori. Moreover since the
structure is correct, there are two possibilities: (i) either the codeword is valid – in

that case the output would be the message committed in c̃
(b)

t̃g
(b ∈ {0, 1}); (ii) or the

codeword is invalid (possibly dependent on the input) – in that case, the replacer
would output that message. Hence in this case, the simulation is correct.

28

ii. t̃g > tg. This implies that 2µ+2− t̃g < 2µ+2−tg, which, in particular, implies that
the (2µ+ 2− t̃g)-th tampered block is not dependent on the (2µ+ 2− tg)-th input
block and all the input blocks (c1, . . . , c2µ+2−t̃g) are correctly defined at this stage.
Recall that B defined the (2µ + 2 − tg)-th input block to a dummy commitment
which does not affect the (2µ + 2 − t̃g)-th tampered block in this case. There are
two possible sub-cases:

Case 1: (When the tampered codeword c̃(b) is valid). This implies that the commit-

ted values are consistent with the openings contained in the final block c̃
(b)
` . So,

clearly the value will be the same as the value committed in the block c̃
(b)

2µ+2−t̃g,

which B returns. Hence in this case the simulation is perfect.

Case 2: (When tampered codeword c̃(b) is invalid). In this case the replacer R̂
f̂

will
be invoked. However, since the structure is correct, we get (from the description
of the replacer) that the output of the tampering experiment is equal to the

value committed in the block c̃
(b)

2µ+2−t̃g, which is what B returns. Hence, the

simulation is perfect in this case as well.

Since the above cases are exhaustive we can conclude that B runs in time O(2κs) and simulate the

view of experiment TBTamperf̂mb correctly; thereby, breaking the hiding of the commitment Comκ

with probability at least ε(κ).

This concludes the proof of the theorem.

Problem of applying signature directly. Now, with a construction of TBNMC in hand the
natural intention is to build a BNMC applying a “standard” trick: namely, use a one-time signature
and sign the entire codeword with respect to the tag as the verification-key. However, for the security
of the signature scheme (against PPT adversary), the size of such verification-key must be at least
Ω(κϕ) for some ϕ > 0 of our choice. Notice that, in the above construction tag-size is bounded
by |tg| = O(log(µ)). Moreover, the number of blocks ` is linearly related to µ as ` = 2µ + 2. So,
setting the tag-size |tg| = Ω(κϕ) would result in a code with super-polynomially many blocks as
` = 2Ω(|tg|) = 2Ω(κϕ) rendering the construction inefficient14.

Therefore, in order to apply the “signature trick”, we need to build a code which supports
(i) “larger ” tag (ii) has at most polynomially many blocks. In the next section we attempt to
“amplify” the tag-size with a technique known as DDN-XOR trick [12].

6.2 Non-malleability amplification

In this section we extend our construction to an efficient construction which can support larger tags.
This extension is similar to a well-known phenomenon, namely non-malleability amplification [20]
in the non-malleable commitment literature. The key-idea is to use the “so-called” DDN-XOR
trick, introduced in [12].

6.2.1 One-many non-malleability

Towards that, we first show that the construction given in Fig. 2 already satisfies a stronger notion,
which we call one-many tag-based non-malleability. This definition, informally states that an

14Concretely, even if we set ϕ to be small constant in (0, 1), we get super-polynomial `.

29

adversary that is able to tamper a single codeword of m, cannot even come up with a set of
codewords such that one of them is related to m. Formally,

Definition 6.8 (One-many tag-based BNMC). Let TCode = (TEnc,TDec) be a (tg, `, k, n)-tag-
based block-wise encoding scheme. Let t ∈ N be a parameter and f̂ = (f̂1, . . . , f̂`) be any tuple of
functions such that ∀i ∈ [`], f̂i : {0, 1}νi → {0, 1}tni where νi =

∑i
j=1 nj. Then TCode is called

an (t, tg, `, k, n)-one-many tag-based-block-wise non-malleable code (OMTBC in short) if for any
such tuple f̂ there exists a replacer R̂

f̂
such that for any pair of messages (m0,m1) ∈ {0, 1}k, the

following holds:

OMTamperf̂m0
≈ OMTamperf̂m1

where OMTamperf̂m for any m ∈ {0, 1}k is defined as:

OMTamperf̂m =



c = (c1, . . . , c`)← TEnc(m);

∀i ∈ [`] : (c′i,1, . . . , c
′
i,t) = f̂i(c1, · · · , ci) (∀ j ∈ [t], |c′i,j | = ni);

∀ j ∈ [t] do as follows :
Let c′j = (c′1,j , . . . , c

′
`,j);

If tg(c′j) = tg then set m′j := same?;

else decode m′j ← TDec(c′j);

If m′j = ⊥ then m′j ← R̂
f̂
(j, c1, . . . , c`);


Output m′ = (m′1, . . . ,m

′
t)


.

Remark 6.9. Note that this definition is similar to one-many non-malleable commitments [24].
In this definition the i-th tampering function’s range is t times the size of the i-th block. In other
words, we allow the tampering function to output t codewords. Also note that the replacer, which
can be called t times, gets as input the index of the invalid codeword, and it outputs the replaced
value for that codeword.

Next we prove that our construction (Fig. 2) achieves this stronger definition. The proof is a
straightforward extension of the proof of Theorem 6.6, so we omit many details.

Theorem 6.10. Let µ, t ∈ N be some parameter. Assume that sub-exponentially hard one-way-
permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N the (tg, `, k, n)-TBC TCode =
(TEnc,TDec) described in Fig. 2 is an (t, tg, `, k, n)-one-many tag-based BNMC against all PPT
adversary such that n = Θ(k + µ · poly(κ)) and ` = 2µ+ 2.

Proof. The central ideas used in this proof are similar to that in the proof of Theorem 6.6. Again
we start with description of the replacer.

R̂
f̂
(j, c1, . . . , c`):

On input an index j and a tuple c = (c1, . . . , c`), the replacer first generates the t-tuple of the
tampered codeword. Let c′j = (c′1,j , . . . , c

′
`,j) be the j-th such codeword. Let tg(c′) = t̃g. Then it

works as follows:

1. If t̃g = tg then output same?.

2. Otherwise first check if the structure is correct (Step-1 of decoding). If not then it outputs
⊥.

3. Otherwise do as follows:

30

(a) If t̃g < tg, then output the message (this message is unique by perfect binding of Com)
committed in the first stage of the tampered codeword by brute-force.

(b) If t̃g > tg, then output the message committed in the second stage of the tampered
codeword by brute-force.

Now, assume that there exists a PPT adversary A which can distinguish among experiments

OMTamperf̂m0
and OMTamperf̂m1

while running in o(κs)-time. Further, assume that A outputs a bit

b while it detects the experiment to be OMTamperf̂mb . Therefore, for a randomly chosen b ∈ {0, 1},

Pr
[
(OMTamperf̂mb � A) = b

]
> 1/2 + ε(κs) (13)

for some non-negligible function ε(·) : N→ N of the security parameter κ.
We prove a lemma similar to Lemma 6.7

Lemma 6.11. If Pr
[
(OMTamperf̂mb � A) = b

]
> 1/2 + ε(κ) for some non-negligible function ε :

N → N then there exists a PPT adversary B which can break hiding of the commitment scheme
Comκ (with probability at least ε(κ)) if B is allowed to run in O(2κs) (but in o(2κ)) time.

Proof (Sketch). We only provide a sketch here as the proof idea is exactly the same as that of

Lemma 6.7. The only difference here is that the reduction B has to simulate experiment TBTamperf̂

which outputs a vector of t values as opposed to the single value in the earlier case. However, it is
straightforward to extend the simulation from single value to a vector by treating each value in the

vector individually. So, the adversary simulates the tampering experiment TBTamperf̂ correctly,
albeit using single-lvel complexity leveraging (to simulate values encoded in a codeword with larger
tag) and non-uniform reduction (to simulate the value encoded in a codeword with smaller tag).

This concludes the proof of the theorem.

6.2.2 Applying DDN-XOR trick

In this section we use the DDN-XOR trick to construct an “efficient” TBNMC with “large” tags.
The construction uses any OMTBC (called “inner code” in the following) with “small” tag in a
black-box way. The basic idea is as follows: let the “big” tag TG be t-bit long. Then compute t
shares of message m just using XOR’s. Then encode each j‖mj with the inner code using j‖TG[j]
(which is of O(log(t))-size) as tag. Finally put the encodings in increasing order of j (from 1 to
t). We get the desired non-malleability as (i) it is impossible to permute the codeword keeping the
“big” tag TG same, since that would require the adversary to change the position (value of j) inside
the encoding which is impossible due to the non-malleability of the inner code; (ii) if the adversary
changes the “big” tag TG, there must exist at least one “small” tag, j‖TG[j] which also changes.
Then we reduce to the one-many non-malleability of the inner code in first such position (say j?).
In particular, if the adversary tampers with the j?-th share, then by non-malleability of the “inner
code” the tampering would result in some “unrelated” share and that makes the entire message
“unrelated” due to XOR’ing with the t − 1 independent shares, even if all those t − 1 shares are
unaltered.

The construction. For any tag TG ∈ {0, 1}t we construct a (TG, `′, k′, n′)- tag-based
BNMC LCode = (LEnc, LDec) from a (t, tg, `, k, n)-one-many tag-based BNMC TCode =
(TEnc,TDec) for any tg ∈ {0, 1}α such that t = 2α−1 − 1, `′ = ` + 1, k′ = k − α + 1 and
n′ = nt as follows.

31

• Encode LEnc(m):

1. Secret-sharing: On receiving an input message m ∈ {0, 1}k′ , first choose (t − 1)
random k′-bit strings (m1, . . . ,mt−1) and then compute mt = m ⊕ m1 ⊕ · · · ⊕ mt−1.
Note that the tuple (m1, . . . ,mt) represents a (t, t)-secret sharing of m.

2. Encode using smaller tag: Then for each j ∈ t, let the j-th “smaller” tag be
tgj = BIT(j)‖TG[j]. Then compute the encoding of BIT(j)‖mj as: (c1,j , . . . , c`,j) ←
TEnctgj (j‖mj).

3. Constructing blocks: Define the tag-block c0 := TG. For all i ∈ [`] define the i-th
block as ci := (ci,1, . . . , ci,t). Output the codeword c = (c0, . . . , c`).

• Decode LDec(c) :

1. Parsing: On receiving a codeword c, parse it as (c0, . . . , c`) := c such that |c0| = t and
for all i ∈ [`] |ci| = tni. Then, for all i ∈ [`] parse ci as (ci,1, . . . , ci,t) such that for all
j ∈ [t], |ci,j | = ni.

2. Checking Tag consistency: Check if the “bigger” tag is consistent with the “smaller”
tag: c0 = c1,1[α]‖c1,2[α]‖ · · · ‖c1,t[α]. Also check if the positions of the smaller tags are
correct: ∀ j ∈ [t], c1,j [1 . . . (α− 1)] = BIT(j). If any of these fail output ⊥, otherwise go
to the next step.

3. Decoding with smaller tag: For each j ∈ [t] decode each value vj ←
TDectgj (c1,j , . . . , c`,j). If any of them is ⊥ then output ⊥. Otherwise, parse each vj
as j′‖mj such that |j′| = α− 1 and |mj | = k′ and go to the next step.

4. Checking Sequence: Finally check for each j ∈ [t] if j′ = BIT(j). If any of these
checks fail, then output ⊥, otherwise output m = m1 ⊕ · · · ⊕mt.

Theorem 6.12. Let TCode = (TEnc,TDec) be a (t, tg, `, k, n)-one-many tag-based BNMC for any
tag tg ∈ {0, 1}α, t = 2α−1−1 and k−α+1 ∈ N. Then for any tag TG ∈ {0, 1}t the above construction
LCode = (LEnc, LDec) is a (TG, `′, k′, n′)- tag-based BNMC for `′ = `+1, k′ = k−α+1 and n′ = nt

Proof. To show that LCode is a tag-based BNMC, for any tampering function tuple f̂ = (f̂1, . . . , f̂`′)
such that ∀i ∈ [`′], f̂i : {0, 1}ν′i → {0, 1}n′i where ν ′i =

∑i
j=1 n

′
j , we need to show the existence

of a replacer R̂
f̂

such that, for any pair of messages (m0,m1), the experiments TBTamperf̂m0
and

TBTamperf̂m1
are indistinguishable for any PPT adversary. Below we start with the description of

the replacer. Note that n1 = α.

R̂
f̂
(c0, . . . , c`): The replacer takes the following steps in order.

1. Set TG := c0. Compute c′0 = T̃G = f̂1(TG). If T̃G = TG, then output same?. Otherwise go
to the next step.

2. Check if all the “smaller” tags are consistent with the “big” tag post tampering of the first
block. In other words, compute c′1 = f̂2(c1). Parse (c′1,1, . . . , c

′
1,t) := c′1 such that, for all j ∈ t,

|c1,j | = α+ 1. Set t̃gj := c′1,j for all j ∈ [t]. Now make the following two checks:

(a) If ∀ j ∈ [t]; t̃gj [1 . . . α− 1] = BIT(j).

(b) If T̃G = t̃g1[α]‖t̃g2[α]‖ · · · ‖t̃gt[α].

32

If any of them fails, then output ⊥. Otherwise, go to the next step.

3. Find the minimum index j? for which T̃G[j?] 6= TG[j?].

4. Construct the tuple functions f̃ = (f̃1, . . . , f̃`) such that ∀i ∈ [`], f̃i : {0, 1}νi → {0, 1}nit and
each function f̃i is defined to work as follows:

• Has the “big” codeword (c0, . . . , c`) hardwired. Parse (ci,1, . . . , ci,t) := ci for all i ∈ [`]
such that |ci,j | = ni.

• On input a partial encoding (γ1, . . . , γi), set ci′,j? := γ′i for all i′ ∈ [i].

• Apply f̂i+1 to ((c1,1, . . . , c1,t), . . . , (ci,1, . . . , ci,t)) to produce c′i.

• Output c′i.

5. For all i ∈ [`], parse each ci and c′i as (ci,1, . . . , ci,t) := ci and (c′i,1, . . . , c
′
i,t) := c′i such that for

all j ∈ [t], |ci,j | = |c′i,j | = ni, respectively.

6. Decode vj := Dec(c′1,j , . . . , c
′
`,j) for all j ∈ [t]. If vj = ⊥ run the one-many replacer vj ←

R̃
f̃
(j, c1,j? , . . . , c`,j?). Here, we use the fact that the underlying code is one-many tag-based

BNMC and hence there exists such a replacer.

7. If ∃j ∈ [t] such that vj = ⊥/same?, then output ⊥.

8. Checks if for all j ∈ [t], vj [1 . . . α − 1] = BIT(j) or not. If any of them fails, then output ⊥;
otherwise, output v1[α . . . k]⊕ · · · ⊕ vt[α . . . k].

Next we will prove that, for the above replacer, the experiments are indistinguishable. In
particular we reduce to the one-many non-malleability of TCode. Formally, we prove the following
lemma.

Lemma 6.13. Assume that there exists a PPT adversary A, a pair of messages (m0,m1) and a
tuple of functions f̂ for which we have, for a random bit b ∈ {0, 1},

Pr
[
(TBTamperf̂mb � A)

]
> 1/2 + ε(κ) (14)

for some non-negligible function ε(·) : N → N. Then there exists a pair of messages (m′0,m
′
1), a

function tuple f̂ and a PPT adversary B such that the following holds for a random bit b:

Pr
[
(OMTamperf̃m′b

� BA)
]
> 1/2 + ε(κ) (15)

Proof. We describe the adversary B as follows:

Adversary BA.

On receiving the message pair (m0,m1) and the tuple of tampering functions f̂ = (f̂1, . . . , f̂`′)
from A, the adversary BA takes the following steps in order.

1. Computes the tampered tag T̃G as T̃G = f̂1(TG) If T̃G = TG, then return same? to A.
Otherwise go to the next step.

2. Check if the smaller tags are consistent after tampering in exactly the same way as the replacer
does:

33

(a) Construct the second block as c1 := (tg1, . . . , tgt) where tgj = BIT(j)‖TG[j] for all j ∈ [t].

It computes the second tampered block c′1 = f̂2(c0, c1).

(b) Parse (c′1,1, . . . , c
′
1,t) := c′1 such that for all j ∈ t, |c1,j | = α.

(c) For all j ∈ [t], set t̃gj := c′1,j . Now check if ∀ j ∈ [t]; t̃gj [1 . . . (α− 1)] = j. If any of them
fails then return ⊥ to A. Otherwise go to the next step.

3. Find the minimum index j? for which T̃G[j?] 6= TG[j?], then follows the following steps:

(a) Choose t− 1 random values m(j) ∈ {0, 1}k′ for all j ∈ [t] \ {j?}. Compute the messages
(m′0,m

′
1) as m′b := m(1) ⊕ · · · ⊕m(j?−1) ⊕mb ⊕m(j?+1) · · ·m(t) (b ∈ {0, 1}).

(b) For all j ∈ [t] \ {j?}, encodes m(j) to produce encodings cj = (c1,j , . . . , c`,j) ←
Enc(BIT(j)‖m(j)) with tags BIT(j)‖TG[j].

4. Define the tampering function tuple (f̃1, . . . , f̃`) as follows:

• Each f̃i : {0, 1}νi → {0, 1}tni is hardwired with the values (c1, . . . , cj?−1, cj?+1, . . . , ct)
and the tag TG.

• On input (c1, . . . , ci), set ci′,j? := ci′ for all i′ ∈ [i].

• Then apply the function f̂i+1 : {0, 1}ν′i → {0, 1}n′i on the tuple
(TG, (c1,1, . . . , c1,t), . . . , (ci,1, . . . , ci,t)) to produce the tampered codeword (c′i,1, . . . , c

′
i,t)

• Output the tuple (c′i,1, . . . , c
′
i,t)

5. B outputs the pair (BIT(j?)‖m′0; BIT(j?)‖m′1) as messages to be challenged upon by the chal-

lenger of experiment OMTamperf̃ with respect to the tag tg = j?‖TG[j?] with the tampering
functions f̃ = (f̃1, . . . , f̃`) described above.

6. On receiving a tuple (v1, . . . , vt) as the response from the experiment OMTamperf̃mb , B executes
the following steps similar to the replacer.

(a) If there exists a vj = ⊥/same?, then return ⊥ to A.

(b) Check if vj [1 . . . α− 1] = BIT(j) for all indexes j ∈ [t]. If any of them fails, then return
⊥ to A. Otherwise, set m̃j := vj [α+ 1 . . . k].

(c) If none of the checks fails, then return m̃1 ⊕ . . .⊕ m̃t to A.

7. Finally output whatever A outputs as its decision.

In order to complete the proof, we need to argue that the above reduction perfectly simulates the

experiment TBTamperf̂mb to A. To do this, we split the analysis into several cases.

• TG = T̃G: Here the simulation is trivially perfect because A expects same? irrespective of
anything.

• TG 6= T̃G: This case is more involved and we split again in the following sub-cases:

– Tag consistency fails: This is a structural inconsistency. In this case A decides to
tamper to something invalid as soon as in the second tampering even without having
any information about the input. Clearly, in this case, the decoder would output ⊥
which can not depend on the input. So, B returns ⊥. Note that also the replacer does
the same.

34

– Tag consistency succeeds: This case is more involved. We present the steps the reduction
follows in this case below:

1. B first constructs its own challenge messages (m′0,m
′
1) depending on the challenge

messages output by A and tampering functions f̃ (one-many) depending on the
tampering functions (one-one) chosen by A, respectively. Importantly, it chooses the
tag to be the tag tgj? because we want this to different from all the possible tampered
tags. This will be helpful later. It is easy to see why this is the case: (i) Note that

j? is the index where T̃G[j?] 6= TG[j?], whence clearly tgj? = BIT(j?)‖TG[j?] 6=
BIT(j?)‖T̃G[j?] = t̃gj? ; and (ii) Since we are already in the case where the tags are

consistent, and each of the tag t̃gj has their corresponding position j as a prefix.

2. Next note that, the one-many challenger here receives two messages
(BIT(j?)‖m′0, BIT(j?)‖m′1) as the challenge messages. Then it picks a bit b ∈ {0, 1}
randomly and encodes m′b and tamper with functions f̃ = (f̃1, . . . , f̃`). Each func-

tion f̃i is hardwired with the encodings of all shares except the j?-th one which it
gets as input. Then it “simulates” an partial encoding LEnc(mb) of mb with respect
to tag TG, feed that to the tampering function f̂i+1 and outputs whatever it out-
puts. Eventually, a tuple of tampered codeword is generated by such tampering.
Let (v1, . . . , vt) be the decodings of the tampered codewords. Now, recall that all
the tampered tags are different from the input tag j?. Hence no vj will be equal to
same?, since that is the only case when a same? is triggered. At this point there are
two possible scenarios:

∗ ∀ j ∈ [t], vj 6= ⊥: In this case, the replacer R̃
f̃

won’t be invoked in the

experiment OMTamperf̃tgj?‖m′b
. Therefore, the experiment just outputs these

values. B on receiving them can easily finish the rest of decoding process itself.

Clearly B perfectly simulates the experiment TBTamperf̂mb to A.

∗ ∃ j ∈ [t] such that vj 6= ⊥: In this case, the one-many replacer R̃
f̃

would come
into play. First note that the decoding for the code corresponding to the “big”
tag would also result in ⊥; thereby, invoking the replacer R̂

f̂
in the experiment

TBTamperf̂mb . Now, the job of the reduction is to simulate the behaviour of

R̂
f̂

consistently when we are in this case. To see this, recall the construction

of R̂
f̂
. The replacer R̂

f̂
is constructed in a manner that it uses the one-many

replacer R̃
f̃

internally. This is the key-fact that allows the successful simulation.
First note that we are already in the case where the tag-consistency succeeds
during Step-3 in the description of R̂

f̂
. So, at this stage R̂

f̂
constructs the

function-tuple f̃ which outputs the tampered “big” encoding and run the one-
many replacer R̃

f̃
with that with the j?-th encoding as input. Now once R̃

f̃

replaces any value with ⊥, R̂
f̂

also outputs ⊥; otherwise, it finishes the rest of

the decoding. On the other hand, in the experiment OMTamperf̃BIT(j?)‖m′b
, the

replacer gets the encoding TEnc(BIT(j?)‖mb) as input and then replaces the ⊥
with some value. Now B gets a tuple of values which are possibly replaced by
R̃

f̃
. Again, if one of them is ⊥ B outputs ⊥ and otherwise finishes the rest of

the decoding. Hence, clearly B simulates the environment of TBTamperf̂mb even

when replacer R̂
f̂

is invoked.

35

Since the above cases are exhaustive and in all of them the adversary B can simulate the view of

A in experiment TBTamperf̂mb perfectly for a random b, we can conclude that the success probability
of B is at least equal to the success probability of A which concludes the proof.

This concludes the proof of the theorem.

6.3 The full construction by removing tags

Finally we present a transformation to remove tags using one-time signature scheme and a tag-
based code with “large tag” (will be referred to as “inner code” in this section). This is similar to a
standard trick [12] used in the area of non-malleable commitment for the same purpose. The main
idea is to sign the entire codeword and set the public-key as the tag. This forces the tampering
function either to keep the tag same and forge the signature in order to tamper, otherwise change
the tag by producing its own key-pairs and then tamper. But the “inner code” guarantees that
whenever the tag is changed, the tampering would result in an “unrelated” codeword.

The Transformation. Let TCode = (TEnc,TDec) be an (tg, `, k, n)- tag-based BNMC for any
tag tg ∈ {0, 1}t. Let OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key
pk ∈ {0, 1}t which takes any km = n − t-bit message to produce a ns-bit signature. Then we
construct an (`, k, n+ ns)-BNMC Code = (Enc,Dec) as follows:

• Encode Enc(m):

1. Generate signature keys: On input message m ∈ {0, 1}k first run the key-generation
algorithm of the signature scheme OTSig to generate a key pair: (pk, sk)← KGen(1κ).

2. Encode with tag: Then run the tag-based encoding scheme with pk as the tag on the
input message m to produce the codeword (c̃1, . . . , c̃`)← TEnc(m). Note that c̃1 = pk.

3. Sign the codeword: Sign the codeword (except the tag) (c̃2, . . . , c̃`) to compute the
signature σ ← Sign(sk, (c̃2, . . . , c̃`)).

4. Output: Set for all i ∈ [` − 1], ci = c̃i and c` = c̃`‖σ. Output the codeword c =
(c1, . . . , c`)

• Decode Dec(c1, . . . , c`) :

1. Parse: On input the codeword (c1, . . . , c`), set ∀i ∈ [` − 1], c̃i := ci and parse c` as
(c̃`‖σ) := c` such that |c̃`| = n` and |σ| = ns.

2. Verify signature: Then verify the signature d ← Verify (c̃1, (c̃2, . . . , c̃`), σ). If d = 0
(i.e. verification fails) then output ⊥. Otherwise go to the next step.

3. Decode with tag: Decode the codeword as m̃← TDec(c̃1, . . . , c̃`). Output m̃.

Next we prove that the above construction is a BNMC.

Theorem 6.14. Let TCode = (TEnc,TDec) be a (tg, `, k, n)- tag-based BNMC for any tag tg ∈
{0, 1}t and OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key pk ∈ {0, 1}t
which takes any km = n− t-bit message to produce a ns-bit signature.Then the above construction
Code = (Enc,Dec) is a (`′, k′, n′)-block-wise non-malleable encoding scheme for `′ = `, k′ = k and
n′ = n+ ns

36

Proof. Without loss of generality assume that, for all valid tag-based codeword (c̃1, . . . , c̃`), c̃` 6= 1n` .
For any given tampering function tuple f = (f1, . . . , f`) for experiment Tamperf we construct a
corresponding function-tuple f̂ = (f̂1, . . . , f̂`), such that, for all i ∈ [`] f̂i : {0, 1}νi → {0, 1}ni and
each such f̂i is same as fi, except the last function f`. The function f̂` is hardwired with the signing
key sk. On input (c̃1, . . . , c̃`), f̂`, executes the following steps:

• First compute the signature σ ← Sign(sk, (c̃2, . . . , c̃`)) and then concatenate σ with the input
to produce (c1, . . . , c`) where ∀ i ∈ [`− 1], ci = c̃i and c` = c̃`‖σ.

• Then run f` on (c1, . . . , c`) to produce c′` ∈ {0, 1}n`+t.

• Then it checks if that verifies by running Verify(c′1, (c
′
2, . . . , c

′
`), σ

′).

• If that fails then it outputs 1n` (trigger an invalid tag-based codeword); otherwise, it outputs
c′`[1 . . . n`].

For any given pair of messages (m0,m1) and a function tuple f = (f1, . . . , f`) we construct the
replacer for experiment Tamperfmb (b ∈ {0, 1}) as follows:

Replacer Rf (c1, . . . , c`):

1. On receiving a codeword, it first computes the tampered codeword (c′1, . . . , c
′
`) by applying

the tampering functions (f1, . . . , f`) on (c1, . . . , c`).

2. Set ∀ i ∈ [` − 1], c̃i := ci and c̃′i := c′i. Notice that, pk = c1 and pk′ = c′1. Then parse c` as
c̃`‖σ := c` and c′` as c̃′`‖σ′ := c′` such that |c̃`| = |c̃′`| = n` and |σ| = |σ′| = ns.

3. If pk = pk′ then output same?.

4. Otherwise, run the tag-based replacer m̃← R̂
f̂
(c̃1, . . . , c̃`) where the functions f̂ constructed

above and outputs m̃.

Next we prove that for the above replacer the experiments Tamperfm0
and Tamperfm1

are com-

putationally close. Let us first present the experiment Tamperfmb in detail (b ∈ {0, 1}) adjusted to
our construction.

Tamperfmb

1. Encode:

(a) Generate the signing keys: (pk, sk)← KGen(1κ).

(b) Apply the tag-based code with pk as the tag: (c̃1, . . . , c̃`) ← TEnc(mb). Note that,
c̃1 = pk.

(c) Compute the signature: σ ← Sign(pk, (c̃2, . . . , c̃`)).

(d) Form the codeword by appending the signature: ∀ i ∈ [`− 1] ci := c̃i and c` := c̃`‖σ

2. Tamper: ∀i ∈ [`] : c′i = fi(c1, . . . , ci). Set pk′ := c′1

3. Decode:

(a) If (c′1, . . . , c
′
`) = (c1, . . . , c`) then set m′ := same?.

(b) Else parse ∀ i ∈ [` − 1], c̃′i := c′i and c̃′` := c`[1 . . . n`], σ
′ := c`[n` + 1 . . . n` + ns]. Verify

the signature: d← Verify(pk′, (c̃′2, . . . , c̃
′
`), σ

′) if d = 0 set m′ := ⊥.

37

(c) If verification fails, then decode: m′ ← TDec(c̃′1, . . . , c̃
′
`).

(d) If m′ = ⊥ then call the replacer m′ ← Rf (c1, . . . , c`).

(e) Output m′.

Let Forge be the event defined below for which the simulation will not be correct.

• Forge happens whenever the following happens in Tamperfmb :

1. The public key is not changed: pk′ = pk.

2. The codeword is not copied: c′ 6= c

3. The signature verifies in Step 3b while decoding: Verify(pk′, (c̃′2, . . . , c̃
′
`), σ

′) = 1

First, assume for the sake of contradiction that there is a PPT adversary A, a pair of messages
(m0,m1), and a tuple of functions f = (f1, . . . , f`) such that the following holds for a randomly
chosen b ∈ {0, 1}:

Pr
[
(Tamperfmb � A) = b

]
> 1/2 + ε(κ) (16)

for some non-negligible functions ε(·) : N→ N. Now we describe a PPT adversary (reduction)

BA for the experiment TBTamperf̂mb as follows:

Reduction BA

1. Receive the messages (m0,m1) and the tampering functions f = (f1, . . . , f`) from A.

2. Sample a pair of signature keys (pk, sk)← KGen(1κ).

3. Check if f1(pk) = pk.

(a) If yes then return same? to A.

(b) Otherwise construct the function tuple f̂ = (f̂1, . . . , f̂`) as described above. Send the
messages (m0,m1) and the tampering functions f̂ to its challenger.

(c) Receive a value m̃ from the challenger. Return m̃ to A

4. Receive the decision bit from A and output that bit as its decision.

In order to succeed in experiment TBTamperf̂mb , B needs to simulate the view of A in the ex-
periment perfectly. However, if Forge happens, then B would return same? to A, whereas the

experiment TBTamperf̂mb would return the decoding of c′. However, if the event Forge happens,
then A produces an existential forgery of a new value c′ without knowing the secret-key. In par-
ticular, from above description of the function f̂`, we notice that the function first produce the
signature σ of the entire codeword c and feed that to f`, which then produces c′ and σ′. Since in
order to construct an explicit PPT forger one can just run f` on some dummy codeword to get back
a new forgery. Therefore, we can conclude that Pr[Forge] ≤ negl(κ), and using Eq. 16, we have:

Pr
[
(Tamperfmb � A) = b

]
≤ Pr

[
(Tamperfmb � A) = b|¬Forge

]
+ Pr [Forge] .

Clearly,

Pr
[
(Tamperfmb � A) = b|¬Forge

]
> 1/2 + ε′(κ) (17)

38

for some non-negligible function ε′(·) : N→ N.
Next we argue that, when Forge does not happen, then B is able to simulate the view of A

perfectly. We argue case-by-case as follows:

1. pk′ = pk : In this case, B returns same?. Now, since the event Forge does not happen, we
must have one of the following:

(a) c′ = c : In this case, Tamperfmb would have returned same?.

(b) c′ 6= c : In this case, the verification would fail, which implies that the replacer Rf

would be invoked in the experiment Tamperfmb . Notice that in this case, Rf would
output same?.

2. pk′ 6= pk : In this case B outputs whatever the challenger returns in experiment TBTamperf̂mb .

The challenger runs the set of functions f̂ = (f̂1, . . . , f̂`). From the description of functions,
it is easy to see that it produces exactly the same codeword as Tamperfmb until `− 1 blocks.
Depending on the tampering of the last block, we have the following two scenarios.

(a) f̂` checks the validity of the signature. If it fails, then it outputs all 1 string, triggering
an invalid codeword for TCode. In this case, the replacer R̂

f̂
would be invoked, However,

recall the construction of Rf , which in this case also invokes the replacer R̂
f̂
. Hence the

output returned by the challenger would be identically distributed with the output of
Tamperfmb .

(b) On the other hand, if the signature remains valid, then there are two more cases:

Case 1: The inner encoding (tag-based) is valid. In this case the decoding of that inner
codeword will be received by B. From the decoding algorithm Dec it is easy to see
that the experiment Tamperfmb would also respond with the decoded value of the
inner-encoding.

Case 2: The inner encoding is invalid. In this case, the challenger calls the replacer R̂
f̂

and return the possibly replaced value to B. On the other hand in Tamperfmb the

replacer Rf would be invoked and then this replacer will in turn call R̂
f̂
, and return

the value output by R̂
f̂
.

Hence in all the cases when pk 6= pk′ it is fine to return the value returned by the challenger

So, we have,

Pr
[
(TBTamperf̂mb � B) = b

]
≥ Pr

[
(TBTamperf̂mb � B) = b|¬Forge

]
Pr[¬Forge]

= Pr
[
(Tamperfmb � A) = b|¬Forge

]
Pr[¬Forge] (18)

> ε′(κ)(1− negl(κ)) = ε′′(κ) (19)

for some non-negligible function ε′′(·) : N → N. In the above set of inequalities, (18) follows from
the above argument that when Forge does not happen then B can simulate the view of A perfectly
and Eq. 19 follows from Eq. 17 and the fact that Pr[Forge] = negl(κ) for some negligible function.

This concludes the proof.

39

6.4 Putting everything together

Finally we put everything together. Recall that κ is the security parameter. Let α = Θ(log(κϕ)) be
any constant ϕ > 0 of our choice. Then fix the parameters of Theorem 6.10 by setting k = Ω(log(κ))
such that k−α+1 ∈ N, µ = 2α−1 = Θ(κϕ) and t = 2α−1−1 = Θ(κϕ). Then by Theorem 6.10, our
construction (Fig. 2) is a (t, tg, `, k, n)-OMTBC for any tag tg ∈ [µ] such that ` = 2µ+ 2 = Θ(κϕ)
and n = Θ(k + poly(κ)). Now, based on that, by Theorem 6.12 we obtain an explicit construction
of (TG, `′, k′, n′)-TBNMC for any tag TG ∈ {0, 1}t of size t = Θ(κϕ) such that k′ = k − α+ 1 ∈ N,
`′ = `+ 1 = Θ(κϕ) and n′ = nt = Θ(κϕ · k′ + poly(κ)). In the final construction we use a one-time
signature scheme with verification key of size |pk| = t = Θ(κϕ) which is sufficient for security (one-
time unforgeability) of the signature. Then by Theorem 6.14 we can construct a (`′′, k′′, n′′)-BNMC
for k′′ = k′ ∈ N, `′′ = `′ = Θ(κϕ) and n′′ = n′+ns = Θ(κϕ ·k′′+ poly(κ)), where ns is the bit-length
of signature produced.

Combining Theorem 6.10, Theorem 6.12 and Theorem 6.14 we can state the following theorem
which is our main result.

Theorem 6.15. Assume the existence of sub-exponentially hard one-way permutations. Then for
any ϕ > 0 of our choice, and any k ∈ N there exists an explicit construction of (`, k, n)-BNMC such
that ` = Θ(κϕ), n = Θ(κϕ · k + poly(κ)).

Moreover, using the generic transformation from Sec. 4, combining the above theorem with
Theorem 4.4 we get a (`′′′, k′′′, n′′′)-strong block-wise non-malleable encoding scheme such that
`′′′ = `′′ = Θ(κϕ), k′′′ = k′′ = Ω(log(κ)) and n′′′ = Θ(n′′`′′) = Θ(κ2ϕ · k + poly(κ)). Formally we
can get the following corollary

Corollary 6.16. Assume the existence of sub-exponentially hard one-way permutations. Then for
any ϕ > 0 of our choice, and any k ∈ N there exists an explicit construction of (`, k, n)-SBNMC such
that ` = Θ(κϕ), n = Θ(κ2ϕ · k + poly(κ)).

References

[1] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. Cryptology ePrint Archive, Report 2014/821, 2014. http://

eprint.iacr.org/.

[2] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 774–783. ACM, 2014.

[3] Shashank Agrawal, Divya Gupta, Hemanta K Maji, Omkant Pandey, and Manoj Prabhakaran.
A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permuta-
tions.

[4] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations. IACR Cryptology ePrint Archive,
2014:316, 2014.

[5] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In Foundations of Computer Science, 2002. Proceedings. The 43rd
Annual IEEE Symposium on, pages 345–355. IEEE, 2002.

40

http://eprint.iacr.org/
http://eprint.iacr.org/

[6] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state
tampering. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium
on, pages 306–315. IEEE, 2014.

[7] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Pro-
ceedings of the 5th conference on Innovations in theoretical computer science, pages 155–168.
ACM, 2014.

[8] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In Theory of Cryptography, pages 440–464. Springer, 2014.

[9] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. Domain-extension for
public-key encryption via non-malleable codes. 2014.

[10] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable
and updatable non-malleable codes and their applications, 2014. Manuscript.

[11] Ivan Damgard and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 426–437. ACM, 2003.

[12] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM review,
45(4):727–784, 2003.

[13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[14] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In Theory of Cryptography, pages 465–488. Springer, 2014.

[16] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper and
leakage resilient random access machine. Technical report, IACR Cryptology ePrint Archive,
2014: 338, 2014.

[17] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In Advances in Cryptology–
EUROCRYPT 2014, pages 111–128. Springer, 2014.

[18] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Proceedings
of the forty-third annual ACM symposium on Theory of computing, pages 695–704. ACM, 2011.

[19] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes.
Technical report, Cryptology ePrint Archive, Report 2014/956, 2014. http://eprint. iacr. org,
2014.

[20] Huijia Lin and Rafael Pass. Non-malleability amplification. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 189–198. ACM, 2009.

[21] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way
function. In Proceedings of the forty-third annual ACM symposium on Theory of computing,
pages 705–714. ACM, 2011.

41

[22] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[23] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions and
applications. In Advances in Cryptology–CRYPTO 2008, pages 57–74. Springer, 2008.

[24] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM Journal on Computing, 38(2):702–752, 2008.

[25] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In Advances in Cryptology–EUROCRYPT 2010, pages 638–655.
Springer, 2010.

[26] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
531–540. IEEE, 2010.

A Proof of Theorem 4.4

Theorem 4.4. If the underlying block-wise encoding scheme Code is an (`, k, n)-BNMC, then
SCode = (SEnc, SDec) is an (`, k, n)-SBNMC.

Proof. Without loss of generality, we assume that the underlying code Code = (Enc,Dec) has the
following property:

1. For all valid codewords (c1, . . . , c`), ci 6= 1ni ,∀i ∈ [`].

2. Let the weaker code Code have reveal index ζ. For any function f , the replacer Rf for such
code (by definition, there must exist a replacer Rf) has the following property: if ci = 1ni for
any 1 ≤ i ≤ [ζ − 1] then it outputs ⊥. Intuitively, this means that whenever the tampered
codeword is invalid due to the blocks which do not reveal any information about the encoded
message, i.e., the first ζ−1 blocks, then we can assume that there is no necessity of a replacer
(as any such invalidity can not depend on the message). The replacer’s job is to ensure that
the adversary can not make the output of the experiment ⊥ to trivially depend on the input
i.e. by only tampering the last ` − ζ + 1 blocks (this can, for example, overwriting to 1n` –
see the discussion on the replacer after Def 3.4). So any such replacer with this additional
property should work for the underlying BNMC.

Formally we make a reduction to the non-malleability of the weaker code. For any set of
functions f = (f1, . . . , f `), any permutation π : [`]→ [`] and any message m ∈ {0, 1}k which breaks
the stronger non-malleability (Def. 4.1), we can construct a tuple of functions f = (f1, . . . , f`) which
can break Def. 3.4 as follows:

1. We start with sampling ` uniform random values r1, r2, . . . , r` such that ri ∈ {0, 1}ni for i ∈ [`]
and we hardwire these values into each fi (for all i ∈ [`]). Assume that each fi consists of
two sub-functions gi and hi that basically transform the input/output between fi and f i.

2. Each fi works as follows:

(a) It starts with executing the input transformation gi on its own input (c1, . . . , ci), and
produces the secret shares as follows. For the “past shares,” it computes the correct

42

shares, i.e., for 1 ≤ j ≤ i, (shj1, . . . , sh
j
`) ← Sharej,`(cj), and, for “future shares,” it

computes the shares using the random values i.e. for i + 1 ≤ j ≤ `, (shj1, . . . , sh
j
`) ←

Sharej,`(rj). At the end, it outputs (scπ(1), . . . , scπ(i)), where for each j ∈ [i], we have

scπ(j) = (sh1
π(j), sh

2
π(j), . . . , sh

`
π(j)). We remark that although Sharej,`() is a randomized

algorithm, every fi uses the same randomness (hardwired into the functions) to compute
the shares. This is done so that the shares are consistent with each other across the
various blocks.

(b) In the next step each fi applies corresponding fπ(i) on (scπ(1), . . . , scπ(i)) to produce the
tampered block sc′π(i).

(c) Then it runs the output transformation function hi, which takes the entire output of
gi but the π(i)-th block scπ(i) which is replaced by the tampered block sc′π(i). For

notational convenience, let us denote the whole input of hi as (sc′π(1), . . . , sc
′
π(i)) where

∀j ∈ [i− 1], sc′π(j) = scπ(j) and sc′π(i) = fπ(i)(scπ(1), . . . , scπ(i)). It parses each sc′π(j) as a

tuple (sh′1π(j), . . . , sh
′`
π(j)) and first checks for all k ∈ [i] if Verifyk,`(sh

′k
π(1), . . . , sh

′k
π(i)) = 1.

If there exists an index k ∈ [i] which outputs 0, this implies that the function fπ(i)

tampers to some invalid share(s). In that case, the corresponding fi also tampers to
some invalid codeword. In particular, h overwrites the i-th block to 1ni . Otherwise,
h re-constructs the modified i-th block by running c′i ← Reconi,`(sh

′i
π(1), . . . , sh

′i
π(i)) and

outputs c′i.

(d) Finally fi outputs c′i.

For any pair of messages m0,m1 ∈ {0, 1}k we use the hybrid argument, starting from the

experiment STamperf ,πm0
and through several hybrid experiments reaching the experiment STamperf ,πm1

using the above transformation as follows:

43

STamperf ,πm0
=



(sc1, . . . , sc`)← SEnc(m0);

∀i ∈ [`] : sc′π(i) = fπ(i)(scπ(1), · · · , scπ(i));

If (sc′1, . . . , sc
′
`) = (sc1, . . . , sc`), then set m′ := same?;

Else m′ ← SDec(sc′1, . . . , sc
′
`);

If m′ = ⊥ then m′ ← Rf ,π(sc′1, . . . , sc
′
`);

Output m′


(20)

≈



Sample uniform values : ∀ i ∈ [`] ri ← {0, 1}ni ;
(c1, . . . , c`)← Enc(m0);∀i ∈ [`] : c′i = fi(c1, · · · , ci);

If (c′1, . . . , c
′
`) = (c1, . . . , c`), then m′ := same?;

Else m′ ← Dec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← Rf (c
′
1, . . . , c

′
`);

Output m′


(21)

≡
{

Sample uniform values : ∀ i ∈ [`] ri ← {0, 1}ni ;
m′ ← Tamperfm0

; Output m′

}
≈
{

Sample uniform values : ∀ i ∈ [`] ri ← {0, 1}ni ;
m′ ← Tamperfm1

; Output m′

}
(22)

≡



Sample uniform values : ∀ i ∈ [`] ri ← {0, 1}ni ;
(c1, . . . , c`)← Enc(m1);∀i ∈ [`] : c′i = fi(c1, · · · , ci);
If (c′1, . . . , c

′
`) = (c1, . . . , c`), then set m′ := same?;
Else m′ ← Dec(c′1, . . . , c

′
`);

If m′ = ⊥ then m′ ← Rf (c
′
1, . . . , c

′
`);

Output m′



≈



(sc1, . . . , sc`)← SEnc(m1);

∀i ∈ [`] : sc′π(i) = fπ(i)(scπ(1), · · · , scπ(i));

If (sc′1, . . . , sc
′
`) = (sc1, . . . , sc`), then m′ := same?;

Else m′ ← SDec(sc′1, . . . , sc
′
`);

If m′ = ⊥ then m′ ← Rf ,π(sc′1, . . . , sc
′
`);

Output m′


(23)

≡ STamperf ,πm1
. (24)

Eq. (20) and Eq. (24) follow from the definition of SBNMC (see Def. 4.1) except the description
of the replacer Rf ,π(sc′1, . . . , sc

′
`), which can be constructed as follows. The replacer first make the

consistency check: for all i ∈ [`] if Verifyi,`(sh
i
1, . . . , sh

i
`) = 0 for any i ∈ [ζ − 1], then output ⊥ 15.

Otherwise, reconstruct the secrets from the shares: ∀ i ∈ [`], c′i ← Reconi,`(sh
i
1, . . . , sh

i
`) and use

the replacer of the weaker code Rf to get m′ ← Rf (c
′
1, . . . , c

′
`). and output m′ where the tuple of

functions f are described as above.
Eq. (21) and Eq. (23) follow from the security of the underlying secret sharing scheme SSH. In

Eq. 21, some shares (referred as “future shares” in the above transformation) are computed using
random values instead of the actual values. Intuitively, the key-fact is that any such replacement
only takes place within that particular tampering function which does not have enough shares to
reconstruct the secret (see the above transformation for details). By the property of secret-sharing

15It is worth noting that the replacer Rf ,π does not check consistency for the last `− ζ + 1 blocks. This is justified
as the ζ-th block reveals some information about the message, so those inconsistencies might have been provoked
depending on the message which should be essentially replaced by a valid message.

44

schemes, any adversary that gets less than the threshold number of shares, cannot distinguish
between the shares of two different secrets. This informal argument is not hard to formalize.
We first give a sketch and the detail proof follows later. If there is a PPT adversary which can
distinguish between the two tampering experiments (applying some tampering functions f), we can
construct another PPT adversary which uses the former to distinguish shares of the actual value
and a random value even without getting sufficient shares. This leads to a contradiction to the
secrecy of the secret sharing scheme. Using ` hybrid steps, where in each step an actual value is
replaced by a random value, we can complete the reduction. Another change among these two
experiments is in using different replacer. However, notice that, basically the replacer Rf ,π uses Rf

only in the case when there is an inconsistent secret-sharing found among first ζ − 1 blocks and in
which case Rf ,π outputs ⊥. In that case, by the above transformation, the corresponding block ci
will be overwritten to 1ni . By our assumption regarding Rf , we know that such a codeword must
be invalid and for such invalidity the replacer Rf always outputs ⊥. We now present the reduction
more formally below.

First note that Eq, 20 can be written as below:

(c1, . . . , c`)← Enc(m0);∀i ∈ [`] : (shi1, . . . , sh
i
`)← Sharei,`(ci);

∀i ∈ [`] : sci := (sh1
i , · · · , sc`i);

∀i ∈ [`] : sc′π(i) = fπ(i)(scπ(1), · · · , scπ(i));

If (sc′1, . . . , sc
′
`) = (sc1, . . . , sc`), then set m′ := same?;

Else m′ ← SDec(sc′1, . . . , sc
′
`);

If m′ = ⊥ then m′ ← Rf ,π(sc′1, . . . , sc
′
`);

Output m′


.

Also, Eq, 21 can be written as below:

Sample uniform values : ∀ i ∈ [`] ri ← {0, 1}ni ;
(c1, . . . , c`)← Enc(m0);
For i ∈ [`] :
∀j ≤ i : (shi1, . . . , sh

i
`)← Sharei,`(cj)

∀j > i : (shi1, . . . , sh
i
`)← Sharei,`(rj)

∀i ∈ [n] : sci := (sh1
i , . . . , sh

`
i)c
′
i = fi(c1, · · · , ci);

If (c′1, . . . , c
′
`) = (c1, . . . , c`), then set m′ := same?;

Else m′ ← Dec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← Rf (c
′
1, . . . , c

′
`);

Output m′



.

We now give the series of hybrids. For any 0 ≤ i ≤ `, we have

Hybi: In this experiment, we first compute (c1, . . . , c`) ← Enc(m0). Then for i ≤ ` − i, compute
the shares of (shi1, . . . , sh

i
`)← Sharei,`(ci) and for i > `− i, compute the shares of random value ri

as (shi1, . . . , sh
i
`) ← Sharei,`(ri). It is clear that Hyb0 corresponds to the case when we are in the

setting of eq. 20 and Hyb` corresponds to the case when we are in the setting of eq. 21. We now
show that Hybi ≈ Hybi+1 for 0 ≤ i ≤ `− 1. Since there are total ` hybrids, this would conclude the
proof.

We break our analysis into two cases: when i = 0 and when i ≥ 1. We first consider the case
when i ≥ 1.

Case i ≥ 1: Let Ai be a distinguisher that distinguishes Hybi from Hybi+1. We will build a
distinguishing adversary B that breaks the secret sharing scheme. The adversary B gets

45

(s̃c1, . . . , s̃c`) as inputs which is either created by shares of {c1, · · · , ci, ri+1, · · · , r`, . . . ,} or
by shares of {c1, · · · , ci+1, ri+2, · · · , r`, . . . ,}. B then does the following:

1. B calls the tampering adversary to compute the tamper codewords c̃′1, · · · , c̃′`.
2. B checks whether (c̃′1, . . . , c̃

′
`) = (c̃1, . . . , c̃`). If it does, it outputs ⊥; else it decodes using

Dec. It sets this decoded value to be m̃.

3. If Dec in the above step outputs ⊥, it calls Rf and set m̃ to be the output of Rf .

4. Call Ai with this value of m̃ and outputs whatever Ai outputs.

It is easy to see that if (s̃c1, . . . , s̃c`) is created as the share of {c1, · · · , ci, ri+1, · · · , r`}, then
B emulates the distribution of Hybi else it emulates the distribution of Hybi+1. Therefore, if
Ai distinguishes between Hybi and Hybi+1 with some non-negligible probability, then we can
distinguish the random shares of ri with the random shares of ci with the same probabilty,
ariving at a contradiction. Since this hold true for all i ≥ 1, Hyb1 ≈ Hyb`.

Case i = 0: In order to complete the proof, we have to show Hyb0 ≈ Hyb1. We have

Hyb0 =



(c1, . . . , c`)← Enc(m0);∀i ∈ [`] : (shi1, . . . , sh
i
`)← Sharei,`(ci);

∀i ∈ [`] : sci := (sh1
i , · · · , sc`i);

∀i ∈ [`] : sc′π(i) = fπ(i)(scπ(1), · · · , scπ(i));

If (sc′1, . . . , sc
′
`) = (sc1, . . . , sc`), then set m′ := same?;

Else parse sc′i to get (shi1, . . . , sh
i
`) and m′ ← Dec(sc′1, . . . , sc

′
`);

If m′ = ⊥ then m′ ← Rf ,π(sc′1, . . . , sc
′
`);

Output m′


while we can write

Hyb1 =



Sample a random r` ← {0, 1}n` ;
(c1, . . . , c`)← Enc(m0);
For i ∈ [`− 1]

(shi1, . . . , sh
i
`)← Sharei,`(cj); (sh`1, . . . , sh

`
`)← Share`,`(r`)

(˜sc1, . . . , s̃c`) = π(sc1, . . . , sc`); sc
′
i = fπ(i)(s̃ci);

Parse sci as (shi1, . . . , sh
i
`);∀i ∈ [`]

Run Verifyi,`(sh
i
1, . . . , sh

i
`) and compute (c′1, . . . , c

′
`);

If (c′1, . . . , c
′
`) = (c1, . . . , c`), then set m′ := same?;

Else m′ ← Dec(c′1, . . . , c
′
`);

If m′ = ⊥ then m′ ← Rf (c
′
1, . . . , c

′
`);

Output m′



.

We have to consider two events depending on whether m equals ⊥ or not. For the latter case,
the proof is exactly as before for the case when i > 0. Therefore, conditional on the event
that Dec does not output ⊥, Hyb0 ≈ Hyb1.

In the event of m′ = ⊥, note that, the first if condition would fail in both the cases and we
have to only consider the difference in the replacer in the two hybrids; in Hyb0 we have Rf ,π

while in Hyb1 we have Rf . Recall that the replacer Rf ,π uses Rf only in the case when there

is an inconsistent secret-sharing found among first ζ − 1 blocks. In this case, Rf ,π outputs ⊥,
and, by the above transformation, the corresponding block ci will be overwritten to 1ni . In
the case of Hyb1, at least one of the Verify calls will fail and the tampered codeword would

46

not be equal to the original codeword. Therefore, the first conditional statement would not
hold. By our assumption regarding Rf , we know that such codewords must be invalid and for
such invalidity the replacer Rf always outputs ⊥. Therefore, in the event when SDec or Dec
outputs ⊥, both the distributions are identical. This completes the proof that Hyb0 ≈ Hyb1.

Finally Eq. (22) follows from the fact that the underlying code Code is a BNMC(according to
Def. 3.4).

B Building Blocks

In this section we provide definitions of a few well-known primitives which are later as building
blocks.

B.1 One-time Signatures

One-time signatures are digital signature schemes that provide unforgeability guarantees when the
signer signs at most one message with every signing key. More formally: A one-time signature
scheme Sig = (KGen, Sign,Verify) is a triple of algorithms defined below:

1. KGen(1κ): A randomized algorithm, which on input a security parameter 1κ, outputs a private
signing key sk and a public verification key pk.

2. Sign(sk,m): A randomized algorithm which outputs a signature σ for the message m ∈ M
under the signing key sk.

3. Verify(pk, σ,m): A deterministic algorithm which outputs 1 if and only if σ is a valid message
on m under pk and 0 otherwise.

which satisfies the following properties:

1. Correctness: For all message m ∈M:

Pr
[
Verify(pk,Sign(sk,m),m) | (pk, sk)← KGen(1κ)

]
= 1

2. Unforgeability: For any PPT adversary A which makes only one signing query on some
message m? to the signing oracle, the following holds.

Pr
[
Verify(pk, σ,m) = 1 ∧ (m 6= m?) | (σ,m)← A(pk) ∧ (sk, pk)← KGen(1κ)

]
≤ negl(κ),

where the probability is taken over the coin toss of KGen,Sign,Verify, and A.

B.2 Commitment Schemes

A commitment scheme denoted by 〈C,R〉 is a executed by two parties, a committer C and a receiver
R. C runs a randomized commitment algorithm Com on the messages m ∈ M and a randomness
r to generate the commitment cmt ← Com(m, r) and send cmt to R in the commitment phase.
The commitment phase might be interactive and consists of several rounds. In decommitment
phase C sends the decommitment opn to R and R checks if the opening is consistent by running a
deterministic decommitment algorithm m̃← Decom(cmt, opn). If m̃ = ⊥, then R rejects, otherwise
accepts m̃ as the committed value. In this paper, we use computationally hiding and perfectly
binding commitment schemes which are formally defined as follows:

47

• Computational hiding: For any two messages m,m′ ∈M, the following holds:

Com(m)
c
≈ Com(m′)

• Perfect binding: For any message m ∈M, Pr [Decom(Com(m)) /∈ {⊥,m}] = 0

B.3 Non-malleable Codes

Informally, a code is non-malleable if the result of tampering with a codeword is independent of
the encoded message. Formally we present the following definition of so-called strong non-malleable
code which has been first introduced in [14](see Def. 3.3)

Definition B.1. An (k, n)-encoding scheme Code = (Enc,Dec) consists of two functions: a
randomized encoding function Enc : {0, 1}k → {0, 1}n and a deterministic decoding function
Dec : {0, 1}n → {0, 1}` ∪ {⊥}, such that, for every m ∈ {0, 1}k, Pr [Dec(Enc(m)) = m] = 1.
Let F be some family of tampering functions. The Code is called (k, n)-strong non-malleable code
if for every f ∈ F and any pair of messages m0,m1 ∈ {0, 1}k, the following holds:

StrongNMf
m0
≈ StrongNMf

m1

where for any m ∈ {0, 1}k, StrongNMf
m is defined as

StrongNMf
m ≡


c← Enc(m); c′ ← f(c);

If c′ = c set m′ := same? else m′ ← Dec(c′)
Output: m′


where the randomness is over the encoding function Enc.

We note that in the above definition, the distribution is allowed to output a special symbol
same? to indicate that tampering using the function f copies the input codeword c entirely.

48

	Introduction
	Our results and techniques.
	Related Works
	Organization of the paper.

	Preliminaries and Basic Primitives
	Notations and Basic Definitions

	Definition of Block-wise Non-malleable Codes
	Block-wise Encoding Scheme
	Block-wise Non-Malleable Encoding Scheme
	Uniqueness Property of BNMC
	Impossibility of Information-theoretic BNMC

	Strong BNMCs
	Relation between Non-Malleable Commitment and BNMC
	Non-malleable Commitment from BNMC
	BNMC from Non-malleable Commitment

	Our Block-wise Non-malleable Code
	Tag-based non-malleability
	Non-malleability amplification
	One-many non-malleability
	Applying DDN-XOR trick

	The full construction by removing tags
	Putting everything together

	Proof of Theorem 4.4
	Building Blocks
	One-time Signatures
	Commitment Schemes
	Non-malleable Codes

