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Abstract Computing discrete logarithms takes time.

It takes time to develop new algorithms, choose the

best algorithms, implement these algorithms correctly

and efficiently, keep the system running for several

months, and, finally, publish the results. In this paper,

we present a highly performant architecture that can

be used to compute discrete logarithms of Weierstrass

curves defined over binary fields and Koblitz curves us-

ing FPGAs. We used the architecture to compute for

the first time a discrete logarithm of the elliptic curve

sect113r1, a previously standardized binary curve, us-

ing 10 Kintex-7 FPGAs. To achieve this result, we in-

vestigated different iteration functions, used a negation

map, dealt with the fruitless cycle problem, built an

efficient FPGA design that processes 900 million itera-

tions per second, and we tended for several months the
optimized implementations running on the FPGAs.

Keywords: Elliptic curve cryptography, discrete

logarithm problem, hardware design, FPGA, negation

map.

1 Introduction

Cryptographic research is a constant race between de-

signers and attackers. In the best case, the challenges

given by the designers scale exponentially and the re-
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sources used by the attacker scale linearly. The con-

sequential fundamental question is how big the cryp-

tographic parameters need to be so that no attack is

feasible.

One very efficient family of public-key systems is

elliptic curve cryptography (ECC). Its performance is

directly proportional to the size of the (security) param-

eters used. The security is based on the intractability of

the elliptic curve discrete logarithm problem (ECDLP).

A challenge, especially in constrained environments, is

to choose elliptic curve parameters that simultaneously

enable efficient implementations and reasonably secu-

rity.

Standardisation committees [1,4] rely on ECDLP

performance results to derive appropriately secure

elliptic curve standards. Therefore, a constant evalu-
ation of different techniques and technologies is neces-

sary to keep track of the capabilities of the most sophis-

ticated attackers. In the past, ECDLPs were computed

using public participation [22] or Playstation-3 clus-

ters [8]. In this paper, which is an extension of our SAC

2014 paper [35], we investigate the power of FPGAs to

practically compute ECDLPs.

The task of computing a discrete logarithm can

be split into the work done by researchers and the

work done by machines. This paper presents both a

novel hardware architecture and the discrete logarithm

of a 113-bit elliptic curve defined over a binary field.

This discrete logarithm was computed using a fully

pipelined, high-speed, and extensively tested design,

ECC Breaker, and 10 Kintex-7 FPGAs. Based on our

SAC 2014 paper [35], this paper additionally investi-

gates how to implement negation maps in hardware and

how to apply the simultaneous inversion technique. We

use the new, faster design to compute the discrete log-

arithm of a 10.6-times stronger elliptic curve. Further-
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more we will show that it is even possible to compute

discrete logarithms of even larger binary-field elliptic

curves. Substantiated by practical experimentation, our

results should be used by the community as basis for

new standards.

This paper is structured as follows: Section 2 gives

an overview on related work. Section 3 revisits some

mathematical foundations and Section 4 summarizes

the experiments with different iteration functions. Sec-

tion 5 reflects on the best use of the negation map.

The implementation of the most suitable iteration func-

tion is described in Section 6. As the design is flexible

enough to attack larger elliptic curves, Section 7 gives

runtime and cost approximations. Section 8 discusses

future challenges and Section 9 concludes the paper.

Appendix A gives an overview of the targeted curve

parameters and pseudo-randomly chosen target points.

2 Related Work

Certicom [10] introduced ECC challenges in 1997 to

increase industry acceptance of cryptosystems based

on the elliptic curve discrete logarithm problem. They

published challenges for different security levels. Since

then, the hardest solved Certicom challenges are ECCp-

109 for prime-field based elliptic curves, done by Mon-

ico et al. using a cluster of about 10,000 computers

(mostly PCs) for 549 days, and ECC2-109 for binary-

field-based elliptic curves, also done by Monico et al.,

computing on a cluster of around 2,600 computers

(mostly PCs) for around 510 days. Harley et al. [22]

solved an ECDLP over a 109-bit Koblitz-curve Certi-

com challenge (ECC2K-108) with public participation

using up to 9,500 PCs in 126 days.

The next larger Certicom challenge ECC2K-130

is 126 times more complex than ECC2-109. There-

fore, researchers also computed discrete logarithms of

custom elliptic curves. A discrete logarithm defined

over a 112-bit prime-field elliptic curve was solved by

Bos et al. [8], utilizing 200 PlayStations 3 for 6 months.

A single PlayStation 3 reached a throughput of 42 · 106

iterations per second (IPS).

Several research teams investigated the potential

speed of FPGAs to compute larger discrete logarithms.

Dormale et al. [13] targeted ECC2-113, ECC2-131, and

ECC2-163 using Xilinx Spartan 3 FPGAs performing

up to 20 · 106 IPS. Most promising is the work of Bai-

ley et al. [3], who attempt to break ECC2K-130 us-

ing Nvidia GTX 295 graphics cards, Intel Core 2 Ex-

treme CPUs, Sony PlayStations 3, and Xilinx Spartan 3

FPGAs. Their FPGA implementation has a throughput

of 33.7·106 IPS and was later improved by Fan et al. [15]

to process 111·106 IPS. Other FPGA architectures were

proposed by Güneysu et al. [20], Mane et al. [25], and

Judge et al. [24]. Güneysu et al.’s Spartan 3 architec-

ture performs about 173 · 103 IPS, Mane et al.’s Virtex

5 architecture does 660 · 103 IPS, and Judge et al.’s

Virtex 5 architecture executes around 14 · 106 IPS. In

2014, Engels [14] approximated that a discrete loga-

rithm of the previously standardized [11] elliptic curve

sect113r1 can be computed in six months using 64

Spartan-6 FPGAs.

So far, none of their FPGA implementations have

been successful in solving ECDLPs. This work on the

other hand presents an architecture which has been

used to successfully attack both a 113-bit Koblitz

curve and the 113-bit binary-field Weierstrass curve

sect113r1. The architecture performs 900 · 106 IPS on

one of the 10 Kintex-7 FPGAs used.

3 Mathematical Foundations

To ensure a common vocabulary, it is important to re-

visit some of the basics. For further details, we refer to

Hankerson et al. [21] and Cohen et al. [12].

3.1 Elliptic Curve Cryptography

This paper focuses on Weierstrass curves that are de-

fined over binary extension fields K = F2m . The curves

are defined by the Weierstrass equation E/K : y2 +

xy = x3 + ax2 + b, where a and b are system parame-

ters and a tuple of x and y which fulfills the equation

is called a point P = (x, y). Using multiple points and

the chord-and-tangent rule, it is possible to derive an

additive group of order n, suitable for cryptography.

The number of points on an elliptic curve is denoted

as #E(K) = h · n, where n is a large prime and the

cofactor h is typically in the range of 2 to 8. The core

of all ECC-based cryptographic algorithms is a scalar

multiplication Q = kP , in which the scalar k ∈ [0, n−1]

is multiplied with a point P to derive Q, where both

points are of order n.

As computing Q = kP can be costly, a lot of re-

search was done on the efficient and secure computa-

tion of Q = kP . A subset of binary Weierstrass curves,

known as Koblitz curves (also known as anomalous bi-

nary curves), have some properties which make them es-

pecially interesting for fast implementations. They may

make use of a map σ(x, y) = (x2, y2), σ(∞) = (∞), an

automorphism of order m known as a Frobenius auto-

morphism. This means that there exists an integer λ

such that σ`(P ) = λ`P ∀ `. Another automorphism,

which is not only applicable to Koblitz curves, is the
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negation map. The negative of a point P = (x, y) is

−P = (n− 1)P = (x, x+ y).

3.2 Elliptic Curve Discrete Logarithm Problem

The security of ECC relies on the intractability of the

ECDLP: Given the two points Q and P , connected by

Q = kP , it should be practically infeasible to compute

the scalar 0 ≤ k < n. As standardized elliptic curves

are designed such that neither the Pohlig-Hellman at-

tack [29], nor the Weil and Tate pairing attacks [16,27],

nor the Weil descent attack [18] apply. A standard al-

gorithm to compute a discrete logarithm is Pollard’s

rho algorithm [30] or its parallelized version by van

Oorschot and Wiener [33].

These algorithms are based on an iteration function

f that defines a random cyclic walk over a graph. An

iteration function updates a state, henceforth referred

to as triple, consisting of two scalars ci, di ∈ [0, n − 1]

and a point Xi = ciP + diQ. An iteration function f

deterministically computes Xi+1 = f(Xi) and updates

ci+1 and di+1 accordingly, such that Xi+1 = ci+1P +

di+1Q holds. A requirement on f is that it should be

easily computable and to have the characteristics of a

random function.

Using either Pollard’s rho or van Oorschot and

Wiener’s algorithm, the goal is to find a pair of col-

liding triples. As X1 = X2 = c1P + d1Q = c2P + d2Q

and (d2−d1)Q = (d2−d1)kP = (c1−c2)P , it is possible

to compute k = (c1 − c2)(d2 − d1)−1 mod n. Pollard’s

rho algorithm runs in a single tread, uses Floyd’s cycle-

finding algorithm and expects to encounter a collision

after
√

πn
2 steps.

In order to parallelize an attack efficiently, van

Oorschot and Wiener [33] introduced an algorithm

based on the concept of distinguished points. Distin-

guished points are a subset of points, which satisfy a

particular condition. Such a condition can be a specific

number of leading zero digits of a point’s x-coordinate,

or a particular range of Hamming weights in normal ba-

sis. Those distinguished points are stored in a central

database and can be computed in parallel. The achiev-

able speedup is linearly proportional to the number of

instances running in parallel. Note that each instance

starts with a random starting triple and uses one of the

iteration functions f which are discussed in the follow-

ing section.

4 Selecting the Iteration Function

As the iteration function will be optimized for perfor-

mance in hardware, it is crucial to evaluate different

iteration functions and select the most suitable one.

In this work, the iteration functions by Teske [32],

Wiener and Zuccherato [36], Gallant et al. [17], and

Bailey et al. [2] were checked for their practical require-

ments and achievable computation rates. Table 1 sum-

marizes the experiments done in software on a 41-bit

Koblitz curve.

Teske’s r-adding walk [32] is a nearly optimal choice

for an iteration function. It partitions the elliptic curve

group into r distinct subsets {S1, S2, ..., Sr} of roughly

equal size. If a point Xi is assigned to Sj , the iteration

function computes f(Xi) = Xi+R[j], with R[] being an

r-sized table consisting of linear combinations of P and

Q. After approximately
√

πn
2 steps, Teske’s r-adding

walk finds two colliding points for all types of elliptic

curves.

The Frobenius automorphism of Koblitz curves can-

not only be used to speed up the scalar multiplication,

but also to improve the expected runtime of a paral-

lelized Pollard’s rho by a factor of
√
m. Wiener and

Zuccherato [36], Gallant et al. [17], and Bailey et al. [2]

proposed iteration functions which should achieve this√
m-speedup.

Wiener and Zuccherato [36] proposed to calculate

f(Xi) = σ`(Xi + R[j]) ∀ ` ∈ [0,m − 1] and choose the

point X, which has the smallest x-coordinate when in-

terpreted as an integer. Gallant et al. [17] introduced an

iteration function based on a labeling function L, which

maps the equivalence classes defined by the Frobenius

automorphism to some set of representatives. The iter-

ation function is then defined as f(Xi) = Xi + σ`(Xi),

where ` = hashm(L(Xi)). Bailey et al. [2] suggested to

compute f(Xi) = Xi+σ
(` mod 16)/2+3(Xi) to reduce the

complexity of the iteration function.

In order to investigate the practical differences of

the iteration functions, a 41-bit Koblitz curve was used

to evaluate them with a C implementation on a PC (cf.

Table 1). As labeling function L, the Hamming weight

of the x-coordinate in normal basis was used. The iden-

tity function was used as hash function. Table 1 summa-

rizes the average number of iterations (computing 100

ECDLPs) of all tested iteration functions using four

parallel threads. The experiments showed that the av-

erage number of iterations of Gallant et al.’s and Bai-

ley et al.’s iteration functions are 13 % higher compared

to the iteration function by Wiener and Zuccherato.

Additionally, with a probability of 14–20 %, some of the

parallel threads produced identical sequences of distin-

guished points. Restarting the threads regularly or on-

demand would counter this problem. Not handling the

problem of fruitless threads would increase the average

runtime of Gallant et al.’s iteration function further.
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Table 1 Expected and simulated total number of iterations to compute the discrete logarithm of a 41-bit Koblitz curve.

Reference Iteration function Expected iterations Measured iterations

Teske [32] f(Xi) = Xi +R[j] 929 · 103 906 · 103

Wiener and Zuccherato [36] f(Xi) = min
0≤l<m

{
σl(Xi +R[j])

}
145 · 103 147 · 103

Gallant et al. [17] f(Xi) = Xi + σl(Xi) 145 · 103 166 · 103

Bailey et al. [2] f(Xi) = Xi + σ(l mod 16)/2+3(Xi) 145 · 103 166 · 103

As Wiener and Zuccherato’s iteration function

achieved the best speed and does not have the prob-

lem of fruitless threads, it we selected it to be imple-

mented in hardware. Additionally, by leaving out the

automorphism, the hardware can be used to attack gen-

eral binary-field Weierstrass curves as well.

5 Handling the Negation Map

In addition to the Frobenius automorphism, it is possi-

ble to use a negation map. The negation map compares

Xi with −Xi and selects the point with the smaller

y-coordinate when interpreted as an integer. Conse-

quently, the expected runtime of the parallelized Pol-

lard’s rho algorithm improves by a factor of
√

2. The

drawback of the negation map is the high probability of

fruitless cycles. A fruitless cycle happens if consecutive

applications of the iteration function f results in the

original triple Xi = Xi+L = fL(Xi). The collision of

Xi with Xi+L is fruitless, cannot be used to compute

the discrete logarithm, and the cycle cannot be left with

a repeated application of f .

Figure 1 (a) depicts a normal iteration of points,

where each node represents a computed triple. Fig-

ure 1 (b) and (c) show a fruitless 2-cycle and a fruitless

4-cycle, respectively. A 2-cycle happens if two applica-

tions of the iteration function map to the original point:

f(f(Xi)) = Xi+2 = −(−(Xi +R[j]) +R[j]) = Xi. This

happens with a probability of 1
2rm , with r being the

size of the branching table R[]. Larger fruitless cycles

happen with smaller probability.

When the negation map is used, it is essential to

cope with fruitless cycles as these cycles render a thread

useless. There are multiple ways to cope with a cy-

cle once it is detected (cf. [7,9]). Table 2 summarizes

several experiments done with a 30-bit prime curve

(repeated 10,000 times). The iteration function was

f(Xi) = Xi + R[j] and the size of the branching ta-

ble was r = 16. For reference, also an experiment with-

out negation map was performed. The average runtimes

are highly dependent on the particular method used,

once a fruitless cycle is detected. Choosing a random

branching index or a new random triple actually de-

teriorates the performance. Only the point doubling

Table 2 Average number of iterations to compute the dis-
crete logarithm of a 30-bit elliptic curve in dependence of how
a fruitless cycle is handled.

Method Iterations Cycles
Average Stddev Average

No negation map 33,117 21,453 0
New random triple 55,636 28,326 1,683
Random index 54,483 28,031 1,882
Point doubling 26,385 15,650 787
Determ. index r = 16 26,141 15,352 848
Determ. index r = 128 25,047 15,151 98

approach and the finally chosen method give the ex-

pected speed-up factor of 1.32 (similar to the speed-up

reported by Bos et al. [9]). The advantage of the lat-

ter method is that no on-chip point doubling circuit is

necessary (which is a huge advantage when a hardware

design is done).

Our method works by deterministically choosing the

index of the branching table based on the point Xi and

the size of the largest detected cycle L: f(Xi) = Xi +

R[j+L]. As depicted in Figure 1 (d) and (e), initially, a

branch j resulting in a cycle is taken. Once the cycle is

detected, a different branch j+ 2 or j+ 4 is selected. If

the branch j + 2 results in another 2-cycle, the branch

j + 4 is chosen (see Figure 1 (d)).

For the hardware design that was used to compute

the discrete logarithm of sect113r1, a combination of

methods was used to minimize the problem of fruit-

less cycles. (i) The branching index is deterministically

chosen as described above. (ii) A branching table with

r = 1024 entries minimizes the probability of loops. (iii)

Block-RAM-based FIFOs are used to detect up to 10-

cycles. Larger cycles are not detected, but they are very

unlikely to occur in practice. (iv) Just in case that the

hardware runs into a larger fruitless cycle, the hardware

is restarted every 24 hours.

6 ECC Breaker Hardware

Based on these investigations on iteration functions, a

hardware architecture was designed. This hardware ar-

chitecture is based on the following assumptions.
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Fig. 1 Sequence of iteration functions: (a) normal sequence. (b) fruitless 2-cycle. (c) fruitless 4-cycle. (d) two fruitless 2-cycles
that end in normal sequence. (e) fruitless 4-cycle that ends in normal sequence.

6.1 Basic Assumptions and Decisions

ASIC vs FPGA Design. In literature it is possible to

find a lot of FPGA and ASIC designs optimized for

some objective. Some authors even dare to compare

FPGA and ASIC results. However, several of the largest

components in ASIC designs, e.g., registers, RAMs, or

integer multipliers, are for free in an FPGA design. For

instance, every slice comes with several registers. There-

fore, adding pipeline stages in a logic-heavy FPGA de-

sign is basically for free. For this paper, Xilinx Virtex-6

and Kintex-7 evaluation boards were chosen as devel-

opment platform. Note that all following design deci-

sions were made to maximize the performance of ECC

Breaker on these particular boards.

Design Goals. As Pollard’s rho algorithm is perfectly

parallelizable, the design goal clearly is to maximize

the throughput per (given) area. Note that the speed

(iterations per second) of an attack is linearly propor-

tional to the throughput and inversely proportional to

the chip area (more instances per FPGA also increase

the speed). Therefore, the most basic design decision

was whether to go for many small or a single large

FPGA design.

Core Idea. In earlier designs, we considered many area-

efficient architectures, each coming with a single F2m

multiplier, a F2m squarer, and a F2m adder per in-

stance. The main problems of these designs were the

costly multiplexers and the low utilization of the hard-

ware. Therefore the design principle of ECC Breaker is a

single, fully unrolled, fully pipelined iteration function.

In order to keep all pipeline stages busy, the number

of pipeline stages equals the number of triples processed

within ECC Breaker. Therefore, the hardware is fully

utilized in every cycle.

ECC Breaker versus Related Work. (i) In the current

setup, the interface between ECC Breaker and a desk-

top is a simple, slow, serial interface. This might be

a challenge for related implementations, but not for

ECC Breaker. The implemented design detects fruit-

less cycles on-chip and the on-chip distinguished points

(triple) storage assures that only distinguished triples

have to be read. (ii) Unlike Fan et al. [15], our simulta-

neous inversion design is not iterative but fully unrolled.

Therefore, our implementation is significantly larger,

but also faster. (iii) Further, ECC Breaker comes with

prime field Fn arithmetic which has only a minor im-

pact on the size of the hardware. It proved indispensable

during development that the generated distinguished

triples could be easily verified. (iv) Variations of ECC

Breaker were used to solve both the discrete logarithm

of a 113-bit Koblitz curve [35] and the discrete loga-

rithm of the elliptic curve sect113r1, which was part

of a previous elliptic curve standard [11].

Generalization of ECC Breaker. Although the current

version of ECC Breaker is carefully optimized for a

113-bit binary-field elliptic curve, the underlying archi-

tecture and design approach is also suitable for larger

elliptic curves, e.g, a 131-bit Koblitz curve. In Section 7,

approximations of the expected runtimes and potential

costs to attack larger elliptic curves are given.

6.2 The Architecture

The basic architecture of ECC Breaker is presented in

Figure 2. The core of ECC Breaker is a circular, self-

sufficient, fully autonomous iteration function. A (po-

tentially slow) interface is used to write the NextInput

register. If the current stage of the pipeline is not active,

the pipeline is fed with the triple from the NextInput
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FIFO FIFO

ECC Breaker
NextInput

Iteration
Function

Point Addition

Point 
Automorphism

FIFO

      adder

      multiplier

Xi ci di

Xi+1 ci+1 di+1

Branching
Table        multiplier

       squarer

        inverter

      adder

     multiplier

Interface

Distinguished 
Point Storage

Lambda
Table

F2m

F2m

F2m

Fn Fn

Fn Fn

Loop Detection FIFO FIFO

Negation Map       negationFn       negationFn

Distinguishing
Check

Fig. 2 Top-level architecture view. ECC Breaker is shown
on top. The modularized iteration function is shown below.

register. This is done until all stages of the pipeline pro-

cess data. If a point is distinguished, it is automatically

added to the distinguished point storage (a sufficiently

large block RAM). At periodic but time-insensitive in-

tervals, the host computer can read all distinguished

points that were collected within the storage.

The iteration function itself consists of four major

components: a point addition module, a point automor-

phism module, a negation map, and a loop detection

module. Other components deal with F2m and Fn arith-

metic, or are block-RAM-based tables and FIFOs. Be-

cause of this modularity it is easily possible, e.g., to use

the point automorphism module only when a Koblitz

curve is attacked. The components are described in the

following.

6.3 Point Addition Module

No matter which iteration function is selected, an affine

point addition module is always necessary. In the case

of binary Weierstrass curves, the formulas for a point

addition (x3, y3) = (x1, y1) + (x2, y2) are x3 = µ2 +

µ+ x1 + x2 + a and y3 = µ · (x1 + x3) + x3 + y1, with

µ = (y1 + y2)/(x1 + x2). Special cases of points being

equivalent, inverse of each other, or the identity are not

y1 y2 x1x2

ADD ADD

FIFO

FIFO

ADD

a

FIFO
FIFO INV

MUL

SQU

MUL

ADD

ADD

FIFO

ADD

x3y3

Fig. 3 Simplified point addition module. The grey shaded
blocks are without registers.

handled by the hardware as they are very unlikely to

occur in practice.

Figure 3 shows the implemented point addition

module which directly maps the formulas from above.

Two F2m multipliers, one F2m inverter, and five FIFOs

are necessary to compute a point addition in 184 cycles.

Note that it is not possible to get rid of the costly inver-

sion as the result of the point addition must be available

in affine coordinates (cf. Dormale et al. [13]). However,

it is possible to share the inversion module across mul-

tiple ECC Breaker instances at the cost of additional

multipliers by taking advantage of the simultaneous in-

version technique introduced by Montgomery [28]. If
this is done, the latency of the point addition module

increases. However, this has no impact on the overall

throughput given the fully pipelined design.

6.4 F2m Inverse

The runtime of an Euclidean-based inversion algorithm

is data-dependent and therefore hard to compute with

a pipelined hardware module. Therefore, ECC Breaker

computes the inverse using Fermat’s little theorem;

an inversion by exponentiation. Fortunately, an ex-

ponentiation with 2m−2 can be computed very effi-

ciently using the technique by Itoh and Tsujii’s [23],

needing 112 squarers and 8 multipliers for m = 113:

a = a2
1−1 → a2

2−1 → a2
3−1 → a2

6−1 → a2
7−1 →

a2
14−1 → a2

28−1 → a2
56−1 → a2

112−1 → a2
113−2 = a−1.
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MUL

MUL

ab abc abcd
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Fig. 4 Simultaneous inversion of 5 finite-field elements. The
FIFOs that are needed for synchronization are not shown.

6.5 Simultaneous Inversion

With 8 multipliers, the inversion module is roughly 4

times larger than the rest of the point addition module

which only requires 2 additional multipliers. Based on

the simultaneous inversion technique [28], the inverter

can be shared across multiple ECC Breaker instances

at the rough cost of 3(d − 1) multipliers for d inputs

to invert. Figure 4 shows the use of 12 multipliers to

invert 5 finite-field elements. Several FIFOs, which are

not depicted, are used to deal with data-dependencies.

Additional hardware is needed to deal with uninitial-

ized ECC Breaker instances that have the number zero

in the pipeline.

6.6 Point Automorphism Module

In order to speed up Pollard’s rho algorithm for Koblitz

curves, it is necessary to uniquely map m points from

the same equivalence class to a single point. As ECC

Breaker follows Wiener and Zuccherato’s [36] approach

of interpreting the field elements as integers and com-

paring them, it was necessary to design a module that

does m squarings and m comparisons as efficiently as

possible. This module relies on normal basis represen-

tation and is depicted in Figure 5. It converts x and y

into normal basis, finds the smallest x within the nor-

mal basis, rotates y appropriately, and transforms x

and y back into a canonical polynomial representation.

As the m exponents of x (x(2
i)) are computed by sim-

ple rewiring (x rotated by i steps), and the smallest x

comparator tree

x y

rot 0 rot 1 rot 2 rot 3

C → N C → N

FIFO

BARREL
ROTATE

N → CN → C

FIFO

x' y'

...

Fig. 5 Point automorphism unit with m comparator units.

is found using a binary comparison tree, no canonical

F2m squarer is needed.

As optimization, only the t = 70 most significants

bits of x are compared. This means that if two numbers

with t equivalent most significant bits are compared, no

unique minimum is found. However, the probability for

that is only 2−t. For i =
√

πn
2m iterations and m · i com-

parisons, the probability for not selecting the smaller

value is only 1− (1− 2−t)m·i = 0.00081 for m = 113.

The majority of the point automorphism module

is the comparator tree. The basis transformations are

fairly cheap and make up only 20% of the point auto-

morphism module.

6.7 F2m Normal Basis

The advantage of a normal basis is that a squaring is a

simple rotation operation. The disadvantage of a nor-

mal basis is that a F2m multiplication is fairly complex

to compute. ECC breaker uses per default a normal,

canonical polynomial representation.

Only within the point automorphism module, the

normal basis is advantageous. The necessary matrix

multiplication for a basis transformation can be imple-

mented very efficiently. As the matrix is constant, on

average m/2 of the input signals are xored per output

signal. Based on our previous results [35], 666 LUTs are

needed per basis transformation.

Experiments show that the normal basis could also

reduce the area of the consecutive squaring units within

the F2m inversion. Doing two basis transformations and

a rotation within normal basis would probably save

area. Also, accumulating the two transformation ma-

trices into a single matrix would further reduce the

area. However, as all squarers together only need 3%

of all LUTs, the potential area improvement is rather



8 Erich Wenger, Paul Wolfger

limited. Therefore, contrary to related attempts [3,15],

ECC Breaker only uses a normal basis number repre-

sentation within the point automorphism module.

6.8 F2m Multiplier

The F2m multipliers have the largest impact on the area

footprint of the ECC Breaker design. For ECC Breaker,

the following multiplier designs were evaluated using a

Virtex-6 FPGA (post-synthesis): (i) A simple 113-bit

parallel polynomial multiplier needs 5,497 LUTs. (ii)

A Mastrovito multiplier [26] interprets the F2m multi-

plication as matrix multiplication and performs both

a polynomial multiplication and the reduction step si-

multaneously. Unfortunately, it needs 7,104 LUTs. A

polynomial multiplication and reduction with the used

pentanomial can be implemented much more efficiently.

(iii) Bernstein [5] combines some refined Karatsuba and

Toom recursions for his batch binary Edwards mul-

tiplier. His code [6] for a 113-bit polynomial multi-

plier needs 4,409 LUTs. (iv) Finally, the best results

were achieved with a slightly modified binary Karat-

suba multiplier, described by Rodrıguez-Henrıquez and

Koç [31]. Their recursive algorithm was applied down

to a 16×16-bit multiplier level, which is synthesized as

standard polynomial multiplier. The formulas for the

resulting multiplier structure are given in Appendix B.

The design only requires 3,757 LUTs. Finally the design

was equipped with several pipeline stages such that it

can be clocked with high frequencies.

6.9 Fn Multiplier

Computing prime-field multiplications in hardware can

be a troublesome and very resource-intensive task. Ded-

icated DSP slices were used for integer multiplications.

As a result, the two Fn multipliers are very resource ef-

ficient, requiring very few LUTs and only 2× 145 DSP

slices.

7 Results and Transferability of Results

The construction of the ECC Breaker design was an

iterative process in which the speed, the area, and

the power characteristics were continuously optimized.

To exploit all available resources, the available block

RAMs and DSP slices were used whenever possible.

The design that was used to compute the discrete loga-

rithm of sect113r1 was optimized for Kintex-7 FPGAs

(KC705 development boards coming with XC7K325T-2

FPGAs). The best stable performance was achieved

Table 3 Post place-and-route Kintex-7 utilization with 5
ECC Breaker instances.

Module Inst- Slices Slices FPGA
ances p. Ins. Total Util.

top 40,915 80%
ECC Breaker 5 4,203 21,016 41%

iteration function 5 3,703 18,517 36%
point addition 5 2,236 11,182 22%
F2m multiplier 5× 2 962 9,624 19%

simul. inversion 19,836 39%
F2m multiplier 4× 3 877 10,523 21%
F2m inverter 1 9,022 9,022 18%
F2m multiplier 8 904 7,232 14%
F2m squarer 112 14.8 1,653 3%

with 5 ECC Breaker instances running at 180 MHz.

With additional ventilation, 10 Kintex-7 boards op-

erated stably at an operating temperature of around

90◦ C (194◦ F). Both increasing the number of in-

stances (and reducing the clock frequency) or increas-

ing the clock frequency (and reducing the number of

instances) either deteriorated the performance or was

not routable.

By using Xilinx ISE 14.7 as toolchain, the fol-

lowing utilizations were achieved. ECC Breaker re-

quires (post place-and-route) 80% of all available slices

(40,915/50,950), 73% of all LUTs (150,750/203,800),

41% of all registers (170,799/407,600), and 31% of all

block RAMs (408/1,335). Table 3 gives the number of

slices needed for all components. The biggest compo-

nents are the 5 ECC Breaker instances and the simulta-

neous inversion module. 67% of the slices are needed for

F2m multipliers (5 × 2 within the point addition mod-

ules, 12 for the simultaneous inverter, and 8 for the

inverter itself). As the place-and-route tool performs

optimizations across module borders, the slice counts

of all components are just approximations by the map-

ping tool.

7.1 Extrapolating the Results

The results above are just a snapshot of a much

larger picture. Based on the current VHDL design, one

could optimize the design for different FPGAs, differ-

ent elliptic curves, or for ASICs. The ECC Breaker

design that was used to attack sect113r1 processes

5 × 180 = 900 million iterations per second and

77,760,000,000,000 iterations per day. Assuming that

the same performance can be reached for larger elliptic

curves as well (using the same FPGA), the budgets to

break them within a year are shown in Table 4.

This budgets does not include the man-power

needed for development or upkeep, or the electrical en-
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Table 4 Approximations of costs to compute large discrete logarithms within a year. Budget is in USD.

Elliptic curve Standard Group size Iterations FPGA days #FPGAs FPGA Budget

113-bit Koblitz 2112 1015.8 252.4 77 1 1,700
113-bit Weierstrass sect113r1 2112 1016.8 255.8 821 3 5,100

127-bit Koblitz 2114 1016.1 253.4 156 1 1,700
127-bit Weierstrass 2125 1018.8 262.3 74,330 204 346,800

131-bit Koblitz 2129 1018.3 260.8 25,977 72 122,400
131-bit Weierstrass sect131r1 2129 1019.4 264.3 297,320 815 1,385,500

163-bit Koblitz sect163k1 2162 1023.2 277.2 2.16 · 109 5.19 · 106 10.1 · 109

163-bit Weierstrass sect163r2 2162 1024.3 280.8 27.6 · 109 75.5 · 106 128 · 109

256-bit Weierstrass secp256r1 2256 1038.5 2127.8 3.89 · 1024 10.6 · 1021 18.1 · 1024

ergy needed to run the FPGAs. Additionally, there is

a lot of room for improvement to reduce the necessary

budgets. It is possible to increase the performance of the

hardware design, or to reduce the costs of the FPGAs.

If the number of necessary FPGAs reaches the millions,

it is probably more cost-efficient to build a dedicated

ASIC design to compute discrete logarithms more effi-

ciently. An ASIC design potentially provides a better

cost-performance-ratio, but the development process is

potentially much more time consuming.

With that in mind, it has to be emphasized that Ta-

ble 4 summarizes what we could do now using KC705

development boards, which cost around USD 1,700 in

the beginning of 2015 [37]. The expected iteration count

includes the potential speed-ups of both negation maps

and group automorphisms when applicable. Using our

current setup of 10 KC705 development boards, it is

possible to compute the discrete logarithms of 113-bit

Koblitz and 113-bit Weierstrass curves in around 8 and

82 days, respectively. Using 72 KC705s, it would be
possible to solve the discrete logarithm of a 131-bit

Koblitz curve in a year, one of the official Certicom

challenges [10].

At the 80-bit security level, the necessary budget

to break an elliptic curve is around 10-100 billion USD

(for FPGAs). This seems like an extraordinary amount

of money, but under the assumption that there is a fair

amount of optimization potential and that there are

some organizations with huge funds, elliptic curves at

the 80-bit security-level should not be used any more.

However, nobody (c.f. [19]) recommends long-term use

of 160-bit elliptic curves anyways.

At the 128-bit security level, budgets in the range of

18.1 · 1024 USD give elliptic curves, such as secp256r1,

a sufficient cushion to be safe for the next decades. As-

suming that every year the necessary budget halves

(which it probably will not), an elliptic curve at the

128-bit security level will be secure for the next 40-50

years; unless there is an algorithmic breakthrough, a

breakthrough with quantum computers, or a backdoor

in the elliptic curve standard.

8 Future Challenges

Solving cryptographic challenges is a process, in which

every optimization step results in a potentially better

design. In order to support other researchers, all our

code is available online [34]. There are still plenty of

challenges to be investigated:

It is possible to improve the performance by re-

ducing the critical path or by shrinking the size of

ECC Breaker. Especially a smaller finite field multi-

plier would enable to place more ECC Breakers per

FPGA. However, ECC Breaker is a fairly complex and

large design. The hardware synthesizer reached its limit

when it came to maximum frequency approximations.

In most cases, it was only possible to reach a fraction

of the theoretically given frequency after mapping and

routing.

An additional design dimension is the power con-

sumption. Every pipeline stage within ECC Breaker is

active in every cycle, and therefore every utilized slice

is active in every cycle. Both, the power supply and

cooling system, which is responsible for dissipating the

heat, run at full capacity. For the attack on Koblitz

curves [35], where we used ML605 boards, it was nec-

essary to reduce the clock frequency to 165 MHz even

though the synthesizer approximated a maximum clock

frequency of 275 MHz.

This paper demonstrates that FPGAs are well

suited to compute discrete logarithms of elliptic curves

defined over binary extension fields. It has yet to be

answered how well FPGAs can be used to attack

elliptic curves defined over prime fields. Assuming that

a Mersenne-like prime that enables fast reduction is

used, then roughly 64 DSP slices are necessary for a

128-bit prime-field multiplier. Consequently, 13 finite-

field multiplier would fit within the 840 DSP slices of

a KC705. Assuming the inversion is built using only
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general purpose slices, then 2–3 instances would fit per

FPGA.

Ultimately, at some point it makes sense to develop

an ASIC. An ASIC does not come with ‘free’ DSP slices

or ‘free’ block-RAMs. While the basic architecture of

ECC Breaker can be reused, it would be necessary to

re-evaluate some components: (i) It would be worth

investigating the best finite-field multiplier design for

ASICs. (ii) The block RAMs would have to be replaced

by RAM macros. However, RAM macros are designed

to host a lot of entries and not to access hundreds of

bits at once. Therefore, it is questionable whether RAM

macros are actually smaller than register-based RAMs.

(iii) To some degree, an ASIC can be built arbitrarily

large, but the larger it is, the more serious the power is-

sues are. The optimal number of ECC Breaker instances

that share a common inversion module has to be evalu-

ated. (iv) Different manufacturing technologies enable

different clock frequencies and have different costs per

gate equivalent. (v) Finally, not only an ASIC but also

a printed circuit board to host the ASIC have to be

designed, implemented, and tested – a process that can

potentially require several man-years.

9 Conclusion

We have shown the potential of FPGAs for solving

elliptic curve discrete logarithm problems. We solved

both a discrete logarithm of a 113-bit Koblitz curve [35]

and a discrete logarithm of the elliptic curve sect113r1

(see Appendix A), a 113-bit Weierstrass curve based on

binary fields.

Our ECC Breaker design performs 900 million iter-

ations per second on an off-the-shelf Kintex-7 FPGA.

It distinguishes itself with good performance and little

communication overhead. We invite fellow researchers

to use our code [34] to adapt and optimize it for larger

elliptic curves, and to use it to compute even more com-

plex discrete logarithms over elliptic curves.
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denay, F. Vercauteren, and M. Ward. ECRYPT II
Yearly Report on Algorithms and Keysizes (2011-2012).
Available online at http://www.ecrypt.eu.org/, Sep
2012.

2. D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein,
P. Birkner, J. W. Bos, G. van Damme, G. de Meu-
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A Targeted Curve and Target Point Pair

Selection

To proof that the discrete logarithm was actually computed
without knowing it in advance, a point generation function
was needed. The Sage code in Listing 1 was used to determin-
istically and pseudo-randomly generate two points with order
n using Sage. As P and Q are generated pseudo-randomly,
their discrete logarithm is unknown. The Sage script also
checks the point orders and the validity of the computed re-
sult. Table 5 summarizes all parameters needed for the dis-
crete logarithm computation.

B Binary Karatsuba F2113 Multiplier

Algorithm 1 gives the top-level F2113 multiplier formulas.
KS64, KS32, and KS16 are 64-bit, 32-bit, and 16-bit binary
Karatsuba multipliers, respectively.
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Listing 1 Sage code to verify P , Q, and Q = kP .

FF = sage.rings.finite_rings.finite_field_ext_pari.FiniteField_ext_pari;

m=113; h=2; n=0 x100000000000000D9CCEC8A39E56F

K=FF(2**m, ’x’, 0x20000000000000000000000000201.bits ())

x=K.gen()

def str_to_poly(str):

I=Integer(str , base =16)

v=K(0)

for i in range(0,K.degree ()):

if (I >> i) & 1 > 0:

v = v + x^i

return v

def poly_to_str(poly):

vec=poly._vector_ ()

string = ""

for i in range(0,len(vec)):

string = string + str(vec[len(vec) - i - 1])

return hex(Integer(string , base =2))

k=0 x8818aa79f0a6ec0eaef9bd414497

a=K(str_to_poly("3088250 CA6E7C7FE649CE85820F7"))

b=K(str_to_poly("E8BEE4D3E2260744188BE0E9C723"))

E = EllipticCurve(K, [1,a,0,0,b])

import hashlib

PX = str_to_poly(hashlib.sha256(str (0)). hexdigest ())

PY=PolynomialRing(K, ’PY’).gen()

P_ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b).roots ()

P=E([PX,P_ROOTS [0][0]]); P=P*h

QX = str_to_poly(hashlib.sha256(str (2)). hexdigest ())

Q_ROOTS = (PY^2+QX*PY+QX^3+a*QX^2+b).roots ()

Q=E([QX,Q_ROOTS [0][0]]); Q=Q*h

print ’P.x:’, poly_to_str(P[0])

print ’P.y:’, poly_to_str(P[1])

print ’Q.x:’, poly_to_str(Q[0])

print ’Q.y:’, poly_to_str(Q[1])

print k*P==Q, is_prime(n), (n*P). is_zero(), (n*Q). is_zero ()

Algorithm 1 Calculate c = a× b, with a, b being 113-

bit binary polynomials.
Require: a, b
Ensure: c = a× b
1: mab1 ← (a[112..64]⊕ a[63..0])× (b[112..64]⊕ b[63..0]) .

KS64
2: cl1 ← a[63..0]× b[63..0] . KS64
3: cl2 ← a[95..64]× b[95..64] . KS32
4: cl3 ← a[111..96]× b[111..96] . KS16
5: mab2 ← (a[95..64] ⊕ a[111..96]) × (b[95..64] ⊕ b[111..96])
. KS32

6: ma3 ← b[112]× a[111..96]
7: mb3 ← a[112]× b[111..96]
8: m3 ← ma3 ⊕mb3

9: c3[32]← a[112]× b[112]
10: c3[30..0]← cl3
11: c3[31..16]← c3[31..16]⊕m3

12: m2 ← mab2 ⊕ cl2 ⊕ c3
13: c2[62..0]← cl2
14: c2[97..64]← c3
15: c2[94..32]← c2[94..32]⊕m2

16: m1 ← mab1 ⊕ cl1 ⊕ c2
17: c[126..0]← cl1
18: c[225..128]← c2
19: c[190..64]← c[190..64]⊕m1


