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Abstract. These days genomic sequence analysis provides a key way of understanding the biology
of an organism. However, since these sequences contain much private information, it can be very
dangerous to reveal any part of them. It is desirable to protect this sensitive information when
performing sequence analysis in public. As a first step in this direction, we present a method
to perform the edit distance algorithm on encrypted data to obtain an encrypted result. In our
approach, the genomic data owner provides only the encrypted sequence, and the public commercial
cloud can perform the sequence analysis without decryption. The result can be decrypted only by
the data owner or designated representative holding the decryption key.
In this paper, we describe how to calculate edit distance on encrypted data with a somewhat
homomorphic encryption scheme and analyze its performance. More precisely, given two encrypted
sequences of lengths n and m, we show that a somewhat homomorphic scheme of depth O((n +
m) log log(n + m)) can evaluate the edit distance algorithm in O(nm log(n + m)) homomorphic
computations. In the case of n = m, the depth can be brought down to O(n) using our optimization
technique. Finally, we present the estimated performance of the edit distance algorithm and verify
it by implementing it for short DNA sequences.
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1 Introduction

In bioinformatics, the term “Sequence Analysis” refers to the process of arranging DNA, RNA, or
peptide sequences to understand their structures and features. Relationships between sequences
are usually discovered by aligning them appropriately and identifying the most closely matching
subsequences. In this paper, we focus on the well-known edit distance algorithm [25], which
measures the dissimilarity of two strings. Calculating the edit distance between public reference
strings and patients’ DNA sequences can be used to solve the problem of approximate string
matching. In practice, there are deployed services to compare DNA sequences. For example,
the European Bioinformatics Institute (EBI) website [6] provides “Bic-SW Database Searches”
where one can apply a sequence analysis algorithm to any two DNA sequences (e.g., Smith-
Waterman algorithm).

Privacy Threats from Exposing Genomic Data. There are many projects to collect DNA
information from participants in order to discover genomic sequences associated with disease
susceptibility. The Personal Genome Project (PGP) displays genotypic and phenotypic infor-
mation in a public database [21] and the HapMap Project has developed a public repository of
genome sequences [12], which means that genomic data has become publicly accessible. How-
ever, even anonymized genomic data can leak significant information about the participants
(see for example [7, 9, 23]). In fact, in 2012, an artist created portrait sculptures from analyses
of genetic material collected in public places [24]. From some samples, he could infer physical
characteristics of strangers such as the gender, eye color, nose size and so on. Secondly, even if
DNA sequences are not associated with explicit identifiers such as name, sex, date of birth, or
address, one can recover such personal data using re-identification methods: genotype-phenotype
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inference [19], location-visit patterns [20], family structure [10], and dictionary attacks. Thus,
DNA sequences are sensitive and valuable enough that we should not reveal our own sequences
even when performing sequence analysis.

Privacy through Encryption. In this work, we consider the potential for using homomorphic
encryption to protect privacy in genomic computations. Compared with MPC protocols based
on recent optimizations of garbled circuit techniques [14, 11], homomorphic encryption is often
considered to be slower and less efficient. But homomorphic encryption has a number of other
advantages, allowing for more flexible scenarios and functionality and requiring less interaction,
thereby reducing communication complexity. Typically no interaction is required for applications
of (single-key) homomorphic encryption. Also, homomorphic encryption schemes have become
more practical recently, due to a number of improvements, including techniques which avoid
the costly bootstrapping procedure for fixed computations, such as using leveled or somewhat
homomorphic encryption (SWHE) schemes.

Scenarios. Homomorphic encryption allows the data owner to upload encrypted data to a cloud
service. The cloud service can operate on the encrypted data without requiring the decryption
key or any interaction with the data owner. The service returns the encrypted results to the
data owner, who can decrypt using the secret key. A cloud provider could thus provide Direct-
to-patient services in encrypted form, such as the service mentioned above provided by EBI.

Fig. 1. Scenario of proposed system

As an extension to the scenario, additional
functionality can be achieved using public key
homomorphic encryption schemes by allowing
third parties to upload data directly to the cloud
service, encrypted using the public key of the
data owner. This scenario could be of interest in
situations relevant to genomic computation: for
example the data owner is a hospital or clinic,
and the third parties are patients or other health-
care providers for those patients. The hospital
would like to use the cloud service for analyz-
ing lots of patients. Auxiliary data (from tests,
genome sequencing, etc) can be uploaded to the service using the public key of the hospital.
Computations on the encrypted data, such as comparing DNA sequences, output encrypted
results which can be decrypted by the hospital or clinic. The secrecy of DNA sequences in the
cloud can be protected under the semantic security of homomorphic encryption scheme.

Our Contributions. In this paper, we first describe the homomorphic evaluation of the edit
distance algorithm which was suggested by Wagner and Fischer [25]. We show that the algo-
rithm can be implemented on two encrypted sequences of lengths n and m with a somewhat
homomorphic scheme of depth O((n+m) log(log(n+m))) in O(nm log(n+m)) homomorphic
computations. Moreover, we introduce an optimization technique to reduce the depth required
to implement the algorithm: Divide the edit distance matrix into sub-blocks of size-(τ + 1)
and solve the edit distance problem in each block. We can compute each of them diagonally,
consuming O(τ) levels in one diagonal-round. Namely, evaluating the circuits in each cell can
be processed by a somewhat homomorphic encryption of a constant depth. In particular, in the
case of n = m, it suffices to compute only a little part of the sub-blocks, so the depth can be
brought down to O(n).

Finally, we estimate the running time of the proposed algorithm for a large n and verify it
by implementing it for short DNA sequences. For two encrypted DNA sequences of length 50,
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we expect that the algorithm would run in one day when estimated based on the recent CCK+
scheme [4]. We also demonstrate the experimental result that it takes about 27.5 seconds for
n = m = 8 using the GHS scheme [8].

Related works. Since Wagner and Fischer [25] introduced the problem of determining the
edit distance between two strings and presented an algorithm for calculating the distance, there
have been a number of approaches for private computation of the distance. In 2003, Atallah
et al. [1] proposed a privacy-preserving protocol using an additive homomorphic encryption
scheme and oblivious transfers, which had expensive computational and communication costs.
Given two strings of lengths n and m, the number of iterations is equal to nm and the to-
tal online computational cost is O(nm log(n + m)). In 2008, Jha et al. [14] presented a more
practical privacy-preserving protocol to compute the edit distance with Yao’s “garbled circuits”
method [18, 26], and it was improved by Huang et al. [11]. Their computation cost is tractable,
but their protocol requires a lot of interactions (e.g., O(nm log(n + m)) oblivious transfers for
Protocol 2 in [14]).

On the other hand, there is prior art on analyzing genomic data using homomorphic encryp-
tion. Some of the work is based on additively homomorphic encryption schemes: Kantarcioglu
et al. [15], Kolesnikov et al. [16], and Ayday et al. [2]. In [15], they presented a novel cryp-
tographic framework that allows organizations to support data mining without violating the
privacy of the genomic sequences, and in particular they used the Paillier cryptosystem for
experimental analysis. The garbled circuit protocols of [16] were given for secure computation
of the minimum distance (Hamming distance and Euclidean distance). In [2], they proposed
a “privacy-preserving disease susceptibility test” on encrypted genomic data using a modified
Paillier cryptosystem. Meanwhile, Cristofaro et al. [5] presented an efficient and secure protocol
called “Size- and position-hiding private substring matching” based on a multiplicative homo-
morphic ElGamal variant so as to check for the presence of DNA markers. Finally, Yasuda et
al. [27] gave a practical solution for computation of multiple Hamming distance values using
the LNV scheme [17], so that they could find the locations where a pattern occurs in a text.
By contrast, the aim of this paper is to compute edit distance on encrypted sequences under
somewhat homomorphic encryption schemes (which support additions and a limited number of
multiplications of encrypted inputs). Besides DNA sequence analysis, edit distance has many
other applications such as spelling correction or determining the longest common subsequences
of two strings.

Outline. In Section 2, we review the main concept of homomorphic encryption and explain the
edit distance algorithm. Section 3 presents the basic circuit building blocks for equality, compar-
ison, and addition. Next, in Section 4, we describe our encrypted edit distance algorithm using
these primitive circuits and give the analysis of our method. We also introduce optimizations
to reduce the depth of implementing the algorithm. Finally, in Section 5, we estimate the per-
formance of the proposed algorithm for large DNA sequences and present the real performance
for our implementation of the algorithm for short sequences.

2 Preliminaries

In this section, we briefly review the concept of homomorphic encryption and describe the edit
distance algorithm which is a measure to quantify the dissimilarity of two strings.
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2.1 Homomorphic Encryption

We will encrypt bit-by-bit in this paper, so consider the concept of homomorphic encryption
in this respect. For x ∈ {0, 1}, we denote the encryption of x by x̄ or Enc(x). Let ⊕ and ∧
be the XOR and AND gate, each of which corresponds to addition and multiplication over
Z2, respectively. Also, we let + and × denote homomorphic addition and multiplication over
encrypted data. Then a homomorphic encryption Enc(-) satisfies the following properties:

Enc(x⊕ y) = Enc(x) + Enc(y), Enc(x ∧ y) = Enc(x)× Enc(y).

In our paper, we focus on SWHE schemes for which additions are essentially free and a
limited number of multiplications are supported. In particular, SWHE schemes [3, 8] use a
practical noise-management technique-modulus switching, which scales down the ciphertext after
every multiplication to reduce the noise by its scaling factor. When we say the (multiplicative)
depth D(C) of a circuit C under homomorphic encryption, it means the total number of reduced
levels in the circuit that is being evaluated homomorphically.

2.2 Edit Distance

Assume that there are two strings α = α1 . . . αn and β = β1 . . . βm over an alphabet Σ. One can
make another string with the same length by inserting spaces “ − ”, called gaps, and consider
a matrix having two rows with these new strings. A gap in the first (resp. second) row is
called Insertion (resp. Deletion). A column with the same (resp. distinct) characters is called
Match (resp. Mismatch). Then the edit distance between two strings is the minimum number of
these edit operations needed to transform one string into the other. More specifically, for two
characters αi and βj , let us define ti,j as follows:

ti,j =

{
0 if αi = βj (Match),

1 if αi 6= βj (Mismatch).

In Algorithm 1, we describe the Wagner-Fischer edit distance algorithm [25], and the edit
distance is simply Dn,m.

Algorithm Edit distance
Input: α = α1 . . . αn and β = β1 . . . βm
1: for i← 0 to n do
2: Di,0 ← i;
3: end for
4: for j ← 0 to m do
5: D0,j ← j;
6: end for
7: for i← 1 to n do
8: for j ← 1 to m do
9: t← (αi = βj)? 0 : 1;
10: Di,j ← min{Di−1,j−1 + t,Di,j−1 + 1, Di−1,j + 1};
11: end for
12: end for
13. return Dn,m
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3 Circuit Building Blocks

In this section, we present the basic circuit building blocks for computing the edit distance:
equality circuit (for checking the equality of two numbers so as to determine match/mismatch
of two characters), comparison circuit, and addition circuits. Since it may assume that we can
evaluate homomorphic additions for free, it suffices to count the number of multiplication gates
sequentially in order to compute the depth of a homomorphic encryption scheme. Thus, we
focus on minimizing the number of sequential multiplication gates for circuits so that we can
implement them efficiently.

For a circuit C, we denote the number of homomorphic additions and multiplications by
HA(C) and HM(C). Note that addition with a constant is faster than a classical homomorphic
addition, so those are not counted in the number of the homomorphic additions. In Table 1,2,
and 4, the depth of homomorphic encryption is cumulative while the number of homomorphic
computations is not cumulative.

We will express an unsigned µ-bit integer in its binary representation xµ . . . x1 and denote
the i-th coordinate of x by xi (or x[i]). Then the encryption of x means {x̄1, x̄2, . . . , x̄µ}.

3.1 Equality Circuit

A binary circuit for checking the equality of two µ-bit values is defined to have value 1 if
the inputs are the same and 0 otherwise. Then it can be written as an arithmetic circuit
EQU(x, y) = ∧µi=1 (1⊕ xi ⊕ yi). Using a binary tree, we give the required depth and complexity
in Table 3 where log is the binary logarithm.

3.2 Comparison Circuit

For two unsigned µ-bit values x and y, the comparison circuit is defined by

COM(x, y) =

{
0 if x ≥ y,
1 otherwise,

and this is written recursively as COM(x, y) := cµ where ci = ((xi ⊕ 1) ∧ yi)⊕((xi ⊕ 1⊕ yi) ∧ ci−1)
for i ≥ 2 with an initial value c1 = (x1⊕1)∧y1. In Table 1, we provide a pseudocode description
of this circuit together with an approximation of the levels that it consumes during these
operations. Unlike the other steps, the fourth cannot be computed simultaneously for each i, so
it consumes linear levels and we have D(COM) = µ. On the other hand, the comparison circuit
can be evaluated homomorphically with a logarithmic depth, which is formally captured in
Lemma 1 below.

Comparison Circuit
Depth of

HA HM
Hom. Enc.

Input: fresh ciphertexts x̄i, ȳj 0
1. compute x̄i + 1 for i = 1, . . . , µ 0 − −
2. x̄i1 ← (x̄i + 1) + ȳi for i = 2, . . . , µ 0 µ− 1 −
3. x̄i2 ← (x̄i + 1)× ȳi for i = 1, . . . , µ

1 − µ
(in particular, let c̄1 ← x̄12)

4. c̄i ← x̄i1 + x̄i2 × c̄i−1 for i = 2, . . . , µ µ µ− 1 µ− 1

Total µ 2µ− 2 2µ− 1

Table 1. Pseudocode of COM between two µ-bit values and its complexity
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Lemma 1 The Comparison circuit of Table 2 can be evaluated homomorphically on two µ-bits
with a somewhat homomorphic encryption of depth log(µ − 1) + 1 in O(µ logµ) homomorphic
computations.

Proof. We consider the comparison circuit as the following expression:

COM(x, y) = d1 ⊕ d2 ⊕ . . .⊕ dµ

where di = (xi⊕1)∧yi∧(∧µj=i+1(xj⊕1⊕yj)). From now, the following arguments are underlying
ciphertexts for the above circuit. For simplicity, we denote zi := (x̄i+1)+ ȳi for i = 2, . . . , µ, and
HMi the number of homomorphic multiplications to evaluate

∏µ
j=i+1 zj for i = 1, . . . , µ− 2.

We first construct a binary tree of product with {z2, . . . , zµ}. Then the total number of
multiplications to proceed recursively with each of the two nodes is

1 + 2 + 4 + · · ·+ µ− 1

2
≈ µ− 2,

and it needs log(µ− 1) levels. We observe that
∏µ
j=i+1 zj has been computed if the number to

be multiplied by is in the form of powers of 2 or µ− 1.
Now, we consider the case of i ∈ {1, 2, · · · , µ− 2} with µ− i 6= 21, 22, · · · , 2b log(µ−1)c, µ− 1.

It is true that µ − i is uniquely written as 2ki1 + 2ki2 + · · · + 2kil where kij ’s are increasing

nonnegative numbers. Denote µir := µ−
(

2kil + 2kil−1 + · · ·+ 2kir+1 + 2kir
)

for 1 ≤ r ≤ l and

µil+1
= µ, then we have

µ∏
j=i+1

zj =

l∏
r=1

(zµir+1zµir+2 · · · zµir+1
).

Since all zµir+1zµir+2 · · · zµir+1
’s have been computed as above, what we have to do is just to

multiply them each other, which requires log l levels and (l − 1) homomorphic multiplications.
From these observations, we see that

∑
2t−1<u−i<2t

HMi =
t−1∑
l=1

l ·
(
t− 1

l

)
= (t− 1) · 2t−2

for t ∈ {2, 3, . . . , b log(µ− 1)c}. So we have

µ−2∑
i=1

HMi =
∑

u−i=21,22,...,µ−1

HMi +
∑

t=2,3,...,b log(µ−1)c

 ∑
2t−1<u−i<2t

HMi


≈ (µ− 2) +

∑
t=2,3,...,b log(µ−1)c

(t− 1) · 2t−2

=
(µ− 1) log(µ− 1)

2
− 2.

Therefore, as described in Table 2, evaluating the COM circuit can be accomplished using

µ+

(
(µ− 1) log(µ− 1)

2
− 2

)
+ (µ− 1) = 2µ− 3 +

(µ− 1) log(µ− 1)

2

homomorphic multiplications with a SWHE scheme of depth log(µ− 1) + 1. ut

In the following, we show that the comparison circuit leads to the the minimal circuits.
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Table 2. Pseudocode of COM between two µ-bit values and its complexity

Comparison Circuit
Depth of

HA HM
Hom. Enc.

Input: fresh ciphertexts x̄i, ȳj 0

1. compute x̄i + 1 for 1 ≤ i ≤ µ 0 − −
2. d̄i ← (x̄i + 1)× ȳi for 1 ≤ i ≤ µ 1 − µ

3. zi ← (x̄i + 1) + ȳi for 2 ≤ i ≤ µ 0 µ− 1 −
4.
∏µ
j=i+1 zj for 1 ≤ i ≤ µ− 2 log(µ− 1) − (µ−1) log(µ−1)

2
− 2

5. d̄i ← d̄i ×
∏µ
j=i+1 zj for 1 ≤ i ≤ µ− 1 log(µ− 1) + 1 − µ− 1

6. COM(x, y)← d̄1 + · · ·+ d̄µ − µ− 1 −
Total log(µ− 1) + 1 2µ− 2 2µ− 3 +

(µ−1) log(µ−1)
2

Lemma 2 Given two µ-bit values x = xµ . . . x1 and y = yµ . . . y1, then z = zµ . . . z1 is the
minimum value of x and y where

zi = (COM(x, y) ∧ xi)⊕ (1⊕ COM(x, y) ∧ yi) .

Proof. Let us denote a multiplication over integers by “ · ”. Then it is true that

min{x, y} = COM(x, y) · x+ (1⊕ COM(x, y)) · y

= COM(x, y) ·
( µ∑
i=1

xi · 2i−1
)

+ (1⊕ COM(x, y)) ·
( µ∑
i=1

yi · 2i−1
)

=

µ∑
i=1

(
(COM(x, y) · xi) + ((1⊕ COM(x, y)) · yi)

)
· 2i−1,

where the inputs x and y can be written as binary representations in the second line. Since
“COM(x, y) · xi” and “(1⊕ COM(x, y)) · yi” cannot simultaneously be “1”, the lemma follows. ut

From Lemma 2, we define minimum circuits MIN2 = (MIN21, . . . , MIN
2
µ) by

MIN2i = (COM(x, y) ∧ xi)⊕ ((1⊕ COM(x, y)) ∧ yi) .

Then one can evaluate these circuits homomorphically with a SWHE scheme of depth (log(µ−
1) + 2). We also obtain a natural generalization of computing the minimum value between
many numbers: apply repeatedly the minimum circuits. Then this naive method has D(MIN2) =
(log(µ− 1) + 2) · (log k).

On the other hand, we consider another way to compute the minimum value which requires
circuits of lesser depth: Given µ-bit values x1, . . . , xk, we define MINk = (MINk1, . . . , MIN

k
µ) by

MINki =
⊕k

j=1

(
cj ∧ xji

)
where

cj =

COM(x1, x2) ∧ · · · ∧ COM(x1, xk) if j = 1,(
1⊕ COM(x1, xj)

)
∧ · · · ∧

(
1⊕ COM(xj−1, xj)

)
∧ COM(xj , xj+1) ∧ · · · ∧ COM(xj , xk) if 2 ≤ j ≤ k − 1,(

1⊕ COM(x1, xk)
)
∧ · · · ∧

(
1⊕ COM(xk−1, xk)

)
if j = k.

It is easy to show that this method has

D(MINk) = log(µ− 1) + log(k − 1) + 2,

HM(MINk) =

(
2µ− 3 +

(µ− 1) log(µ− 1)

2

)
(k − 1)(k − 2)

2
+ k (k − 2 + µ) .
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Table 3. Complexity of primitive circuits between two µ-bit values

Circuit Depth of Hom. Enc. HA HM

EQU logµ µ µ− 1

COM log(µ− 1) + 1 2µ− 2 2µ− 3 + (µ−1) log(µ−1)
2

ADD µ− 1 3µ− 3 2µ− 3

More specifically, it first needs log(µ− 1) + 1 levels to compute COM(xi, xj)’s by Lemma 1. Then
it requires log(k − 1) levels to compute cj for 1 ≤ j ≤ k by multiplying COM(xi, xj)’s with a

binary tree. Finally, the claim follows because we need one more level to compute cj ∧ xji .

3.3 Addition circuits

For two unsigned µ-bit values x and y, we assume that their sum over the integers is less than
2µ, say s1 + · · · + sµ · 2µ−1. Then the standard method to add them is the Ripple-carry adder
such that ADD(x, y) is defined by (s1, . . . , sµ) satisfying

si =

{
x1 ⊕ y1 if i = 1,

xi ⊕ yi ⊕ ei−1 otherwise,
ei =

{
x1 ∧ y1 if i = 1,

(xi ∧ yi)⊕ ((xi ⊕ yi) ∧ ei−1) otherwise.

From now, the k-th value sk of the sum is denoted by ADD(x, y)[k]. Table 3 reports the required
depth and its complexity analysis.

4 Encrypted Edit Distance Algorithm

We now describe how to execute the homomorphic computation of the edit distance algorithm
with regards to the primitive circuits and analyze the performance of our encrypted edit distance
algorithm.

Let |Σ| be the size of a alphabet and denote ω = dlog |Σ|e. As mentioned before, let α
and β be two strings over ω-bit alphabet. Then each character of the strings can be seen as an
ω-bit value. Suppose that each of them is given encrypted bit-by-bit through a homomorphic
encryption.

4.1 Encrypted Edit Distance Algorithm

Since all the values Di,j ’s are less than n+m−1, we may assume that they are dlog(n+m−1)e-
bits, say µ. Suppose that we have computed Di−1,j−1, Di,j−1, Di−1,j , and ω-bit characters αi
and βj . From the fact that ti,j = EQU(αi, βj)⊕ 1, we know

(Di−1,j−1 + ti,j)[k] = ((ti,j ⊕ 1) ∧Di−1,j−1[k])⊕ (ti,j ∧ ADD(Di−1,j−1, 1)[k])

= (EQU(αi, βj) ∧Di−1,j−1[k])⊕ ((EQU(αi, βj)⊕ 1) ∧ ADD(Di−1,j−1, 1)[k])

for 1 ≤ k ≤ µ and

ADD(Di−1,j−1, 1)[k] =

{
Di−1,j−1[1]⊕ 1 if k = 1,

Di−1,j−1[k]⊕
(
∧k−1l=1Di−1,j−1[l]

)
if 2 ≤ k ≤ µ.
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Table 4. Pseudocode of computing the encrypted value Di,j and its complexity (µ = log(n+m− 1))

Binary Circuit
Depth of

HA HM
Hom. Enc.

Input: Di−1,j−1, Di,j−1, Di−1,j , αi, βj

1. t← EQU(αi, βj) and compute t⊕ 1 D(EQU) HA(EQU) HM(EQU)

2. compute ADD(Di−1,j−1, 1), ADD(Di,j−1, 1), ADD(Di−1,j , 1) D(ADD) 3HA(ADD) 3HM(ADD)

3. for k = 1, . . . , µ,

Di−1,j−1[k]← (t ∧Di−1,j−1[k])⊕ ((t⊕ 1) ∧ ADD(Di−1,j−1, 1)[k]) 1 +D(ADD) µ 2µ

Di,j−1[k]← ADD(Di,j−1, 1)[k] D(ADD) − −
Di−1,j [k]← ADD(Di−1,j , 1)[k] D(ADD) − −
4. c1 ← COM(Di−1,j−1, Di,j−1) 1 +D(ADD) +D(COM) HA(COM) HM(COM)

c2 ← COM(Di−1,j−1, Di−1,j) 1 +D(ADD) +D(COM) HA(COM) HM(COM)

c3 ← COM(Di,j−1, Di−1,j) D(ADD) +D(COM) HA(COM) HM(COM)

5. c1 ← c1 ∧ c2, c2 ← (1⊕ c1) ∧ c3, c3 ← (1⊕ c2) ∧ (1⊕ c3) 2 +D(ADD) +D(COM) − 3

6. for k = 1, . . . , µ,
3 +D(ADD) +D(COM) 2µ 3µ

Di,j [k]← (c1 ∧Di−1,j−1[k])⊕ (c2 ∧Di,j−1[k])⊕ (c3 ∧Di−1,j [k])

Total 3 +D(ADD) +D(COM)
HA(EQU) + 3HA(ADD) HM(EQU) + 3HM(ADD)

+3HA(COM) + 3µ +3HM(COM) + 5µ+ 3

In the same way as in Section 3.2, ADD(Di−1,j−1, 1) can be implemented with a SWHE scheme

of depth log(µ − 1) in µ homomorphic additions and
(
(µ−1) log(µ−1)

2 − 2
)

homomorphic mul-

tiplications since we only need to compute
∏k−1
l=1 Enc(Di−1,j−1[l]). From these observations,

Di,j = min{Di−1,j−1 + ti,j , Di,j−1 + 1, Di−1,j + 1} can be written as arithmetic circuits using
the above circuits. Hence, given ciphertexts Enc(Di−1,j−1), Enc(Di,j−1), Enc(Di−1,j), Enc(αi),
and Enc(βj), one can apply these operations so as to compute the encryption of Di,j . Continuing
this way, we obtain the encrypted edit distance Enc(Dn,m).

4.2 Performance Analysis of Encrypted Edit Distance Algorithm

In Table 4, we describe a pseudocode for obtaining the encrypted value Di,j , and provide an
approximation of the levels and computational complexity during homomorphic operations. By
the building block algorithms of COM (in Lemma 1) and ADD (in Section 4.1), the one diagonal-
round circuits have

D = 2 log(µ− 1) + 4, HA = 15µ+ ω − 6, HM = 3(µ− 1) log(µ− 1) + 11µ+ ω − 13.

It is possible to compute Di,j ’s simultaneously when i+j is a fixed value from 1, 2, ..., (n+m−1),
so we expect to consume (2 log(µ− 1) + 4) · (n+m− 1) levels for computing them diagonally,
which requires (15µ+ω−6)nm homomorphic additions and (3(µ−1) log(µ−1)+11µ+ω−13)nm
multiplications in total. In other words, given two encrypted sequences of lengths n and m, a
SWHE scheme of depth O((n+m) log(log(n+m))) can evaluate the edit distance algorithm in
O(nm log(n+m)) homomorphic computations.

Remark 1 Lemma 1 shows that we can compare two µ-bits with a circuit of depth logµ using
a homomorphic bit-encryption scheme. If we consider a large integer ring Zt as a message
space instead of a binary field, an addition is performed with a degree-1 circuit. However, one
can compute the equality circuit via the following method: EQU(x, y) = 1 − (x − y)t−1 for a
prime t. Then this circuit has D(EQU) ≈ log t ≈ log(n + m) using the square-and-multiply
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algorithm. Moreover, the comparison algorithm seems to require a circuit of at least depth log t.
This implies that a large message space increases the depth of one diagonal-round circuits to
O(log(n + m)), so the edit distance algorithm can be evaluated with a SWHE scheme of depth
O((n+m) log(n+m)).

4.3 Optimization of Encrypted Edit Distance Algorithm

We present an optimization to reduce the depth during the homomorphic evaluations of the
algorithm. Let us consider the 3× 3 block B in Figure 2.

Di−2,j−2 Di−2,j−1 Di−2,j

Di−1,j−2 Di−1,j−1 Di−1,j

Di,j−2 Di,j−1 Di,j

T

B
L R

Fig. 2. Block of size 3

It is true that if we have computed the top and left values of this block, Di−2,j−2, Di−2,j−1,
Di−2,j , Di−1,j−2, Di,j−2, then all other values can be expressed in terms of them. For example,
Di,j is the minimum value between the following 7 numbers:

Di−2,j−2 + ti−1,j−1 + ti,j , Di−2,j−1 + ti−1,j + 1, Di−2,j−1 + ti−1,j + 1,

Di−1,j−2 + ti,j−1 + 1, Di−1,j−2 + ti,j−1 + 1, Di−2,j + 2, Di,j−2 + 2.

In general, we consider a block of size-(τ + 1) which consists of the following sets:

top : T = {Di−τ,j−τ , Di−τ,j−τ+1, . . . , Di−τ,j},
left : L = {Di−τ,j−τ , Di−τ+1,j−τ , . . . , Di,j−τ},

right : R = {Di−τ,j , Di−τ+1,j , . . . , Di,j},
bottom : B = {Di,j−τ , Di,j−τ+1, . . . , Di,j}.

Then all the values of R and B are expressed in terms of values of T and L.
More precisely, consider the grid shown in Figure 3. One can only move one unit right or

down on the grid: if moving right from Di−k,j−l, then ti−k+1,j−l+1 is added to the value and
we obtain Di−k,j−l + ti−k+1,j−l+1. In the case of moving one unit down, “1” is added to it. We

Di−τ,j−τ

Di−τ,j−τ+1

Di−τ,j−τ+2 Di−τ+l,j

Di−τ,j−k

Di−τ,j

Di,j

R

T

Fig. 3. Grid of size-(τ + 1) block
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note that the number of shortest paths from Di−τ,j−k to Di−τ+l,j is l!
k!(l−k)! =

(
l
k

)
for some

l ≥ k since the paths include k steps in the x axis and (l − k) steps in y axis. It is seen as the
the number of the functions of Di−τ+l,j in terms of Di−τ,j−k. From these observations, Di−τ+l,j
is the minimum between

∑l
k=0

(
l
k

)
= 2l values. In particular, Di,j is the minimum between

2 ·
∑τ

k=0

(
τ
k

)
− τ = 2τ+1 − τ values because the set of all the paths of Di,j is symmetric with

respect to the line from Di−τ,j−τ to Di,j . We know that the minimum circuits consume the
largest number of levels than others (equality circuit or addition circuits), and it needs O(log k)
levels to evaluate the minimum circuits MINk that compute the minimum value between k
numbers, which requires O(k2) homomorphic computations. Thus, one can compute a block of
size-(τ + 1) by evaluating the circuits with a SWHE of depth O(log(2τ+1 − τ)) ≈ O(τ) in

∑
k=2,22,...,2τ−1

O(k2) +O((2τ+1 − τ)2) ≈ O(22τ )

homomorphic operations. From the fact that all the blocks of size-(τ + 1) can be computed
diagonally while shares of the values of T and L have been computed, we can conclude that the
edit distance algorithm can be implemented using O(22τ · nm

τ2
) homomorphic operations with a

SWHE scheme of depthO(τ ·(n+mτ −1)) ≈ O(n+m) for given two encrypted sequences of lengths
n and m. Hence, this optimization reduces the depth, but the entire computation increases as
τ becomes larger. In particular, in the case of n = m, we can implement the algorithm with
lesser depth circuits. The essence of the idea is formally captured in Lemma 3 below.

Lemma 3 Let σj denote the elementary symmetric polynomial of degree j in x1, x2, . . . , xn
and σ̃j the binary circuit which is a conversion of σj by the following rules: + 7→ ⊕ and · 7→ ∧.
Also, let µ := d log ne. Then the addition circuits ADDn convert the sum of n one-bit xi’s into a
µ-bit integer, defined by (S[1], S[2], . . . , S[µ]) satisfying

S[i] =
⊕

1≤j≤n
(
⊕

1≤k≤j
k[i]=1

[(
j

k

)]
2

) ∧ σ̃j .

Proof. Denote Sn the symmetric group on the n letters and

Xk :=
∑
ζ∈Sn

(
xζ(1) · · ·xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
.

Let us cj denote a coefficient of σj in Xk over integers. We show that cj ·
(
n
j

)
=
(
n−k
j−k
)
·
(
n
k

)
.

More precisely, the number of monomials of degree j in Xk is cj ·
(
n
j

)
because

(
n
j

)
can be seen

as the number of the monomials of σk. Note that for a fixed ζ ∈ Sn, the number of monomials
of degree j in

(
xζ(1) · · ·xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
is
(
n−k
j−k
)
. Since the number of such

polynomials is
(
n
k

)
, we have cj =

(
j
k

)
and Xk =

∑
cjσj =

∑
k≤j≤n

(
j
k

)
· σj .

Now let us consider the binary circuit X̃k, that is,

X̃k =
⊕
ζ∈Sn

(xζ(1) ∧ · · · ∧ xζ(k) ∧ (xζ(k+1) ⊕ 1) ∧ · · · ∧ (xζ(n) ⊕ 1)),
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so we have X̃k = ⊕k≤j≤n(
[(
j
k

)]
2
∧ σ̃j). Hence, we can conclude that

S[i] =
⊕

1≤k≤n
(X̃k ∧ k[i]) =

⊕
1≤k≤n

 ⊕
k≤j≤n

[(
j

k

)]
2

∧ σ̃j

 ∧ k[i]

=
⊕

1≤k≤j≤n
k[i]=1

[(
j

k

)]
2

∧ σ̃j =
⊕

1≤j≤n

 ⊕
1≤k≤j
k[i]=1

[(
j

k

)]
2

 ∧ σ̃j .
The first equality follows since only k values of x1, . . . , xn can be “1” (i.e.,

∑n
i=1 xi = k) if and

only if X̃k = 1. ut

For example, if we let n = 3, then we know that

S[1] =

([(
1

1

)]
2

∧ σ̃1
)
⊕
(([(

3

1

)]
2

⊕
[(

3

3

)]
2

)
∧ σ̃3

)
= σ̃1 = x1 ⊕ x2 ⊕ x3,

S[2] =

([(
2

2

)]
2

∧ σ̃2
)
⊕
(([(

3

2

)]
2

⊕
[(

3

3

)]
2

)
∧ σ̃3

)
= σ̃2 = (x1 ∧ x2)⊕ (x2 ∧ x3)⊕ (x3 ∧ x1) .

The lemma implies that if we have computed “⊕
[(
j
k

)]
2
” satisfying 1 ≤ k ≤ j and k[i] = 1 (for

1 ≤ i ≤ µ and 1 ≤ j ≤ n), then Si’s are expressed in terms of the symmetric polynomials with
degree no more than n. The following proposition follows from Lemma 3.

Proposition 4 Encrypted Edit distance algorithm can be implemented on two sequences of
length n over an ω-bit alphabet with a somewhat homomorphic scheme of depth

d logωe+ d log ne+ d log
(
blog(n+ dn

2
e − 1)c

)
e+ d log

(
n′
)
e+ 2

where n′ = −dn2 e − 1 + 2
∑dn

2
e−1

i=0

(
n
i

)
.

Proof. Let us consider a size-(n + 1) block. Since Dn,n = Dn is less than n and Di,0, D0,i are
greater than 2i,Dn can be expressed as a function ofD0,0, D1,0, . . . , Ddn

2
e−1,0, D0,1, . . . , D0,dn

2
e−1,

and ti,j ’s satisfying |i−j| ≤ dn2 e, as shown in Figure 4 (which means that it is enough to compute
only a little part of the block).

D0,0

D0,1

D0,2

·
·
·

D0,dn
2
e−1

Dn

D1,0

D2,0

Ddn
2
e−1,0

·
·
·

Fig. 4. Grid of (n+ 1)-block
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Firstly it needs d logωe levels to compute ti,j ’s with the equality circuits over ω-bits. Next,
from the fact that the number of the functions of Dn with respect to Di,0 is

(
n
i

)
, the edit distance

Dn is the minimum between n′ = −dn2 e+ 2
∑dn

2
e−1

i=0

(
n
i

)
values which have the following form:

Di,0 + ti1,j1 + ti2,j2 + · · ·+ tin−k,jn−k + i = 2i+ ti1,j1 + ti2,j2 + · · ·+ tin−k,jn−k

where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ n and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jn−k ≤ n. In particular,
“t1,1 + t2,2 + · · · + tn,n” has binary circuits which consume the largest levels to be evaluated,
and from Lemma 3 we expect that it needs d log ne levels. We note that all the values to be
compared are less than n+ dn2 e − 1 and they are considered to be of blog(n+ dn2 e − 1)c+ 1-bit,
so we have D(COM) = d log

(
blog(n+ dn2 e − 1)c

)
e+ 1. Finally, the proposition follows that

D(ti,j) + D(t1,1 + · · ·+ tn,n) + D(COM) + D(MINn
′
)

= (d logωe) + (d log ne) +
(
d log(blog(n+ dn

2
e − 1)c)e+ 1

)
+
(
d log

(
n′
)
e+ 1

)
.

ut

The result of Proposition 4 tells us that we can reduce the depth of computing edit distance
to O(log n′) ≈ O(log(2 · 2

n
2
−1)) ≈ O(n). In particular, if n = m = 8, then the number of levels

consumed by the edit distance algorithm is approximately 16.

5 Implementation and Discussions

In the following we give an estimated performance of the encrypted edit distance algorithm over
DNA sequences and provide concrete timings for homomorphic evaluation of the algorithm with
Shoup’s NTL library [22] and Halevi-Shoup’s HE library [13] over GMP. A complete description
of this scheme is given in [8]. We may assume that ω = 2 from the fact that Σ = {A,G,C,D}.

In our scenario, the third parties first partition their own DNA sequences into segments of
length n or m. Then each of the DNA sequences is expressed in a binary representation. After
that, each bit is encrypted as a different ciphertext with a homomorphic encryption scheme. For
parallel computation, we use an encryption scheme with plaintext space Z`2 supporting SIMD
operations with ` slots. Then one party sends the ciphertexts which hold the ` segments together
to a cloud. Finally, the cloud service computes the edit distances of ` different sequence pairs
simultaneously. The amortized time is computed as the total time of this algorithm evaluation
divided by `.

5.1 Estimates

In addition to the modulus switching method, there is another noise-management technique-
bootstrapping which evaluates the decryption circuit of homomorphic encryption scheme using
the decryption key. This results in a different encryption of the ciphertext with reduced noise,
so the number of homomorphic operations becomes unlimited, called fully homomorphic en-
cryption (FHE).

If the length of DNA sequences is large, our encrypted edit distance algorithm requires
large depth. So for sufficiently long sequences, we estimate the algorithm using an FHE scheme
instead of an SWHE scheme. In particular, we present the estimated performance using the
batch DGHV scheme [4]. Since bootstrapping is more costly than other operations and this
scheme performs a bootstrapping right after each multiplication, the number of homomorphic
multiplications directly affects the total evaluation performance. We note that the edit distance
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Table 5. Estimates of amortized timing for homomorphic edit distance computation using a FHE scheme [4]

(n,m) Toy Small Medium Large

Security 42 52 62 72

# of slots 10 37 138 531

pk size 647kB 13.3MB 304MB 5.6GB

(1, 1) 0.108s 0.297s 0.891s 3.402s

(2, 2) 1.104s 3.046s 9.107s 34.776s

(3, 3) 3.996s 11.025s 32.962s 2min 5s

(4, 4) 7.104s 19.600s 58.599s 3min 44s

(6, 6) 22.032s 1min 1s 3min 2s 11min 34s

(8, 8) 39.168s 1min 48s 5min 23s 20min 34s

(10, 10) 1min 18s 3min 35s 10min 43s 40min 57s

(20, 20) 6min 19s 17min 26s 52min 8s 3h 19min

(30, 30) 14min 13s 39min 14s 1h 57min 7h 27min

(50, 50) 46min 30s 2h 8min 6h 23min 1day 24min

(100, 100) 3h 34min 9h 50min 1day 5h 4days 16h

algorithm in Section 4.3 needs many more multiplications than the one in Section 4.1. For these
reasons, the latter is more suitable for being evaluated via FHE.

We assume that the length of DNA sequence segments is less than 100 because a single
DNA sequencer can generate millions of short DNA sequences with 100-120 nucleotides. We
first count the total number of homomorphic multiplications in the edit distance algorithm up
to size (100, 100), which can be seen as the number of bootstrapping operations during the
evaluations. Then it is multiplied by the timing for a single bootstrapping operation with their
results (using the same parameters as in [4]). We present the estimates of the proposed algorithm
in Table 5.

5.2 Experimental result

Using the optimization techniques as described in Section 4.3, we can evaluate the edit distance
algorithm homomorphically with low depth circuits for small DNA sequences. Taking 80-bits
of security, we used many different parameters for several level parameters L according to the
length of the two DNA sequences, that is, we chose SWHE scheme so as to support the depth
which are incurred by the computations for each case. In the set up stage, we determine the
parameters of a SWHE scheme and generate a secret/public key pair and the modulus switching
data.

We implemented the encrypted edit distance algorithm for two sequences of length n and m.
In our implementation, we use τ = n = m as mentioned before. The implementation results are
described in Table 6. For example, it takes 27.5 seconds to obtain the encrypted edit distance
from the two encrypted DNA sequences of length 8. This is about 45 times faster than the result
of Section 5.1, which is expected to take 20 minutes for 72-bits of security.
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Table 6. Timing of an implementation of homomorphic edit distance on an Intel Xeon i7 2.3GHz, 192GB (80
bit security)

(n,m) Depth of Ring Modulus ` Key Encryption Total Amortized

Hom. Enc. Φd Generation time time

(1,1) 1 d = 4369 256 1.4761s 0.1118s 0.0693s 0.0003s

(2,2) 2 d = 4369 256 1.8358s 0.2844s 0.2532s 0.0009s

(3,3) 8 d = 8191 630 7.0162s 1.7117s 34.3091s 0.0540s

(4,4) 9 d = 8191 630 7.4489s 2.4154s 67.5116s 0.1071s

(6,6) 16 d = 13981 600 16.1076s 9.9498s 26min 33s 2.6555s

(8,8) 19 d = 15709 682 27.5454s 16.4524s 5h 13min 27.5528s

6 Conclusion

In this paper, we proposed an algorithm to perform the edit distance algorithm on encrypted
genomic sequences. More precisely, upon input two encrypted sequences of lengths n and m by
a SWHE scheme, our algorithm outputs an encrypted value of their edit distance. We show that
this can be done in O(nm log(n + m)) computations with a SWHE scheme which can homo-
morphically evaluate any circuit of depth O((n + m) log(log(n + m))). With our optimization
technique, we can reduce the depth of computing edit distance to O(n+m) and the implemen-
tation shows that it takes 27.5 seconds for n = m = 8 using the Halevi-Shoup code [13].

Currently we could not implement our algorithm for larger parameters due to large memory
requirements, but if one can manage large memory or improve the scheme to reduce the memory
requirements, it is expected that the algorithm would run in one day for n = m = 50 when
estimated based on the recent CCK+ scheme [4].

The proposed algorithm enables us to perform any sequence analysis over encrypted genomic
sequences without worrying about privacy leakage. It would be very interesting to make our
algorithm practical for larger parameters by improving the algorithm with the help of more
efficient homomorphic encryption.
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