
Generalizing Efficient Multiparty Computation

Bernardo David1?, Ryo Nishimaki2, Samuel Ranellucci1, and Alain Tapp3

1 Department of Computer Science
Aarhus University, Denmark
{bernardo,samuel}@cs.au.dk
2 Secure Platform Laboratories

NTT, Japan
nishimaki.ryo@lab.ntt.co.jp

3 DIRO
Université de Montréal, Canada

tappa@iro.umontreal.ca

Abstract. We focus on generalizing constructions of Batch Single-Choice Cut-And-Choose Oblivi-
ous Transfer and Multi-sender k-out-of-n Oblivious Transfer, which are at the core of efficient secure
computation constructions proposed by Lindell et al. and the IPS compiler. Our approach consists in
showing that such primitives can be based on a much weaker and simpler primitive called Verifiable
Oblivious Transfer (VOT) with low overhead. As an intermediate step we construct Generalized Obliv-
ious Transfer from VOT. Finally, we show that Verifiable Oblivious Transfer can be obtained from a
structure preserving oblivious transfer protocol (SPOT) through an efficient transformation that uses
Groth-Sahai proofs and structure preserving commitments.
Keywords: Oblivious Transfer, Structure Preserving Cryptography, Secure Computation, Universal
Composability, Groth-Sahai Proof System, IPS compiler.

1 Introduction

Secure multiparty computation (MPC) allows mutually distrustful parties to compute functions on private
data that they hold, without revealing their data to each other. Obtaining efficient multiparty computation
is a highly sought after goal of cryptography since it can be employed in a multitude of practical applications,
such as auctions, electronic voting and privacy preserving data analysis. Notably, it is known that secure
two-party computation can be achieved from the garbled circuits technique first proposed by Yao [Yao86]
and that general MPC can be obtained from a basic primitive called oblivious transfer (OT), which was
introduced in [Rab81,EGL85]. The basic one-out-of-two oblivious transfer (OT 2

1) is a two-party primitive
where a sender inputs two messages m0,m1 and a receiver inputs a bit c, referred to as the choice bit. The
receiver learns mc but not m1−c and the sender learns nothing about the receiver’s choice (i.e. c). This
primitive was proven to be sufficient for achieving MPC in [Kil88,GMW87,CvdGT95].

Even though many approaches for constructing MPC exist, only recently methods that can be efficiently
instantiated have been proposed. Among these methods, the IPS compiler [IPS08] stands out as an important
construction, achieving MPC without honest majority in the OT-hybrid model. In this work, we will focus on
the cut-and-choose OT based construction and the improvement of the IPS compiler introduced by Lindell
et al. [LP11,LP12,LOP11,Lin13].

In the approaches for obtaining efficient MPC presented in [LP11,Lin13], the authors employ cut-and-
choose OT, where the sender inputs s pairs of messages and the receiver can choose to learn both messages
b0, b1 from s

2 input pairs, while he only learns one of the messages in the remaining pairs. A batch version of
this primitive is then combined with Yao’s protocol to achieve efficient MPC. In the improvement of the IPS
compiler, the authors employ Multi-sender k-out-of-n OT, where j senders input a set of n messages out of
which a receiver can choose to receive k messages. These complex primitives are usually constructed from

? Bernardo David and Samuel Ranellucci were supported by European Research Council Starting Grant 279447. The
authors acknowledges support from the Danish National Research Foundation and The National Science Foundation
of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation,
and also from the CFEM research centre (supported by the Danish Strategic Research Council) within which part
of this work was performed.

specific number-theoretic and algebraic assumptions yielding little insight to their relationship with other
generic and potentially simpler primitives.

In parallel to the efforts for obtaining efficient MPC, research has been devoted to obtaining constructions
of basic primitives that can be efficiently combined between themselves in order to obtain more complex prim-
itives and protocols. One of the main approach taken towards this goal has been called structure preserving
cryptography, which aims at constructing primitives where basically all the public information (e.g. signa-
tures, public keys, ciphertexts and commitments) are solely composed of bilinear group elements. This allows
for the application of efficient Groth-Sahai non-interactive zero knowledge (NIZK) proof systems [GS08] (GS-
Proofs) and efficient composition of primitives. Until now, the main results in this area have been structure
preserving signature and commitment schemes [AFG+10,AGHO11] and encryption [CHK+11].

Our Contributions: The central goal of this paper is to present general constructions of the primitives used
as the main building blocks in the frameworks of [LP11,LOP11,LP12,Lin13] in the universal composability
model [Can01]. In contrast to previous works, we present general reductions from such complex primitives
to simpler variants of OT without relying on specific number theoretic assumptions. We present three main
results:

– General constructions of Multi-sender k-out-of-n OT (MSOT) and Batch Single Choice Cut-
and-Choose OT (CACOT) from Generalized OT (GOT): We show that MSOT and CACOT
can be obtained GOT [IK97] combined with proper access structures. Differently from the original
constructions of [LP11,LP12,LOP11,Lin13], our constructions are based on a simple generic primitive,
not requiring Committed OT or specific computational assumptions. These constructions can be readily
used to instantiate the MPC frameworks presented in [LP11,LP12,LOP11,Lin13].

– Generalized Oblivious Transfer based on Verifiable Oblivious Transfer: Verifiable Oblivious
Transfer (VOT) [CC00,JS07,KSV07] is a flavor of 1-out-of-2 OT where the sender can reveal one of his
messages at any point during the protocol execution allowing the receiver to verify that this message is
indeed one of the original sender’s inputs. We show that GOT can be obtained from VOT, generalizing
even more the constructions described before. Our generic construction of GOT may be of independent
interest.

– Structure Preserving Oblivious Transfer (SPOT) and a generic composable constructions
of Verifiable Oblivious Transfer: We introduce SPOT, which is basically a 1-out-of-2 OT compatible
with GS-Proofs. We then build on this characteristic to provide a generic (non black-box) construc-
tion of VOT from any SPOT protocol combined with structure preserving extractable or equivocable
commitments and Groth-Sahai NIZKs. Differently from the VOT protocols of [CC00,JS07,KSV07], our
constructions are modular and independent of specific assumptions. Moreover, we provide a concrete
round optimal SPOT protocol based on a framework by Peikert et al. [PVW08] and observe that the
protocols in [CKWZ13] fit our definitions. This notion is also of independent interest in other scenarios
besides general MPC.

Our contributions are two-fold, showing that efficient MPC can be based on a weaker simpler primitive
(i.e. VOT) and providing a generic method for constructing such a primitive. Our results generalize previous
approaches for efficient MPC by providing constructions ultimately based on SPOT rather than the original
Multi Sender k-out-of-n OT and Batch Single Choice Cut-and-Choose OT. Such general constructions help
understand the relationship between these complex variants of oblivious transfer and simpler primitives.

1.1 Efficiency

Our constructions are as efficient as the underlying NIZK proof system, structure preserving commitment and
SPOT. Hence, they can easily take advantage of more efficient constructions of these primitives. In Table 1,
we present an estimate of the concrete complexity of our protocols when instantiated with GS-Proofs and
commitments [GS08] and our structure preserving variant of the DDH based UC secure OT of [PVW08]. Our
general constructions achieve essentially the same round complexity as the previous DDH based constructions
of the same funtionalities. Our constructions incur higher communication and computational overheads,
which is expected since we do not optimize our protocols for an specific number theoretic assumptions as
in previous works. We remark that independently of their concrete efficiency, our protocols are the first to
realize MSOT and CACOT from generic primitives without relying on specific number theoretic assumptions.

Protocol VOTs Rounds
Computational

Complexity
Communication

Complexity

GOT Sec. 4 n 6
23n Exp.
+28 Pair.

24n + k + 4

CACOT
Sec. 5 2ns 6

46ns Exp.
+56ns Pair.

48.5ns
+n + 4

[LP11] - 6
11.5ns + 19n
+9s + 5 Exp.

5ns + 11n
+5s + 5

Modified
CACOT

Sec. 6 4ns + s 6
92ns + 23s Exp.

112ns + 28s Pair.
16ns + 16s

+k + 4

[Lin13] - 21
10.5ns + 20.5ns
+n + 26 Exp.

5ns + n
+11s + 15

MSOT
Sec. 7 pn 8

23pn Exp.
+28pn Pair.

24pn + 4p + k
p!/(p− 3)! + 4

[LOP11] - 7
4n + 11(p− 1)n
+k(p− 1) Exp.

12pn + 1

Table 1. Efficiency of our protocols compared to previous constructions based on DDH. The column VOTs shows
the number of VOTs needed in our general constructions, “-” marks the previous protocols that do not enjoy general
constructions. Exp. stands for exponentiations and Pair. stands for bilinear pairings. n and s express the number of
inputs according to each protocol (explained in the respective sections), p is the number of senders in MSOT and
k is the number of messages transferred to the receiver. Communication complexity is stated in terms of number of
group elements exchanged.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is a random variable

or distribution, y
R← D denotes that y is randomly selected from D according to its distribution. If S is a set,

then x
U← S denotes that x is uniformly selected from S. y := z denotes that y is set, defined or substituted

by z. When b is a fixed value, A(x) → b (e.g., A(x) → 1) denotes the event that machine (or algorithm) A
outputs b on input x. We say that a function f : N → R is negligible in λ ∈ N if for every constant c ∈ N
there exists kc ∈ N such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to mean that f is

negligible in λ. We write X
c
≈ Y to denote that X and Y are computationally indistinguishable.

Bilinear Groups. Let G be a bilinear group generator that takes security parameter 1λ as input and outputs
a description of bilinear groups Λ := (p,G,H,GT , e, g, ĝ) where G, H and GT are groups of prime order p,
g and ĝ are generators in G and H, respectively, e is an efficient and non-degenerate map e : G×H→ GT .
If G = H, then we call it the symmetric setting. If G 6= H and there is no efficient mapping between the
groups, then we call it the asymmetric setting.

Symmetric External Decisional Diffie-Hellman Assumption. Intuitively, SXDH is the assumption that the
DDH assumption holds for both groups G and H in a bilinear group Λ. Let GDDH1(1λ) be an algorithm

that on input security parameter λ, generates parameters Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ) (where G is

the bilinear group generator introduced in the previous paragraph.), chooses exponents x, y, z
U← Zp, and

outputs I := (Λ, gx, gy) and (x, y, z). When an adversary is given I
R← GDDH1(1λ) and T ∈ G, it attempts

to distinguish whether T = gxy or T = gz. This is called the DDH1 problem. The advantage AdvDDH1
A (λ) is

defined as follows:

AdvDDH1
A (λ) :=

∣∣∣Pr
[
A(I, gxy)→ 1

∣∣∣(I, x, y, z) R← GDDH1(1λ);
]

− Pr
[
A(I, gz)→ 1

∣∣∣(I, x, y, z) R← GDDH1(1λ);
]∣∣∣

Definition 1 (DDH1 assumption). We say that the DDH1 assumption holds if for all PPT (Probabilistic
Polynomial Time) adversaries A, AdvDDH1

A (λ) < negl(λ).

The DDH2 assumption is similarly defined in terms of group H. If both DDH1 and DDH2 assumptions
hold simultaneously, then we say that the symmetric external Diffie-Hellman (SXDH) assumption holds.

2.1 Universal Composability

The Universal Composability framework was introduced by Canetti in [Can01] to analyse the security of
cryptographic protocols and primitives under arbitrary composition. In this framework, protocol security
is analysed by comparing an ideal world execution and a real world execution under the supervision of
an environment Z, which is represented by a PPT machine and has access to all communication between
individual parties. In the ideal world execution, dummy parties (possibly controlled by a PPT simulator)
interact directly with the ideal functionality F , which works as a fully secure third party that computes the
desired function or primitive. In the real world execution, several PPT parties (possibly corrupted by a real
world adversary A) interact with each other by means of a protocol π that realizes the ideal functionality.
The real world execution is represented by the ensemble EXECπ,A,Z , while the ideal execution is represented
by the IDEALF,S,Z . The rationale behind this framework lies in showing that the environment Z is not able
to efficiently distinguish between EXECπ,A,Z and IDEALF,S,Z , thus implying that the real world protocol
is as secure as the ideal functionality. It is known that a setup assumption is needed for UC realizing
oblivious transfer as well as most “interesting” ideal functionalities [CF01]. In this work we consider security
against static adversaries, i.e. the adversary can only corrupt parties before the protocol execution starts.
We consider malicious adversaries that may deviate from the protocol in any arbitrary way. See [Can01] for
further details.

Definition 2. A protocol π is said to UC-realize an ideal functionality F if, for every adversary A, there
exists a simulator S such that, for every environment Z, the following holds:

EXECπ,A,Z
c
≈ IDEALF,S,Z

We present oblivious transfer (FOT), commitment (FCOM), and common reference string (FDCRS) ideal
functionalities in Appendix A.

3 Generic Construction of Verifiable OT from Structure Preserving OT

In this section, we introduce Structure Preserving Oblivious Transfer (SPOT) and use it to construct verifi-
able oblivious transfer (VOT). SPOT will be the basic building block of our efficient general constructions
of secure multiparty computation. It is first used in a general transformation that yields VOT, which will be
used to obtain generalized oblivious transfer (GOT) and more complex primitives later on.

Structure Preserving Oblivious Transfer

Basically we require all the SPOT protocol messages (i.e. the protocol transcript) and inputs to be composed
solely of group elements and the transcript to be generated from the inputs by pairing product equations or
multi exponentiation equations, which allows us to apply GS proofs to prove relations between the parties’
inputs and the protocol transcript. Further on, our general transformation will rely on GS proofs to show
that a given sender input is associated with a specific protocol transcript.

Definition 3 (Structure Preserving Oblivious Transfer). A structure preserving oblivious transfer
protocol taking inputs m0,m1 from the sender and c from the receiver defined over a bilinear group Λ :=
(p,G,H,GT , e, g, ĝ) must have the following properties:

1. Each of the sender’s input messages m0,m1 consists of elements of G or H.
2. All the messages exchanged between S and R (i.e. the protocol transcript) consist of elements of G and

H.
3. The relation between the protocol inputs m0,m1, c and a given protocol transcript is expressed by a set

of pairing product equations or multi exponentiation equations.

Notice that our general transformations can be applied to any OT protocol in a bit by bit approach, by
mapping the binary representation of each element in a given protocol to specific group elements representing
0 and 1 and applying GS proofs individually to each of those elements. However, this trivial approach is
extremely inefficient. The number of GS proofs and group elements exchanged between parties would grow
polynomially. The first OT protocol to fit this definition was proposed in [GH08], but it relies simultaneously
on the SXDH, the DLIN and the q-hidden LSRW assumptions. A recent result by Choi et. al. [CKWZ13]
also introduced OT protocols based on DLIN and SXDH that match out definition of SPOT. However, these
protocols already require a GS proof themselves, introducing extra overhead in applications that combine
SPOT with GS proofs.

Obtaining SPOT from Dual-Mode Cryptosystems

The starting point for constructing SPOT is the general framework for universally composable oblivious
transfer protocols proposed by Peikert et al. [PVW08] (hanceforth called PVW). The PVW framework
provides a black-box construction of UC secure OT from dual-mode cryptosystems, which were initially
instantiated under the DDH, QR and LWE assumptions. Essentially, this framework relies on an information
theoretical reduction from UC secure OT to dual-mode cryptosystems in the CRS model, such that the
resulting OT protocol inherits the characteristics of the underlying dual-mode cryptosystem. In order to
obtain an OT protocol compatible with GS-proofs, we convert the DDH based dual-mode cryptosystem
construction of [PVW08] into a scheme secure under the SXDH assumption (which can also be used to
instantiate GS proofs). This scheme is then plugged in the PVW framework to obtain a UC secure OT
protocol. Note that, in the resulting protocol, the CRS, all protocol messages and inputs are composed
solely by group elements. Moreover, all the protocol messages are generated by pairing product equations.
Therefore, we obtain a SPOT protocol whose security follows from the PVW framework. Our SXDH dual-
mode cryptosystem is constructed as follows:

– SetupMessy(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0, g1

U← G, x0, x1
U← Zp where x0 6= x1. Let hb := gxbb

for b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := (x0, x1). It outputs (crs, t).

– SetupDec(1λ) Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ), g0

U← G, y
U← Z∗p, g1 := gy0 , x

U← Zp, hb := gxb for
b ∈ {0, 1}, crs := (g0, h0, g1, h1), and t := y. It outputs (crs, t).

– Gen(σ) r
U← Zp, g := grσ, h := hrσ, pk := (g, h) ∈ G2, sk := r. It outputs (pk, sk).

– Enc(pk, b,m) For pk = (g, h) and message m ∈ G, reads (gb, hb) from crs = (g0, h0, g1, h1), chooses

s, t
U← Zp, and computes u = gsbh

t
b, v = gsht. It outputs ciphertext (u, v ·m) ∈ G2.

– Dec(sk, c) c = (c0, c1), It outputs c1/c
sk
0 .

– FindMessy(t, pk) For input t = (x0, x1) where x0 6= x1, pk = (g, h), if h 6= gx0 , then it outputs b = 0 as a
messy branch. Otherwise, we have h = gx0 6= gx1 , so it outputs b = 1 as a messy branch.

– TrapGen(t) For input t = y, it chooses r
U← Zp, computes pk := (gr0, h

r
0) and outputs (pk, sk := r, sk1 :=

r/y).

Theorem 1. The cryptosystem described above is a Dual-Mode Cryptosystem according to Definition 9
under the SXDH Assumption.

The proof of this theorem and details of the PVW framework can be found in Appendix C, where we
also describe how to use GS-proofs to prove relations between protocol inputs and transcripts.

Obtaining VOT

Verifiable oblivious transfer is basically a 1-out-of-2 oblivious transfer where the sender may choose to open
one of its input messages mb where b ∈ {0, 1} at any time, in such a way that the receiver is able to
verify that this message had indeed been provided as input. This notion is formalized by the following ideal
functionality:

Functionality FV OT
FV OT interacts with a sender S a receiver R and an adversary S.

– Upon receiving (Send, sid, ssid, x0, x1) from the S, if the pair sid, ssid has not been used, store (
sid, ssid, x0, x1) and send (Receipt, sid, ssid) to S,R and S .

– Upon receiving (Transfer, sid, ssid, c) from R, check if a (Transfer, sid, ssid) message has already
been sent, if not, send (transferred, sid, ssid, xc) to the receiver and (transferred, sid, ssid,) to S,
otherwise ignore the message.

– Upon receiving (Open, sid, ssid, b) from the sender, send (reveal, sid, ssid, b, xb) to the receiver.

We will construct a general protocol πV OT that realizes FV OT from any universally composable SPOT
protocol πSPOT by combining it with a structure preserving commitment πCOM (such as the schemes in
[GS08][AFG+10]) and Groth-Sahai NIZK proofs. An interesting property of this generic protocol is that
even though it was designed for an underlying structure preserving protocol that realizes the 1-out-of-2 OT
functionality FOT , it can be applied multiple times to the individual transfers of an adaptive OT protocol
in order to obtain verifiable adaptive OT. In this case, the same CRS can be reused for all the individual
transfers. Notice that this is the first generic construction of universally composable VOT.

We assume that both parties are running the underlying universally composable structure preserving
oblivious transfer protocol SPOT and describe the extra steps needed to obtain VOT. In the context of
πCOM , we denote commitment to a message m by Com(m) and the opening of such a commitment by
Open(m).

Protocol πV OT : S inputs two messages m0,m1 and R inputs a choice bit c.

– Setup: A common reference string is generated containing the following information:

• The description of a bilinear group Λ := (p,G,H,GT , e, g, ĝ).
• The public parameters for an instance of a Groth-Sahai non-interactive zero knowledge proof system.
• The CRS for the underlying structure preserving commitment scheme πCOM .
• The CRS for the underlying UC structure preserving OT πSPOT .

– Commitment phase: Before starting πSPOT , S commits tom0 andm1 by sending (sid, ssid,Com(m0),Com(m1))
to R, where m0,m1 ∈ {0, 1}n (Notice that it is possible to efficiently map the messages into corresponding
group elements that will serve as inputs to πSPOT [GH08]).

– πSPOT protocol execution: S and R run πSPOT storing all the messages exchanged during the protocol
execution up to the end of πSPOT with S’s input (m0,m1) and R’s input c or until S decides to reveal
one of its messages.

– Reveal phase: If S decides to reveal one of its messages mb where b ∈ {0, 1} at any point of the protocol
execution it sends a decommitment to mb and a GS-proof ψ that the messages exchanged up to that
point of the execution contain a valid transfer of message mb, sending (sid, ssid, b,Open(mb), ψ) to R.

– Verification phase: After receiving the decommitment and the GS-proof, R verifies ψ and the decom-
mitment validity. If both are valid, it accepts the revealed bit, otherwise it detects that S is cheating. If
the protocol πSPOT did not reach its end yet, S and R continue by executing the next steps, otherwise
they halt.

Theorem 2. For every universally composable structure preserving oblivious transfer protocol πSPOT and
every universally composable structure preserving commitment scheme πCom, Protocol πV OT securely realizes
the functionality FV OT in the FCRS hybrid model under the assumption that Groth-Sahai proof systems are
Zero Knowledge Proofs of Knowledge.

Before proceeding to the security proof we show that the protocol works correctly. First of all, notice
that since πSPOT is a structure preserving oblivious transfer protocol it is possible to prove statements
about the sender’s input messages and the protocol transcript using Groth-Sahai NIZK proof systems.
Correctness of Protocol πV OT in the case that no Reveal phase happens follows from the correctness of

protocol πSPOT . The correctness of the Reveal phase follows from the commitment scheme’s security and
the GS-proof completeness and soundness. When S opens the commitment, R is able to check whether
the revealed message is indeed one of the messages that S used as input in the beginning of the protocol
and by verifying the GS-proof, R is able to check that the input message mb is contained in the messages
exchanged by both parties meaning that this message is indeed used in the protocol execution. The full proof
is presented in Appendix D.

4 Generalized Oblivious Transfer

Generalized Oblivious Transfer is an interesting application of Verifiable Oblivious Transfer. An interesting
way of describing an OT is by describing the groups of messages that the receiver can get as sets in a
collection. In the case of a simple OT, he can learn the values indexed by one of the sets in the collection
{{1}, {2}}. The k-out-of-n OT is an OT with a collection that contains all the sets of index of k or less
elements. This mindset allows us to present a very general form of oblivious transfer. There is an important
link between generalized oblivious transfer and general access structures. The notation FGOT (I) denotes the
instance of generalized oblivious transfer associated with the enclosed4 collection I.

Definition 4. We define the following basic facts about enclosed collections:

– Let I = {1, 2, ..., n} be a set of indices. A collection A ⊆ P(I) is monotone if the fact that B ∈ A and
B ⊆ C implies that C ∈ A.

– An access structure is a monotone collection A of non-empty sets of I. A set S is authorized if S ∈ A
and a set S′ is minimal if there exists no strict subset S′′ of S′ such that S′′ ∈ A.

– The complement of a collection C is defined as C∗ = {B ⊆ I | ∃ C ∈ C, B = I − C}.
– We define Closure(C) = {C ⊆ C ′ | C ′ ∈ C}.
– A collection C is enclosed if C = Closure(C).
– An element C ∈ C is maximal if there exists no C ′ ∈ C such that C ⊆ C ′ and C 6= C ′.

Theorem 3. For every enclosed collection C, there exists a unique access structure A such that C∗ = A

See [SSR08] for a full proof.

Definition 5. A secret sharing scheme is a triplet of randomized algorithms (Share, Reconstruct, Check)
over a message space M with an access structure A. ShareA(s) always output shares (s1, . . . , sn) such that:
(1) for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s,
(2) for any A′ 6∈ A, {(i, si) | i ∈ A′} gives no information about s.
CheckA(s1, . . . , sn) = 1 if and only if for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s.

Definition 6. We say that shares (s1, . . . , sn) are consistent if
CheckA(s1, . . . , sn) = 1.

Functionality FGOT (I)
FGOT (I) interacts with a sender S, a receiver R and an adversary S and is parametrized by an enclosed
collection I.

– Upon receiving (Send, sid, ssid,m1, . . . ,mn) from the S, if the pair sid, ssid has not already been
used, store (sid, ssid,m1, . . . ,mn) and send (receipt, sid, ssid) to S and R.

– Upon receiving (Choice, sid, ssid, I) where I is a set of indices, if no (Choice, sid, ssid) message was
previously sent and I is in I, then for each i ∈ I, send (Reveal, sid, ssid, i,mi) to R and (Reveal,
sid, ssid) to the adversary S.

4 See definition 1

4.1 Protocol

In this section, we will present a protocol that implements FGOT in the
FV OT ,FCOM − hybrid model with the aid of secret sharing. The protocol is inspired by [SSR08] but is
secure against a stronger adversary. The fact that every enclosed collection is the complement of an access
structure will be key to this construction. The protocol requires n instances of FV OT . The selection of the
secret sharing scheme is dictated by the security parameter. Namely, for security parameter s, we require
that the message space of the secret sharing scheme must have cardinality greater or equal to 2s. The size
of the elements transferred in the FV OT is the maximum between the length of the messages and the size of
the shares which depends on the underlying access structure. Let I be the enclosed collection that defines
the subsets of messages that are accessible to the receiver.

Protocol: πGOT (I) (The sender has input (m1, . . . ,mn) and the receiver has input I ∈ I.)

1. The sender selects k1, ..., kn
U← {0, 1}l (one-time pads)

2. Let A = I∗, the sender selects s
U←M and (s1, ..., sn) = ShareA(s).

3. The sender selects a set of n unused ssids, denote these ids as (ssid1, . . . , ssidn) and sends (Ids, sid, ssid,
ssid1, . . . , ssidn) to the receiver. For each i ∈ [n], the sender sends (send, ki, si, sid, ssidi) to FV OT .

4. The receiver awaits (Ids, sid, ssid, ssid1, . . . , ssidn) from the sender. He aborts if any of the ssid are not
unused. Let I ∈ I be the set of messages that the receiver wishes to receive. He sets bi = 0 when i ∈ I
otherwise he sets bi = 1. For each i ∈ [n], the receiver sends (Transfer, bi, sid, ssidi) to FV OT and records
the result.

5. The receiver executes the recover algorithm with the shares he received and obtains S. If the recon-
struction failed, he chooses an arbitrary value for S instead. The receiver sends (commit, sid, ssid, S) to
FCOM .

6. The sender awaits (committed, sid, ssid) from FCOM . Then, for each i ∈ [n], the sender sends (open, 1, sid, ssidi)
to FV OT .

7. The receiver awaits for each i ∈ [n], the message (reveal, 1, si, sid, ssidi) from FV OT . The receiver aborts
if CheckA(s1, ..., sn) 6= 1.

8. The receiver sends (open, sid, ssid) to FCOM . The sender on receipt of (reveal, sid, ssid, S) verifies that
S = s and if not, he aborts the protocol.

9. The sender sends zi = mi ⊕ ki to the receiver. ({mi | i ∈ [n]} is the set of messages)
10. The receiver for each i ∈ I, outputs (i,mi) where mi = zi ⊕ ki.

Theorem 4. πGOT securely realizes FGOT in the FV OT , FCOM hybrid model.

Proof. First, we note that the protocol is correct by construction. In our simulation, the simulator runs the
adversary internally. Whenever the simulator receives a message from the environment, it forwards it to the
adversary. Whenever the adversary would send a message to the environment, it sends the message to the
environment. The simulator only uses and records the messages that the adversary would send to the honest
parties.

(Corrupt static sender) The simulator awaits thatA sends the message (Ids, sid, ssid, ssid1, . . . , ssidn),
he aborts if one of the ids is not unused. For each i ∈ [n], the simulator awaits that A send the command
(Send, ki, si, sid, ssidi) for the oblivious transfer functionality. The simulator then forwards the message
(committed, sid, ssid) to A. For each i ∈ [n], the simulator awaits that A sends (open,1, sid, ssidi). The
simulator checks if the shares are consistent, if not, the simulator aborts. The simulator extracts S and sends
(reveal, sid, ssid, S) to A. For each i ∈ [n], the simulator awaits zi from A. For each i ∈ [n], the simulator
sets mi = zi ⊕ ki, he then sends (Send, sid, ssid,m1, ...,mn) to FGOT .

The simulator in the ideal world and the receiver in the real world both check the validity of shares.
Therefore, if the shares are not consistent, both scenarios result in an abort and in this case, the resulting
views are indistinguishable. To complete the proof, we only need to show that if A sends consistent shares
then the environment cannot distinguish between the real and ideal world. First, we note that the ideal
world transcript produced by the simulator is indistinguishable from the real world transcript between the
environment and a receiver. Therefore, if we show that the environment receives the same output in both
worlds then the ideal world and real world are indistinguishable. This holds since the simulator is able to

extract the messages that a receiver could receive and sends them to the ideal functionality. Therefore, in
this case, the real and ideal world are perfectly indistinguishable.

(Corrupt static receiver) Simulator generates a random secret s, a set of random ki and shares
si = Share(s) as well as unused (Ids, sid, ssid, ssid1, . . . , ssidn) . The simulator awaits for each i ∈ [n], the
command (transfer, bi, sid, ssidi) from A. Simulator sets di = ki when bi = 0 and di = si when bi = 1 and
then forwards to A, (transferred, bi, di, sid, ssidi). The simulator records I = {i ∈ [n] | bi = 0}. The simulator
awaits for the command (Commit, sid, ssid, S) from A. The simulator then sends the message (Reveal, sid,
ssid, 1, si) to A. On reception of (open, sid, ssid, ,) checks if S = S′ and I ∈ I, if it is not the case abort.
The simulator selects random strings ri. The simulator sends (Choice, sid, ssid, I) to FGOT and awaits for
each i ∈ [n], the message (reveal, sid, ssid, i,mi) from FGOT . For all i ∈ I, the simulator sends (mi ⊕ ki)
and for all i 6∈ I, he sends ri to A.

First, we note that the shares and the keys are identically distributed in the real world and the ideal
world. Therefore, the message received from the transfer messages and the reveal message are also identically
distributed. Therefore, only the zi can give the ability to the environment to distinguish between the real
and ideal world. Note that as long as the set I is within I then for each i 6∈ I, he only gets either a
message encrypted using a one-time pad chosen uniformly at random or a message chosen uniformly at
random. Therefore, in that case the real world and ideal world are indistinguishable. Thus, the only way
that the environment can distinguish between the real and ideal world is if the adversary chooses a set of
keys associated to a set of indices which is not in the enclosed collection and then correctly guesses the secret.
If he doesn’t guess the secret correctly, then in both worlds the result is an abort which is indistinguishable.
Therefore, the adversary can only allow the environment to distinguish between the real and ideal world
by guessing the secret. We thus have that the probability of guessing between the real and ideal world is
|M|−1 ≤ 2−s where |M | denotes the cardinality of the message space of the secret sharing scheme. We can
therefore deduce that the real and ideal world are indistinguishable.

4.2 Basic Applications

The GOT protocol can be used in numerous applications. For example, it can be used to instantiate k-out-
of-n OT using a (n-k)-out-of-n secret sharing. Priced Oblivious Transfer can be instantiated using weighted
secret sharing. The price of an object mi is the weight of the share si. Another more complex application is
multivariate oblivious polynomial evaluation presented in [Tas11]. Although the GOT protocol in that paper
is different, the techniques we presented earlier could also be used to secure their protocol.

4.3 Insecurity of previously published GOT protocols

The GOT protocol presented in this article improves on the one from [SSR08] and [Tas11] significantly. We
believe that their protocols are secure against semi-honest adversaries but unfortunately, a malicious sender
can easily break the privacy of both schemes.

The protocol of [SSR08] works as follows: first the dealer generates shares for a randomly chosen secret,
then the sender and receiver execute n instances of oblivious transfer where the receiver can learn either a
share or a key chosen uniformly at random. The receiver then reconstructs the secret and sends it back to
the sender. On receipt of a value, the sender checks that it is indeed the secret that he generated shares for.
The sender can thus use the keys to encrypt messages and he is guaranteed that the receiver cannot learn a
set of messages that is not within the enclosed collection.

However, it is possible for a malicious sender to determine if a specific message was chosen by the receiver.
We will now proceed to demonstrate an attack on [SSR08]. An adversary wishes to learn if a receiver learns
the message mc. He selects a secret s and executes the share algorithm resulting in shares {si}. He replaces
sc by s′c and executes the GOT protocol with those shares. As a result, if the receiver chooses to learn mc,
he will reconstruct s correctly otherwise he will reconstruct an s′ 6= s. The attack breaks the privacy of the
receiver. The same idea can be applied to attack the protocol from [Tas11].

5 Batch Single-Choice Cut-and-Choose OT

The Batch Single-Choice Cut-and-Choose OT (FCACOT) is an an instantiation of FGOT for a specific
enclosed collection. The procedure was introduced in [LP11] and it was used to implement constant round
secure function evaluation.

Definition 7 makes formal the enclose collection used FCACOT . Informally, the data that will be trans-
ferred has a three dimensional structure; a table of pairs. Each row is composed of s pairs and each column is
composed of n pairs. The receiver can learn two categories of element of the table. First he can learn exactly
all the pairs for a subset of half the columns. In addition to that, independently for each line, he can either
learn the first element of every pair or the second element of every pair.

Definition 7. Let Ti,j,k, where i ∈ [n], j ∈ [s] and k ∈ {0, 1}. Let A(J, σ) where J ⊆ [s], σ ∈ {0, 1}n be the
following subset of T : for all i and for all j if j ∈ J both Ti,j,0 and Ti,j,1 are in the set otherwise only Ti,j,σ(i)
belongs to the set. Let C′ =

⋃
|J|=s/2,σ A(J, σ) then we define C = Closure(C′). Furthermore any maximal

element of C can be uniquely specified by some J and σ as defined previously.

We can now formally define the Batch Single-Choice Cut-and-Choose OT.

Definition 8. FCACOT = FGOT (C).

Theorem 5. Any FCACOT can be implemented with 2ns calls to FV OT where the elements transferred by
FV OT are the maximum between twice the size of the secret and the value of the messages transferred.

Proof. We will now show that there exists an efficient secret sharing scheme with an access structure C∗ such
that its complement is the enclosed collection C. We will use a combination of linear secret sharing (mod p)
to share s = σ-S + J-S mod p, the sum of two secret. Thus, to reconstruct s, the participant will need to
reconstruct both σ-S and J-S. Let sijk,where i ∈ [n], j ∈ [s], k ∈ {0, 1}, be the shares of the secret sharing
implementing the access structure C∗. We construct sijk by the concatenation of σ-Sijk and J-Sij as defined
below.

– σ-Share: The sender selects a random σ-S. He shares σ-S using a n-out-of-n Secret Sharing resulting
in shares σ-Si and then takes each Si and distributes each of them twice using an s/2-out-of-s secret
sharing resulting in shares σ-Sij0, σ-Sij1.

– J-Share: The sender selects a random J-S and shares it using a s/2-out-of-s secret sharing resulting in
shares J-Sj . He then shares each J-Sj using a n-out-of-n secret sharing resulting in shares J-Sij where
J-Sij is a share of J-Sj .

6 Modified Cut-and-Choose from [Lin13]

The Cut-and-Choose OT from [Lin13] is very similar to the one in [LP11] but there are two important
differences. First, the set of indices in J is no longer size restricted (instead of size s/2). In addition, for each
j 6∈ J , the receiver receives a special string vj which will allow the receiver to prove that j 6∈ J . Although, we
could still use the protocol for generalized oblivious transfer defined above, the complement access structure
is very complicated. Instead, we will present a hybrid of the protocols from [Tas11] and [SSR08] to realize
this functionality.

The protocol follow the same basic structure as the previous protocol: (1) sharing of a secret, (2) verifiable
oblivious transfer, (3) commitment, (4) proof of share validity and finally (5) the message encryption and
transmission. Note that the input selection for each row i is still denoted as σi.

Construction

Essentially, by reconstructing the secret which has been shared with the secret sharing scheme below, the
prover will be able to prove two statements. First, it will show that, for each column, the receiver either
didn’t learn the verification string or one element from each pair. Second, it demonstrates that for each row,
the receiver either learned the first element of all pairs, or the second element of all pairs. The first statement
which can be thought of as a proof of ignorance reflects the approach of [SSR08], while the second one, which
can be thought as a proof of knowledge, reflects the approach of [Tas11]. The protocol that follows is thus a
hybrid of [Tas11] and [SSR08]. Since the protocol is very similar to the GOT protocol, we will only describe
how shares are constructed and what is transferred by the verifiable oblivious transfer.

Sharing

This part describes how a sender will generate shares of a secret. The reconstruct procedure of this secret
sharing naturally follows from its description. This secret will then be used as in the previous protocols to
ensure that the receiver does not learn keys for a set of indices which is not within the enclosed collection.
The sharing will first split the secret into two shares, sc and sr. The receiver will be able to extract sc only if
for each column, he either did not learn the verification string, or he did not learn one element from each pair.
The purpose of sr is to ensure that for each row, for all pairs within that row he learned the first element, or he
learned for all pairs the second element. The notation k-n is used as shorthand for {S ⊂ {1, . . . , n} | |S| ≤ k}.
In particular, the notation Sharek-n denotes the sharing of a secret using a k-out-of-n secret sharing.

(sc, sr) = share2-2(s)

(sr1, . . . , srn) = sharen-n(sr)

(sri10, . . . , srin0) = shares-s(sri)

(sri11, . . . , srin1) = shares-s(sri)

(sc1, . . . , scs) = shares-s(sc)

(sc1j , . . . , scnj) = sharen-n(scj)

(sc0ij0, sc
1
ij0) = share2-2(scij)

(sc0ij1, sc
1
ij1) = share2-2(scij)

Sender’s input to VOT

This part describes which messages will be sent by the sender to FV OT . We will use vidj , kidi,j,k, sridi,j,k
indexed by variable i, j, k to denote distinct ssids.

(Send, sid, vidj , vj , scj)

(Send, sid, kidi,j,k, kijk, sc
0
ijk)

(Send, sid, sridi,j,k, srijk, sc
1
ijk)

Receiver’s input to VOT

These are the messages that the receiver will send to FV OT . We also add next to them a description of the
values learned by the receiver. Note that these values allow the sender to reconstruct both sc and sr as well
as get the keys for a set of indices within the enclosed collection.

For each j ∈ J , the receiver sends (Transfer, sid, vidj , 1) to FV OT , he learns {scj | j ∈ J}.
For each j 6∈ J , the receiver sends (Transfer, sid, vidj , 0) to FV OT , he learns {vj | j 6∈ J}.
For each j ∈ J, i ∈ [n], k ∈ {0, 1}, the receiver sends to FV OT

(Transfer, sid, kidi,j,k, 0), he learns {(kijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.
(Transfer, sid, sridi,j,k, 0), he learns {(srijk) | j ∈ J, i ∈ [n], k ∈ {0, 1}}.

For each j 6∈ J, i ∈ [n], the receiver sends to FV OT
(Transfer, sid, kidi,j,σi , 0), he learns {(kijσi) | j 6∈ J, i ∈ [n]}.
(Transfer, sid, sridi,j,σi , 0), he learns {(srijσi) | j 6∈ J, i ∈ [n]}.
(Transfer, sid, kidi,j,1−σi , 1), he learns {sc0ij(1−σi) | j 6∈ J, i ∈ [n]}
(Transfer, sid, sridi,j,1−σi , 1), he learns {sc1ij(1−σi) | j 6∈ J, i ∈ [n]}

Share reconstruction and commitment

In this phase, the receiver reconstructs a secret using the reconstruction algorithm for the secret sharing
described in 6. He then commits to that value.

Proof of share validity

The sender sends the messages described below to FV OT . This allows the receiver to check that the shares
are consistent relative to the secret sharing defined in 6. If the shares are not consistent, the receiver aborts.

– for each j ∈ J ,
(Reveal, sid, vidj , 1), the receiver learns scj .

– for each i ∈ [n], j ∈ J, k ∈ {0, 1}
(Reveal, sid, kidi,j,k, 1), the receiver learns sc0i,j,k.
(Reveal, sid, sridi,j,k, 0), the receiver learns sri,j,k.
(Reveal, sid, sridi,j,k, 1) the receiver learns sc1i,j,k.

Message encryption and transmission

For each i ∈ [n], j ∈ [s], k ∈ {0, 1}, the sender encrypts the message mijk using kijk resulting in zi,j,k. He
then sends zi,j,k to the receiver. For each i ∈ [n], j 6∈ J , the receiver can decrypt mi,j,σi since he knows ki,k,σi .
For each i ∈ [m], j ∈ J , the receiver can decrypt mi,j,0,mi,j,1 since he knows ki,j,0 and ki,j,1

7 Multi-sender k-Out-of-n OT

The Multi-sender k-out-of-n OT functionality was defined in [LOP11] where it was used to optimize the
IPS compiler. The functionality involves p senders and one receiver. It is essentially many k-out-of-n OT
executed in parallel with the same choice made by the receiver in each execution. This OT primitive can
be implemented using ideas similar to the ones we presented to implement GOT in conjunction with the
appropriate use of linear secret sharing.

The protocol is divided in four phases. In the first phases, the senders will construct/distribute the shares
of a special secret sharing with value S. They must commit to this information. In the VOT phase, each
sender will transfer a key for each message along with the associated share. The receiver will read the key
associated with the messages he wishes to learn and otherwise he will obtain a share. The next phase is a
verification phase, the receiver will commit to S which he could only obtain if he was requesting the same k
messages from each sender. The senders will open all their commitment so that the shares are validated by
the receiver. If the verification phase succeeds, the receiver opens S which proved he only read a legal set of
key. In the last phase, the senders will transmit all the messages encrypted with the appropriate key.

The following functionality and protocol involves p senders with n messages of length r each and one
receiver. We denote the shares of a a-out-of-b linear secret sharing as {B}a-b.

Functionality FMSOT

FMSOT interacts with senders P1, . . . , Pp and receiver Pr

– Inputs: For j = 1, . . . , p, upon receiving message (Send, sid, ssid, x1j , . . . , xnj) from a sender Pj ,
record all xij .

– Outputs: Upon receiving message (Transfer, sid, ssid, I ⊂ [n]), check if |I| = k, if not abort. Send
to receiver Pr, for each j = 1, . . . , p and i ∈ I, the message (Receipt, sid, ssid, i, j, xij).

Protocol: (πMSOT)

– Preparation
1. Each sender a selects a random secret Sa and broadcasts a non-interactive commitment to Sa. We

define S =
∑
a Sa.

2. Each sender a reshares Sa to obtain {Sab}(n−k)-n.
3. Each sender a reshares each Sab to obtain {Sabc}p-p.
4. For each j, b and c, sender j sends share Sjbc to sender c.

5. Each sender c computes for each b, S′bc =
∑
a

sabc.

We have that S′′b = {S′bc}p-p and
∑
S′′b = S.

– VOT’s
1. Each sender j selects uniformly at random a set of n keys kij of length r (one-time pads). He also

selects n unused ids denoted by ssidij and sends them to the receiver.
2. Each sender j, for each i ∈ [n] sends FV OT the message

(Send, sid, ssidij , kij , S
′
ij).

3. Let I ∈ I be the set of messages that the receiver wishes to receive, he sets bi = 0 if i ∈ I otherwise he
sets bi = 1. For each i, for each sender, the receiver sends FV OT the message (Transfer, sid, ssidij , bi)
and records the result.

– Verification
1. Receiver computes S′′b = {S′bc}p-p then S =

∑
S′′b and broadcasts a non-interactive commitment to

S. The receiver commits to a random S if he cannot reconstruct S.
2. Each sender j, for each i, player j sends (open, sid, ssidij , 1) to FV OT , thus revealing his shares to

the receiver.
3. Receiver verifies that the shares are consistent with a legal preparation phase and aborts otherwise.
4. Receiver reveals S and if the secret is invalid, the senders abort the protocol.

– Transfer
1. Each sender sends mij ⊕ kij to the receiver who can now calculate mij for all i ∈ I.

Theorem 6. πMSOT securely realizes FMSOT .

Proof. Due to the restriction of space, we will provide a proof sketch for security of multi-sender k-out-of-n
OT.

(Corrupt senders) The senders are controlled by the environment. It can be shown that the situation is
analogous to a single corrupt sender in the GOT simulator. As such, the protocol for multi-sender k-out-of-n
OT against corrupt senders follows the same simulation as a single corrupt sender in GOT. Therefore, the
real model with corrupt sender can be simulated using the ideal functionality.

(Corrupt receiver) If the senders are controlled by many trusted third parties, this would be indistin-
guishable from a single trusted third party that controls all the honest parties. It can be shown that for the
receiver the situation is analogous to the GOT, As such the real model with corrupt sender can be perfectly
simulated using the ideal functionality.

(Corrupt senders and corrupt receiver) The simulator selects random-shares for each honest partic-
ipant and forwards any sharing to A. After receiving shares from the A, the simulator simulates commitment
to the secrets for all honest player. The simulator selects random keys and simulates a FV OT for each honest
party. The simulator awaits that the A(acting as the receiver) sends a commitment command for a secret S
. The simulator reveals the share of honest parties to the Ain a fashion that simulates the open command of
VOT. The simulator reveals the commited shares and awaits the open command from the corrupt senders.
The simulator awaits the open command from receiver and checks if secret matches the opened shares oth-
erwise abort. The simulator extracts the set of messages that corrupt receiver chose by looking at honest
sender’s VOT and seeing what value the receiver chose from them. The simulator sends FMSOT the receiver’s
choice and forwards either the appropriate messages or a random message to the A.

8 Conclusion

In this paper, we presented the first generic constructions of Multi Sender k-out-of-n OT and Batch Single
Choice Cut-and-Choose OT. These constructions are based on Generalized OT, which we show how to
build from Verifiable OT and proper access structures. Moreover, we formalize structure preserving OT,
instantiating a practical protocol and show how to use it to obtain VOT. This sequence of results provides
a novel view to the MPC frameworks of [LP11,LP12,LOP11,Lin13], shedding light on the general relations
between the primitives used as their main building blocks. As future works we suggest the construction of
more efficient general constructions and further investigation of the relations between different flavors of
oblivious transfer. An interesting problem in this realm is analyzing the trade-off between share size and
number of oblivious transfers in GOT protocols. Moreover, we suggest obtaining versions of our protocols
secure against adaptive adversaries building on the recent results of [CKWZ13].

References

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-
preserving signatures and commitments to group elements. In Tal Rabin, editor, Advances in Cryptology
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 209–236. Springer Berlin /
Heidelberg, 2010.

[AGHO11] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. In Proceedings of the 31st annual conference on Advances in
cryptology CRYPTO’11, Lecture Notes in Computer Science, pages 649–666, Berlin, Heidelberg, 2011.
Springer-Verlag.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In TCC’08, volume 4948 of Lecture Notes in Computer Science, pages 356–374.
Springer, 2008.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptograpic protocols. In FOCS’01,
2001. Current Full Version Available at Cryptology ePrint Archive, Report 2000/067.

[CC00] C. Cachin and J. Camenisch. Optimistic fair secure computation. In Advances in Cryptology CRYPTO
2000, pages 93–111. Springer, 2000.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’01, pages 19–40, London,
UK, 2001. Springer-Verlag.

[CHK+11] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and Vincent Naessens. Structure
preserving CCA secure encryption and applications. In Dong Lee and Xiaoyun Wang, editors, Advances
in Cryptology ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 89–106.
Springer Berlin / Heidelberg, 2011.

[CKWZ13] Seung Geol Choi, Jonathan Katz, Hoeteck Wee, and Hong-Sheng Zhou. Efficient, adaptively secure, and
composable oblivious transfer with a single, global crs. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 73–88. Springer, 2013.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (extended ab-
stract). In CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 410–424. Springer,
1997.

[CvdGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and private multi-party
computation. Advances in Cryptology CRYPTO’95, pages 110–123, 1995.

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography against
continuous memory attacks. In FOCS, pages 511–520. IEEE Computer Society, 2010.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications of
the ACM, 28(6):637–647, 1985.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer. In Proceed-
ings of the 14th International Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology ASIACRYPT’08, Lecture Notes in Computer Science, pages 179–197,
Berlin, Heidelberg, 2008. Springer-Verlag.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC’87, pages 218–229. ACM, 1987.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EURO-
CRYPT’08, volume 4965 of Lecture Notes in Computer Science, pages 415–432. Springer, 2008.

[GSW10] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. Groth-Sahai proofs revisited. In PKC’10, volume
6056 of Lecture Notes in Computer Science, pages 177–192. Springer, 2010.

[IK97] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. In Theory of
Computing and Systems, 1997., Proceedings of the Fifth Israeli Symposium, pages 174–183. IEEE, 1997.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO’08, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer,
2008.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs.
In Proceedings of the 26th annual international conference on Advances in Cryptology EUROCRYPT’07,
Lecture Notes in Computer Science, pages 97–114, Berlin, Heidelberg, 2007. Springer-Verlag.

[Kil88] J. Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 20–31. ACM, 1988.

[KSV07] M. Kiraz, B. Schoenmakers, and J. Villegas. Efficient committed oblivious transfer of bit strings. Infor-
mation Security, pages 130–144, 2007.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In Ran Canetti
and Juan A. Garay, editors, CRYPTO (2), volume 8043 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2013.

[LOP11] Y. Lindell, E. Oxman, and B. Pinkas. The IPS compiler: Optimizations, variants and concrete efficiency.
Advances in Cryptology–CRYPTO 2011, pages 259–276, 2011.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In TCC, volume 6597 of Lecture Notes in Computer Science, pages 329–346. Springer, 2011.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
J. Cryptology, 25(4):680–722, 2012.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO’08, volume 5157 of Lecture Notes in Computer Science, pages 554–571.
Springer, 2008.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report, Aiken Compuation
Laboratory, Harvard University, 1981. TR-81.

[SSR08] B. Shankar, K. Srinathan, and C.P. Rangan. Alternative protocols for generalized oblivious transfer. In
Proceedings of the 9th international conference on Distributed computing and networking, pages 304–309.
Springer-Verlag, 2008.

[Tas11] T. Tassa. Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography, 58(1):11–21,
2011.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS’86, pages
162–167. IEEE, 1986.

A Ideal Functionalities

In this section we present the ideal functionalities FDCRSand FOT as defined in [PVW08] and FCOMas defined
in [CF01]. Functionality FOT only deviates from the definition of [PVW08] in that it takes inputs x0, x1 an
arbitrary domain D rather than {0, 1}`, which is necessary since in SPOT those inputs must be elements
from either G or H.

Functionality FOT
FOT interacts with a sender S, a receiver R and an adversary S and is parametrized by a domain D.

– Upon receiving a message (sender, sid, ssid, x0, x1) from S, where x0, x1 ∈ D, store (sid, ssid, x0, x1).
– Upon receiving a message (receiver, sid, ssid, σ) from R, check if a (sender, sid, ssid, . . .) message has

been sent. If yes, send (transfer, sid, ssid, xσ) to R and (transfer, sid, ssid) to S and halt. If not, send
nothing to R (but continue running).

Functionality FDCRS
FDCRS interacts with parties P1, . . . , Pn and an adversary S and is parametrized by an algorithm D.

– When receiving a message (sid, ssid, Pi, Pj) from Pi, let crs ← D(1n), send (sid, ssid, crs) to Pi
and send (sid, ssid, crs, Pi, Pj) to the adversary. Next, when receiving (sid, ssid, Pi, Pj) from Pj (and
only Pj), send (sid, ssid, crs) to Pj and to S, and halt.

Functionality FCOM
FCOM interacts with a sender S, a receiver R and an adversary S.

– Commit Phase: Upon receiving a message (commit, sid, ssid,S,R,m) from S, where m ∈ {0, 1}`,
record the tuple (ssid,S,R,m) and send the message (committed, sid, ssid,S,R) to R and S. (The
lengths of the strings ` is fixed and known to all parties). Ignore any future commit messages with
the same ssid from S to R.

– Open Phase: Upon receiving a message (open, sid, ssid) from S: If a tuple (ssid,S,R,m) was
previously recorded, then send the message (reveal, sid, ssid,S,R,m) to R and S. Otherwise, ignore.

B A Summary of Groth-Sahai Proof System

Groth and Sahai presented efficient non-interactive proof systems based on bilinear groups [GS08]. They are
quite common tools to construct cryptographic primitives and protocols and often called GS-proofs. GS-
proofs are either non-interactive witness indistinguishable (NIWI) or non-interactive zero-knowledge (NIZK)
proofs for the satisfiability of equations such as pairing product equations, multi exponentiation equations.
GS-proofs are not for general (NP) statements, but efficient and quite useful when witnesses for proofs
consist of group elements. The GS-proof system can be instantiated under the subgroup decision, SXDH, or
decisional linear (DLIN) assumption. See the journal version [?] for full details of the GS-proof system since
some errors in [GS08] were corrected (The correction was done by Ghadafi, Smart, and Warinschi [GSW10]).

Before we explain the GS-proof system, we explain Groth-Sahai commitment (GS-commitment) schemes
since they are central components of the GS-proof system. Thus, we explain the GS-commitment scheme.

Groth-Sahai Commitment Scheme. First, parameters Λ := (p,G,H,GT , e, g, ĝ)
R← G(1λ) are generated. One

important property of the GS-commitment is that we can directly commit group elements.

GS.ComSetup(Λ): It takes as input Λ and outputs CRS crscom.
GS.Commit(crscom,m, d): In order to commit message m ∈ G, it takes as input m, CRS crscom, and decom-

mitment value d and outputs commitment c
R← GS.Commit(crscom,m, d).

GS.ExpCom(crscom,m, b, d): It takes as input m ∈ Zp, base b ∈ G, crscom, and d and outputs (b, c) where

c
R← GS.Commit(crscom, b

m, d).
GS.Opening(crscom, c,m, d): If d is a valid decommitment for (m, c), then it outputs 1. Otherwise, it outputs

0. That is, GS.Opening(crscom, c,m, d) → 1/0. In the case of verifying that (b, c) is a commitment to
exponent m, GS.Opening(crscom, c, b

m, d)→ 1/0.

The setup algorithm of the GS-commitment scheme can output two types of CRS. Under one type of CRS,
called extractable CRS, the commitment is perfectly binding, computationally hiding, and extractable. Under
the other type of CRS, called equivocal CRS, the commitment is perfectly hiding, computationally binding,
and equivocal. These two CRSs are computationally indistinguishable.

The GS-commitment scheme based on the SXDH assumption is as follows (The opening algorithm is
omitted).

GS.ComSetup(Λ) It chooses α, α̂, β, β̂, ρ, ρ̂
U← Zp and sets

Extractable CRS: u := (g, gα), v := (gρ, gρα), crscom := (u,v) and extraction key xk := α.
Equivocal CRS: u := (g, gα), v := (gρ, gρα+β), crscom := (u,v) and equivocation key ek := (α, β).

GS.Commit(crscom,m, d): For m ∈ G, it chooses r1, r2
U← Zp and computes c := (ur11 v

r2
1 ,m · u

r1
2 v

r2
2)

If the CRS is an extractable one and we have trapdoor xk = α, we can extract m like the decryption algorithm
of the ElGamal encryption scheme. If the CRS is an equivocal one and we have trapdoor ek = (α, β), m,
and d, we can open c to any value m′ 6= m.

Groth-Sahai Proof System. The proof system consists of the following algorithms.

GS.Setup(Λ): It takes as input Λ and outputs CRS crsgs for the proof system. Note that crsgs includes crscom
in the Groth-Sahai commitment scheme.

GS.Prove(crsgs,Eqgs, ω): It takes as input crsgs, statement Eqgs (some equation), and witness ω and outputs
non-interactive (WI or ZK) proof of knowledge π.

GS.Vrfy(crsgs,Eqgs, π): It takes as input crsgs, Eqgs, and π and verifies the proof. If it is valid, then outputs
1, otherwise 0.

GS.ExtSetup(Λ): It outputs crsgs and trapdoor tdext. Note that the distribution of crsgs is identical to a CRS
generated by GS.Setup. This trapdoor is used to extract valid witnesses from valid proofs.

GS.Extract(crsgs, tdext, π): It takes as input crsgs, tdext, and π and extracts witness ω that satisfies the state-
ment of π. This algorithm does not require any rewinding.

GS.SimSetup(Λ): It outputs simulated CRS c̃rs and trapdoor tdsim. c̃rs is computationally indistinguishable
from crsgs.

GS.SimProve(c̃rs, tdsim,Eqgs): It takes as input c̃rs, tdsim, and Eqgs and outputs simulated proof π̃ for Eqgs. It
holds that GS.Vrfy(c̃rs,Eqgs, π̃) = 1. This algorithm does not require any rewinding.

It is important that we can extract only witnesses that are group elements by using trapdoor tdext in the
GS-proof system. For example, if we use witness w ∈ Zp, then we compute gw ∈ G and generate a proof
with witness gw. Thus, we can only extract gw. This is not w itself but an output of function F (w) := gw.
Therefore, it is said that the GS-proof system has F -extractability [BCKL08].

In the GS-proof system, a statement Eqgs consists of the following values:

Variables: {Xi}i ∈ G, {Yj}j ∈ H where i ∈ [m], j ∈ [n], and {xi′}i′ , {yj′}j′ ∈ Zp where i′ ∈ [m′], j′ ∈ [n′].
Constants: tT ∈ GT , T1 ∈ G, T2 ∈ H, {Aj}j ∈ G, {Bi}i ∈ H, {aj}j , {bi}i, {γi,j}i,j ,∈ Zp where j ∈ [n] or

j ∈ [n′] and i ∈ [m] or i ∈ [m′].

Groth and Sahai proposed how to construct non-interactive proofs of knowledge (NIPK) for various equations
over bilinear groups such as pairing product equations and multiscalar multiplication equations as follows.

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yi)
γi,j = tT ,

n′∏
i=1

Ayii ·
m∏
i=1

Xbi
i ·

m∏
i=1

n′∏
j=1

X
γi,jyj
i = T1,

n∏
i=1

Y aii ·
m′∏
i=1

Bxii ·
m′∏
i=1

n∏
j=1

Y
γi,jxi
i = T2,

A proof includes GS-commitments {Ci}i, {Dj}j to {Xi}i ∈ G, {Yj}j ∈ H.
The proof system satisfies the following properties [GS08,?].

Correctness: For all π
R← GS.Prove(crsgs,Eqgs, ω), it holds GS.Vrfy(crsgs, π)→ 1.

Extractability: For (crsgs, tdext)
R← GS.ExtSetup(Λ) and proof π, if GS.Vrfy(crsgs, π) → 1, then witness

ω := GS.Extract(crsgs, tdext, π) satisfies statement Eqgs with probability 1.

CRS indistinguishability: For crsgs
R← GS.Setup(Λ) and c̃rs

R← GS.SimSetup(Λ), it holds crsgs
c
≈ c̃rs.

Composable Witness Indistinguishability: For all PPT A, it holds that

AdvcpWI
A (λ) := 2 · Pr

[
b = b′

∣∣∣∣∣ c̃rs R← GS.SimSetup(Λ); (Eqgs, ω0, ω1, s)
R← A(c̃rs);

b
U← {0, 1};π R← GS.Prove(c̃rs,Eqgs, ωb); b

′ R← A(s, π)

]
− 1 = 0.

Note that the GS-proof system provides ZK proofs for more restricted class of statements than those of WI
proofs.

Composable Zero Knowledge: For all PPT A, it holds that

AdvcpZKA (λ) := 2 · Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

(c̃rs, tdsim)
R← GS.SimSetup(Λ);

(Eqgs, ω, s)
R← A(c̃rs, tdsim);

π0
R← GS.Prove(c̃rs,Eqgs, ω);

π1
R← GS.SimProve(c̃rs, tdsim,Eqgs);

b
U← {0, 1}; b′ R← A(s, πb)

− 1 = 0.

C Dual-Mode Encryption and Structure Preserving OT

Peikert et al. defined the notion of dual-mode encryption and showed that this primitive implies universally
composable oblivious transfer [PVW08]. In this section, we explain the definition of dual-mode encryption
and then present a structure preserving construction based on the SXDH assumption. We can easily verify
that our construction is a structure preserving OT.

Definition 9 (Dual-Mode Encryption [PVW08]). A dual-mode encryption scheme with message space
{0, 1}` consists of the following PPT algorithms (Setup,Gen,Enc,Dec,FindMessy,TrapGen):

– Setup(1λ, µ): On input security parameter λ and mode µ ∈ {0, 1}, it outputs CRS crs and trapdoor t. We
let SetupMessy(·) := Setup(·, 0) and SetDec(·) := Setup(·, 1).

– Gen(σ): On input branch value σ ∈ {0, 1}, it outputs public key pk and secret key sk on branch σ.

– Enc(pk, b,m): On input pk, branch b ∈ {0, 1}, and message m ∈ {0, 1}`, it outputs ciphertext c on branch
b.

– Dec(sk, c): On input sk and c, it outputs message m.

– FindMessy(t, pk): On input t and pk, it outputs branch value b ∈ {0, 1} corresponding to a messy branch
of pk.

– TrapGen(t): On input t, it outputs public key pk and corresponding secret keys for branches 0 and 1,
respectively.

These algorithms must satisfy the following properties.

– Completeness for decryptable branch: For any µ ∈ {0, 1}, any (crs, t)
R← Setup(1λ, µ), any σ ∈ {0, 1},

any (pk, sk)
R← Gen(σ), and any m ∈ {0, 1}`, Dec(sk,Enc(pk, σ,m))→ m.

– Indistinguishability of modes: crs0
c
≈ crs1 where (crsµ, tµ)

R← Setup(1λ, µ).

– Trapdoor identification of a messy branch: For any (crs, t)
R← SetupMessy(1λ) and any pk, FindMessy(t, pk)→

b such that Enc(pk, b,m0)
s
≈ Enc(pk, b,m1) for any m0,m1 ∈ {0, 1}`.

– Trapdoor generation of keys decryptable on both branches: For any (crs, t)
R← SetupDec(1λ) and any

σ ∈ {0, 1}, (pk, skσ)
s
≈ Gen(σ) where (k, sk0, sk1)

R← TrapGen(t).

C.1 Obtaining Structure Preserving Dual-Mode Encryption Scheme from SXDH

We construct a dual-mode encryption scheme from the SXDH assumption by adapting the DDH based
construction of [PVW08] in Section 3. It is almost the same as the PVW construction since we just rewrite
it over asymmetric bilinear groups. However, we write the proof sketch for confirmation.

Proof Sketch In messy mode, CRS is crs = (g0, g
x0
0 , g1, g

x1
1) and this is non-DDH tuple. In decryption

mode, CRS is crs = (g0, g
x
0 , g1, g

x
1) and this is DDH tuple. These CRSs are computationally indistinguishable

by the SXDH assumption. In messy mode, public key is pk = (grσ, h
r
σ) = (grσ, g

xσr
σ) for x0 6= x1, so if we have

trapdoor t = (x0, x1), we can test h = gx0 or not. If σ = 1, then it holds h 6= gx0 and b = 0 is the messy
branch. Otherwise, b = 1 is the messy branch.

In decryption mode, public and secret keys are (pk, sk0, sk1) = ((gr0, h
r
0), r, r/y). Thus, the distribution of

(pk, sk0) is completely the same as Gen(0). If we set r := r′y, then we can rewrite (pk, sk1) = (gr
′y

0 , hr
′y

0 , r′) =

(gr
′

1 , h
r′

1 , r
′) and this distribution is completely the same as Gen(1) since r′ = r/y ∈ Zp is uniformly random.

C.2 UC OT based on Dual-Mode Encryption [PVW08]

Let mode ∈ {mes, dec}. Peikert, Water, and Vaikuntanathan proposed protocol dmmode as follows: Parties
use the dual-mode encryption scheme described above. Sender S has input m0,m1 ∈ G, receiver R has
input σ ∈ {0, 1}. S and R query Fmode

CRS with (sid,S,R) and gets (sid, crs). If mode is mes (resp. dec),

then crs is generated by SetupMessy (resp. SetupDec). First, R computes (pk, sk)
R← Gen(crs, σ) and sends

(sid, ssid, pk) to S. When S receives (sid, ssid, pk), it computes yb
R← Enc(pk, b,mb) for each b ∈ {0, 1}, and

sends (sid, ssid, y0, y1) to R. When R receives (sid, ssid, y0, y1), it outputs (sid, ssid,Dec(sk, yσ)).

Theorem 7 ([PVW08]). Let mode ∈ {mes, dec}. If the SXDH assumption holds, protocol dmmode securely
realizes F̂OT in the Fmode

CRS -hybrid mode in the static corruption model.

The messages exchanged in protocol dmmode are all group elements, so it is compatible with the GS-proof
system. The following commitment scheme based on the SXDH assumption is used to construct GS-proofs
based on the SXDH assumption. The CRS is crs := (u := (u1, u2),v := (v1, v2)) where u,v ∈ G2, the witness

is X ∈ G, and the commitment is Com := (ur11 v
r2
1 , X · u

r1
2 v

r2
2) where r1, r2

U← Zp.
In protocol dmmode, if the sender generates a commitment of mb by the above commitment scheme,

then it can prove that the message inside encryption yb = Enc(pk, b,mb) is consistent with the message
inside the commitment by the GS-proof system since the statement is a set of linear equations. That is, for
(c0, c1) = (u, v · mb) = (gsbh

t
b, g

sht · mb) and Com := (com1, com2) = (ur11 v
r2
1 , u

r1
2 v

r2
2 · mb), it should hold

c1/com2 = gshtu−r12 v−r22 . Equivalently,

gb hb 1 1
1 1 u1 v1
g h u−12 v−12

 ·

s
t
r1
r2

 :=

 gsb · htb · 1r1 · 1r2
1s · 1t · ur11 · v

r2
1

gs · ht · (u−12)r1(v−12)r2

 =

 gsbh
t
b

ur11 v
r2
1

gshtu−r12 v−r22

 . (1)

This notation will be explained more precisely in the next section. Thus, we can use Groth-Sahai NIZK
proofs for the linear equations above.

C.3 GS-Proofs for Relations Between Inputs and the Transcript

In order to prove that revealed mb is consistent with the messages exchanged in the OT protocol execution,
we use Groth-Sahai NIZK proofs. In the UC OT protocol described above, the sender proves that the
message inside encryption yb = Enc(pk, b,mb) is the same mb revealed by the sender. That is, for (c0, c1) =
(u, v ·mb) = (gsbh

t
b, g

sht ·mb) and GS.Commit(crscom,mb, (r1, r2)) = (com1, com2) = (ur11 v
r2
1 , u

r1
2 v

r2
2 ·mb), it

holds that c1/com2 = gshtu−r12 v−r22 . This is equivalent to the equation (1) in the previous section. Thus, we
use Groth-Sahai NIZK proofs for the equation above.

We borrow the notation of Dodis, Haralambiev, López-Alt, and Wichs [DHLW10]. The matrix multipli-
cation of A ∈ Gm×n and X ∈ Zn×k is defined as follows.

A ·X := 〈ai,xj〉 :=

n∏
r=1

a
xr,j
i,r

where

A = {ai,j}m×n =

— a>1 —
· · ·

— a>m —

 , X = {xi,j}n×k =

x1 · · · xk

 .

Let bi,j := 〈ai,xj〉. For Υ = {γi,j}n×k ∈ Hn×k, let

ti,j =

n∏
r=1

e(ai,r,γr,j)

and set A • Υ := {ti,j}n×k ∈ Gn×kT . Dodis, et al [DHLW10] expressed GS NIZK for linear equations in a
general form as follows. 

b1,1 b1,2 · · · b1,N
b2,1 b2,2 · · · b2,N

...
...

. . .
...

b1,M b2,M · · · bM,N



w1

w2

...
wN

 =


c1
c2
...
cM


where witness ω = (w1, . . . , wN). Group description is (p,G,H,GT , e, g, γ0)

R← G(1λ). If we set K = 1, then
the proof what we want is instantiated with the SXDH assumption in asymmetric groups. The following are
expressions by Dodis et al. [DHLW10]. We introduce them here for concreteness and it will help readers to
understand the proof system for linear equations.

GS.SimSetup: Outputs CRS crs := Υ and tk := t where γ1, . . . , γK
U← H, t := (t1, . . . , tK)

U← ZKp , and

Υ =


γ
∑K
i=1 ti

0 γt11 γt22 · · · γ
tK
K

γ0 γ1 1 · · · 1
γ0 1 γ2 · · · 1
...

...
...

. . .
...

γ0 1 1 · · · γK

 ∈ H(K+1)×(K+1).

For the normal setup, we use γt
′

0 where t′
U← Zp instead of γ

∑K
i=1 ti

0 .

GS.Prove: For inputs Eqgs := (B ∈ GM×N , c ∈ GM) and ω := w ∈ ZNp , it chooses R
U← ZN×Kp and outputs

π := (∆,P) where

∆ :=

 w1

...
wN

R

 · Υ and P := B ·R.

Here, ∆ ∈ HN×(K+1), P ∈ GM×K .

GS.SimProve: For inputs Eqgs = (B ∈ GM×N , c ∈ GM) and tk = t, it chooses R
U← ZN×Kp and outputs

π := (∆,P) where

∆ :=

0
...
0

R

 · Υ and P :=

 c1
...
cM

B

 · (−t1 · · · − tN
R

)

Here, ∆ ∈ HN×(K+1) and P ∈ GM×K .

GS.Vrfy: For input π = (∆,P), it outputs 1 iff it holds that

B •∆ :=

 c1
...
cM

P

 • Υ .
Thus, if we set K = 1 and instantiate this with the SXDH assumption, then we can obtain the GS NIZK
proof for equation (1) and achieve a VOT protocol from our SPOT protocol.

D Security Proof of πV OT

In order to prove the security of this protocol we construct simulator that interacts with an internal copy
of the adversary A that may corrupt parties, the ideal functionality FV OT and an environment Z. For the
sake of simplicity, we present the case of a corrupted S and that of a corrupted R separately. In the trivial
case where both parties are corrupted, the simulator S simply forwards all the messages between Z and A.
Analogously, when both parties are honest, S forwards all the messages between the parties S, R and Z.

In order to construct the simulators we will use the following setup:

Setup: Simulator S generates a common reference string by computing the following information:

– The “simulated” public parameters for an of a Groth-Sahai NIZK proof system.

– The “simulated” CRS for the underlying structure preserving commitment scheme πCom that allows the
simulator to generate an equivocal commitment using trapdoor t.

– The “simulated” CRS for the underlying UC structure preserving OT πSPOT that allows the simulator
to obtain the receiver’s choice bit c or the sender’s input messages m0,m1.

D.1 Simulator for the Case of a corrupted S:

Simulator S interacts with a corrupted sender A, the ideal functionality FV OT and the environment Z.

– Setup: When A requests a CRS, S responds by sending the CRS described above.
– Commitment Phase: S waits for the commitments (sid, ssid,Com(m0),Com(m1)) from A and then

interacts with it using protocol πSPOT .
– πSPOT protocol execution S and A run πSPOT storing all the messages exchanged during the protocol

execution up to the end of πSPOT or until A decides to reveal one of its messages. If A doesn’t decide
to reveal one of its messages before the protocol ends, S uses the same procedures of the original πSPOT
simulator to extract m0,m1 and sends (Send, sid, ssid,m0,m1) to FV OT .

– Reveal phase: If the A decides to reveal one of its messages mv at any point of the protocol execution
sending S the message (sid, ssid, b,Open(mb), ψ), S verifies whether the the revealed message is correct
by using the same procedures of a honest receiver. If it is correct, S sends (sid, ssid,Open, b) to FV OT .
Otherwise, it reveals an invalid bit by sending a corrupted message to FV OT . S then proceeds by
simulating the execution with A using the same procedures of the original πSPOT simulator.

Lemma 1 When A corrupts only the sender, for any universally composable structure preserving oblivious
transfer protocol πSPOT and structure preserving commitment scheme πCom, the following holds:

EXECπVOT ,A,Z
c
≈ IDEALF̂VOT ,S,Z

Proof. Note that the simulator S generates all messages exactly as the real protocol and as the original
simulator for protocol πSPOT . Thus, the simulation is indistinguishable from the real execution with protocol
πV OT . The difference in the CRS is computational indistinguishable since the simulated common reference
strings from the commitment protocol, since the GS-proof system and the structure preserving OT protocol
are computationally indistinguishable from the real common reference string used for each of these protocols.

D.2 Simulator for the Case of a corrupted receiver:

Simulator S interacts with a corrupted sender A, ideal functionality FV OT and environment Z.

– Setup: When A requests a CRS, S responds by sending the CRS described above.
– Commitment phase: Before starting πSPOT , S commits to two random messages m0,m1 ∈R {0, 1}n

by sending (Com(m0),Com(m1), sid, ssid,) to A.
– πSPOT protocol execution: S and A run πSPOT storing all the messages exchanged during the protocol

execution up to the end of πSPOT or until S receives a message (Reveal, sid, ssid, b,m′b) from FV OT . If
not interrupted, Sfollows the procedures of the original πSPOT simulator, extracts the choice bit c and
sends (Transfer, sid, ssid, c) to FV OT , obtains mc and sends it to A to complete the protocol.

– Reveal phase: If S receives a message (Reveal, sid, ssid, (), sid, ssid, b,m′b) from FV OT (meaning that
the honest sender revealed his message mb) it reveals the same bit mb to A by doing the following:

1. Sgenerates an arbitrary opening to Open(m′b) corresponding to the original commitment Com(mb)
using the trapdoor corresponding to the simulated CRS for πCom.

2. Sgenerates a proof ψ that the messages exchanged with Acontain a valid transfer of m′b using the
simulated CRS for the GS NIZK proof system.

3. Ssends (sid, ssid, b,Open(m′b), ψ) to A.

– If there are still steps of πSPOT to be executed, S proceeds as the original πSPOT simulator until the
end of the protocol.

Lemma 2 When A corrupts only the receiver, for any universally composable structure preserving oblivious
transfer protocol πSPOT and any universally composable structure preserving commitment scheme πCom the
following holds:

EXECπVOT ,A,Z
c
≈ IDEALF̂VOT ,S,Z

Proof. The only deviations from the real protocol πV OT lie in the commitments
(sid, ssid,Com(m0),Com(m1)) sent in the beginning of the protocol and in the case that the honest sender
decides to reveal one of its messages. In contrast to the real protocol, S commits to randomm0,m1 ∈R {0, 1}n,
and computational indistinguishability from commitments to the real messages follows from the commitments
hiding property.

When the honest sender decides to reveal one of the messages, Sdeviates from the real protocol by opening
one of the previously sent commitments to an arbitrary value and generates a GS-proof of a relation for which
it does not know the witnesses. The underlying commitment protocol has been set up with a simulated CRS.
This allows the simulator who knows the trapdoor t to issue decommitments to arbitrary values and this
difference is computationally indistinguishable. The indistinguishability for the GS-proof that the messages
exchanged between the parties contain a transfer where mb = m′b follows from the zero knowledge property of
GS-proof systems that are set up with the simulated CRS. The only remaining difference is the CRS, which
is indistinguishable since the simulated common reference strings of the underlying protocols are themselves
computationally indistinguishable from the real common reference strings.

