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Abstract. We present Lyra2, a password hashing scheme (PHS) based
on cryptographic sponges. Lyra2 was designed to be strictly sequential
(i.e., not easily parallelizable), providing strong security even against at-
tackers that uses multiple processing cores (e.g., custom hardware or a
powerful GPU). At the same time, it is very simple to implement in
software and allows legitimate users to fine tune its memory and proce-
ssing costs according to the desired level of security against brute force
password-guessing. Lyra2 is an improvement of the recently proposed
Lyra algorithm, providing an even higher security level against different
attack venues and overcoming some limitations of this and other existing
schemes.

Keywords: Password hashing, processing time, memory usage, crypto-
graphic sponges

Note 1. Lyra2, as hereby described, received a special recognition in the Pass-
word Hashing Competition (https: // password-hashing. net/ ).

1 Introduction

User authentication is one of the most vital elements in modern computer se-
curity. Even though there are authentication mechanisms based on biometric
devices (“what the user is”) or physical devices such as smart cards (“what the
user has”), the most widespread strategy still is to rely on secret passwords
(“what the user knows”). This happens because password-based authentication
remains as the most cost effective and efficient method of maintaining a shared
secret between a user and a computer system [1,2]. For better or for worse, and
despite the existence of many proposals for their replacement [3], this prevalence
of passwords as one and commonly only factor for user authentication is unlikely
to change in the near future.

Password-based systems usually employ some cryptographic algorithm that
allows the generation of a pseudorandom string of bits from the password itself,
known as a password hashing scheme (PHS), or key derivation function (KDF)
[4]. Typically, the output of the PHS is employed in one of two manners [5]: it can
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be locally stored in the form of a “token” for future verifications of the password
or used as the secret key for encrypting and/or authenticating data. Whichever
the case, such solutions employ internally a one-way (e.g., hash) function, so that
recovering the password from the PHS’s output is computationally infeasible
[5,6].

Despite the popularity of password-based authentication, the fact that most
users choose quite short and simple strings as passwords leads to a serious issue:
they commonly have much less entropy than typically required by cryptographic
keys [7]. Indeed, a study from 2007 with 544,960 passwords from real users has
shown an average entropy of approximately 40.5 bits [8], against the 128 bits usu-
ally required by modern systems. Such weak passwords greatly facilitate many
kinds of “brute-force” attacks, such as dictionary attacks and exhaustive search
[1,9], allowing attackers to completely bypass the non-invertibility property of
the password hashing process. For example, an attacker could apply the PHS
over a list of common passwords until the result matches the locally stored to-
ken or the valid encryption/authentication key. The feasibility of such attacks
depends basically on the amount of resources available to the attacker, who
can speed up the process by performing many tests in parallel. Such attacks
commonly benefit from platforms equipped with many processing cores, such as
modern GPUs [10,11] or custom hardware [10,12].

A straightforward approach for addressing this problem is to force users to
choose complex passwords. This is unadvised, however, because such passwords
would be harder to memorize and, thus, more easily forgotten or stolen due to the
users’ need of writing them down, defeating the whole purpose of authentication
[1]. For this reason, modern password hashing solutions usually employ mecha-
nisms for increasing the cost of brute force attacks. Schemes such as PBKDF2 [6]
and bcrypt [13], for example, include a configurable parameter that controls the
number of iterations performed, allowing the user to adjust the time required by
the password hashing process. A more recent proposal, scrypt [5], allows users
to control both processing time and memory usage, raising the cost of password
recovery by increasing the silicon space required for running the PHS in cus-
tom hardware, or the amount of RAM required in a GPU. There is, however,
considerable interest in the research community in developing new (and better)
alternatives, which recently led to the creation of a competition with this specific
purpose [14].

Aiming to address this need for stronger alternatives, our studies led to the
proposal of Lyra [15], a mode of operation of cryptographic sponges [16,17] for
password hashing. In this article, we propose an improved version of Lyra, called
simply Lyra2. Lyra2 preserves the security, efficiency and flexibility of Lyra, in-
cluding: (1) the ability to configure the desired amount of memory, processing
time and parallelism to be used by the algorithm; (2) the capacity of provid-
ing a high memory usage with a processing time similar to that obtained with
scrypt. In addition, it brings important improvements when compared to its
predecessor: (1) it allows a higher security level against attack venues involving
time-memory trade-offs; (2) it allows legitimate users to benefit more effectively
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from the parallelism capabilities of their own platforms; (3) it includes tweaks
for increasing the costs involved in the construction of dedicated hardware to
attack the algorithm.

The rest of this paper is organized as follows. Section 2 outlines the concept
of cryptographic sponges. Section 3 describes the main requirements of PHS
solutions and discusses the related work. Section 4 presents the Lyra2 algorithm
and its design rationale, while Section 5 analyzes its security. Section 6 discusses
extensions of Lyra2, all of which can be integrated into the basic algorithm
discussed in Section 4, presenting in especial the parallelizable version of the
algorithm, called Lyra2p. Section 7 shows our benchmark results. Finally, Section
8 presents our final remarks.

2 Background: Cryptographic Sponges

The concept of cryptographic sponges was formally introduced by Bertoni et al.
in [16] and is described in detail in [17]. The elegant design of sponges has also
motivated the creation of more general structures, such as the Parazoa family
of functions [18]. Indeed, their flexibility is probably among the reasons that led
Keccak [19], one of the members of the sponge family, to be elected as the new
Secure Hash Algorithm (SHA-3).

2.1 Notation and Conventions

In what follows and throughout this document, we use the notation show in Table
1. All operations are made assuming a little-endian convention, and should be
adapted accordingly for big-endian architectures (this applies basically to the
rot operation).

Symbol Meaning

⊕ bitwise Excusive-OR (XOR) operation

� wordwise add operation (i.e., ignoring carries between words)

‖ concatenation

|x| bit-length of x, i.e., the minimum number of bits required for representing x

len(x) byte-length of x, i.e., the minimum number of bytes required for representing x

lsw(x) the least significant word of x

x≫ n n-bit right rotation of x

rot(x) ω-bit right rotation of x

roty(x) ω-bit right rotation of x repeated y times

Table 1: Basic notation used throughout the document.

2.2 Cryptographic Sponges: Basic Structure

In a nutshell, sponge functions provide an interesting way of building hash func-
tions with arbitrary input and output lengths. Such functions are based on the
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so-called sponge construction, an iterated mode of operation that uses a fixed-
length permutation (or transformation) f and a padding rule pad. More specifi-
cally, and as depicted in Figure 1, sponge functions rely on an internal state of
w = b+c bits, initially set to zero, and operate on an (padded) input M cut into
b-bit blocks. This is done by iteratively applying f to the sponge’s internal state,
operation interleaved with the entry of input bits (during the absorbing phase) or
the subsequent retrieval of output bits (during the squeezing phase). The process
stops when all input bits consumed in the absorbing phase are mapped into the
resulting `-bit output string. Typically, the f transformation is itself iterative,
being parameterized by a number of rounds (e.g., 24 for Keccak operating with
64-bit words [19]).

Fig. 1: Overview of the sponge construction Z = [f, pad, b](M, `). Adapted from
[17].

The sponge’s internal state is, thus, composed by two parts: the b-bit long
outer part, which interacts directly with the sponge’s input, and the c-bit long
inner part, which is only affected by the input by means of the f transformation.
The parameters w, b and c are called, respectively, the width, bitrate, and the
capacity of the sponge.

2.3 The duplex construction

A similar structure derived from the sponge concept is the Duplex construction
[17], depicted in Figure 2.

Unlike regular sponges, which are stateless in between calls, a duplex function
is stateful: it takes a variable-length input string and provides a variable-length
output that depends on all inputs received so far. In other words, although the
internal state of a duplex function is filled with zeros upon initialization, it is
stored after each call to the duplex object rather than repeatedly reset. In this
case, the input string M must be short enough to fit in a single b-bit block after
padding, and the output length ` must satisfy ` 6 b.
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Fig. 2: Overview of the duplex construction. Adapted from [17].

3 Password Hashing Schemes (PHS)

As previously discussed, the basic requirement for a PHS is to be non-invertible,
so that recovering the password from its output is computationally infeasible.
Moreover, a good PHS’s output is expected to be indistinguishable from random
bit strings, preventing an attacker from discarding part of the password space
based on perceived patterns [20]. In principle, those requirements can be easily
accomplished simply by using a secure hash function, which by itself ensures that
the best attack venue against the derived key is through brute force (possibly
aided by a dictionary or “usual” password structures [7,21]).

What any modern PHS do, then, is to include techniques that raise the
cost of brute-force attacks. A first strategy for accomplishing this is to take as
input not only the user-memorizable password pwd itself, but also a sequence
of random bits known as salt. The presence of such random variable thwarts
several attacks based on pre-built tables of common passwords, i.e., the attacker
is forced to create a new table from scratch for every different salt [6,20]. The
salt can, thus, be seen as an index into a large set of possible keys derived from
pwd, and need not to be memorized or kept secret [6].

A second strategy is to purposely raise the cost of every password guess in
terms of computational resources, such as processing time and/or memory usage.
This certainly also raises the cost of authenticating a legitimate user entering
the correct password, meaning that the algorithm needs to be configured so that
the burden placed on the target platform is minimally noticeable by humans.
Therefore, the legitimate users and their platforms are ultimately what impose
an upper limit on how computationally expensive the PHS can be for themselves
and for attackers. For example, a human user running a single PHS instance is
unlikely to consider a nuisance that the password hashing process takes 1 s to
run and uses a small part of the machine’s free memory, e.g., 20 MB. On the
other hand, supposing that the password hashing process cannot be divided into
smaller parallelizable tasks, achieving a throughput of 1,000 passwords tested
per second requires 20 GB of memory and 1,000 processing units as powerful as
that of the legitimate user.
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A third strategy, especially useful when the PHS involves both processing
time and memory usage, is to use a design with low parallelizability. The rea-
soning is as follows. For an attacker with access to p processing cores, there is
usually no difference between assigning one password guess to each core or par-
allelizing a single guess so it is processed p times faster: in both scenarios, the
total password guessing throughput is the same. However, a sequential design
that involves configurable memory usage imposes an interesting penalty to at-
tackers who do not have enough memory for running the p guesses in parallel.
For example, suppose that testing a guess involves m bytes of memory and the
execution of n instructions. Suppose also that the attacker’s device has 100m
bytes of memory and 1000 cores, and that each core executes n instructions per
second. In this scenario, up to 100 guesses can be tested per second against a
strictly sequential algorithm (one per core), the other 900 cores remaining idle
because they have no memory to run.

Aiming to provide a deeper understanding on the challenges faced by PHS
solutions, in what follows we discuss the main characteristics of platforms used
by attackers and then how existing solutions avoid those threats.

3.1 Attack platforms

The most dangerous threats faced by any PHS comes from platforms that benefit
from “economies of scale”, especially when cheap, massively parallel hardware
is available. The most prominent examples of such platforms are Graphics Pro-
cessing Units (GPUs) and custom hardware synthesized from FPGAs [10].

3.1.1 Graphics Processing Units (GPUs). Following the increasing de-
mand for high-definition real-time rendering, Graphics Processing Units (GPUs)
have traditionally carried a large number of processing cores, boosting its pa-
rallelization capability. Only more recently, however, GPUs evolved from specific
platforms into devices for universal computation and started to give support to
standardized languages that help harness their computational power, such as
CUDA [22] and OpenCL [23]). As a result, they became more intensively em-
ployed for more general purposes, including password cracking [10,11].

As modern GPUs include a few thousands processing cores in a single piece
of equipment, the task of executing multiple threads in parallel becomes simple
and cheap. They are, thus, ideal when the goal is to test multiple passwords inde-
pendently or to parallelize a PHS’s internal instructions. For example, NVidia’s
Tesla K20X, one of the top GPUs available, has a total of 2,688 processing cores
operating at 732 MHz, as well as 6 GB of shared DRAM with a bandwidth of
250 GB per second [24]. Its computational power can also be further expanded
by using the host machine’s resources [22], although this is also likely to limit
the memory throughput. Supposing this GPU is used to attack a PHS whose
parametrization makes it run in 1 s and take less than 2.23 MB of memory, it
is easy to conceive an implementation that tests 2,688 passwords per second.
With a higher memory usage, however, this number is deemed to drop due to
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the GPU’s memory limit of 6 GB. For example, if a sequential PHS requires 20
MB of DRAM, the maximum number of cores that could be used simultaneously
becomes 300, only 11% of the total available.

3.1.2 Field Programmable Gate Arrays (FPGAs). An FPGA is a col-
lection of configurable logic blocks wired together and with memory elements,
forming a programmable and high-performance integrated circuit. In addition,
as such devices are configured to perform a specific task, they can be highly op-
timized for its purpose (e.g., using pipelining [25,26]). Hence, as long as enough
resources (i.e., logic gates and memory) are available in the underlying hard-
ware, FPGAs potentially yield a more cost-effective solution than what would
be achieved with a general-purpose CPU of similar cost [12]. When compared
to GPUs, FPGAs may also be advantageous due to the latter’s considerably
lower energy consumption [27,28], which can be further reduced if its circuit is
synthesized in the form of custom logic hardware (ASIC) [27].

A recent example of password cracking using FPGAs is presented in [10].
Using a RIVYERA S3-5000 cluster [29] with 128 FPGAs against PBKDF2-
SHA-512, the authors reported a throughput of 356,352 passwords tested per
second in an architecture having 5,376 password processed in parallel. It is in-
teresting to notice that one of the reasons that made these results possible is
the small memory usage of the PBKDF2 algorithm, as most of the underlying
SHA-2 processing is performed using the device’s memory cache (much faster
than DRAM) [10, Sec. 4.2]. Against a PHS requiring 20 MB to run, for example,
the resulting throughput would presumably be much lower, especially consider-
ing that the FPGAs employed can have up to 64 MB of DRAM [29] and, thus,
up to three passwords can be processed in parallel rather than 5,376.

Interestingly, a PHS that requires a similar memory usage would be trouble-
some even for state-of-the-art clusters, such as the newer RIVYERA V7-2000T
[30]. This powerful cluster carries up to four Xilinx Virtex-7 FPGAs and up to
128 GB of shared DRAM, in addition to the 20 GB available in each FPGA [30].
Despite being much more powerful, in principle it would still be unable to test
more than 2,600 passwords in parallel against a PHS that strictly requires 20
MB to run.

3.2 Scrypt

Arguably, the main password hashing solutions available in the literature are
[14]: PBKDF2 [6], bcrypt [13] and scrypt [5]. Since scrypt is only PHS among
them that explores both memory and processing costs and, thus, is directly
comparable to Lyra2, its main characteristics are described in what follows. For
the interested reader, a discussion on PBKDF2 and bcrypt is provided in the
appendices.

The design of scrypt [5] focus on coupling memory and time costs. For this,
scrypt employs the concept of “sequential memory-hard” functions: an algorithm
that asymptotically uses almost as much memory as it requires operations and
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for which a parallel implementation cannot asymptotically obtain a significantly
lower cost. As a consequence, if the number of operations and the amount of
memory used in the regular operation of the algorithm are both O(R), the
complexity of a memory-free attack (i.e., an attack for which the memory usage
is reduced to O(1)) becomes Ω(R2), where R is a system parameter. We refer
the reader to [5] for a more formal definition.

The following steps compose scrypt’s operation (see Algorithm 1). First, it
initializes p b-long memory blocks Bi. This is done using the PBKDF2 algo-
rithm with HMAC-SHA-256 [31] as underlying hash function and a single itera-
tion. Then, each Bi is processed (incrementally or in parallel) by the sequential
memory-hard ROMix function. Basically, ROMix initializes an array M of R
b-long elements by iteratively hashing Bi. It then visits R positions of M at
random, updating the internal state variable X during this (strictly sequential)
process in order to ascertain that those positions are indeed available in memory.
The hash function employed by ROMix is called BlockMix , which emulates a
function having arbitrary (b-long) input and output lengths; this is done using

Algorithm 1 Scrypt.

Param: h . BlockMix ’s internal hash function output length

Input: pwd . The password

Input: salt . A random salt

Input: k . The key length

Input: b . The block size, satisfying b = 2r · h
Input: R . Cost parameter (memory usage and processing time)

Input: p . Parallelism parameter

Output: K . The password-derived key

1: (B0...Bp−1)←PBKDF2HMAC−SHA−256(pwd, salt, 1, p · b)
2: for i← 0 to p− 1 do

3: Bi ←ROMix(Bi, R)

4: end for

5: K ←PBKDF2HMAC−SHA−256(pwd,B0 ‖B1 ‖ ... ‖Bp−1, 1, k)

6: return K . Outputs the k-long key

7: function ROMix(B,R) . Sequential memory-hard function

8: X ← B

9: for i← 0 to R− 1 do . Initializes memory array M

10: Vi ← X ; X ←BlockMix(X)

11: end for

12: for i← 0 to R− 1 do . Reads random positions of M

13: j ← Integerify(X) mod R

14: X ←BlockMix(X ⊕Mj)

15: end for

16: return X

17: end function

18: function BlockMix(B) . b-long in/output hash function

19: Z ← B2r−1 . r = b/2h, where h = 512 for Salsa20/8

20: for i← 0 to 2r − 1 do

21: Z ← Hash(Z ⊕ Bi) ; Yi ← Z

22: end for

23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)

24: end function
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the Salsa20/8 [32] stream cipher, whose output length is h = 512. After the p
ROMix processes are over, the Bi blocks are used as salt in one final iteration
of the PBKDF2 algorithm, outputting key K.

Scrypt displays a very interesting design, being one of the few existing so-
lutions that allow the configuration of both processing and memory costs. One
of its main shortcomings is probably the fact that it strongly couples memory
and processing requirements for a legitimate user. Specifically, scrypt’s design
prevents users from raising the algorithm’s processing time while maintaining a
fixed amount of memory usage, unless they are willing to raise the p parameter
and allow further parallelism to be exploited by attackers. Another inconvenience
with scrypt is the fact that it employs two different underlying hash functions,
HMAC-SHA-256 (for the PBKDF2 algorithm) and Salsa20/8 (as the core of the
BlockMix function), leading to increased implementation complexity. Finally,
even though Salsa20/8’s known vulnerabilities [33] are not expected to put the
security of scrypt in hazard [5], using a stronger alternative would be at least
advisable, especially considering that the scheme’s structure does not impose se-
rious restrictions on the internal hash algorithm used by BlockMix . In this case,
a sponge function could itself be an alternative, with the advantage that, since
sponges support inputs and outputs of any length, the whole BlockMix structure
could be replaced.

Inspired by scrypt’s design, Lyra2 builds on the properties of sponges to
provide not only a simpler, but also more secure solution. Indeed, Lyra2 stays
on the “strong” side of the memory-hardness concept: the processing cost of
attacks involving less memory than specified by the algorithm grows much faster
than quadratically, surpassing the best achievable with scrypt and thwarting
the exploitation of time-memory trade-offs (TMTO). This characteristic should
discourage attackers from trading memory usage for processing time, which is
exactly the goal of a PHS in which usage of both resources are configurable. In
addition, Lyra2 allows for a higher memory usage for a similar processing time,
increasing the cost of regular attack venues (i.e., those not exploring TMTO)
beyond that of scrypt’s.

4 Lyra2

As any PHS, Lyra2 takes as input a salt and a password, creating a pseudoran-
dom output that can then be used as key material for cryptographic algorithms
or as an authentication string [4]. Internally, the scheme’s memory is organized
as a matrix that is expected to remain in memory during the whole password
hashing process: since its cells are iteratively read and written, discarding a cell
for saving memory leads to the need of recomputing it whenever it is accessed
once again, until the point it was last modified. The construction and visitation
of the matrix is done using a stateful combination of the absorbing, squeezing
and duplexing operations of the underlying sponge (i.e., its internal state is
never reset to zero), ensuring the sequential nature of the whole process. Also,
the number of times the matrix’s cells are revisited after initialization is defined



10

Algorithm 2 The Lyra2 Algorithm.

Param: H . Sponge with block size b (in bits) and underlying permutation f

Param: Hρ . Reduced-round sponge for use in the Setup and Wandering phases

Param: ω . Number of bits to be used in rotations (recommended: a multiple of W )

Input: pwd . The password

Input: salt . A salt

Input: T . Time cost, in number of iterations (T > 1)

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix (recommended: C · ρ > ρmax)

Input: k . The desired hashing output length, in bits

Output: K . The password-derived k-long hash

1: . Bootstrapping phase: Initializes the sponge’s state and local variables

2: . Byte representation of input parameters (others can be added)

3: params← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C
4: H.absorb(pad(pwd ‖ salt ‖ params)) . Padding rule: 10∗1.

5: gap← 1 ; stp← 1 ; wnd← 2 ; sqrt← 2 . Initializes visitation step and window

6: prev0 ← 2 ; row1 ← 1 ; prev1 ← 0

7: . Setup phase: Initializes a (R× C) memory matrix, it’s cells having b bits each

8: for (col←0 to C−1) do {M [0][C−1−col]← Hρ.squeeze(b)} end for

9: for (col←0 to C−1) do {M [1][C−1−col]←M [0][col]⊕Hρ.duplex(M [0][col], b)} end for

10: for (col←0 to C−1) do {M [2][C−1−col]←M [1][col]⊕Hρ.duplex(M [1][col], b)} end for

11: for (row0 ← 3 to R− 1) do . Filling Loop: initializes remainder rows

12: . Columns Loop: M [row0] is initialized; M [row1] is updated

13: for (col← 0 to C − 1) do

14: rand← Hρ.duplex(M [row1][col]�M [prev0][col]�M [prev1][col], b)

15: M [row0][C − 1− col]←M [prev0][col]⊕ rand
16: M [row1][col]←M [row1][col]⊕ rot(rand) . rot(): right rotation by ω bits

17: end for

18: prev0 ← row0 ; prev1 ← row1 ; row1 ← (row1 + stp) mod wnd

19: if (row1 = 0) then . Window fully revisited

20: . Doubles window and adjusts step

21: wnd← 2 · wnd ; stp← sqrt+ gap ; gap← −gap
22: if (gap = −1) then {sqrt← 2 · sqrt} end if . Doubles sqrt every other iteration

23: end if

24: end for

25: . Wandering phase: Iteratively overwrites pseudorandom cells of the memory matrix

26: . Visitation Loop: 2R · T rows revisited in pseudorandom fashion

27: for (wCount← 0 to R · T − 1) do

28: row0 ← lsw(rand) mod R ; row1 ← lsw(rot(rand)) mod R . Picks pseudorandom rows

29: for (col← 0 to C − 1) do . Columns Loop: updates M [row0,1]

30: . Picks pseudorandom columns

31: col0 ← lsw(rot2(rand)) mod C ; col1 ← lsw(rot3(rand)) mod C

32: rand← Hρ.duplex(M [row0][col]�M [row1][col]�M [prev0][col0]�M [prev1][col1], b)

33: M [row0][col]←M [row0][col]⊕ rand . Updates first pseudorandom row

34: M [row1][col]←M [row1][col]⊕ rot(rand) . Updates second pseudorandom row

35: end for . End of Columns Loop

36: prev0 ← row0 ; prev1 ← row1 . Next iteration revisits most recently updated rows

37: end for . End of Visitation Loop

38: . Wrap-up phase: output computation

39: H.absorb(M [row0][0]) . Absorbs a final column with full-round sponge

40: K ← H.squeeze(k) . Squeezes k bits with full-round sponge

41: return K . Provides k-long bitstring as output
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by the user, allowing Lyra2’s execution time to be fine-tuned according to the
target platform’s resources.

In this section, we describe the core of the Lyra2 algorithm in detail and
discuss its design rationale and resulting properties. Later, in Section 6, we
discuss some possible variants of the algorithm that may be useful in different
scenarios.

4.1 Structure and rationale

Lyra2’s steps are shown in Algorithm 2. As highlighted in the pseudocode’s
comments, its operation is composed by four sequential phases: Bootstrapping,
Setup, Wandering and Wrap-up.

4.1.1 Bootstrapping The very first part of Lyra2 comprises the Bootstrap-
ping of the algorithm’s sponge and internal variables (lines 1 to 6). The set of
variables {gap, stp, wnd, sqrt, prev0, row1, prev1} initialized in lines 5 and 6 are
useful only for the next stage of the algorithm, the Setup phase, so the discussion
on their properties is left to Section 4.1.2.

Lyra2’s sponge is initialized by absorbing the (properly padded) password
and salt, together with a params bitstring, initializing a salt- and pwd-dependent
state (line 4). The padding rule adopted by Lyra2 is the multi-rate padding pad10∗1

described in [17], hereby denoted simply pad. This padding strategy appends a
single bit 1 followed by as many bits 0 as necessary followed by a single bit 1,
so that at least 2 bits are appended. Since the password itself is not used in any
other part of the algorithm, it can be discarded (e.g., overwritten with zeros)
after this point.

In this first absorb operation, the goal of the params bitstring is basically to
avoid collisions using trivial combinations of salts and passwords: for example,
for any (u, v | u+ v = α), we have a collision if pwd =0u, salt = 0v and params
is an empty string; however, this should not occur if params explicitly includes
u and v. Therefore, params can be seen as an “extension” of the salt, including
any amount of additional information, such as: the list of parameters passed
to the PHS (including the lengths of the salt, password, and output); a user
identification string; a domain name toward which the user is authenticating
him/herself (useful in remote authentication scenarios); among others.

4.1.2 The Setup phase Once the internal state of the sponge is initialized,
Lyra2 enters the Setup Phase (lines 7 to 24). This phase comprises the construc-
tion of a R × C memory matrix whose cells are b-long blocks, where R and C
are user-defined parameters and b is the underlying sponge’s bitrate (in bits).

For better performance when dealing with a potentially large memory ma-
trix, the Setup relies on a “reduced-round sponge”, i.e., the sponge’s operation
are done with a reduced-round version of f , denoted fρ for indicating that ρ
rounds are executed rather than the regular number of rounds ρmax. The advan-
tage of using a reduced-round f is that this approach accelerates the sponge’s
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operations and, thus, it allows more memory positions to be covered than with
the application of a full-round f in a same amount of time. The adoption of
reduced-round primitives in the core of cryptographic constructions is not un-
heard in the literature, as it is the main idea behind the Alred family of message
authentication algorithms [34,35,36,37]. As further discussed in Section 4.2, even
though the requirements in the context of password hashing are different, this
strategy does not decrease the security of the scheme as long as fρ is non-cyclic
and highly non-linear, which should be the case for the vast majority of secure
hash functions. In some scenarios, it may even be interesting to use a different
function as fρ rather than a reduced-round version of f itself to attain higher
speeds, which is possible as long the alternative satisfies the above-mentioned
properties.

Except for rows M [0] to M [2], the sponge’s reduced duplexing operation
Hρ.duplex is always called over the wordwise addition of three rows (line 14),
all of which must be available in memory for the algorithm to proceed (see the
Filling Loop, in lines 11–24).

– M [prev0]: the last row ever initialized in any iteration of the Filling Loop,
which means simply that prev0 = row0 − 1;

– M [row1]: a row that has been previously initialized and is now revisited; and
– M [prev1]: the last row ever revisited (i.e., the most recently row indexed by
row1).

Given the short time between the computation and usage of M [prev0] and
M [prev1], accessing them in a regular execution of Lyra2 should not be a huge
burden since both are likely to remain in cache. The same convenience does not
apply to M [row1], though, since it is picked from a window comprising rows
initialized prior to M [prev0]. Therefore, this design takes advantage of caching
while penalizing attacks in which a given M [row0] is directly recomputed from
the corresponding inputs: in this case, M [prev0] and M [prev1] may not be in
cache, so all three rows must come from the main memory, raising memory
latency and bandwidth. A similar effect could be achieved if the rows provided
as the sponge’s input were concatenated, but adding them together instead is
advantageous because then the duplexing operation involves a single call to the
underlying (reduced-round) f rather than three.

After the reduced duplexing operation is performed, the resulting output
(rand) affects two rows (lines 15 and 16): M [row0], which has not been initialized
yet, receives the values of rand XORed with M [prev0]; meanwhile, the columns
of the already initialized row M [row1] have their values updated after being
XORed with rot(rand), i.e., rand rotated to the right by ω bits. More formally,
for ω = W and representing rand as an array of words rand[0] . . . rand[b/W −
1] (i.e., the first b bits of the outer state, from top to bottom as depicted in
Figures 1 and 2), we have that M [row0][C − 1− i]←M [prev0][i]⊕ rand[i] and
M [row1][i]←M [row1][i]⊕rand[(i−1) mod (b/W )] (0 6 i 6 b/W−1). We notice
that the rows are written from the highest to the lowest index, although read in
the inverse order, which thwarts attacks in which previous rows are discarded
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Fig. 3: Handling the sponge’s inputs and outputs during the Setup (left) and
Wandering (right) phases in Lyra2.

for saving memory and then recomputed right before they are used, as further
discussed in Section 5.1.2.5. In addition, thanks to the rot operation, each row
receives slightly different outputs from the sponge, which reduces an attacker’s
ability to get useful results from XORing pairs of rows together. Notice that this
rotation can be performed basically for free in software if ω is set to a multiple
of W as recommended: in this case, this operation corresponds to rearranging
words rather than actually executing shifts or rotations. The left side of Figure
3 illustrates how the sponge’s inputs and output are handled by Lyra2 during
the Setup phase.

The initialization of M [0] − M [2] in lines 8 to 10, in contrast, is slightly
different because none of them has enough predecessors to be treated exactly
like the rows initialized during the Filling Loop. Specifically, instead of taking
three rows in the duplexing operation, M [0] takes none while M [1] and (for
simplicity) M [2] take only their immediate predecessor.

The Setup phase ends when all R rows of the memory matrix are initialized,
which also means that any row ever indexed by row1 has also been updated since
its initialization. These row1 indices are deterministically picked from a window
of size wnd, which starts with a single row and doubles in size whenever all of
its rows are visited (i.e., whenever row1 reaches the value 0). The exact values
assumed by row1 depend on wnd, following a logic whose aim is to ensure that, if
two rows are visited sequentially in one window, during the subsequent window
they are visited (1) in points far away from each other and (2) approximately
in the reverse order of their previous visitation. This hinders the recomputation
of several values of M [row1] from scratch in the sequence they are required,
thwarting attacks that trade memory and processing costs, which are discussed
in detail in Section 5.1. To accomplish this goal in a manner that is simple to
implement, the following strategy was adopted (see Table 2):

– When wnd is a square number: the window can be seen as a
√
wnd×

√
wnd

matrix. Then, row1 is taken from the indices in that matrix’s cyclic diag-
onals, starting with the main diagonal and moving right until the diagonal
from the upper right corner is reached. This is accomplished by using a step
variable stp =

√
wnd + 1, computed in line 21 of Algorithm 2, using the

auxiliary sqrt =
√
wnd variable to facilitate this computation.
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︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

row0 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B . . .

prev0 – 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A . . .

row1 – – – 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 7 . . .

prev1 – – – 0 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 . . .

wnd – – – 2 2 4 4 4 4 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 . . .

Table 2: Indices of the rows that feed the sponge when computing M [row] during
Setup (hexadecimal notation).

– Otherwise: the window is represented as a 2
√
wnd/2×

√
wnd/2 matrix. The

values of row1 start with 0 and then corresponding to the matrix’s cyclic
anti-diagonals, starting with the main anti-diagonal and cyclically moving
left one column at a time. In this case, the step variable is computed as
stp = 2

√
wnd/2−1 in the same line 21 of Algorithm 2, once again using the

auxiliary sqrt = 2
√
wnd/2 variable.

Table 2 shows some examples of the values of row1 in each iteration of the
Filling Loop (lines 11–24), as well as the corresponding window size. We note
that, since the window size is always a power of 2, the modular operation in line
18 can be implemented with a simple bitwise AND with wnd − 1, potentially
leading to better performance.

4.1.3 The Wandering phase The most time-consuming of all phases, the
Wandering Phase (lines 27 to 37), takes place after the Setup phase is finished,
without resetting the sponge’s internal state. Similarly to the Setup, the core of
the Wandering phase consists in the reduced duplexing of rows that are added
together (line 32) for computing a random-like output rand (line 32), which is
then XORed with rows taken as input. One distinct aspect of the Wandering
phase, however, refers to the way it handles the sponge’s inputs and outputs,
which is illustrated in the right side of Figure 3. Namely, besides taking four rows
rather than three as input for the sponge, these rows are not all deterministically
picked anymore, but all involve some kind of pseudorandom, password-dependent
variable in their picking and visitation:

– rowd (d = 0, 1): indices computed in line 28 from the first and second words
of the sponge’s outer state, i.e., from rand[0] and rand[1] for d = 0 and
d = 1, respectively. This particular computation ensures that each rowd

index corresponds to a pseudorandom value ∈ [0, R− 1] that is only learned
after all columns of the previously visited row are duplexed. Given the wide
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range of possibilities, those rows are unlike to be in cache; however, since they
are visited sequentially, their columns can be prefetched by the processor to
speed-up their processing.

– prevd (d = 0, 1): set in line 36 to the indices of the most recently modi-
fied rows. Just like in the Setup phase, these rows are likely to still be in
cache. Taking advantage of this fact, the visitation of its columns are not se-
quential but actually controlled by the pseudorandom, password-dependent
variables (col0, col1) ∈ [0, C − 1]. More precisely, each index cold (d = 0, 1)
is computed from the sponge’s outer state; for example, for ω = W , it is
taken from rand[d+ 2]) right before each duplexing operation (line 31). As
a result, the corresponding column indices cannot be determined prior to
each duplexing, forcing all the columns to remain in memory for the whole
duplexing operation for better performance and thwarting the construction
of simple pipelines for their visitation.

The treatment given to the sponge’s outputs is then quite similar to that in
the Setup phase: the outputs provided by the sponge are sequentially XORed
with M [row0] (line 33) and, after being rotated, with M [row1] (line 34). Ho-
wever, in the Wandering phase the sponge’s output is XORed with M [row0]
from the lowest to the highest index, just like M [row1]. This design decision
was adopted because it allows faster processing, since the columns read are also
those overwritten; at the same time, the subsequent reading of those columns in
a pseudorandom order already thwarts the attack strategy discussed in Section
5.1.2.5, so there is no need to revert the the reading/writing order in this part
of the algorithm.

4.1.4 The Wrap-up phase Finally, after (R · T ) duplexing operations are
performed during the Wandering phase, the algorithm enters the Wrap-up Phase.
This phase consists of a full-round absorbing operation (line 39) of a single cell of
the memory matrix, M [row0][0]. The goal of this final call to absorb is mainly to
ensure that the squeezing of the key bitstring will only start after the application
of one full-round f to the sponge’s state — notice that, as shown in Figure 1, the
squeezing phase starts with b bits being output rather than passing by f and,
since the full-round absorb in line 4, the state was only updated by several calls
to the reduced-round f . This absorb operation is then followed by a full-round
squeezing operation (line 40) for generating k bits, once again without resetting
sponge’s internal state to zeros. As a result, this last stage employs only the
regular operations of the underlying sponge, building on its security to ensure
that the whole process is both non-invertible and the outputs are unpredictable.
After all, violating such basic properties of Lyra2 is equivalent to violate the
same basic properties of the underlying full-round sponge.

4.2 Strictly sequential design

Like with PBKDF2 and other existing PHS, Lyra2’s design is strictly sequen-
tial, as the sponge’s internal state is iteratively updated during its operation.
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Specifically, and without loss of generality, assume that the sponge’s state before
duplexing a given input ci is si; then, after ci is processed, the updated state
becomes si+1 = fρ(si⊕ ci) and the sponge outputs randi, the first b bits of si+1.
Now, suppose the attacker wants to parallelize the duplexing of multiple columns
in lines 13–17 (Setup phase) or in lines 29–35 (Wandering phase), obtaining
{rand0, rand1, rand2} faster than sequentially computing rand0 = fρ(s0 ⊕ c0),
rand1 = fρ(s1 ⊕ c1), and then rand2 = fρ(s2 ⊕ c2).

If the sponge’s transformation f was affine, the above task would be quite
easy. For example, if fρ was the identity function, the attacker could use two
processing cores to compute rand0 = s0 ⊕ c0, x = c1 ⊕ c2 in parallel and then,
in a second step, make rand1 = rand0 ⊕ c1, rand2 = rand0 ⊕ x also in parallel.
With dedicated hardware and adequate wiring, this could be done even faster,
in a single step. However, for a highly non-linear transformation fρ, it should be
hard to decompose two iterative duplexing operations fρ(fρ(s0 ⊕ c0) ⊕ c1) into
an efficient parallelizable form, let alone several applications of fρ.

It is interesting to notice that, if fρ has some obvious cyclic behavior, always
resetting the sponge to a known state s after v cells are visited, then the attacker
could easily parallelize the visitation of ci and ci+v. Nonetheless, any reasonably
secure fρ is expected to prevent such cyclic behavior by design, since otherwise
this property could be easily explored for finding internal collisions against the
full f itself.

In summary, even though an attacker may be able to parallelize internal
parts of fρ, the stateful nature of Lyra2 creates several “serial bottlenecks” that
prevent duplexing operations from being executed in parallel.

Assuming that the above-mentioned structural attacks are unfeasible, pa-
rallelization can still be achieved in a “brute-force” manner. Namely, the attacker
could create two different sponge instances, I0 and I1, and try to initialize their
internal states to s0 and s1, respectively. If s0 is known, all the attacker needs
to do is compute s1 faster than actually duplexing c0 with I0. For example, the
attacker could rely on a large table mapping states and input blocks to the re-
sulting states, and then use the table entry (s0, c0) 7→ s1. For any reasonable
cryptographic sponge, however, the state and block sizes are expected to be quite
large (e.g., 512 or 1,024 bits), meaning that the amount of memory required for
building a complete map makes this approach unpractical.

Alternatively, the attacker could simply initialize several I1 instances with
guessed values of s1, and use them to duplex c1 in parallel. Then, when I0
finishes running and the correct value of s1 is inevitably determined, the attacker
could compare it to the guessed values, keeping only the result obtained with
the correct instantiation. At first sight, it might seem that a reduced-round f
facilitates this task, since the consecutive states s0 and s1 may share some bits or
relationships between bits, thus reducing the number of possibilities that need
to be included among the guessed states. Even if that is the case, however,
any transformation f is expected to have a complex relation between the input
and output of every single round and, to speed-up the duplexing operation, the
attacker needs to explore such relationship faster than actually processing ρ
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rounds of f . Otherwise, the process of determining the target guessing space
will actually be slower than simply processing cells sequentially. Furthermore, to
guess the state that will be reached after v cells are visited, the attacker would
have to explore relationships between roughly v ·ρ rounds of f faster than merely
running v · ρ rounds of fρ. Hence, even in the (unlikely) case that guessing two
consecutive states can be made faster than running ρ of f , this strategy scales
poorly since any existing relationship between bits should be diluted as v · ρ
approaches ρmax.

An analogous reasoning applies to the Filling / Visitation Loop. The only
difference is that, to parallelize the duplexing of inputs from its consecutive
iterations, ci and ci+1, the attacker needs to determine the sponge’s internal
state si+1 that will result from duplexing ci without actually performing the C ·ρ
rounds of f involved in this operation. Therefore, even if highly parallelizable
hardware is available to attackers, it is unlikely that they will be able to take
full advantage of this parallelism potential for speeding up the operation of any
given instance of Lyra2.

4.3 Configuring memory usage and processing time

The total amount of memory occupied by Lyra2’s memory matrix is b · R · C
bits, where b corresponds to the underlying sponge function’s bitrate. With this
choice of b, there is no need to pad the incoming blocks as they are processed by
the duplex construction, which leads to a simpler and potentially faster imple-
mentation. The R and C parameters, on the other hand, can be defined by the
user, thus allowing the configuration of the amount of memory required during
the algorithm’s execution.

Ignoring ancillary operations, the processing cost of Lyra2 is basically de-
termined by the number of calls to the sponge’s underlying f function. Its
approximate total cost is, thus: d(|pwd| + |salt| + |params|)/be calls in Boot-
strapping phase, plus R · C · ρ/ρmax in the Setup phase, plus T ·R · C · ρ/ρmax
in the Wandering phase, plus dk/be in the Wrap-up phase, leading roughly to
(T + 1) ·R ·C · ρ/ρmax calls to f for small lengths of pwd, salt and k. Therefore,
while the amount of memory used by the algorithm imposes a lower bound on
its total running time, the latter can be increased without affecting the former
by choosing a suitable T parameter. This allows users to explore the most abun-
dant resource in a (legitimate) platform with unbalanced availability of memory
and processing power. This design also allows Lyra2 to use more memory than
scrypt for a similar processing time: while scrypt employs a full-round hash for
processing each of its elements, Lyra2 employs a reduced-round, faster operation
for the same task.

4.4 On the underlying sponge

Even though Lyra2 is compatible with any hash functions from the sponge family,
the newly approved SHA-3, Keccak [19], does not seem to be the best alternative
for this purpose. This happens because Keccak excels in hardware rather than
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in software performance [38]. Hence, for the specific application of password
hashing, it gives more advantage to attackers using custom hardware than to
legitimate users running a software implementation.

Our recommendation, thus, is toward using a secure software-oriented algo-
rithm as the sponge’s f transformation. One example is Blake2b [39], a slightly
tweaked version of Blake [40]. Blake itself displays a security level similar to
that of Keccak [41], and its compression function has been shown to be a good
permutation [42,43] and to have a strong diffusion capability [40] even with a
reduced number of rounds [44,45], while Blake2b is believed to retain most of
these security properties [46].

The main (albeit minor) issue with Blake2b’s permutation is that, to avoid
fixed points, its internal state must be initialized with a 512-bit initialization
vector (IV) rather than with a string of zeros as prescribed by the sponge con-
struction. The reason is that Blake2b does not use the constants originally em-
ployed in Blake2 inside its G function [39], relying on the IV for avoiding possible
fixed points. Indeed, if the internal state is filled with zeros as usually done in
cryptographic sponges, any block filled with zeros absorbed by the sponge will
not change this state value. Therefore, the same IV should also be used for ini-
tializing the sponge’s state in Lyra2. In addition, to prevent the IV from being
overwritten by user-defined data, the sponge’s capacity c employed when ab-
sorbing the user’s input (line 4 of Algorithm 2) should have at least 512 bits,
leaving up to 512 bits for the bitrate b. After this first absorb operation, though,
the bitrate may be raised for increasing the overall throughput of Lyra2 if so
desired.

4.4.1 A dedicated, multiplication-hardened sponge: BlaMka. Besides
plain Blake2b, another potentially interesting alternative is to employ a permu-
tation that involves integer multiplications among its operations. The reason is
that, as verified in several benchmarks available in the literature [47,48], the
performance gain offered by hardware implementations of the multiplication
operation is not much higher than what is obtained with software implementa-
tions running on x86 platforms, for which such operations are already heavily
optimized. Those optimizations appear in different levels, including compilers,
advanced instruction sets (e.g., MMX, SSE and AVX), and architectural details
of modern CPUs that resemble those of dedicated FPGAs. Hence, if a legitimate
user prefers to rely on a function that provides further protection against hard-
ware platforms while maintaining a high efficiency on platforms such as CPUs,
multiplications may be an interesting approach. Indeed, this is the main idea
behind the “multiplication-hardening” strategy discussed in [49,50].

For this purpose the Blake2b structure may itself be adapted to integrate mul-
tiplications. Namely, multiplications can be integrated into Blake2b’s G function
(see the left side of Figure 4), which relies on sequential additions, rotations and
XORs (ARX) for attaining bit diffusion and creating a mutual dependence be-
tween those bits [42,43]. If the additions employed are replaced by a permutation



19

a ← a + b
d ← (d⊕ a)≫ 32
c ← c + d
b ← (b⊕ c)≫ 24
a ← a + b
d ← (d⊕ a)≫ 16
c ← c + d
b ← (b⊕ c)≫ 63

(a) Blake2 G function.

a ← a + b + 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 32
c ← c + d + 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 24
a ← a + b + 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 16
c ← c + d + 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 63

(b) BlaMka G function.

Fig. 4: Multiplication-hardened (right) and original (left) G(a, b, c, d) function
from Blake2b.

that includes a multiplication and provides at least the same level of diffusion,
its security should not be negatively affected.

One suggestion, originally made by Samuel Neves (one of the authors of
Blake2) [51], is to replace the additions of integers x and y by something like
the latin square function [52] f(x, y) = x+ y+ 2 ·x · y. To make it more friendly
for implementation using the instruction set of modern processors, however, one
can use a slightly modified construction that employs the least significant bits
of x and y, namely f ′(x, y) = x + y + 2 · lsw(x) · lsw(y), as shown in the right
side of Figure 4. As a result, this function can be efficiently implemented using
fast SIMD instructions (e.g., mm mul epu, mm slli epi, mm add epi), and
keeps an homogeneous distribution for the F2n

2 7→ Fn2 mapping.
In terms of security, in a preliminary analysis the diffusion capability of f ′

seems to be at least as high as that provided by the simple word-wise addi-
tion employed by Blake2b. This impression comes from the assessment of XOR-
differentials over f ′, defined in [53] as:

Definition 1. Let f : F2n
2 7→ Fn2 be a vector Boolean function and let α, β and

γ be n-bit sized XOR-differences. We call (α, β) 7→ γ a XOR-differential of f
if there exist n-bit strings x and y that satisfy f ′(x ⊕ α, y ⊕ β) = f ′(x, y) ⊕ γ.
Otherwise, if no such n-bit strings x and y exist, we call (α, β) 7→ γ an impossible
XOR-differential of f .

Specifically, conducting an exhaustive search for n = 8, we found 4 differen-
tials that hold for all 65536 pairs (x, y), both for f ′ and for the addition ope-
ration: (0x00, 0x00) 7→ 0x00, (0x80, 0x80) 7→ 0x00, (0x00, 0x80) 7→ 0x80, and
(0x80, 0x00) 7→ 0x80 (in hexadecimal notation). However, while the addition
operation displays 168 XOR-differentials that hold for 50% of all (x, y) pairs,
the f ′ operation hereby described has only 48 of such XOR-differentials, which
have the second highest probability for both functions. XOR-differentials with
lower, but still high probabilities are also less frequent for f ′ that for the simple
addition operation — e.g., 288 instead of 3024 differentials that hold for 25% of
all (x, y) pairs, — although the former displays differentials with probabilities
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that do not appear in the latter — e.g., 12 differentials that hold for 19200 out
of the 65536 (x, y) pairs, the third highest differential probability for f ′.

As a remark, we note that, since the f ′ function is structurally similar to
what is done in the NORX authenticated encryption scheme [54], but in the
additive field, it is quite possible that analyses of this latter scheme can also
apply to the construction hereby described. Providing such analysis remains,
however, as a matter of future work.

4.5 Practical considerations

Lyra2 displays a quite simple structure, building as much as possible on the in-
trinsic properties of sponge functions operating on a fully stateful mode. Indeed,
the whole algorithm is composed basically of loop controlling and variable ini-
tialization statements, while the data processing itself is done by the underlying
hash function H. Therefore, we expect the algorithm to be easily implementable
in software, especially if a sponge function is already available.

The adoption of sponges as underlying primitive also gives Lyra2 a lot of
flexibility. For example, since the user’s input (line 4 of Algorithm 1) is processed
by an absorb operation, the length and contents of such input can be easily
chosen by the user, as previously discussed. Likewise, the algorithm’s output is
computed using the sponge’s squeezing operation, allowing any number of bits
to be securely generated without the need of another primitive (e.g., PBKDF2,
as done in scrypt).

Another feature of Lyra2 is that its memory matrix was designed to allow
legitimate users to take advantage of memory hierarchy features, such as caching
and prefetching. As observed in [5], such mechanisms usually make access to
consecutive memory locations in real-world machines much faster than accesses
to random positions, even for memory chips classified as “random access”. As a
result, a memory matrix having a small R is likely to be visited faster than a
matrix having a small C, even for identical values of R·C. Therefore, by choosing
adequate R and C values, Lyra2 can be optimized for running faster in the target
(legitimate) platform while still imposing penalties to attackers under different
memory-accessing conditions. For example, by matching b · C to approximately
the size of the target platform’s cache lines, memory latency can be significantly
reduced, allowing T to be raised without impacting the algorithm’s performance
in that specific platform.

Besides performance, making C > ρmax is also recommended for security rea-
sons: as discussed in Section 4.2, this parametrization ensures that the sponge’s
internal state is scrambled with (at least) the full strength of the underlying hash
function after the execution of the Setup or Wandering phase’s Columns Loops.
The task of guessing the sponge’s state after the conclusion of any iteration of
a Columns Loop without actually executing it becomes, thus, much harder. Af-
ter all, assuming the underlying sponge can be modeled as a random oracle, its
internal state should be indistinguishable from a random bitstring.

One final practical concern taken into account in the design of Lyra2 refers to
how long the original password provided by the user needs to remain in memory.
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Specifically, the memory position storing pwd can be overwritten right after the
first absorb operation (line 4 of Algorithm 2). This avoids situations in which
a careless implementation ends up leaving pwd in the device’s volatile memory
or, worse, leading to its storage in non-volatile memory due to memory swaps
performed during the algorithm’s memory-expensive phases. Hence, it meets the
general guideline of purging private information from memory as soon as it is not
needed anymore, preventing that information’s recovery in case of unauthorized
access to the device [55,56].

5 Security analysis

Lyra2’s design is such that (1) the derived key is both non-invertible and collision
resistant, which is due to the initial and final full hashing operations, combined
with reduced-round hashing operations in the middle of the algorithm; (2) at-
tackers are unable to parallelize Algorithm 2 using multiple instances of the
cryptographic sponge H, so they cannot significantly speed up the process of
testing a password by means of multiple processing cores; (3) once initialized,
the memory matrix is expected to remain available during most of the password
hashing process, meaning that the optimal operation of Lyra2 requires enough
(fast) memory to hold its contents.

For better performance, a legitimate user is likely to store the whole memory
matrix in volatile memory, facilitating its access in each of the several iterations
of the algorithm. An attacker running multiple instances of Lyra2, on the other
hand, may decide not to do the same, but to keep a smaller part of the matrix
in fast memory aiming to reduce the memory costs per password guess. Even
though this alternative approach inevitably lowers the throughput of each indi-
vidual instance of Lyra2, the goal with this strategy is to allow more guesses to
be independently tested in parallel, thus potentially raising the overall through-
put of the process. There are basically two methods for accomplishing this. The
first is what we call a Low-Memory attack, which consists of trading memory
for processing time, i.e., discarding (parts of) the matrix and recomputing the
discarded information from scratch, when (and only when) it becomes neces-
sary. The second it to use low-cost (and, thus, slower) storage devices, such as
magnetic hard disks, which we call a Slow-Memory attack.

In what follows, we discuss both attack venues and evaluate their relative
costs, as well as the drawbacks of such alternative approaches. Our goal with
this discussion is to demonstrate how Lyra2’s design discourages attackers from
making such memory-processing trade-offs while testing many passwords in pa-
rallel. Consequently, the algorithm limits the attackers’ ability to take advantage
of highly parallel platforms, such as GPUs and FPGAs, for password cracking.

In addition the above attacks, we also discuss the so-called Cache-Timing
attacks [57], which employ a spy process collocated to the PHS and, by observing
the latter’s execution, could be able to recover the user’s password without the
need of engaging in an exhaustive search.
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5.1 Low-Memory attacks

Before we discuss low-memory attacks against Lyra2, it is instructive to consider
how such attacks can be perpetrated against scrypt’s ROMix structure (see
Algorithm 1). The reason is that its sequential memory hard design is mainly
intended to provide protection against this particular attack venue.

As a direct consequence of scrypt’s memory hard design, we can formulate
Theorem 1:

Theorem 1. Whilst the memory and processing costs of scrypt are both O(R)
for a system parameter R, one can achieve a memory cost of O(1) (i.e., a
memory-free attack) by raising the processing cost to O(R2).

Proof. The attacker runs the loop for initializing the memory array M (lines
9 to 11 of Algorithm 1), which we call ROMixini. Instead of storing the values
of M [i], however, the attacker keeps only the value of the internal variable X.
Then, whenever an element M [j] of M should be read (line 14 of Algorithm
1), the attacker simply runs ROMixini for j iterations, determining the value of
M [j] and updating X. Ignoring ancillary operations, the average cost of such
attack is R + (R · R)/2 iterative applications of BlockMix and the storage of a
single b-long variable (X), where R is scrypt’s cost parameter. ut

In comparison, an attacker trying to use a similar low-memory attack against
Lyra2 would run into additional challenges. First, during the Setup phase, it is
not enough to keep only one row in memory for computing the next one, as each
row requires three previously computed rows for its computation.

For example, after using M [0]–M [2], those three rows are once again em-
ployed in the computation of M [3], meaning that they should not be discarded
or they will have to be recomputed. Even worse: since M [0] is modified when
initializing M [4], the value to be employed when computing rows that depend on
it (e.g., M [8]) cannot be obtained directly from the password. Instead, recom-
puting the updated value of M [0] requires (a) running the Setup phase until the
point it was last modified (e.g., for the value required by M [8], this corresponds
to when M [4] was initialized) or (b) using some rows still available in memory,
XORing them together to obtain the values of rand[col] that modified M [0] since
its initialization.

Whichever the case, this creates a complex net of dependencies that grow in
size as the algorithm’s execution advances and more rows are modified, leading
to several recursive calls. This effect is even more expressive in the Wandering
phase, due to an extra complicating factor: each duplexing operation involves a
random-like (password-dependent) row index that cannot be determined before
the end of the previous duplexing. Therefore, the choice of which rows to keep in
memory and which rows to discard is merely speculative, and cannot be easily
optimized for all password guesses.

Providing a tight bound for the complexity of such low-memory attacks
against Lyra2 is, thus, an involved task, especially considering its non-deterministic
nature. Nevertheless, aiming to give some insight on how an attacker could (but



23

is unlikely to want to) explore such time-memory trade-offs, in what follows
we consider some slightly simplified attack scenarios. We emphasize, however,
that these scenarios are not meant to be exhaustive, since the goal of analyzing
them is only to show the approximate (sometimes asymptotic) impact of possible
memory usage reductions over the algorithm’s processing cost.

Formally proving the resistance of Lyra2 against time-memory trade-offs
(e.g., using the theory of Pebble Games [58,59,60] as done in [57,61]) would
be even better, but doing so, possibly building on the discussion hereby pre-
sented, remains as a matter for future work.

5.1.1 Preliminaries For conciseness, along the discussion we denote by CL
the Columns Loop of the Setup phase (lines 13—17 of Algorithm 2) and of the
Wandering phase (lines 29—35). In this manner, ignoring the cost of XORing,
reads/writes and other ancillary operations, CL corresponds approximately to
C · ρ/ρmax executions of f , a cost that is denoted simply as σ.

We denote by s0
i,j the state of the sponge right before M [i][j] is initialized in

the Setup phase. For i > 3, this corresponds to the state in line 13 of Algorithm 2.
For conciseness, though, we often omit the “j” subscript, using s0

i as a shorthand
for s0

i,0 whenever the focus of the discussion are entire rows rather than their
cells. We also employ a similar notation for the Wandering phase, denoting by
sτi the state of the sponge during iteration R · (τ − 1) + i of the Visitation Loop
(with 1 6 τ 6 T ), before the corresponding rows are effectively processed (i.e.,
the state in line 27 of Algorithm 2). Analogously, the i-th row (0 6 i < R) output
by the sponge during the Setup phase is denoted r0

i , while rτi denotes the output
given by the Visitation Loop’s iteration R · (τ − 1) + i. In this manner, the τ
symbol is employed to indicate how many times the Wandering phase performs
a number of duplexing operations equivalent to that in the Setup phase.

Aiming to keep track of modifications made on rows of the memory matrix, we
recursively use the subscript notation M [XY−Z−...] to denote a row X modified
when it received the same values of rand as row Y , then again when the row
receiving the sponge’s output was Z, and so on. For example, M [13] corresponds
to row M [1] after its cells are XORed with rot(rand) in the very first iteration
of the Setup phase’s Filling Loop. Finally, for conciseness, we write V τ1 and V τ2
to denote, respectively, the first and second half of: the Setup phase, for τ = 0;
or the Visitation Loop during iteration R · (τ − 1) + i of the Wandering phase’s
Visitation Loop, for τ > 1.

5.1.2 The Setup phase We start our discussion analyzing only the Setup
phase. Aiming to give a more concrete view of its execution, along the discussion
we use as example the scenario with 16 rows depicted in Figure 5, which shows
the corresponding visitation order of such rows and also their modifications due
to these visitations.
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Fig. 5: The Setup phase.

5.1.2.1 Storing only what is needed: 1/2 memory usage. Suppose that the at-
tacker does not want to store all rows of the memory matrix during the algo-
rithm’s execution. One interesting approach for doing so is to keep in buffer
only what will be required in future iterations of the Filling Loop, discarding
rows that will not be used anymore. Since the Setup phase is purely determi-
nistic, doing so is quite easy and, as long as the proper rows are kept, it incurs
no processing penalty. This approach is illustrated in Figure 6 for our example
scenario.

As shown in this figure, this simple strategy allows the execution of the Setup
phase with a memory usage of R/2 + 1 rows, approximately half of the amount
usually required. This observation comes from the fact that each half of the Setup
phase requires all rows from the previous half and two extra rows (those more
recently initialized/updated) to proceed. More precisely, R/2 + 1 corresponds to
the peak memory utilization reached around the middle of the Setup phase, since
(1) until then, part of the memory matrix has not been initialized yet and (2)
rows initialized near the end of the Setup phase are only required for computing
the next row and, thus, can be overwritten right after their cells are used. Even
with this reduced memory usage, the processing cost of this phase remains at
R · σ, just as if all rows were kept in memory.

This attack can, thus, be summarized by the following lemma:

Lemma 1. Consider that Lyra2 operates with parameters T , R and C. Whilst
the regular algorithm’s memory and processing costs of its Setup phase are, re-
spectively, R ·C · b bits and R ·σ, it is possible to run this phase with a maximum
memory cost of approximately (R/2) ·C · b bits while keeping its total processing
cost to R · σ.

Proof. The costs involved in the regular operation of Lyra2 are discussed in
Section 4.3, while the mentioned memory-processing trade-off can be achieved
with the attack described in this section. ut

5.1.2.2 Storing less than what is needed: 1/4 memory usage. If the attacker
considers that storing half of the memory matrix is too much, he/she may decide
to discard additional rows, recomputing them from scratch only when they are
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needed. In that case, a reasonable approach is to discard rows that (1) will take
longer to be used, either directly or for the recomputation of other rows, or
(2) that can be easily computed from rows already available, so the impact of
discarding them is low. The reasoning behind this strategy is that it allows the
Setup phase to proceed smoothly for as long as possible. Therefore, as rows that
are not too useful for the time being (or even not required at all anymore) are
discarded from the buffer, the space saved in this manner can be diverted to the
recomputation process, accelerating it.

The suggested approach is illustrated in Figure 7. As shown in this figure,
at any moment we keep in memory only R/4 = 4 rows of the memory matrix
besides the two most recently modified/updated, approximately half of what
is used in the attack described in Section 5.1.2.1. This allows roughly 3/4 the
Setup phase to run without any recomputation, but after that M [4] is required
to compute row M [C]. One simple way of doing so is to keep in memory the
two most recently modified rows, M [13−7−B ] and M [B], and then run the first
half of the Setup phase once again with R/4 + 2 rows. This strategy should
allow the recomputation not only of M [4], but of all the R/4 rows previously
discarded but still needed for the last 1/4 of the Setup phase (in our example,
{M [4],M [7],M [26],M [5]}, as shown at the bottom of Figure 7). The resulting
processing overhead would, thus, be approximately (R/2)σ, leading to a total
cost of (3R/2)σ for the whole Setup.

Obviously, there may be other ways of recomputing the required rows. For
example, there is no need to discard M [7] after M [8] is computed, since keeping
it in the buffer after that point would still respect the R/4 + 2 memory cost.
Then, the recomputation procedure could stop after the recomputation of M [26],
reducing its cost in σ. Alternatively, M [4] could have been kept in memory after
the computation of M [7], allowing the recomputations to be postponed by one
iteration. However, then M [7] could not be maintained as mentioned above and
there would be not reduction in the attack’s total cost. All in all, these and other

Fig. 6: Attacking the Setup phase: storing 1/2 of all rows. The most recently
modified rows in each iteration are marked in bold.
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Fig. 7: Attacking the Setup phase: storing 1/4 of all rows. The most recently
modified rows in each iteration are marked in bold.

tricks are not expected to reduce the total recomputation overhead significantly
below (R/2)σ. This happens because the last 1/4 of the Setup phase is designed
in such a manner that the row1 index covers the entire first half of the memory
matrix, including values near 0 and R/2. As a result, the recomputation of all
values of M [row1] input to the sponge near the end of the Setup phase is likely
to require most (if not all) of its first half to be executed.

These observations can be summarized in the following conjecture.

Conjecture 1. Consider that Lyra2 operates with parameters T , R and C. Whilst
the regular memory and processing costs of its Setup phase’s are, respectively,
MemSetup(R) = R · C · b bits and CostSetup(R) = R · σ, its execution with a
memory cost of approximately MemSetup(R)/4 should raise its processing cost
to approximately 3CostSetup(R)/2.

5.1.2.3 Storing less than what is needed: 1/8 memory usage. We can build on
the previous analysis to estimate the performance penalty incurred when re-
ducing the algorithm’s memory usage by another half. Namely, imagine that
Figure 7 represents the first half of the Setup phase (denoted V 0

1 ) for R = 32,
in an attack involving a memory usage of R/8 = 4. In this case, recomputations
are needed after approximately 3/8 of the Setup phase is executed. However,
these are not the only recomputations that will occur, as the entire second half
of the memory matrix (i.e., R/2 rows) still needs to be initialized during the
second half of the Setup phase (denoted V 0

2 ). Therefore, the R/2 rows initiali-
zed/modified during V 0

1 will be once again required. Now suppose that the R/8
memory budget is employed in the recomputation of the required rows from
scratch, running V 0

1 again whenever a group of previously discarded rows is
needed. Since a total of R/2 rows need recomputation, the goal is to recover
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each of the (R/2)/(R/8) = 4 groups of R/8 rows in the sequence they are re-
quired during V 0

2 , similarly to what was done a single time when the memory
committed to the attack was R/4 rows (section 5.1.2.2). In our example, the four
groups of rows required are (see Table 2): g1 = {M [04−8],M [9],M [26−E ],M [B]},
g2 = {M [4C ],M [D],M [6A],M [F ]}, g3 = {M [8],M [13−7−B ],M [A],M [35−9]},
and g4 = {M [C],M [5F ],M [E],M [7D]}, in this sequence.

To analyze the cost of this strategy, assume initially that the memory budget
of R/8 is enough to recover each of these groups by means of a single (partial
or full) execution of V 0

1 . First, notice that the computation of each group from
scratch involves a cost of at least (R/4)σ, since the rows required by V 0

2 have
all been initialized or modified after the execution of 50% of V 0

1 . Therefore,
the lowest cost for recovering any group is (3R/8)σ, which happens when that
group involves only rows initialized/modified before M [R/4 + R/8] (this is the
case of g3 in our example). A full execution of V 0

1 , on the other hand, can be
obtained from Conjecture 1: the buffer size is MemSetup(R/2)/4 = R/8 rows,
which means that the processing cost is now 3CostSetup(R/2)/2 = (3R/4)σ
(in our example, full executions are required for g2 and g4, due to rows M [F ]
and M [5F ]). From these observations, we can estimate the four re-executions
of V 0

1 to cost between 4(3R/8)σ and 4(3R/4)σ, leading to an arithmetic mean
of (9R/4)σ. Considering that a full execution of V 0

1 occurs once before V 0
2 is

reached, and that V 0
2 itself involves a cost of (R/2)σ even without taking the

above overhead into account, the base cost of the Setup phase is (3R/4+R/2)σ.
With the overhead of (9R/4)σ incurred by the re-executions of V 0

1 , the cost of
the whole Setup phase becomes then (7R/2)σ.

We emphasize, however, that this should be seen a coarse estimate, since it
considers four (roughly complementary) factors described in what follows.

Fig. 8: Attacking the Setup phase: recomputing M [6A] while storing 1/8 of all
rows and keeping M [F ] in memory. The most recently modified rows in each
iteration are marked in bold.
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1. The one-to-one proportion between a full and a partial execution of V 0
1

when initializing rows of V 0
2 is not tight. Hence, estimating costs with the

arithmetic mean as done above may not be strictly correct. For example,
going back to our scenario with R = 32 and a R/8 memory usage, the only
group whose rows are all initialized/modified before M [R/2−R/8] = M [C]
is g3. Therefore, this is the only group that can be computed by running the
part of V 0

1 that does not require internal recomputations. Consequently, the
average processing cost of recomputing those groups during V 0

2 should be
higher.

2. As discussed in section 5.1.2.2, the attacker does not necessarily need to
always compute everything from scratch. After all, the committed memory
budget can be used to bufferize a few rows from V 0

1 , avoiding the need
of recomputing them. Going back to our example with R = 32 and R/8
rows, if M [26−E ] remains available in memory when V 0

2 starts, g1 can be
recovered by running V 0

1 once, until M [B] is computed, which involves no
internal recomputations. This might reduce the average processing cost of
recomputations, possibly compensating the extra cost incurred by factor 1.

3. The assumption that each of the four executions of V 0
1 can recover an entire

group with the costs hereby estimated is not always realistic. The reason is
that the costs of V 0

1 as described in section 5.1.2.2 are attained when what
is kept in memory is only the set of rows strictly required during V 0

1 . In
comparison, in this attack scenario we need to run V 0

1 while keeping rows that
were originally discarded, but now need to remain in the buffer because they
are used in V 0

2 . In our example, this happens with M [6A], the third row from
g2: to run V 0

1 with a cost of (3R/4)σ, M [6A] should be discarded soon after
being modified (namely, after the computation of M [B]), thus making room
for rows {M [4],M [7],M [26],M [5]}. Otherwise, M [4C ] and M [D] cannot be
computed while respecting the R/8 = 4 memory limitation. Notice that
discarding M [6A] would not be necessary if it could be consumed in V 0

2

before M [4C ] and M [D], but this is not the case in this attack scenario.
Therefore, to respect the R/8 = 4 memory limitation while computing g2, in
principle the attacker would have to run V 0

1 twice: the first to obtain M [4C ]
and M [D], which are promptly used in V 0

2 , as well as M [F ], which remains
in memory; and the second for computing M [6A] while maintaining M [F ]
in memory so it can be consumed in V 0

2 right after M [6A]. This strategy,
illustrated in Figure 8, introduces an extra overhead of 11σ to the attack in
our example scenario.

4. Finally, there is no need of computing an entire group of rows from V 0
1 before

using those rows in V 0
2 . For example, suppose that M [04−8] and M [9] are

consumed by V 0
2 as soon as they are computed in the first re-execution of

V 0
2 . These rows can then be discarded and the attacker can use the extra

space to build g
′

1 = {M [26−E ],M [B],M [4C ],M [D]} with a single run of V 0
1 .

This approach should reduce the number of re-executions of V 0
1 and possibly

alleviate the overhead from factor 3.
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5.1.2.4 Storing less than what is needed: generalization. We can generalize the
discussion from section 5.1.2.3 to estimate the processing costs resulting from
recursively reducing the Setup phase’s memory usage by half. This can be done
by imagining that any scenario with a R/2n+2 (n > 0) memory usage corres-
ponds to V 0

1 during an attack involving half that memory. Then, representing
by CostSetupn(m) the number of times CL is executed in each window con-
taining m rows (seen as V 0

1 by the subsequent window) and following the same
assumptions and simplifications from Section 5.1.2.3, we can write the following
recursive equation:

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (2n+1)

number of
executions

(1)

For example, for n = 2 (and, thus, a memory usage of R/16), we have:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (22+1)
= 7CostSetup1(R/2) +R/2
= 7(CostSetup0(R/4) +R/4+

(3 · CostSetup0(R/4)/4) · (21+1)) +R/2
= 7(3R/8 +R/4 + (3 · (3R/8)/4) · 4) +R/2
= 51R/4

In Equation 1, we assume that the cost of each re-execution of V 0
1 can be

approximated to 3/4 of its total cost. We argue that this is a reasonable ap-
proximation because, as discussed in section 5.1.2.3, between 50% and 100% of
V 0

1 needs to be executed when recovering each of the (R/2)/(R/2n+2) = 2n+1

groups of R/2n+2 rows required by V 0
2 .

The fact that Equation 1 assumes that only 2n+1 re-executions of V 0
1 are

required, on the other hand, is likely to become an oversimplification as R and
n grow. The reason is that factor 4 discussed in section 5.1.2.3 is unlikely to
compensate factor 3 in these cases. After all, as the memory available drops,
it should become harder for the attacker to spare some space for rows that are
not immediately needed. The theoretical upper limit for the number of times V 0

1

would have to be executed during V 0
2 when the memory usage is m would then

be m/4: this corresponds to a hypothetical scenario in which, unless promptly
consumed, no row required by V 0

2 remains in the buffer during V 0
1 ; then, since

V 0
2 revisits rows from V 0

1 in an alternating pattern, approximately a pair of rows
can be recovered with each execution of V 0

1 , as the next row required is likely to
have already been computed and discarded in that same execution.
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The recursive equation for estimating this upper limit would then be (in
number of executions of CL):

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (m/4)

number of
executions

(2)
The upper limit for a memory usage of R/16 could then be computed as:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (R/4)
= (1 + 3R/16)CostSetup1(R/2) +R/2
= (1 + 3R/16)(CostSetup0(R/4) +R/4+

(3 · CostSetup0(R/4)/4) · (R/8)) +R/2
= (1 + 3R/16)(3R/8 +R/4 + (3 · (3R/8)/4) · (R/8)) +R/2
= 18(R/16) + 39(R/16)2 + (3R/16)3

Even though this upper limit is mostly theoretical, we do expect the Rn+1

component resulting from Equation 2 to become expressive and dominate the
running time of Lyra2’s Setup phase as n grows and the memory usage drops
much below R/28 (i.e., for n � 1). In summary, these observations can be
formalized in the following Conjecture:

Conjecture 2. Consider that Lyra2 operates with parameters T , R and C. Whilst
the regular memory and processing costs of its Setup phase’s are, respectively,
MemSetup = R · C · b bits and CostSetup = R · σ, running it with a me-
mory cost of approximately MemSetup/2n+2 leads to an average processing
cost CostSetupn(R) that is given by recursive Equations 1 (for a lower bound)
and 2 (for an upper bound).

5.1.2.5 Storing only intermediate sponge states. Besides the strategies men-
tioned in the previous sections, and possibly complementing them, one can try
to explore the fact that the sponge states are usually smaller than a row’s cells
for saving memory: while rows have b · C bits, a state is up to C times smaller,
taking w = b+c bits. More precisely, by storing all sponge states, one can recom-
pute any cell of a given row whenever it is required, rather than computing the
entire row at once. For example, the initialization of each cell of M [2] requires
only one cell from M [1]. Similarly, initializing a cell of M [4] takes one cell from
M [0], as well as one from M [1] and up to two cells from M [3] (one because M [3]
is itself fed to the sponge and another required to the computation of M [13]).

An attack that computes only one cell at a time would be easy to build if the
cells sequentially output by the sponge during the initialization of M [i] could be
sequentially employed as input in the initialization of M [j > i]. Indeed, in that
hypothetical case, one could build a circuitry like the one illustrated in Figure 9
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Fig. 9: Attacking the Setup phase: storing only sponge states.

to compute cells as they are required. For example, one could compute M [2][0]
in this scenario with (1) states s0

0,0, s0
1,0 and s0

2,0, and (2) two b-long buffers, one
for M [0][0] so it can be used for computing M [1][0], and the other for storing
M [1][0] itself, used as input for the sponge in state s0

2,0. After that, the same
buffers could be reused for storing M [0][1] and M [1][1] when computing M [2][1],
using the same sponge instances that are now in states s0

0,1, s0
1,1 and s0

2,1. This
process could then be iteratively repeated until the computation of M [2][C−1].
At that point, we would have the value of s0

3,0 and could apply an analogous
strategy for computing M [3]. The total processing cost of computing M [2] would
then be 3σ, since it would involve one complete execution of CL for each of the
sponge instances initially in states s0

0,0, s0
1,0 and s0

2,0. As another example, the
computation of M [4][col] could be performed in a similar manner, with states
s0

0,0 — s0
4,0 and buffers for M [0][col], M [1][col] and M [3][col] (used as inputs for

the sponge in state s0
4,0), as well as for M [2][col] (required in the computation

of M [3][col]); the total processing cost would then be 5σ.
Generalizing this strategy, any M [row] could be processed using only row

buffers and row+1 sponge instances in different states, leading to a cost of row·σ
for its computation. Therefore, for the whole Setup phase, the total processing
cost would be around (R2/2)σ using approximately 2/C of the memory required
in a regular execution of Lyra2.

Even though this attack venue may appear promising at first sight for a large
C/R ratio, it cannot be performed as easily as described in the above theoretical
scenario. This happens because Lyra2 reverses the order in which a row’s cells
are written and read, as illustrated in Figure 10. Therefore, the order in which
the cells from any M [i] are picked to be used as input during the initialization
of M [j > i] is the opposite of the order in which they are output by the sponge.
Considering this constraint, suppose we want to sequentially recompute M [1][0]
through M [1][C−1] as required (in that order) for the initialization of M [2][C−1]
through M [2][0] during the first iteration of the Filling Loop. From the start, we
have a problem: since M [1][0] = M [0][C−1]⊕Hρ.duplex(M [0][C−1], b), its recom-
putation requires M [0][C−1] and s0

1,C−1. Consequently, computing M [2][C−1] as
in our hypothetical scenario would involve roughly σ to compute M [0][0] from
s0

0,0. A similar issue would occur right after that, when initializing M [2][C − 2]
from M [1][1]: unless inverting the sponge’s (reduced-round) internal permuta-
tion is itself easy, M [0][1] cannot be easily obtained from M [0][0], and neither
the sponge state s0

1,C−2 (required for recomputing M [1][1]) from s0
1,C−1. On the
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Fig. 10: Reading and writing cells in the Setup phase.

other hand, recomputing M [0][1] and s0
1,C−2 from the values of s0

0,1 and s0
1,1 re-

sulting from the previous step would involve a processing cost of approximately
(C − 2)σ/C. If we repeat this strategy for all cells of M [2], the total processing
cost of initializing this row should be on the order of C times higher the “σ” ob-
tained in our hypothetical scenario. Since the conditions for this C multiplication
factor appear in the computation of any other row, the processing time of this
attack venue against Lyra2 is expected to become C(R2/2)σ rather than simply
(R2/2)σ, counterbalancing the memory reduction lower than 1/C potentially
obtained.

Obviously, one could store additional sponge states aiming for a lower proce-
ssing time. For example, by storing the sponge state s0

i,C/2 in addition to s0
i,0, the

attack’s processing costs may be reducible by half. However, the memory cuts
obtained with this approach diminish as the number of intermediate sponge
states stored grow, eventually defeating the whole purpose of the attack. All
things considered, even if feasible, this attack venue does not seem much more
advantageous than the approaches discussed in the previous sections.

5.1.3 Adding the Wandering phase: consumer-producer strategy. Du-
ring each iteration of the Wandering phase, the rows modified in the previous ite-
ration are input to the sponge together with two other (pseudorandomly picked)
rows. The latter two rows are then XORed with the sponge’s output and the
result is fed to the sponge in the subsequent iteration. To analyze the effects of
this phase, it is useful to consider an “average”, slightly simplified scenario like
the one depicted in Figure 11, in which all rows are modified only once during
every R/2 iterations of the Visitation Loop, i.e., during V 1

1 the sets formed by
the values assumed by row0 and by row1 are disjoint. We then apply the same
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Fig. 11: An example of the Wandering phase’s execution.

principle to V 1
2 , modifying each row only once more in a different (arbitrary)

pseudorandom order. We argue that this is a reasonable simplification, given
the fact that the indices of the picked rows form an uniform distribution. In
addition, we argue that this is actually beneficial for the attacker, since any row
required during V 1

1 can be obtained simply by running the Setup phase once
again, instead of involving recomputations of the Wandering phase itself. We
also note that, in the particular case of Figure 11, we make the visitation order
in V 1

1 be the exact opposite of the initialization/update of rows during V 0
2 , while

in V 1
2 the order is the same as in V 1

1 , for the sake of illustrating worst and best
case scenarios (respectively).

In this scenario, the R/2 iterations of V 1
1 cover the entire memory matrix. The

relationship between V 1
1 and V 0

2 is, thus, very similar to that between V 0
2 and V 0

1 :
if any row initialized/modified during V 0

2 is not available when it is required by
V 1

1 , then it is probable that the Setup phase will have to be (partially) run once
again, until the point the attacker is able to recover that row. However, unlike
the Setup phase, the probabilistic nature of the Wandering phase prevents the
attacker from predicting which rows from V 1

1 can be safely discarded, which
is deemed to raise the average number of re-executions of V 1

1 . Consequently,
we can adapt the arguments employed in Section 5.1.2 to estimate the cost of
low-memory attacks when the execution includes the Wandering phase, which is
done in what follows for different values of T .

5.1.3.1 The first R/2 iterations of the Wandering phase with 1/2 memory
usage. We start our analysis with an attack involving only R/2 rows and T = 1.
Even though this memory usage would allow the attacker to run the whole Setup
phase with no penalty (see Section 5.1.2.1), the Wandering phase’s Visitation
Loop is not so lenient: in each iteration of V 1

1 , there is only a 25% chance that
row0 and row1 are both available in memory. Hence, 75% of the time the attacker
will have to recompute at least one of the missing rows.

To minimize the cost of V 1
1 in this context, one possible strategy is to always

keep in memory rows M [i > 3R/4], using the remaining R/4 memory budget
as a spare for recomputations. The reasoning behind this approach is that: (1)
3/4 of the Setup phase can be run with R/4 without internal recomputations
(see section 5.1.2.2); (2) since rows M [i > 3R/4] are already available, this
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execution gives the updated value of any row ∈ [R/2, R[ and of half of the
rows ∈ [0, R/2[; and (3) by XORing pairs of rows M [i > 3R/4] accordingly,
the attacker can recover any r0

i>3R/4 output by the sponge and, then, use it to

compute the updated value of any row ∈ [0, R/2[ from the values obtained from
the first half of the Setup. In the scenario depicted by Figure 11, for example,
M [5F ] can be recovered by computing M [5] and then making M [5F ][col] =
M [5][col]⊕ rot(r0

F [col]), where r0
F [col] = M [F ][C−1−col]⊕M [E][col].

With this approach, recomputing rows when necessary can take from (R/4)σ
to (3R/4)σ if the Setup phase is executed just like shown in Section 5.1.2.1. It
is not always necessary pay this cost for every iteration of V 1

1 , however, if the
needed row(s) can be recovered from those already in memory. For example,
if during V 1

1 the rows are visited in the exact same order of their initializa-
tion/update in V 0

2 , then each row recovered can be used by V 1
1 before being

discarded. In principle, a very lucky attacker could then be able to run the en-
tire V 1

1 by executing 3/4 of the Setup only once. Assuming for simplicity that
the (R/2)σ average models a more usual scenario, the cost of each of the R/2
iterations of V 1

1 can be estimated as: 1 in 1/4 of these iterations, when row0

and row1 are both in memory; and roughly (R/2)σ in 3/4 of its iterations, when
one or a pair of rows need to be recovered. The total cost of V 1

1 becomes, thus,
((1/4) · (R/2) + (3/4) · (R/2) · (R/2))σ ≈ (3R2/16)σ.

After that, when V 1
2 is reached, the situation is different from what happens

in V 1
1 : since the rows required for any iteration of V 1

2 have been modified during
the execution of V 1

1 , it does not suffice to (partially) run the Setup phase once
again to get their values. For example, in the scenario depicted in Figure 11, the
rows required for iteration i = 8 of the Visitation Loop besides M [prev0] = M [A]
and M [prev1] = 9 are M [813−7−B ] and M [B6A ], both computed during V 1

1 .
Therefore, if these rows have not been kept in memory, V 1

1 will have to be
(partially) run once again, which implies new runs of the Setup itself. The cost
of these re-executions are likely to be lower than originally, though, because now
the attacker can take advantage of the knowledge about which rows from V 0

2 are
needed to compute each row from V 1

1 . On the other hand, keeping M [i > 3R/4] is
unlikely to be much advantageous now, because that would reduce the attacker’s
ability to bufferize rows from V 1

1 .

In this context, one possible approach is to keep in memory the sponge’s
state at the beginning of V 1

1 (i.e., s1
0), as well as the corresponding value of

prev0 � prev1 used as part of the sponge’s input at this point (in our example,
M [F ] � M [5F ]). This allows the Setup and V 1

1 to run as different processes
following a producer-consumer paradigm: the latter can proceed as long as the
required inputs (rows) are provided by the former, the available memory budget
being used to build their buffers. Using this strategy, the Setup needs to be
run from 1 to 2 times during V 1

1 . The first case refers to when each pair of rows
provided by an iteration of V 0

2 can be consumed by V 1
1 right away, so they can be

removed from the Setup’s buffer similarly to what is done in Section 5.1.2.1. This
happens if rows are revisited in V 1

1 in the same order lastly initialized/updated
during V 0

2 . The second extreme occurs when V 1
1 takes too long to start consuming



35

Fig. 12: Tree representing the dependence among rows in Lyra2.

rows from V 0
2 , so some rows produced by the latter end up being discarded due to

lack of space in the Setup’s buffer. This happens, for example, if V 1
1 revisits rows

indexed by row0 during V 0
2 before those indexed by row1, in the reverse order

of their initialization/update, as is the case in Figure 11. Then, ignoring the fact
that the Setup only starts providing useful rows for V 1

1 after half of its execution,
on average we would have to run the Setup 1.5 times, these re-executions leading
to an overhead of roughly (3R/2)σ.

From these observations, we can estimate that recomputing any row from
V 1

2 would require running 50% of V 1
1 on average. The cost of doing so would be

(R/4+3R/4)σ, the first parcel of the sum corresponding to cost of V 1
1 ’s internal

iterations and the second to the overhead incurred by the underlying Setup re-
executions. As a side effect, this would also leave in V 1

1 ’s buffer R/2 rows, which
may reveal useful during the subsequent iteration of V 1

2 . The average cost of the
R/2 iterations of V 1

2 would then be: σ whenever both M [row0] and M [row1]
are available, which happens in 1/4 of these iterations; roughly Rσ whenever
M [row0] and/or M [row1] need to be recomputed, so for 1/4 of these iterations.
This leads to a total cost of (R/8+3R2/8)σ for V 1

2 . Adding up the cost of Setup,
V 1

1 and V 1
2 , the computation cost of Lyra2 when the memory usage is halved and

T = 1 can then be estimated as Rσ+ (3R2/16)σ+ (R/8 + 3R2/8)σ ≈ (3R/4)2σ
for this strategy.

5.1.3.2 The whole Wandering phase with 1/2 memory usage. Generalizing the
discussion for all iterations of the Wandering phase, the execution of V τ1 (resp.
V τ2 ) could use V τ−1

2 (resp. V τ1 ) similarly to what is done in Section 5.1.3.1.
Therefore, as Lyra2’s execution progresses, it creates a dependence graph in the
form of an inverted tree as depicted in Figure 12, level ` = 0 corresponding to
the Setup phase and each R/2 iterations of the Visitation Loop raising the tree’s
depth by one. Hence, the full execution of any level ` > 0 requires roughly all rows
modified in the previous level (` − 1). With R/2 rows in memory, the original
computation of any level ` can then be described by the following recursive
equation (in number of executions of CL):
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CostWander∗` =

no re-execution of
previous levels

(1/4)(R/2)

25% of
iterations

·1 +

re-executions of
previous levels

(3/4)(R/2)

75% of
iterations

·CostWander`−1/2 (3)

The value of CostWander`−1 in Equation 3 is lower than that of CostWander∗`−1,
however, since the former is purely deterministic. To estimate such cost, we can
use the same strategy adopted in Section 5.1.3.1: keeping the sponge’s state at
the beginning of each level ` and the corresponding value of prev0 � prev1, and
then running level `−1 1.5 times on average to recover each row that needs to be
consumed. For any level `, the resulting cost can be described by the following
recursive equation:

CostWander0 = R . The Setup phase
CostWander` = R/2

internal
computations

+ (3/2) · CostWander`−1

re-executions of
previous level (`− 1)

= R · (2(3/2)` − 1) (4)

Combining Equations 3 and 4 with Lemma 1, we get that the cost (in number
of executions of CL) of running Lyra2 with half of the prescribed memory usage
for a given T would be roughly:

CostLyra2(1/2)(R, T ) = R+ CostWander∗1 + · · ·+ CostWander∗2T
= (T + 4) · (R/4) + (3R2/4) · ((3/2)2T − (T + 2)/2)
= O((3/2)2TR2)

(5)

5.1.3.3 The whole Wandering phase with less than 1/2 memory usage. A me-
mory usage of 1/2n+2 (n > 0) is expected to have three effects on the execution
of the Wandering phase. First, the probability that row0 and row1 will both be
available in memory at any iteration of the Visitation Loop drops to 1/2n+2,
meaning that Equation 3 needs to be updated accordingly. Second, the cost of
running the Setup phase is deemed to become higher, its lower and upper bounds
being estimated by Equations 1 and 2, respectively. Third, level `− 1 may have
to be re-executed 2n+2 times to allow the recovery of all rows required by level
`, which has repercussions on Equation 4: on average, CostWander` will involve
(1 + 2n+2)/2 ≈ 2n+1 calls to CostWander`−1.

Combining these observations, we arrive at

CostWander∗`,n =

no re-execution of
previous levels

(R/2) · (1/2n+2)

1/2n+2 of iterations

·1 +

re-executions of
previous levels

(R/2) · (1− 1/2n+2)

all other iterations

·(CostWander`−1,n)/2

(6)
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as an estimate for the original (probabilistic) executions of level `, and at

CostWander0,n = CostSetupn(R) . The Setup phase

CostWander`,n =

internal
computations

R/2 +

re-executions of
previous level

(2n+1)CostWander`−1,n

= (R/2) · (1− (2n+1)`)/(1− 2n+1) + (2n+1)` · CostSetupn(R)
(7)

for the deterministic re-executions of level `.
Equations 6 and 7 can then be combined to provide the following estimate

to the total cost of an attack against Lyra2 involving R/2n+2 rows instead of R:

CostLyra2(1/2n+2)(R, T ) = (CostSetupn(R) + CostWander∗1,n + · · ·+ CostWander∗2T,n)σ

≈ O((R2)(22nT ) +R · CostSetupn(R) · 22nT )
(8)

Since, as suggested in Section 5.1.2.4, the upper bound CostSetupn = O(Rn+1)
given by Equation 2 is likely to become a better estimate for CostSetupn as n
grows, we conjecture that the processing cost of Lyra2 using the strategy hereby
discussed be O(22nTRn+2) for n� 1.

5.1.4 Adding the Wandering phase: sentinel-based strategy. The ana-
lysis of the consumer-producer strategy described in Section 5.1.3 shows that
updating many rows in the hope they will be useful in an iteration of the Wan-
dering phase’s Rows Loop does reduce the attack cost by too much, since these
rows are only useful 25% of the time; in addition, it has the disadvantage of
discarding the rows initialized/updated during V Loop10, which are certainly
required 75% of the time. From these observations, we can consider an alterna-
tive strategy that employs the following trick1: if we keep in memory all rows
produced during V 0

1 and a few rows initialized during V 0
2 together with the

corresponding sponge states, we can skip part of the latter’s iterations when ini-
tializing/updating the rows required by V 1

1 . In our example scenario, we would
keep in memory rows M [04] −M [7] as output by V 0

1 . Then, by keeping rows
M [C] and M [4C ] in memory together with state s0

D, M [D] and M [7D] can be
recomputed directly from M [7] with a cost of σ, while M [F ] and M [5F ] can be
recovered with a cost of 3σ. In both cases, M [C] and M [4C ] act as “sentinels”
that allow us to skip the computation of M [8]−M [C].

More generally, suppose we keep rows M [0 6 i < R/2], obtained by running
V 0

1 , as well as ε > 0 sentinels equally distributed in the range [R/2, R[. Then,
the cost of recovering any row output by V 0

2 would range from 0 (for the sen-
tinels themselves) to (R/2ε)σ (for rows the farthest away from the sentinels),
or (R/4ε)σ on average. The resulting memory cost of such strategy is approxi-
mately R/2 (for the rows from V 0

1 ), plus 2ε (for the fixed sentinels), plus 2 (for

1 This is analogous to the attack presented in [62] for the version of Lyra2 originally
submitted to the Password Hashing Competition as “V1”
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storing the value of prev0 and prev1 while computing a given row inside the area
covered by a fixed sentinel). When compared with the consumer-produces ap-
proach, one drawback is that only the 2ε rows acting as sentinels can be promptly
consumed by V 1

1 , since rows provided by V 0
1 are overwritten during the execu-

tion of V 0
2 . Nonetheless, the average cost of V 1

1 ends up being approximately
(R/2) · (R/4ε)σ for a small ε, which is lower than in the previous approach for
ε > 2. With ε = R/32 sentinels (i.e., R/16 rows), for example, the processing
cost of V 1

1 would be 4R for a memory usage less than 10% above R/2.

We can then employ a similar trick for the execution of V 1
2 , by placing sen-

tinels along the execution of V 1
1 to reduce the cost of the latter’s recomputations.

For instance, M [98] and M [89] could be used as sentinels to accelerate the recov-
ery of rows visited in the second half of V 1

1 in our example scenario (see Figure
11). However, in this case the sentinels are likely to be less effective. The reason
is that the steps taken from each sentinel placed in V 1

1 should cover different
portions of V 0

2 , obliging some iterations of V 0
2 to be executed. For example,

using the same ε = R/32 sentinels as before to keep the memory usage near
R/2, we could distribute half of them along V 0

2 and the other half along V 1
1 ,

so each would be covered by ε′ = ε/2 sentinels. As a result, any row output by
V 1

1 or V 0
2 could be recovered with R/4(ε′) = 16 executions of CL on average.

Unfortunately for the attacker, though, any iteration of V 1
2 takes two rows from

V 1
1 , which means that 2 · 16 = 32 iterations of V 1

1 are likely to be executed and,
hence, that roughly 2 · 32 = 64 rows from V 0

2 should be required. If all of those
64 rows fall into areas covered by different sentinels placed at V 0

2 , the average
cost when computing any row from V 1

2 would be approximately 64 · 16 = 1024
executions of CL. In this case, the cost of the R/2 iterations of V 1

2 would become
roughly (1024R/2)σ on average. This is lower than the ≈ (R2/2)σ obtained with
the consumer-producer strategy for R > 1024, but still orders of magnitude more
expensive than a regular execution with a memory usage of R.

Obviously, two or more of the 64 rows required from V 0
2 may fall in the area

covered by a same sentinel, which allows for a lower number of executions if
the attacker computes those rows in a single sweep and keep them in memory
until they are required. Even though this approach is likely to raise the attack’s
memory usage, it would lead to a lower processing cost, since any part of V 0

2

covered by a same sentinel would be run only once during any iteration of V 1
2 .

However, if the number of sentinels in V 0
2 is large in comparison with the number

of rows required by each of V 1
2 ’s iteration (i.e., for ε/2� 64, which implies R�

8192), we can ignore such “sentinel collisions” and the average cost described
above should hold. This should also the cost obtained if the attacker prefers not
to raise the attack’s memory usage when collisions occur, but instead recomputes
rows that can be obtained from a given sentinel by running the same part of V 0

2

more than once.

For the sake of completeness, it is interesting to analyze such memory-
processing tradeoffs for dealing with collisions when the cost of this sentinel-
based strategy starts to get higher than the one obtained with the consumer-
producer strategy. Specifically, for R = 1024 this strategy is deemed to create
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many sentinel collisions, with each of the ε′ = 16 sentinels placed along V 0
2 be-

ing employed for recomputing roughly 64/16 = 4 out of the 64 rows from V 0
2

required by each iteration of V 1
2 . In this scenario, the 4 rows under a same sen-

tinel’s responsibility can recovered in a single sweep and then stored until needed.
Assuming that those 4 rows are equally distributed over the corresponding sen-
tinel’s coverage area, the average cost of the executions related to that sentinel
would then be (7/8)(R/2)/(ε/2) = 28σ. This leads to 16 · 28σ = 448σ for all 16
partial runs of V 0

2 , and consequently to (448R/2)σ for the whole V 1
2 . In terms

of memory usage, the worst case scenario from the attacker’s perspective refers
to when the rows computed last from each sentinel are the first ones required
during V 1

2 , meaning that recovering 1 row that is immediately useful leaves in
memory 3 that are not. This situation would lead to a storage of 3(ε/2) = 3R/64
rows, which corresponds to 75% of the R/16 rows already employed by the attack
besides the R/2 base value.

As a last remark, notice that the 64 rows from V 0
2 can be all recovered in

parallel, using 64 different processing cores, the same applying to the 2 rows from
V 1

1 , with 2 extra cores. The average cost of V 1
2 as perceived by the attacker would

then be roughly (16 + 16)(R/2)σ, which corresponds to a parallel execution of
V 0

2 followed by a parallel execution of V 1
1 . In this case, however, the memory

usage would also be slightly higher: since each of the 66 threads would have to
be associated its own prev0 and prev1, the attack would require an additional
memory usage of 132 rows.

5.1.4.1 On the (low) scalability of the sentinel-based strategy. Even though
the sentinel strategy shows promise in some scenarios, it has low scalability for
values of T higher than 1. The reason is that, as T grows, the computation of
any given row depends on rows recomputed from an exponentially large number
of sentinels. This is more easily observed if we analyze the dependence graph
depicted in Figure 13 for T = 2, which shows the number of rows from level `−1
that are needed in the sentinel-based computation of level `. In this scenario,
if we assume that the ε sentinels are distributed along V 0

2 , V 1
1 , V 1

2 and V 2
1

(levels ` = 0 to 3, respectively), each level will get ε′ = ε/4 sentinels, being
divided in R/2ε′ areas. As a result, even though computing a row from level
` = 4 takes only 2 rows from level ` = 3, computing a row from level ` < 4
involves roughly R/4ε′ iterations of that level, those iterations requiring 2(R/4ε′)
rows from level ` − 1. Therefore, any iteration of V 2

2 is expected to involve
the computation of 24(R/4ε′)3 rows from V 0

2 , which translates to 219 rows for
ε = R/32. If each of these rows is computed individually, with the usual cost of
(R/4ε′)σ per row, the recomputations related to sentinels from V 0

2 alone would
take 219(R/4ε′)σ = 224 · σ, leading to a cost higher than (224 · R/2)σ for the
whole V 2

2 .
More generally, for arbitrary values of T and ε = R/α (and, hence, ε′ = ε/2T ),

the recomputations in V 0
2 for each iteration of V T2 would take 22T ·(R/4ε′)2Tσ, so

the cost of V T2 itself would become (α·T )2T (R/2)σ. Depending on the parameters
employed, this cost may be higher than the O((3/2)2TR2) obtained with the
consumer-producer strategy, making the latter a preferred attack venue. This
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Fig. 13: Tree representing the dependence among rows in Lyra2 with T = 2:
using ε′ sentinels per level.

is the case, for example, when we have α = 32, as in all previous examples,
R 6 220, as in all benchmarks presented in Section 7, and T > 2.

Once again, attackers may counterbalance this processing cost with the tem-
porary storage of rows that can be recomputed from a same sentinel, or of a same
row that is required multiple times during the attack. However, the attackers’
ability of doing so while keeping the memory usage around R/2 is limited by
the fact that this sentinel-based strategy commits a huge part of the attack’s
memory budget to the storage of all rows from V 0

1 . Diverting part of this budget
to the temporary storage of rows, on the other hand, is similar to what is done
in the consumer-producer strategy itself, so the latter can be seen as an extreme
case of this approach.

On the other extreme, the memory budget could be diverted to raise the
number of sentinels and, thus, reduce α. As a drawback, the attack would have
to deal with a dependence graph displaying extra layers, since then V 0

1 would
not be fully covered. This would lead to a higher cost for the computation of
each row from V 0

2 , counterbalancing to some extent the gains obtained with the
extra sentinels. For example, suppose the attacker (1) stores only R/4 out of the
R/2 rows from V 0

1 , using the remainder budget of R/4 rows to make ε = R/8
sentinels, and then (2) places ε∗ = R/32 sentinels (i.e., R/16 rows) along the
part of V 0

1 that is not covered anymore, thus keeping the total memory usage at
R/2 + R/16 rows as in the previous examples. In this scenario, the number of
rows from V 0

2 involved in each iteration of V 2
2 should drop to 24(R/4ε′)3 = 213

if we assume once again that the sentinels are equally distributed through all
levels (i.e., for ε′ = ε/4). However, recovering a row from V 0

2 should not take
only R/4ε′ = 23 executions of CL anymore, but roughly (R/4ε′) · (R/4ε∗) = 25

due to the recomputations of rows from V 0
1 . The processing cost for the whole

V 2
2 would then be (218 · R/2)σ, which still is not lower than what is obtained

with the consumer-producer strategy for R 6 217.



41

The low scalability of the sentinel-based strategy also impairs attacks with a
memory usage lower than R/2, since then the number of sentinels and coverage
of rows from V 0

1 would both drop. The same scalability issues apply to attempts
of recovering all rows from V 0

2 in parallel using different processing cores, as
suggested at the end of Section 5.1.4, given that the number of cores grows
exponentially with T .

5.2 Slow-Memory attacks

When compared to low-memory attacks, providing protection against slow-memory
attacks is a more involved task. This happens because the attacker acts approxi-
mately as a legitimate user during the algorithm’s operation, keeping in memory
all information required. The main difference resides on the bandwidth and la-
tency provided by the memory device employed, which ultimately impacts the
time required for testing each password guess.

Lyra2, similarly to scrypt, explores the properties of low-cost memory de-
vices by visiting memory positions following a pseudorandom pattern during the
Wandering phase. In particular, this strategy increases the latency of intrinsically
sequential memory devices, such as hard disks, especially if the attack involves
multiple instances simultaneously accessing different memory sections. Further-
more, as discussed in Section 4.5, this pseudorandom pattern combined with a
small C parameter may also diminish speedups obtained from mechanisms such
as caching and prefetching, even when the attacker employs (low-cost) random-
access memory chips. Even though this latency may be (partially) hidden in
a parallel attack by prefetching the rows needed by one thread while another
thread is running, at least the attacker would have to pay the cost of frequently
changing the context of each thread. We notice that this approach is particu-
larly harmful against older model GPUs, whose internal structure were usually
optimized toward deterministic memory accesses to small portions of memory
[22, Sec. 5.3.2].

When compared with scrypt, a slight improvement introduced by Lyra2
against such attacks is that the memory positions are not only repeatedly read,
but also written. As a result, Lyra2 requires data to be repeatedly moved up and
down the memory hierarchy. The overall impact of this feature on the perfor-
mance of a slow-memory attack depends, however, on the exact system architec-
ture. For example, it is likely to increase traffic on a shared memory bus, while
caching mechanisms may require a more complex circuitry/scheduling to cope
with the continuous flow of information from/to a slower memory level. This high
bandwidth usage is also likely to hinder the construction of high-performance
dedicated hardware for testing multiple password in parallel.

Another feature of Lyra2 is the fact that, during the Wandering phase, the
columns of the most recently updated rows (M [prev0] and M [prev0]) are read in
a pseudorandom manner. Since these rows are expected to be in cache during a
regular execution of Lyra2, a legitimate user that configures C adequately should
be able to read these rows approximately as fast as if they were read sequentially.
An attacker using a platform with a lower cache size, however, should experience
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a lower performance due to cache misses. In addition, this pseudorandom pattern
hinders the creation of simple pipelines in hardware for visiting those rows: even
if the attacker keeps all columns in fast memory to avoid latency issues, some
selection function will be necessary to choose among those columns on the fly.

Finally, in Lyra2’s design the sponge’s output is always XORed with the
value of existing rows, preventing the memory positions corresponding to those
rows from becoming quickly replaceable. This property is, thus, likely to hinder
the attacker’s capability of reusing those memory regions in a parallel thread.

Obviously, all features displayed by Lyra2 for providing protection against
slow-memory attacks may also impact the algorithm’s performance for legiti-
mate user. After all, they also interfere with the legitimate platform’s capability
of taking advantage of its own caching and pre-fetching features. Therefore, it is
of utmost importance that the algorithm’s configuration is optimized to the plat-
form’s characteristics, considering aspects such as the amount of RAM available,
cache line size, etc. This should allow Lyra2’s execution to run more smoothly in
the legitimate user’s machine while imposing more serious penalties to attackers
employing platforms with distinct characteristics.

5.3 Cache-timing attacks

A cache-timing attack is a type of side-channel attack in which the attacker is
able to observe a machine’s timing behavior by monitoring its access to cache
memory (e.g., the occurrence of cache-misses) [57,63]. This class of attacks has
been shown to be effective, for example, against certain implementations of the
Advanced Encryption Standard (AES) [64] and RSA [65], allowing the recovery
of the secret key employed by the algorithms [63,66].

In the context of password hashing, cache-timing attacks may be a threat
against memory-hard solutions that involve operations for which the memory
visitation order depends on the password. The reason is that, at least in theory,
a spy process that observes the cache behavior of the correct password may
be able to filter passwords that do not match that pattern after only a few
iterations, rather than after the whole algorithm is run [57]. Nevertheless, cache-
timing attacks are unlikely to be a matter of great concern in scenarios where the
PHS runs in a single-user scenario, such as in local authentication or in remote
authentications performed in a dedicated server: after all, if attackers are able
to insert such spy process into these environments, it is quite possible they will
insert a much more powerful spyware (e.g., a keylogger or a memory scanner)
to get the password more directly.

On the other hand, cache-timing attacks may be an interesting approach in
scenarios where the physical hardware running the PHS is shared by processes of
different users, such as virtual servers hosted in a public cloud [67]. This happens
because such environments potentially create the required conditions for making
cache-timing measurements [67], but are expected to prevent the installation of
a malware powerful enough to circumvent the hypervisor’s isolation capability
for accessing data from different virtual machines.
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In this context, the approach adopted in Lyra2 is to provide resistance against
cache-timing attacks only during the Setup phase, in which the indices of the
rows read and written are not password-dependent, while the Wandering and
Wrap-up phases are susceptible to such attacks. As a result, even though Lyra2
is not completely immune to cache-timing attacks, the algorithm ensures that at-
tackers will have to run the whole Setup phase and at least a portion of the Wan-
dering phase before they can use cache-timing information for filtering guesses.
Therefore, such attacks will still involve a memory usage of at least R/2 rows or
some of the time-memory trade-offs discussed along Section 5.1.

The reasoning behind this design decision of providing partial resistance to
cache-timing attacks is threefold. First, as discussed in Section 5.2, making
password-dependent memory visitations is one of the main defenses of Lyra2
against slow-memory attacks, since it hinders caching and pre-fetching mecha-
nisms that could accelerate this threat. Therefore, resistance against low-memory
attacks and protection against cache-timing attacks are somewhat conflicting re-
quirements. Since low- and slow-memory attacks are applicable to a wide range
of scenarios, from local to remote authentication, it seems more important to
protect against them than completely preventing cache-timing attacks.

Second, for practical reasons (namely, scalability) it may be interesting to
offload the password hashing process to users, distributing the underlying costs
among client devices rather than concentrating them on the server, even in
the case of remote authentication. This is the main idea behind the server-
relief protocol described in [57], according to which the server sends only the
salt to the client (preferably using a secure channel), who responds with x =
PHS(pwd, salt); then, the server only computes locally y = H(x) and compares
it to the value stored in its own database. The result of this approach is that
the server-side computations during authentication are reduced to execution of
one hash, while the memory- and processing-intensive operations involved in
the password hashing process are performed by the client, in an environment in
which cache-timing is probably a less critical concern.

Third, as discussed in [68], recent advances in software and hardware tech-
nology may (partially) hinder the feasibility of cache-timing and related attacks
due to the amount of “noise” conveyed by their underlying complexity. This
technological constraint is also reinforced by the fact that security-aware cloud
providers are expected to provide countermeasures against such attacks for pro-
tecting their users, such as (see [67] for a more detailed discussion): ensuring
that processes run by different users do not influence each other’s cache usage
(or, at least, that this influence is not completely predictable); or making it more
difficult for an attacker to place a spy process in the same physical machine as
security-sensitive processes, in especial processes related to user authentication.
Therefore, even if these countermeasures are not enough to completely prevent
such attacks from happening, the added complexity brought by them may be
enough to force the attacker to run a large portion of the Wandering phase, pay-
ing the corresponding costs, before a password guess can be reliably discarded.
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6 Some extensions of Lyra2

In this section, we discuss some possible extensions of the Lyra2 algorithm de-
scribed in Section 4, which can be integrated into its core design for exploring
different aspects, namely: giving users better control over the algorithm’s band-
width usage (parameter δ); and taking advantage of parallelism capabilities po-
tentially available on the legitimate user’s platform (parameter p).

6.1 Controlling the algorithm’s bandwidth usage

One possible adaptation of the algorithm consists in allowing the user to control
the number of rows involved in each iteration of the Visitation Loop. The reason
is that, while Algorithm 2 suggests that a single row index besides row0 should be
employed during the Setup and Wandering phases, this number could actually be
controlled by a δ > 0 parameter. Algorithm 2 can, thus, be seen as the particular
case in which δ = 1, while the original Lyra is more similar (although not
identical) to Lyra2 with δ = 0. This allows a better control over the algorithm’s
total memory bandwidth usage, so it can better match the bandwidth available
at the legitimate platform.

This parameterization brings positive security consequences. For example,
the number of rows written during the Wandering phase defines the speed in
which the memory matrix is modified and, thus, the number of levels in the
dependence tree discussed in Section 5.1.3.2. As a result, the 2T observed in
Equations 5 and 8 would actually become (δ + 1)T . The number of rows read,
on its turn, determines the tree’s branching factor and, consequently, the proba-
bility that a previously discarded row will incur recomputations in Equations 3
an 6. With δ > 1, it is also possible to raise the Setup phase minimum memory
usage above the R/2 defined by Lemma 1. This can be accomplished by choosing
visitation patterns for rowd>2 that force the attacker to keep rows that, other-
wise, could be discarded right after the middle of the Setup phase. One possible
approach is, for example, to divide the revisitation window in the Setup phase
into δ contiguous sub-windows, so each rowd revisits its own sub-window δ times.
We note that this principle does not even need to be restricted to reads/writes
on a same memory matrix: for example, one could add a row2 variable that
indexes a Read-Only Memory chip attached to the device’s platform and then
only perform several reads (no writes) on this external memory, giving support
to the “rom-port-hardness” concept discussed in [69].

Even though the security implications of having δ > 2 may be of interest, the
main disadvantage of this approach is that the higher number of rows picked po-
tentially leads to performance penalties due to memory-related operations. This
may oblige legitimate users to reduce the value of T to keep Lyra2’s running time
below a certain threshold, which in turn would be beneficial to attack platforms
having high memory bandwidth and able to mask memory latency (e.g., using
idle cores that are waiting for input to run different password guesses). Indeed,
according to our tests, we observed slow downs from more than 100% to appro-
ximately 50% with each increment of δ in the platforms used as testbed for our
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benchmarks (see Section 7). Therefore, the interest of supporting a customizable
δ depends on actual tests made on the target platform, although we conjecture
that this would only be beneficial with DRAM chips faster than those commer-
cially available today. For this reason, in this document we only explore further
the ability of allowing δ = 0, which is advantageous in combination with Lyra2’s
multicore variant described in Section 6.2, while its application for obtaining
rom-port-hardness is not discussed.

6.2 Allowing parallelism on legitimate platforms: Lyra2p

Even though a strictly sequential PHS is interesting for thwarting attacks, this
may not be the best choice if the legitimate platform itself has multiple processing
units available, such as a multicore CPU or even a GPU. In such scenarios, users
may want to take advantage of this parallelism for (1) raising the PHS’s usage
of memory, abundant in a desktop or GPU running a single PHS instance, while
(2) keeping the PHS’s total processing time within humanly acceptable limits,
possibly using a larger value of T for improving its resistance against attacks
involving time-memory trade-offs.

Against an attacker making several guesses in parallel, this strategy instantly
raises the memory costs proportionally to the number of cores used by the le-
gitimate user. For example, if the output is computed from a sequential PHS
configured to use 10 MB of memory and to take 1 second to run in a single
core, an attacker who has access to 1,000 processing cores and 10 GB of memory
could make 1,000 password guesses per second (one per core). If the output is
now computed from two instances of the PHS with the same parametrization,
testing a guess would take 20 MB and 1 second, meaning that the attacker would
need 20 GB of memory to obtain the same throughput as before.

Therefore, aiming to allow legitimate users to explore their own parallelism
capabilities, we propose a slightly tweaked version of Lyra2. We call this variant
Lyra2p, where the p > 1 parameter is the desired degree of parallelism, with
the restriction that p|(R/2). Before we go into details on Lyra2p’s operation,
though, it is useful to briefly mention its rationale. Specifically, the idea is to
have p parallel threads working on the same memory matrix in such a manner
that (1) the different threads do not cause much interference on each other’s
operation, but (2) each of the p slices of the shared memory matrix depends on
rows generated from multiple threads. The first property leads to a lower need of
synchronism between threads, facilitating the algorithm’s processing by parallel
platforms. The second property, on its turn, makes it harder to run each thread
separately with a reduced memory usage and simply combine their final results
together.

Along the discussion, we assume that δ = 0, which, according to our bench-
marks, is the recommended parameterization for attaining good performance
with Lyra2p.

6.2.1 Structure and rationale Lyra2p’s steps are shown in Algorithm 3.
First, during the Bootstrapping phase, p sponge copies are generated. This is
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Algorithm 3 The Lyra2 Algorithm, with p parallel instances.

Param: H . Sponge with block size b (in bits) and underlying permutation f
Param: ρ . Number of rounds of f during the Setup and Wandering phases
Param: ω . Number of bits to be used in rotations (recommended: a multiple of W )
Param: p . Degree of parallelism (p > 1 and p|(R/2))
Input: pwd . The password
Input: salt . A salt
Input: T . Time cost, in number of iterations
Input: R . Number of rows in the memory matrix
Input: C . Number of columns in the memory matrix (recommended: C · ρ > ρmax)
Input: k . The desired key length, in bits
Output: K . The password-derived k-long key

1: for each i in [0, p[ do . Operations performed in parallel, by each thread
2: . Bootstrapping phase: Initializes the sponges’ states and local variables
3: params← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C ‖ p ‖ i
4: Hi.absorb(pad(pwd ‖ salt ‖ params)) . Padding rule: 10∗1.
5: gap← 1 ; stp← 1 ; wnd← 2 ; sqrt← 2 ; sync← 4 ; j ← i

6: prev0 ← 2 ; rowp ← 1 ; prevp ← 0

7: . Setup phase: Group of threads initialize a (R× C) memory matrix
8: for (col← 0 to C−1) do {Mi[0][C−1−col]← Hi.squeezeρ(b)} end for

9: for (col← 0 to C−1) do {Mi[1][C−1−col]← Mi[0][col]⊕Hi.duplexρ(Mi[0][col], b)} end for

10: for (col← 0 to C−1) do {Mi[2][C−1−col]← Mi[1][col]⊕Hi.duplexρ(Mi[1][col], b)} end for

11: for (row0 ← 3 to R/p− 1) do . Filling Loop: initializes remainder rows
12: . Columns Loop: Mi[row

0] is initialized; Mj [rowp] is updated
13: for (col← 0 to C − 1) do

14: rand← Hi.duplexρ(Mj [rowp][col]�Mi[prev
0][col]�Mj [prevp][col], b)

15: Mi[row
0][C − 1− col]← Mi[prev

0][col]⊕ rand
16: Mj [rowp][col]← Mj [rowp][col]⊕ rot(rand) . rot(): right rotation by ω bits
17: end for

18: prev0 ← row0 ; prevp ← rowp ; rowp ← (rowp + stp) mod wnd

19: if (rowp = 0) then . Window fully revisited
20: wnd← 2 · wnd ; stp← sqrt + gap ; gap← −gap . Updates window and step
21: if (gap = −1) then {sqrt← 2 · sqrt} end if . Doubles sqrt every other iteration
22: end if

23: if (row0 = sync) then {sync← sync+ sqrt/2 ; j ← (j+1) mod p ; SyncThreads} end if

24: end for

25: SyncThreads

26: . Wandering phase: Iteratively overwrites (random) cells of the memory matrix
27: wnd← R/2p ; sync← sqrt ; off0 ← 0 ; offp ← wnd

28: for (wCount← 0 to (R · T )/p− 1) do

29: row0←off0 +(lsw(rand)mod wnd) ; rowp←offp +(lsw(rot(rand))mod wnd)

30: j← lsw(rot2(rand))mod p

31: for (col← 0 to C − 1) do . Columns Loop: updates Mi[row
0]

32: col0 ← lsw(rot3(rand)) mod C . Picks pseudorandom column from Mi[prev
0]

33: rand← Hi.duplexρ(Mi[row
0][col]�Mi[prev

0][col0]�Mj [rowp][col])
34: Mi[row

0][col]← Mi[row
0][col]⊕ rand . Updates row picked from slice Mi

35: end for . End of Columns Loop
36: prev0 ← row0 . Next iteration revisits most recently updated row from slice Mi

37: if (wCount = sync) then {sync← sync+ sqrt ; swap(off0, offp) ; SyncThreads} end if

38: end for . End of Visitation Loop
39: SyncThreads

40: . Wrap-up phase: output computation
41: Hi.absorb(Mi[row

0][0]) . Absorbs a final column with full-round sponge
42: Ki ← Hi.squeeze(k) . Squeezes k bits with full-round sponge
43: end for . All threads finished

44: return K0 ⊕ . . .⊕Kp−1 . Provides k-long bitstring as output
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done similarly to Lyra2, the main difference being that the params fed to each
sponge Si (0 6 i 6 p − 1) must contain the values of p and i in addition to
any other information already included in line 3 of Algorithm 3. This approach
ensures that each of the p sponges is initialized with distinct internal states,
even though they absorb identical values of salt and pwd. In addition, the fact
that the input absorbed by each sponge depends on p ensures that computations
made with p′ 6= p cannot be reused in an attack against Lyra2p, an interesting
property for scenarios in which the attacker does not know the correct value of
p.

For the Setup phase, the p sponges are then evenly distributed over the
memory matrix, becoming responsible for initializing p contiguous slices of R/p
rows each, the said slices being hereby denoted Mi (0 6 i 6 p−1). More formally,
slice Mi corresponds to the interval M [i · R/p] to M [(i + 1) · R/p − 1] of the
complete memory matrix, so that Mi[x] = M [i ·R/p+ x] for any given value of
x.

The Setup phase of each sponge Si then proceeds similarly to algorithm’s non-
parallelizable version, starting with the three first rows and then entering the
Filling Loop to initialize the remainder rows while revisiting previously initialized
rows; the latter are denoted rowp in Algorithm 3, which play the exact same
role as row1 in Algorithm 2 during the Setup phase. However, Lyra2p has one
important difference: in each duplexing operation performed by Si, the revisited
rows are not necessarily picked from slice Mi, but from a slice Mj that changes
often during the Visitation Loop. Namely, the value of j starts at i (line 5) and is
cyclically incremented whenever Si revisits approximately

√
wnd rows from the

corresponding window (line 23). This approach ensures that each slice depends
on data from other slices, enforcing the need of keeping all of their corresponding
data in memory for better performance. This specific choice of how often j is
updated, on its turn, was motivated by the fact that it builds upon the Setup’s
window visitation pattern to distribute those visitations among the different
slices: if we see the window as a matrix, as discussed in Section 4.1.2, each p
consecutive visitations of its diagonals and anti-diagonals happen in p different
slices.

To prevent race conditions that might be caused by the Setup’s cross-slice
read/write operations, the execution of all threads is synchronized in line 23,
which is indicated by the “SyncThreads” call. A final synchronization is also
performed right after the end of the Setup phase (line 25), ensuring that all rows
are initialized before the algorithm enters the Wandering phase. These synchro-
nization points are enough to ensure that each thread’s prev0, prevp and rowp
variables cover separate memory areas, so the threads can run independently
until those points without the risk of inconsistencies.

As a final remark regarding the Setup phase, we note that the Mj [prevp], fed
to Si in line 14, certainly does not come from that sponge’s cache right after j is
updated, but actually corresponds to the row most recently updated by another
sponge. This should impact the algorithm’s performance, but since this situation
does not occur too often (approximately O(lg(R/p) ·

√
(R/p)) times), in practice
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the total impact of such cache misses should be low, which was confirmed by our
experimental results.

Concerning the Wandering phase, an important difference between the non-
parallelizable and paralellizable versions of Lyra2 is that in the latter each slice
Mi is seen by the sponge Si as two halves: one half is visited by Si itself, in the
positions indicated by the pseudorandomly picked index row0; the other half,
however, is meant to be freely visited by any sponge S06j<p, in the positions
indicated by the pseudorandomly picked index rowp. This separation between
halves is accomplished by (1) fixing the wnd variable to R/2p in line 27, which
limits the range of the row0 and rowp indices computed in line 30 to a half slice,
and (2) combining row0 and rowp with complementary offsets (off0 and offp,
respectively) in line 30, before feeding them to the sponge. The pseudorandom
value of j is then computed similarly to row0 and rowp, from a word of the
sponge’s outer state (also in line 30). Analogously to the Setup, this makes the
each slice dependent on data from other slices, penalizing attackers that might
prefer to discard part of the data. However, since the visitation pattern during
the Wandering phase is unpredictable, each Si refrains from writing on the row
taken from slice Mj , which is only read, as a way to prevent race conditions
that could emerge from such cross-slice interactions. As a result, each iteration
of the Visitation Loop updates a single row from Mi with the sponge’s output,
namely row0 (line 34), while rowp remains unmodified; for this reason, there is
no “prevp” in this part of the algorithm, so the duplexing operation in line 33
takes as input three rows rather than four.

To ensure that the updates made by Si on its own half slice affect the other
parallel threads reading from the other half, these two halves are switched after
approximately

√
R/p iterations of the Visitation Loop (line 37), at which mo-

ment all threads are synchronized. This switching frequency is consonant with
the one adopted during Setup, besides leading to a curious property: following to
the Birthday Paradox, there is a ≈ 50% chance that at least one row updated by
Si while processing a half of its slice is read by one of the p sponges when they all
access that same half, i.e., after the subsequent switch. Therefore, even though
each thread may be run independently of any other thread between synchroniza-
tions, it would be error prone to run a single thread beyond the synchronization
point if other threads have not yet finished their own processing.

Finally, the Wrap-up phase of Lyra2p is analogous to the one used in the
algorithm’s non-parallelizable version: each sponge Si absorbs a single cell from
its own slice Mi and squeezes k bits. When all sponges finish processing, the p
sub-keys generated in this manner are XORed together, yielding then Lyra2p’s
output K.

6.2.2 Security analysis The main advantage of this parallelizable version of
Lyra2 is that, in theory, it allows legitimated users to process the memory matrix
p times faster than the latter. In practice, this performance gain is unlikely to be
as high as p due to the larger number of pseudorandom reads (and consequent
cache misses) performed by the algorithm, as well as to the need of eventual
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synchronizations among threads. However, for the sake of the argument, consider
that p is indeed the acceleration obtained. In this case, there are some ways by
which legitimate users may take advantage of this faster operation for raising
the algorithm’s resistance against attacks. On one extreme, legitimate users may
adopt as parameters Rp = R · p and Tp = T , which raises the algorithm’s
memory usage p times while maintaining a similar processing time. On the other
extreme, legitimate users may use the multiple processing cores simply to raise
the algorithm’s total number of operations and bandwidth usage, without raising
its processing time, which is accomplished by making Rp = R and Tp = T · p.

Whichever the parameterization adopted, performing a low-memory attack
against the Setup phase of Lyra2p is expected to involve costs similar to those
discussed in Section 5.1.2. The reason is that each thread of Lyra2p initializes and
revisits rows during Setup just like Lyra2, the only significant difference being
that among the rows fed to a given sponge Si there are some initialized/updated
by other sponges Sj 6=i running in different threads. These cross-slice interactions
oblige all threads to run approximately in sync, filling the memory with newly
initialized rows, to allow other threads to proceed their computation. This need
of synchronization comes especially from the fact that the rows revisited by Si
on every slice M06j<p are distributed all along that slice, including rows with
low and high indices. Consequently, cross-slice reads by Si on Mj following a
given synchronization point can only be performed after Sj is near that same
synchronization point, because otherwise (at least) the rows with higher indices
will not be available. The group of p threads can, thus, be seen approximately as
a single thread that sequentially initializes and updates p rows at a time, much
like in the non-parallelizable version of the Lyra2 algorithm. Hence, running
the Setup phase with a peak memory usage of Rp/2 rows and no processing
penalty, for example, is still perfectly possible: since only the first half of each
slice is revisited during the initialization of their second halves, the rows from
the latter still can be discarded right after their computation, similarly to the
attack discussed in Section 5.1.2.1. Attacks going below Rp/2 rows, however,
should involve the need of discarding rows and recomputing them only when
needed, from scratch or using intermediary results as sentinels, with processing
penalties that are likely similar to those presented in Section 5.1.2.

The Wandering phase, on its turn, has a disadvantage when compared to
Lyra2’s non-parallelizable version: as a single row is updated per thread in each
iteration of the Visitation Loop rather than two, the resulting dependence graph
gains extra levels only after Rp iterations of that loop. Since this is twice slower
than assumed in the original analysis of the Wandering phase (Sections 5.1.3 and
5.1.4), the main impact of this difference is that the equations thereby described
should apply to Lyra2p with the “2T” parameter replaced by “Tp”. A Tp >
2T parameterization could compensate for this correction, leading to a similar
resistance against both low-memory attack venues discussed in those sections.
Nonetheless, if there is enough space available at the legitimate platform, the
Rp = R · p and Tp = T parameterization would still be preferable: with Rp = R
and Tp = T · p, the memory usage of R would allow attackers to run p regular
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instances of Lyra2p in parallel, using a total of R·p rows, obtaining a performance
penalty of p due to the higher value of T ; in comparison, if we have Rp = R · p,
bringing the memory cost down to R, so p instances can be run in parallel with
the same R · p rows, would involve a penalty higher than simply p.

Other differences of Lyra2p’s Wandering phase should have only small im-
pacts on its security when compared with Lyra2, not influencing too much the
asymptotic costs discussed in Sections 5.1.3 and 5.1.4. For example, in Lyra2p
the group of p threads performs p times more read operations on the memory
matrix per iteration of the Visitation Loop, so discarded rows should be recom-
puted more frequently. This should not raise the cost of the consumer-producer
strategy by much, since the costs given in Section 5.1.3 already consider that
recomputations occur at least 75% of the time; the cost of the sentinel-based
strategy, on the other hand, should raise at most p times due to the number p
times higher of sentinels from level `− 1 activated by level `.

Concerning slow-memory attacks, the main advantage of the parallelizable
version of Lyra2 is that it raises the memory bandwidth usage proportionally
to p. Namely, the bandwidth of the Setup phase is around p times higher, while
the Wandering phase’s grows up to 3p/4 times due to the lower number of write
operations per thread, as discussed above. Therefore, even if Lyra2 and Lyra2p
are configured to run with the same amount of memory and processing time, the
latter can impose performance penalties up to p times higher to attacks in which
multiple threads performing passwords tests share a same memory bus, besides
requiring more processing cores. To avoid dealing with such inconvenience, at-
tackers might prefer to serialize the algorithm’s execution, running each thread
in sequence instead of doing the whole computation of a given password guess
in parallel. However, this approach would itself lead to a processing cost p times
higher due to the serialization.

Finally, the low- and slow-memory approaches could be combined to take
advantage of the fact that each sponge pseudorandomly visits a space of Rp/2 +
Rp/p rows instead of Rp. Specifically, this property allows the ≈

√
Rp iterations

of the Wandering phase between two synchronizations points to be run without
recomputations even if only the Rp/2+Rp/2p rows that are known to be required
by the thread being executed are kept in (fast) memory. If the remainder (p −
1)Rp/2p rows are placed in a secondary storage devices instead of discarded,
the only penalties to be paid in this case would be the cost of serializing the
algorithm’s execution and the eventual latency due to the data transfers between
the secondary and main memory devices. The benefits of this approach are,
however, quite limited, since the p times higher processing cost resulting from
the serialization is not compensated by an equivalent memory reduction: after
all, each individual thread will still require (Rp/2+Rp/p) > Rp/p rows to remain
in memory.
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7 Performance for different settings

In our assessment of Lyra2’s performance, we used an SSE-enabled implementa-
tion of Blake2b’s compression function [39] as the underlying sponge’s f function
of Algorithm 2 (i.e., without any of the extensions described in Section 6) and
Algorithm 3 (i.e., the parallel extension described in Section 6.2). According to
our tests, using SSE (Streaming SIMD Extensions, where SIMD stands for Single
Instruction, Multiple Data) instructions allow performance gains of 20% to 30%
in comparison with non-SSE settings, so we only consider such optimized imple-
mentations in this document. One important note about this implementation is
that, as discussed in Section 4.4, the least significant 512 bits of the sponge’s
state are set to zeros, while the remainder 512 bits are set to Blake2b’s Initial-
ization Vector. Also, to prevent the IV from being overwritten by user-defined
data, the sponge’s capacity c employed when absorbing the user’s input (line 4
of Algorithm 2) is kept at 512 bits, but reduced to 256 bits in the remainder of
the algorithm to allow a higher bitrate (namely, of 768 bits) during most of its
execution. The implementations employed, as well as test vectors, are available
at www.lyra2.net.

7.1 Benchmarks for Lyra2 without parallelism

The results obtained with a SSE-optimized single-core implementation of Lyra2
are illustrated in Figure 14. The results depicted correspond to the average

Fig. 14: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and
different T and R settings, compared with SSE-enabled scrypt.

www.lyra2.net
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execution time of Lyra2 configured with C = 256, ρ = 1, b = 768 bits (i.e., the
inner state has 256 bits), and different T and R settings, giving an overall idea of
possible combinations of parameters and the corresponding usage of resources.
As shown in this figure, Lyra2 is able to execute in: less than 1 s while using
up to 400 MB (with R = 214 and T = 5) or up to 1 GB of memory (with
R ≈ 4.2 · 104 and T = 1); or in less than 5 s with 1.6 GB (with R = 216 and
T = 6). All tests were performed on an Intel Xeon E5-2430 (2.20 GHz with 12
Cores, 64 bits) equipped with 48 GB of DRAM, running Ubuntu 14.04 LTS 64
bits. The source code was compiled using gcc 4.9.2.

The same Figure 14 also compares Lyra2 with the scrypt “SSE-enabled” im-
plementation publicly available at www.tarsnap.com/scrypt.html, using the pa-
rameters suggested by scrypt’s author in [5] (namely, b = 8192 and p = 1).
The results obtained show that, to achieve a memory usage and processing time
similar to that of scrypt, Lyra2 could be configured with T ≈ 6.

We also performed tests aiming to compare the performance of Lyra2 and
the other 5 memory-hard PHC finalists: Argon, battcrypt, Catena, POMELO,
and yescrypt. Parameterizing each algorithm to ensure a fair comparison be-
tween them is not an obvious task, however, because the amount of resources
taken by each PHS in a legitimate platform is a user-defined parameter chosen
to influence the cost of brute-force guesses. Hence, ideally one would have to
find the parameters for each algorithm that normalize the costs for attackers,
for example in terms of energy and chip area in hardware, the cost of memory-
processing trade-offs in software, or the throughput in highly parallel platforms
such as GPUs. In the absence of a complete set of optimized implementations

Fig. 15: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and
different T and R settings, compared with SSE-enabled scrypt and memory-
hard PHC finalists with minimum parameters.

www.tarsnap.com/scrypt.html
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Fig. 16: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1 and
different T and R settings, compared with SSE-enabled scrypt and memory-
hard PHC finalists with a similar number of calls to the underlying function
(comparable configurations are marked with the same symbol, � or •).

for gathering such data, a reasonable approach is to consider the minimum pa-
rameters suggested by the authors of each scheme: even though this analysis
does not ensure that the attack costs are similar to all schemes, it at least shows
what the designers recommend as the bare minimum cost for legitimate users.
The results, which basically confirm existing analysis done in [70], are depicted
in Figure 15, which shows that Lyra2 is a very competitive solution in terms of
performance.

Another normalization can be made if we consider that, in a nutshell, a
memory-hard PHS consists of an iterative program that initializes and revisits
several memory positions. Therefore, one can assess each algorithm’s perfor-
mance when they are all parameterized to make the same number of calls to the
underlying non-invertible (possible cryptographic) function. The goal with this
normalization is to evaluate how efficiently the underlying primitive is employed
by the scheme, giving an overall idea of its throughput. It also provides some
insight on how much that primitive should be optimized to obtain similar pro-
cessing times for a given memory usage, or even if it is worthy replacing that
primitive by a faster algorithm (assuming that the scheme is flexible enough to
allow users to do so).

The benchmark results are shown in Figure 16, in which lines marked with
the same symbol (e.g., � or •) denote algorithms configured with a similar
number of calls to the underlying function. The exact choice of parameters in
this figure comes from Table 3, which shows how each memory-hard PHC finalist
handles the time- and memory-cost parameters (respectively, T and M), based
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Algorithm Calls to underlying primitive SIMD instructions

Argon (1 + 33/32 · T ) ·M Yes

battcrypt {2bT/2c · [(T mod 2) + 2] + 1} ·M No

Catena2 (T + 1) ·M Yes

Lyra2 (T + 1) ·M Yes

POMELO
(
3 + 22T

)
·M No

yescrypt (T − 1) ·M Yes

Table 3: PHC finalists: calls to underlying primitive in terms of their time and
memory parameters, T and M , and their implementations.

on the analysis of the documentation provided by their authors [14,50,71]. The
source codes were all compiled with the -O3 option whenever the authors did not
specify the use of another compilation flag. Once again, Lyra2 displays a superior
performance, which is a direct result of adopting an efficient and reduced-round
cryptographic sponge as underlying primitive.

One remark concerning these results is that, as also shown in Table 3, the
implementations of battcrypt and POMELO employed in the benchmarks do not
employ SIMD instructions, which means that the comparison is not completely
fair. Nevertheless, even if such advanced instructions are able to reduce their
processing times by half, their relative positions on the figure would not change.

7.2 Benchmarks for Lyra2 with parallelism

To assess the performance of our scheme when executed with multiple processing
cores in a legitimate platform, we conducted tests with the parallel version of
Lyra2 described in Section 6.2, called Lyra2p.

The results for p = 2 (i.e., two processing cores) are shown in Figure 17, which
indicates a gain of roughly 46% when compared with the numbers discussed in
Section 7.1. More precisely, Lyra2p is expected to execute in: approximately 1
s while using up to 800 MB (with R = 215, T = 5 and p = 2) or up to 1.1 GB
of memory (with R ≈ 5.4 · 104, T = 3 and p = 2); or in less than 2.5 s with 1.6
GB (with R = 216, T = 6 and p = 2). With p = 4 (i.e., four processing cores),
the gain becomes approximately 60% when compared with the implementation
that does not take advantage of parallelism, as depicted in Figure 18.

Figures 17 and 18 also compare the performance of Lyra2p and yescrypt,
the two fastest memory-hard PHC finalists, when both schemes are executed
with the same number of processing cores. To allow the analysis of a broad

2 The exact number of calls to the underlying cryptographic primitive in Catena is
given by equation (g−g0+1)·(T +1)·M , where g and g0 are, respectively, the current
and minimum garlic. However, since normally g = g0, here we use the simplified
equation (T + 1) ·M .
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Fig. 17: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 2, and
different T and R settings, compared with SSE-enabled yescrypt. Configurations
with a similar number of calls to the underlying function are marked with the
same symbol, � or N.

spectrum of parameters, the notation on those figures is such that: (1) lines
marked with a same symbol (� or N) denote algorithms configured to execute
the same number of calls to the underlying primitive; (2) lines marked with ∗
indicate that yescrypt has been parameterized to execute a lower number of calls
to the underlying function than Lyra2 with T = 1; and (3) lines marked with
other symbols denote the execution of Lyra2 with T ≥ 3, for which the number
of calls to the underlying function does not match any of the lines shown for
yescrypt. As shown in these figures, Lyra2p remains quite competitive, and keeps
surpassing the performance of yescrypt for both the “minimal” and the “similar
number of calls to the underlying function” parameterizations.

It is also interesting to notice that the performance gain of Lyra2 when raising
p from 2 to 4, although noticeable, is lower than the one obtained from raising
p from 1 to 2. In fact, complementary tests with p > 4 were also performed,
but neither Lyra2 or yescrypt have shown any substantial performance gain in
our Intel Xeon E5-2430 employed as testbed. We believe that the main reason
behind this barrier lies on the hardware’s memory bandwidth limitations, of 32
GB/s [72], since a higher number of cores results in a higher occupation of the
main memory bus for both algorithms.
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Fig. 18: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 4, and
different T and R settings, compared with SSE-enabled yescrypt. Configurations
with a similar number of calls to the underlying function are marked with the
same symbol, � or N.

7.3 Benchmark of GPU-based attacks

Aiming to evaluate the costs of attacks against Lyra2 using a GPU, we imple-
mented the algorithm in CUDA for two different settings. In the first, we run
a single instance of Lyra2 configured to use different amounts of memory (from
1.5 MB to 400 MB) , emulating a scenario in which the GPU has not enough
memory to simultaneously accommodate multiple password guesses; in this case,
used the device’s shared memory to hold the sponge’s state, and the number of
threads run is that defined by the algorithm’s parallelism parameter, p. In the
second, we configure Lyra2 to run with a small amount of memory (namely, 2.25
MB), and then evaluate the throughput provided by the execution of several
password guesses in parallel; in this scenario, aiming to maximize the GPU’s
occupancy, we kept the sponge’s states in global memory without any use of the
GPU’s shared memory.

Regarding the implementations, the code obtained is basically a direct port of
the CPU code, with some small adaptations for ensuring compatibility and good
performance on the target platform, considering aspects such as the hardware
characteristics and the virtual machine’s instruction set. The GPU board used
as testbed is an NVIDIA GeForce GTX TITAN (Kepler architecture, GK110)
[73], which has 2688 CUDA cores (14 Multiprocessors with 192 CUDA Cores
each) operating at 0.876 GHz, and a total amount of global memory of 6144 MB
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Fig. 19: Performance of GPU-oriented implementation of Lyra2, for a single in-
stance configured with C = 256, ρ = 1, and different T , R and p settings, on
NVIDIA GeForce GTX TITAN.

operating at 3 GHz. We used the CUDA 6.5 driver with 5.0 runtime version and
configured the architecture to 3.5, the higher value allowed by the board.

The results obtained for the first scenario (i.e., the execution of a single
instance), for an average of six executions of Lyra2 with C = 256 and different
p, T and R settings are shown in Figure 19. As observed in this figure, the
performance obtained in the GPU was very low: even for T = 1 and p = 4,
which corresponds to the best performance on the GPU, the execution time is
approximately 100 times higher that the one with the same settings on a CPU
(see Figure 18). Such performance penalty is most likely due to the latency
caused by the pseudorandom access pattern adopted in Lyra2, since GPUs are
optimized for delivering high throughput rather than low latency.

The latency observed in the single-instance scenario can usually be masked by
the GPU if it runs several threads in parallel. To measure this ability of GPUs of
hiding latency and providing high throughput, an interesting metric is the GPU’s
occupancy. Namely, the occupancy is calculated as the total number of active
warps (and, consequently, threads) per multiprocessor, which is a characteristic
of the code being executed, divided by the maximum number of warps that could
be active per multiprocessor, which depends on the GPU board’s hardware.
If the memory matrix is too large to allow many guesses to be performed in
parallel, as emulated in the first scenario, the occupancy is very low. In contrast,
the lower memory usage of the second test scenario, of only 2.25 MB, allows
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Fig. 20: Performance of a GPU-oriented attack against Lyra2, for T = 1, C =
1024, R = 24, p = 4, ρ = 1, and different number of passwords, on NVIDIA
GeForce GTX TITAN.

a larger number of instances to be executed in parallel by the multiple GPU
cores. Not surprisingly, as shown in Figure 20, the GPU’s performance for Lyra2
configured with T = 1 and p = 4 as adopted in this second case is such that the
average time taken per password test drops to 18 ms for 64 parallel instances
(i.e., 256 threads), and to 1.8 ms when the GPU’s memory is completely filled
with 896 instances (for 3584 threads). One remark concerning these benchmarks
is that, given the high number of instances running simultaneously, our tests
have shown that it would not be advantageous to keep the sponges’ states in the
GPU’s shared memory for this second scenario. The reason is that this approach
would implicate in a lower number of threads being executed per block and,
consequently, on a lower throughput due to the GPU’s reduced capability of
hiding latencies.

Nevertheless, even when the GPU’s memory is completely committed to the
896 password hashing instances, the throughput provided in our tests is still
4.5 times lower than the 0.4 ms obtained with the same parameterization of
Lyra2 on the CPU employed as testbed. Whilst this is much better than the
100 times slowdown obtained in the single-instance scenario of Figure 19, at
least in principle this GPU-friendly scenario may still not advantageous enough
to justify using a GPU as the preferred attack platform. After all, assuming
similar purchasing prices for both platforms, the GPU would not only provide
a lower throughput than the CPU employed, but is also likely to consume more
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energy for this task. Nonetheless, we recommend that legitimate users adopt
parameters resulting in a larger memory usage whenever the target application’s
requirements and constraints allow them to do so, thus hindering an attacker’s
ability to take full advantage of the parallelization and latency-hiding capabilities
of commercial GPUs.

7.4 Benchmarks for Lyra2 with the BlaMka G function

Since BlaMka includes a larger number of operations than Blake2b, it is natural
that the performance of Lyra2 when it employs BlaMka instead of Blake2b as
underlying permutation will be lower than that reported in the previous sub-
sections. Therefore, we conducted some benchmarks to assess the impacts of
BlaMka over Lyra2’s efficiency. Figure 21 shows the results for Lyra2 configured
with p = 1, comparing it with the other memory-hard PHC finalists. As observed
in this figure, Lyra2’s performance remains quite competitive: for a given memory
usage, Lyra2 is slower only than yescrypt configured with minimal settings, but
remains faster than yescrypt when both are configured to make the same number
of calls to the underlying function (i.e., for yescrypt with T = 3 and Lyra2 with
T = 1).

When Lyra2 is configured to take advantage of parallelism, on the other
hand, the impacts of BlaMka over the algorithm’s performance are comparatively
less noticeable. Indeed, as shown in Figure 22 for p = 2, as well as in Figure
23 for p = 4, with these configurations Lyra2 outperforms yescrypt both in

Fig. 21: Performance of SSE-enabled Lyra2 with BlaMkaG function, for C = 256,
ρ = 1, p = 1, and different T and R settings, compared with SSE-enabled scrypt
and memory-hard PHC finalists (configurations with a similar number of calls
to the underlying function are marked with the same symbol, �).
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Fig. 22: Performance of SSE-enabled Lyra2 with BlaMkaG function, for C = 256,
ρ = 1, p = 2, and different T and R settings, compared with SSE-enabled
yescrypt. Configurations with a similar number of calls to the underlying function
are marked with the same symbol, � or N.

the “minimal” and in the “similar number of calls to the underlying function”
parameterizations.

Fig. 23: Performance of SSE-enabled Lyra2 with BlaMkaG function, for C = 256,
ρ = 1, p = 4, and different T and R settings, compared with SSE-enabled
yescrypt. Configurations with a similar number of calls to the underlying function
are marked with the same symbol, � or N.
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7.5 Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently around
U$8.6/GB [74], Table 4 shows the cost added by Lyra2 with T = 5 when an
attacker tries to crack a password in 1 year using the above reference hardware,
for different password strengths — we refer the reader to [7, Appendix A] for
a discussion on how to compute the approximate entropy of passwords. These
costs are obtained considering the total number of instances that need to run in
parallel to test the whole password space in 365 days and supposing that testing
a password takes the same amount of time as in our testbed. Notice that, in a
real scenario, attackers would also have to consider costs related to wiring and
energy consumption of memory chips, besides the cost of the processing cores
themselves.

We notice that if the attacker uses a faster platform (e.g., an FPGA or a
more powerful computer), these costs should drop proportionally, since a smaller
number of instances (and, thus, memory chips) would be required for this task.
Similarly, if the attacker employs memory devices faster than regular DRAM
(e.g., SRAM or registers), the processing time is also likely to drop, reducing
the number of instances required to run in parallel. Nonetheless, in this case
the resulting memory-related costs may actually be significantly bigger due to
the higher cost per GB of such memory devices. Anyhow, the numbers provided
in Table 4 are not intended as absolute values, but rather a reference on how
much extra protection one could expect from using Lyra2, since this additional
memory-related cost is the main advantage of any PHS that explores memory
usage when compared with those that do not.

Finally, when compared with existing solutions that do explore memory
usage, Lyra2 is advantageous due to the elevated processing costs of attack
venues involving time-memory trade-offs, effectively discouraging such approaches.

Indeed, from Equation 8 and for T = 5, the processing cost of an attack
against Lyra2 using half of the memory defined by the legitimate user would be
O((3/2)2TR2), which translates to (3/2)2·5 · (214)2 ≈ 234σ if the algorithm ope-

Password Memory usage (MB) for T = 1 Memory usage (MB) for T = 5

entropy (bits) 200 400 800 1,600 200 400 800 1,600

35 315.1 1.3k 5.0k 20.1k 917.8 3.7k 14.7k 59.1k

40 10.1k 40.2k 160.7k 642.9k 29.4k 117.7k 471.9k 1.9M

45 322.7k 1.3M 5.1M 20.6M 939.8k 3.8M 15.1M 60.5M

50 10.3M 41.2M 164.5M 658.3M 30.1M 120.6M 483.2M 1.9B

55 330.4M 1.3B 5.3B 21.1B 962.4M 3.9B 15.5B 62.0B

Table 4: Memory-related cost (in U$) added by the SSE-enable version of Lyra2
with T = 1 and T = 5, for attackers trying to break passwords in a 1-year period
using an Intel Xeon E5-2430 or equivalent processor.
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rates regularly with 400 MB, or (3/2)2·5 ·(216)2 ≈ 238σ for a memory usage of 1.6
GB. For the same memory usage settings, the total cost of a memory-free attack
against scrypt would be approximately (215)2/2 = 229 and (217)2/2 = 233 calls
to BlockMix , whose processing time is approximately 2σ for the parameters em-
ployed in our experiments. As expected, such elevated processing costs resulting
from this small memory usage reduction are prone to discourage attack venues
that try to avoid the memory costs of Lyra2 by means of extra processing.

8 Conclusions

We presented Lyra2, a password hashing scheme (PHS) that allows legitimate
users to fine tune memory and processing costs according to the desired level of
security and resources available in the target platform. For achieving this goal,
Lyra2 builds on the properties of sponge functions operating in a stateful mode,
creating a strictly sequential process. Indeed, the whole memory matrix of the
algorithm can be seen as a huge state, which changes together with the sponge’s
internal state.

The ability to control Lyra2’s memory usage allows legitimate users to thwart
attacks using parallel platforms. This can be accomplished by raising the total
memory required by the several cores beyond the amount available in the at-
tacker’s device. In summary, the combination of a strictly sequential design,
the high costs of exploring time-memory trade-offs, and the ability to raise the
memory usage beyond what is attainable with similar-purpose solutions (e.g.,
scrypt) for a similar security level and processing time make Lyra2 an appealing
PHS solution.

Finally, with the proposed extensions discussed in Section 6, Lyra2 can be fur-
ther personalized for different scenarios, including parallel legitimate platforms
(with the p parameter).
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Appendix A. PBKDF2

The Password-Based Key Derivation Function version 2 (PBKDF2) algorithm
[6] was originally proposed in 2000 as part of RSA Laboratories’ PKCS#5. It is
nowadays present in several security tools, such as TrueCrypt [75] and Apple’s
iOS for encrypting user passwords [76], and has been formally analyzed in several
circumstances [77,78].

Basically, PBKDF2 (see Algorithm 4) iteratively applies the underlying pseu-
dorandom function Hash to the concatenation of pwd and a variable Ui, i.e.,
it makes Ui = Hash(pwd, Ui−1) for each iteration 1 6 i 6 T . The initial value
U0 corresponds to the concatenation of the user-provided salt and a variable l,
where l corresponds to the number of required output blocks. The l-th block of
the k-long key is then computed as Kl = U1 ⊕ U2 ⊕ . . . ⊕ UT , where k is the
desired key length.

Algorithm 4 PBKDF2.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-defined parameter

Output: K . The password-derived key

1: if k > (232 − 1) · h then

2: return Derived key too long.

3: end if

4: l← dk/he ; r ← k − (l− 1) · h
5: for i← 1 to l do

6: U [1]← PRF (pwd, salt ‖ INT (i)) . INT(i): 32-bit encoding of i

7: T [i]← U [1]

8: for j ← 2 to T do

9: U [j]← PRF (pwd, U [j − 1]) ; T [i]← T [i]⊕ U [j]

10: end for

11: if i = 1 then {K ← T [1]} else {K ← K ‖ T [i]} end if

12: end for

13: return K
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PBKDF2 allows users to control its total running time by configuring the T
parameter. Since the password hahsing process is strictly sequential (one cannot
compute Ui without first obtaining Ui−1), its internal structure is not paralleliza-
ble. However, as the amount of memory used by PBKDF2 is quite small, the cost
of implementing brute force attacks against it by means of multiple processing
units remains reasonably low.

Appendix B. Bcrypt

Another solution that allows users to configure the password hashing processing
time is bcrypt [13]. The scheme is based on a customized version of the 64-
bit cipher algorithm Blowfish [79], called EksBlowflish (“expensive key schedule
blowfish”).

Both algorithms use the same encryption process, differing only on how they
compute their subkeys and S-boxes. Bcrypt consists in initializing EksBlowfish’s

Algorithm 5 Bcrypt.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-defined cost parameter

Output: K . The password-derived key

1: s← InitState() . Copies the digits of π into the sub-keys and S-boxes Si
2: s←ExpandKey(s, salt, pwd)

3: for i← 1 to 2T do

4: s←ExpandKey(s, 0, salt)

5: s←ExpandKey(s, 0, pwd)

6: end for

7: ctext← ”OrpheanBeholderScryDoubt”

8: for i← 1 to 64 do

9: ctext← BlowfishEncrypt(s, ctext)

10: end for

11: return T ‖ salt ‖ ctext

12: function ExpandKey(s, salt, pwd)

13: for i← 1 to 32 do

14: Pi ← Pi ⊕ pwd[32(i− 1) . . . 32i− 1]

15: end for

16: for i← 1 to 9 do

17: temp← BlowfishEncrypt(s, salt[64(i− 1) . . . 64i− 1])

18: P0+2(i−1) ← temp[0 . . . 31]

19: P1+2(i−1) ← temp[32 . . . 64]

20: end for

21: for i← 1 to 4 do

22: for j ← 1 to 128 do

23: temp← BlowfishEncrypt(s, salt[64(j − 1) . . . 64j − 1])

24: Si[2(j − 1)]← temp[0 . . . 31]

25: Si[1 + 2(j − 1)]← temp[32 . . . 63]

26: end for

27: end for

28: return s

29: end function
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subkeys and S-Boxes with the salt and password, using the so-called EksBlowfish-
Setup function, and then using EksBlowfish for iteratively encrypting a constant
string, 64 times.

EksBlowfishSetup starts by copying the first digits of the number π into
the subkeys and S-boxes Si (see Algorithm 5). Then, it updates the subkeys
and S-boxes by invoking ExpandKey(salt, pwd), for a 128-bit salt value. Ba-
sically, this function (1) cyclically XORs the password with the current sub-
keys, and then (2) iteratively blowfish-encrypts one of the halves of the salt,
the resulting ciphertext being XORed with the salt’s other half and also replac-
ing the next two subkeys (or S-Boxes, after all subkeys are replaced). After all
subkeys and S-Boxes are updated, bcrypt alternately calls ExpandKey(0, salt)
and then ExpandKey(0, pwd), for 2T iterations. The user-defined parameter T
determines, thus, the time spent on this subkey and S-Box updating process,
effectively controlling the algorithm’s total processing time.

Like PBKDF2, bcrypt allows users to parameterize only its total running
time. In addition to this shortcoming, some of its characteristics can be consid-
ered (small) disadvantages when compared with PBKDF2. First, bcrypt employs
a dedicated structure (EksBlowfish) rather than a conventional hash function,
leading to the need of implementing a whole new cryptographic primitive and,
thus, raising the algorithm’s code size. Second, EksBlowfishSetup’s internal loop
grows exponentially with the T parameter, making it harder to fine-tune bcrypt’s
total execution time without a linearly growing external loop. Finally, bcrypt dis-
plays the unusual (albeit minor) restriction of being unable to handle passwords
having more than 56 bytes.

Appendix C. Lyra

Lyra’s steps as described in [15] are detailed in Algorithm 6.

Like in Lyra2, Lyra also employs (reduced-round) operations of a crypto-
graphic sponge for building a memory matrix, visiting its rows in a pseudo-
random fashion, and providing the desired number of bits as output. One first
difference between the two algorithms is that Lyra’s Setup is quite simple, each
iteration of its loop (lines 8 to 4) duplexing only the row that was computed
in the previous iteration. As a result, the Setup can be executed with a cost of
R ·σ while keeping in memory a single row of the memory matrix instead of half
of them as in Lyra2. The second and probably main difference is that Lyra’s
duplexing operations performed during the Wandering phase only involve one
pseudorandomly-picked row, which is read and written upon, while two rows
are modified per duplexing in Lyra2’s basic algorithm. This is the reason why
the processing time of an approximately memory-free attack against Lyra grows
with a RT+1 factor. In comparison, as discussed in Section 5.1, in Lyra2’s basic
algorithm the cost of such attacks involves a R2T+2 factor, or R(δ+1)T+2 if the
δ parameter is also employed.
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Algorithm 6 The Lyra Algorithm.

Param: Hash . Sponge with block size b and underlying perm. f

Param: ρ . Number of rounds of f in the Setup and Wandering phases

Input: pwd . The password

Input: salt . A random salt

Input: T . Time cost, in number of iterations

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix

Input: k . The desired key length, in bits

Output: K . The password-derived k-long key

1: . Setup: Initializes a (R× C) memory matrix

2: Hash.absorb(pad(salt ‖ pwd)) . Padding rule: 10∗1

3: M [0]← Hash.squeezeρ(C · b)
4: for row ← 1 to R− 1 do

5: for col← 0 to C − 1 do

6: M [row][col]← Hash.duplexingρ(M [row − 1][col], b)

7: end for

8: end for

9: . Wandering: Iteratively overwrites blocks of the memory matrix

10: row ← 0

11: for i← 0 to T − 1 do . Time Loop

12: for j ← 0 to R− 1 do . Rows Loop: randomly visits R rows

13: for col← 0 to C − 1 do . Columns Loop

14: M [row][col]←M [row][col]⊕Hash.duplexingρ(M [row][col], b)

15: end for

16: col←M [row][C − 1] mod C

17: row ← Hash.duplexing(M [row][col], |R|) mod R

18: end for

19: end for

20: . Wrap-up: key computation

21: Hash.absorb(pad(salt)) . Uses the sponge’s current state

22: K ← Hash.squeeze(k)

23: return K . Outputs the k-long key

Appendix D. Naming conventions

The name “Lyra” comes from Chondrocladia lyra, a recently discovered type
of sponge [80]. While most sponges are harmless, this harp-like sponge is car-
nivorous, using its branches to ensnare its prey, which is then enveloped in a
membrane and completely digested. The “two” suffix is a reference to its pre-
decessor, Lyra [15], which displays many of Lyra2’s properties hereby presented
but has a lower resistance to attacks involving time-memory trade-offs. Lyra2’s
memory matrix displays some similarity with this species’ external aspect, and
we expect it to be at least as much aggressive against adversaries trying to attack
it. ,

Regarding the multiplication-hard sponge, its name came from an attempt to
combined the name “Blake”, which is the basis for the algorithm, with the letter
“M”, for indicating multiplications. A natural (?) answer for this combination
was BlaMka, a misspelling of Blanka, the only avatar from the Street Fighter
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original game series [81] that comes from Brazil and, as such, is a compatriot of
this document’s authors. ,
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