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Abstract. Functional encryption (FE) enables fine-grained access control of encrypted data while
promising simplified key management. In the past few years substantial progress has been made on
functional encryption and a weaker variant called predicate encryption. Unfortunately, fundamental
impossibility results have been demonstrated for constructing FE schemes for general functions satis-
fying a simulation-based definition of security.
We show how to use hardware tokens to overcome these impossibility results. In our envisioned scenario,
an authority gives a hardware token and some cryptographic information to each authorized user; the
user combines these to decrypt received ciphertexts. Our schemes rely on stateless tokens that are
identical for all users. (Requiring a different token for each user trivializes the problem, and would
be a barrier to practical deployment.) The tokens can implement relatively “lightweight” computation
relative to the functions supported by the scheme.
Our token-based approach can be extended to support hierarchal functional encryption, function pri-
vacy, and more.

1 Introduction

In traditional public-key encryption, a sender encrypts a message M with respect to the public key pk of a
particular receiver, and only that receiver (i.e., the owner of the secret key associated with pk) can decrypt
the resulting ciphertext and recover the underlying message. More recently, there has been an explosion of
interest in encryption schemes that can provide greater flexibility and more refined access to encrypted data.
Such schemes allow the sender to specify a policy at the time of encryption, and enable any user (decryptor)
satisfying the policy (within the given system) to decrypt the resulting ciphertext.

Work in this direction was spurred by constructions of identity-based encryption (IBE) [8], fuzzy IBE [43],
and attribute-based encryption [29]. Each of these can be cast as special cases of predicate encryption [11,
35], which is in turn a special case of the more powerful notion of functional encryption (FE) recently
introduced by Boneh, Sahai, and Waters [10]. Roughly speaking, in an FE scheme a user’s secret key SKK
is associated with a policy K. Given an encryption of some message M , a user in possession of the secret
key SKK associated with K can recover F (K,M) for some function F fixed as part of the scheme itself. (In
the most general case F might be a universal Turing machine, but weaker F are also interesting.)

Security of functional encryption, informally, guarantees that a group of users with secret keys SKK1
,

. . . , SKK`
learn nothing from an encryption of M that is not implied by F (K1,M), . . . , F (K`,M) (plus

the length of M). As far as formal definitions are concerned, early work on predicate encryption used
an indistinguishability-based definition of security, but Boneh et al. [10] and O’Neill [41] independently
showed that such a definitional approach is not, in general, sufficient for analyzing functional encryption.
They suggest to use stronger, simulation-based definitions of security (similar in spirit to semantic security)
instead.

In the past few years substantial progress has been made in this area [42, 25, 4, 26, 17, 24, 18, 3, 14, 1].
Yet several open questions remain. First, it remains an unsolved problem to construct an FE scheme for
arbitrary functions F with unbounded collusion resistance. Second, it is unknown how to realize the strongest
simulation-based notion of security for functional encryption. In fact, Boneh et al. [10] and Agrawal et al. [1]
showed fundamental limitations on achieving such definitions for FE schemes supporting arbitrary F .
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Here we propose the use of (stateless) hardware tokens to solve both the above issues. In our envisioned
usage scenario, an authority gives a hardware token along with a cryptographic key SKK to each authorized
user; the user combines these in order to decrypt received ciphertexts. We believe this would be a feasible
approach for realizing functional encryption in small- or medium-size organizations where an authority could
purchase hardware tokens, customize them as needed, and then give them directly to users in the system.

The idea of using physical devices to bypass cryptographic impossibility results has been investigated
previously. Katz [34] showed that hardware tokens can be used for universally composable computation of
arbitrary functions. His work motivated an extensive amount of follow-up work [12, 40, 13, 27, 28, 15]. In the
context of program obfuscation, several works [28, 6, 16] considered using hardware tokens to achieve program
obfuscation, which is impossible in the plain model even for simple classes of programs [2].

A token-based approach should have the following properties:

1. The tokens used should be universal, in the sense that every user in the system is given an identical token.
Having a single token used by everyone appears to be the only way to make a token-based approach
viable.

2. In applications where the complexity of F is high, it is desirable that tokens be “lightweight” in the sense
that the complexity of the token is smaller than the complexity of F .

In this work, we show token-based solutions that satisfy the above requirements. Additionally, our construc-
tions satisfy a strong simulation-based notion of security and have succinct ciphertexts (of size independent
of F ). We provide the intuition behind our approach in the next section.

1.1 Our Results

Let pk, sk denote the public and secret keys for a (standard) public-key encryption scheme. Intuitively,
a trivial construction of an FE scheme based on (stateless) tokens is to let pk be the master public key,
and to give the user associated with key K a token which implements the functionality tokensk,K(C) =
F (K,Decsk(C)). In this scheme the tokens are not universal, as each user must be given a token whose
functionality depends on that user’s key K. Perhaps more surprising is that this scheme is not secure: nothing
prevents a user from modifying C before feeding the ciphertext to its token; if the encryption scheme scheme
is malleable then a user might be able to use such a cheating strategy to learn disallowed information about
the underlying message M . We will address both these issues in our solutions, described next.

Solution #1. We can address the universality issue by having the user provide K along with C as input
to the token. (The token will then implement the functionality tokensk(K,C) = F (K,Decsk(C)).) Now we
must prevent the user from changing either K or C. Modifications of the key are handled by signing K and
hard-coding the verification key vk into the token; the token then verifies a signature on K before decrypting
as before. We show that illegal modification of the ciphertext can be solved if the public-key encryption
scheme is CCA2-secure; we give the details in Section 4.2.

Solution #2. In the previous solution, the complexity of the token was (at least) the complexity of comput-
ing F itself. We can use ideas from the area of verifiable outsource of computation [19] in order to obtain a
solution in which the complexity of the token is independent of the complexity of F . The basic idea here is
for the token to “outsource” most of the computation of F to the user. To do so, we now let the underlying
public-key encryption scheme be fully homomorphic [21]. Given a ciphertext C = Encpk(M), the user can

now compute the transformed ciphertext Ĉ = Encpk(F (K,M)) and feed this to the token for decryption. To
enforce correct behavior with lightweight tokens, we let the user provide a succinct non-interactive argument
(SNARG) [23, 20, 5] that the computation is done correctly.4 The immediate problem with this approach is
that any fully-homomorphic encryption scheme is completely malleable! We here instead rely on simulation-
extractable non-interactive zero-knowledge proofs (NIZKs) to deal with the malleable issue, where we let
the encryptor provide an NIZK proof that C = Encpk(M) is correctly encrypted. The computation done by
the token now involves (1) verifying the signature on K as in previous solution, and (2) verifying the given

4 As a technical note, while SNARGs are constructed based on knowledge-type assumptions, we here rely on SNARGs
for P, which can be formulated as a falsifiable assumption.
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SNARG and NIZK, (3) decrypting the given ciphertext, all of which have complexity independent of F . We
give the details in Section 4.3.

While both of our schemes are simple, we show in Section 6 that both schemes satisfy a very strong notion
of simulation-based security, where an adversary A gets full access to the scheme (in particular, A can make
an arbitrary number of key queries and encryption queries in a fully adaptive way), yet cannot learn any
information beyond what it should have learnt through the access. At a high level, our security proof crucially
relies on the fact that in the simulation, the simulator gets to simulate token’s answers to the queries made
by the adversary, which bypasses the information-theoretic arguments underlying the impossibility results
of Boneh et al. [10] and Agrawal et al. [1].

We remark that our constructions and the way we get around impossibility results share some similarities
to the work of Bitansky et al [6] on achieving program obfuscation using stateless and universal hardware
tokens, but the security notion of functional encryption and program obfuscation are different and the
results from both contexts does not seem to imply each other. For example, one may think intuitively that
by obfuscating the decryption circuit Decsk,K(C) = F (K,Decsk(C)), one obtains a “trivial” construction of
functional encryption. However, such a construction cannot satisfy simulation-based security as it does not
bypass the impossibility results of [10, 1].

1.2 Extensions

Our approach can be extended in several ways; we sketch two extensions here.

Hierarchical functional encryption. Consider an encrypted database in a company where the top-level man-
ager has the access control on the database that allows different first-level departments to access different
part of the data; then any first level department, say, research department, allows different second level sub-
department to run different analytic/learning algorithms over the encrypted data; this naturally induces a
hierarchical access structure to the data. To support this natural variant of access control, we need hierarchi-
cal functional encryption, which generalizes many primitives considered in the literature, such as hierarchical
IBE [33, 22, 7, 44, 37], hierarchical PE [36].

More precisely, to enable such a hierarchical structure, the global authority may delegate a first level
user Alice (under some functionality key KAlice with respect to functionality F1) the ability to generate a
second level secret key SKKAlice:KBob

of functionality key KBob with respect to functionality F2 for a second
level user Bob. For a message M encrypted under global master public key, Bob should be able to decrypt
F2(KBob, F1(KAlice,M)) using SKKAlice:KBob

. Alice may further delegate Bob the ability to generate a third
level secret key SKKAlice:KBob:KCarol

of functionality key KCarol with respect to functionality F3, and so on.
Our solution #1 can be readily extended to the hierarchical setting using the idea of signature chains.

Roughly, to delegate Alice such power, the global authority generates a key pair (skAlice, vkAlice) of a digital
signature scheme and “authorizes” it by signing (KAlice, vkAlice); skAlice is given to Alice as a “delegation
key” and (KAlice, vkAlice) together with its signature are published. Alice can then generate SKKAlice:KBob

by simply signing KAlice : KBob (using skAlice). To decrypt, Bob queries the token with the ciphertext
together with the chain of signatures—including (KAlice, vkAlice) together with its signature and KAlice :
KBob together with its signature. The token returns F2(KBob, F1(KAlice,M)) if the chain verifies. Alice can
perform further delegation in a similar fashion.

The above solution has the drawback that all functionalities in the hierarchy need to be determined in
the global setup and hard-wired in the token. We can further allow adaptively chosen functionalities by
further “authorizing” the functionality as well, but at the price that the token needs to receive a description
of the functionality (together with its authorization info) as its input, which results in long query length.
This issue can be addressed in the framework of our solution #2, where the token only requires a succinct
authorization information of the functionality (as such, the complexity of the token remains independent of
the functionalities). We provide further details in the full version of this paper.

Function privacy. In a general FE scheme the secret key SKK may leak K. Preventing such leakage is given
as an interesting research direction in [10]. Very recently, Boneh et al. [9] studied the notion of function
privacy for IBE, and gave several constructions. We can modify our token-based constructions to obtain
function privacy in functional encryption: in the key generation, instead of obtaining a signature of K, the
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users obtain an encrypted version signature E(σ); the decryption key sk will be stored in token; at any
moment when the users receive a ciphertext C, instead of providing (C,K, σ), the tuple (C,K, E(σ)) will be
given to token; the token would first decrypt E(σ) into σ and then verify that σ is a valid signature on K
and, if so, return the result F (K,Decsk(C)) as in basic functional encryption constructions.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) is a public-key en-
cryption scheme that associates with an additional polynomial-time algorithm Eval, which takes as input a
public key ek, a ciphertext ct = Encek(m) and a circuit C, and outputs, a new ciphertext ct′ = Evalek(ct, C),
such that Decdk(ct

′) = C(m), where dk is the secret key corresponding to the public key ek. It is required
that the size of ct′ = Evalek(Encek(m), C) depends polynomially on the security parameter and the length
of C(m), but is otherwise independent of the size of the circuit C. We also require that Eval is deter-
ministic, and the scheme has perfect correctness (i.e. it always holds that Decdk(Encek(m)) = m and that
Decdk(FHE.Evalek(Encek(m), C)) = C(m)). Most known schemes satisfies these properties. For security, we
simply require that FHE is semantically secure.

Since the breakthrough of Gentry [21], several fully homomorphic encryption schemes have been con-
structed with improved efficiency and based on more standard assumptions such as LWE (Learning With
Error). In general, these constructions achieve leveled FHE, where the complexity of the schemes depend
linearly on the depth of the circuits C that are allowed as inputs to Eval. However, under the additional
assumption that these constructions are circular secure (i.e., remain secure even given an encryption of the
secret key), the complexity of the schemes are independent of the allowed circuits, and the schemes can
evaluate any polynomial-sized circuit.

2.2 Non-interactive Zero-Knowledge Arguments

Let R be a binary relation that is efficiently computable. Let LR be the language defined by the relation R,
that is, LR = {x : ∃w s.t.(x,w) ∈ R}. For any pair (x,w) ∈ R, we call x the statement and w the witness.

Definition 1 (NIZK). A tuple of ppt algorithms NIZK = (NIZK.Gen,NIZK.P,NIZK.V ), is a non-interactive
zero-knowledge (NIZK) argument system for R if it has the following properties described below:

Completeness. For any (x,w) ∈ R it holds that

Pr[crs← NIZK.Gen(1κ);π ← NIZK.P (crs, x, w) : NIZK.V (crs, x, π) = 1] = 1.

Soundness. For any non-uniform ppt A, it holds that

Pr[crs← NIZK.Gen(1κ); (x, π)← A(crs) : NIZK.V (crs, x, π) = 1] ≤ negl(κ).

Zero-knowledge. For any non-uniform ppt A, there exists a ppt S = (S1,S2) such that it holds that
|p1 − p2| ≤ negl(κ), where

p1 = Pr[crs← NIZK.Gen(1κ) : ANIZK.P (crs,·,·)(crs) = 1]

p2 = Pr[(crs, τ, ξ)← S1(1κ) : ASim(crs,τ,·,·)(crs) = 1]

where Sim(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R. Both oracles NIZK.P () and Sim() output ⊥ if
(x,w) 6∈ R.

Next we define (unbounded) simulation-extractability of NIZK [30, 32]. Intuitively, it says that even after
seeing many simulated proofs, whenever the adversary makes a new proof we are able to extract a witness.

Definition 2 (Simulation-Extractability). Let NIZK = (NIZK.Gen,NIZK.P,NIZK.V ) be a NIZK argu-
ment system for R. We say NIZK is simulation-extractable if for all ppt adversaries A, there exists a ppt
S = (S1,S2,S3) so that

Pr

[
(crs, τ, ξ)← S1(1κ); (x, π)← AS2(crs,τ,·)(crs);w ← S3(crs, ξ, x, π) :

NIZK.V (crs, x, π) = 1 ∧ (x, π) 6∈ Q ∧ (x,w) 6∈ R

]
≤ negl(κ)

where Q is the list of simulation queries and responses (xi, πi) that A makes to S2().
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2.3 SNARG

We present the definition of succinct non-interactive arguments (abbreviated SNARGs) [23, 20, 5]. A SNARG
for a function class F = {Fκ}κ∈N consists of a set of ppt algorithms SNARG = SNARG.{Gen, P, V }: The
generation algorithm Gen on input security parameter 1κ and a function F : {0, 1}n(κ) → {0, 1}m(κ) ∈ Fκ
(represented as a circuit), outputs a reference string rs and a (short) verification state vrs.5 The prover P
on input rs and an input string x ∈ {0, 1}n, outputs an answer y = F (x) together with a (short) proof $.
The verifier algorithm V on input vrs, x, y, and $ outputs a bit b ∈ {0, 1} represents whether V accepts or
rejects. We require the following properties for a SNARG scheme.

– Completeness: For every κ ∈ N, F ∈ Fκ, x ∈ {0, 1}n, the probability that the verifier V rejects in
the following experiment is negligible in κ: (i) (rs, vrs) ← Gen(1κ, F ), (ii) (y,$) ← P (rs, x), and (iii)
b← V (vrs, x, y,$).

– Soundness: For every efficient adversary P ∗, and every κ ∈ N, the probability that P ∗ makes V accept
an incorrect answer in the following experiment is negligible in κ: (i) P ∗ on input 1κ outputs a function
F ∈ Fκ, (ii) (rs, vrs) ← Gen(1κ, F ), (iii) P ∗ on input rs, outputs x, y,$ with y 6= F (x), and (iv)
b← V (vrs, x, y,$).

– Efficiency: The running time of the verifier is poly(κ, n+m, log |F |) (which implies the succinctness of
vrs and $). The running time of the generation algorithm and the prover is poly(κ, |F |).

We say SNARG is publicly-verifiable if the verification state vrs is part of the reference string rs.
We require a publicly-verifiable SNARG scheme SNARG for polynomial-size circuits. Such a SNARG

scheme can be obtained by using Micali’s CS proof [39] (with random oracle instantiated by some hash
function heuristically), or provably secure based on publicly-verifiable succinct non-interactive arguments
(SNARGs), which in turn can be constructed based on (non-falsifiable) q-PKE (q-power knowledge of ex-
ponent) and q-PDH (q-power Diffie-Hellman) assumptions on bilinear groups. Such SNARGs was first con-
structed implicitly in [31] and later improved by [38, 20], where [20] explicitly constructs SNARGs. In the
scheme of [20], the generation algorithm and the prover run in time quasi-linear in the size of F with rs
length linear in |F |, and the verifier runs in linear time in the input and output length.

3 Definition of Functional Encryption

Functional encryption was recently introduced by Boneh, Sahai, and Waters [10]. Let F = {Fκ}κ∈N where
Fκ = {F : Kκ × Mκ → Mκ} be an ensemble of functionality class indexed by a security parameter
κ. A functional encryption scheme FE for a functionality class F consists of four ppt algorithms FE =
FE.{Setup,Key,Enc,Dec} defined as follows.

– Setup: FE.Setup(1κ, F ) is a ppt algorithm takes as input a security parameter 1κ and a functionality
F ∈ Fκ and outputs a pair of master public and secret keys (MPK,MSK).

– Key Generation: FE.Key(MSK,K) is a ppt algorithm that takes as input the master secret key MSK
and a functionality key K ∈ Kκ and outputs a corresponding secret key SKK .

– Encryption: FE.Enc(MPK,M) is a ppt algorithm that takes as input the master public key MPK and
a message M ∈Mκ and outputs a ciphertext CT.

– Decryption: FE.Dec(SKK ,CT) is a deterministic algorithm that takes as input the secret key SKK and
a ciphertext CT = Enc(MPK,M) and outputs F (K,M).

Definition 3 (Correctness). A functional encryption scheme FE is correct if for every κ ∈ N, F ∈ Fκ,
K ∈ Kκ, and M ∈Mκ,

Pr

[
(MPK,MSK)← FE.Setup(1κ, F );
FE.Dec(FE.Key(MSK,K),FE.Enc(MPK,M)) 6= F (K,M)

]
= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Key, and FE.Enc.

5 We assume w.l.o.g. that rs contains a description of F .
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We next define a stronger simulation-based notion of security for functional encryption than the existing
simulation-based security notions in the literature. We note that, while there are negative results [10, 1]
showing that even significantly weaker notions of security are impossible to achieve in the plain model, our
token-based construction in Section 4 achieves our strong security notion in the token model.

Our definition is stronger in the sense that we allow the adversary A to take full control over the access
of the encryption scheme, where A can choose the functionality F and request to see an arbitrary number
of secret keys SKK ’s and ciphtertexts CT’s in a fully adaptive fashion. Previous definitions either restrict
the number of ciphertext queries and/or restrict the order of secret key and ciphertext queries (e.g., require
A to ask for all challenge ciphertexts at once). Informally, the following definition says that even with full
access to the encryption scheme, A still cannot learn any additional information than what it should have
legally learnt from the received ciphertexts (using the received secret keys). This, as usual, is formalized by
requiring that the ciphertexts can be simulated by an efficient simulator with only the “legal” information.

Definition 4 (Fully-Adaptive Simulation Security). Let FE be a functional encryption scheme for
a functionality class F . For every ppt stateful adversary A and ppt stateful simulator Sim, consider the
following two experiments.

ExptrealFE,A(1κ)

1: F ← A(1κ);
2: (MPK,MSK)← FE.Setup(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← ASim{F (·,Mj)}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to Key(MSK, ·) queries of A. During the
execution of the ideal experiment, we say that Sim’s query K to oracles {F (·,M1), . . . , F (·,Mi)} is legal if A
already requested ciphertexts for M1, . . . ,Mi, and made oracle query K to Key(MSK, ·). We call a simulator
algorithm Sim admissible if it only makes legal queries to its oracle throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-secure if there is an admis-
sible ppt stateful simulator Sim such that for every ppt stateful adversary A, the following two distributions
are computationally indistinguishable:{

ExptrealFE,A(1κ)
}
κ

c
≈
{

ExptidealFE,A,Sim(1κ)
}
κ

4 Token Model and Constructions

4.1 Token-based FE

Here we introduce a simple token model for encryption schemes and provide formal definitions of token-based
functional encryption schemes. In our model, we consider stateless tokens that are initialized by the master
authority in the setup stage, and are only used by users in decryption. Furthermore, we require token to be
universal in the sense that tokens used by different users are identical. Thus, tokens are simply deterministic
oracles that are generated by the Setup algorithm, and queried by the Dec algorithm.

Definition 5 (Token-based FE). A token-based functional encryption scheme FE is defined identical to
the definition of functional encryption scheme except for the following modifications.
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– Setup: In addition to MPK and MSK, the algorithm FE.Setup also outputs a token T, which is simply
a deterministic oracle.

– Key Generation : In addition to the keys SKK , the algorithm FE.Key also returns a copy of the token
T to users.

– Decryption: The decryption algorithm FE.DecT can query the T in order to decrypt.

The correctness property extends straightforwardly. For security, we generalize fully-adaptive simulation
security to the token model. As before, we allow the adversary A to take full control over the access of the
encryption scheme; in particular, A is given the oracle access to token after setup. In the ideal world, the
simulator is required to simulate answers to all queries made by A, including the token queries, given only
the “legal” information that A can learn from the received ciphertexts using the received secret keys.

Definition 6 (Fully-Adaptive Simulation Security for Token-Based FE). Let FE be a token-basd
functional encryption scheme for a functionality class F . For every ppt stateful adversary A and ppt stateful
simulator Sim, consider the following two experiments.

ExptrealFE,A(1κ)

1: F ← A(1κ);
2: (MPK,MSK,T)← FE.Setup(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← AFE.Key(MSK,·),T(·)();
CTi ← FE.Enc(MPK,Mi);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

ExptidealFE,A,Sim(1κ)

1: F ← A(1κ);
2: MPK← Sim(1κ, F );

provide MPK to A;
3: let i := 1;
4: do

Mi ← ASim{F (·,Mj)}j<i
();

CTi ← Sim{F (·,Mj)}j≤i(1|Mi|);
provide CTi to A;
i := i+ 1;

until A breaks;
5: α← A();
6: output (α, {Mj}j∈[i−1]);

In Step 4 of the ideal experiment, Sim needs to provide answers to both Key(MSK, ·) and T(·) queries of A.
During the execution of the ideal experiment, we say that Sim’s query K to oracles {F (·,M1), . . . , F (·,Mi)}
is legal if A already requested ciphertexts for M1, . . . ,Mi, and made oracle query K to Key(MSK, ·). We call
a simulator algorithm Sim admissible if it only makes legal queries to its oracle throughout the execution.

The functional encryption scheme FE is said to be fully-adaptive simulation-secure if there is an admis-
sible ppt stateful simulator Sim such that for every ppt stateful adversary A, the following two distributions
are computationally indistinguishable:{

ExptrealFE,A(1κ)
}
κ

c
≈
{

ExptidealFE,A,Sim(1κ)
}
κ

4.2 Token-based FE Construction — Solution #1

Here we give the construction of a functional encryption scheme FE = FE.{Setup,Key,Enc,Dec} for a
functionality F based on stateless and universal tokens. Our construction is based on a CCA2-secure public
key encryption PKE.{Gen,Enc,Dec} and a strongly unforgeable signature scheme SIG.{Gen,Sign,Vrfy}. In
the setup stage, the authority generates a key-pair (ek, dk) for encryption and a key-pair (vk, sk) for digital
signature, and set MPK = (ek, vk) and MSK = sk. Additionally, the authority initializes the token T with
the description of F , public keys ek, vk, and secret decryption key dk.

To encrypt a message M , one simply encrypts it using the underlying CCA2 public key ek; that is, the
ciphertext is ct← PKE.Encek(M). The secret key SKK for a functionality key K is simply a signature of K;
that is, SKK = σK ← SIG.Signsk(K). To decrypt ct using secret key SKK , the user queries its token T with
(ct,K, σK). T verifies if σK is valid, and if so, T returns F (K,PKE.Decdk(ct)), and returns ⊥ otherwise. A
formal description of our scheme can be found in Figure 1.

7



– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup algorithm Setup() performs
the following steps to generate MPK, MSK, and a deterministic stateless token T.
• Execute (ek, dk)← PKE.Gen(1κ), and (vk, sk)← SIG.Gen(1κ).
• Initiate a token T with values (dk, ek, vk, F ).
• Output MPK = (ek, vk), and MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K, the key generation
algorithm Key() generates SKK as follows.
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public key MPK and a message M , the encryption algorithm Enc()
generates CT as follows.
• Execute ct← PKE.Encek(M ; ρ), where ρ is the randomness. Return CT = (ct).

– Decryption: on input SKK = (σK) and a ciphertext CT = (ct) of a message M , with access to a
token T, the decryption algorithm DecT() performs the following steps to decrypt m = F (K,M):
• Query the token m← T(CT,K, SKK). Output m.

– Token Operations: on query (CT,K, SKK), where CT = (ct) and SKK = (σK), the token T carries
out the following operations.
• Execute SIG.Vrfyvk(K,σK).
• If the above verification accepts, then compute M ← PKE.Decdk(ct) and return m = F (K,M).

Otherwise, return ⊥.

Fig. 1. Solution #1. Here PKE.{Gen,Enc,Dec} is a public-key encryption scheme, and SIG.{Gen,Sign,Vrfy} is a
signature scheme.

Note that our scheme has succinct ciphertext size. Indeed, our ciphertext is simply a CCA2 encryption
of the message, which is independent of the complexity of F . On the other hand, our token need to evaluate
F to decrypt. Thus, our solution #1 is suitable for lower complexity functionalities (e.g., inner product
functionality).

While our scheme is very simple, it satisfies the strong fully-adaptive simulation-security as defined in
Definition 6. In fact, the security proof is rather straightforward: The simulator simply simulates Setup
and Key queries honestly, and simulates encryption queries Mi by encryption of 0|Mi|. To answer a token
query (ct,K, σK), when σK verifies, the simulator checks if ct is one of the simulated ciphertext (for some
encryption query Mi). If so, the simulator queries its oracle and returns F (K,Mi), and if not, it simulates
the token honestly. Intuitively, the simulation works since by strong unforgeability, the simulator can learn
correct answers for simulated ciphertexts from its oracle, and CCA2-security ensures that the simulation
works for other ciphertexts.

We note that our security proof crucially relies on the fact that in the simulation, the simulator gets
to simulate token’s answers to the queries made by the adversary, which bypasses the information-theoretic
arguments underlying the impossibility results of Boneh et al. [10] and Agrawal et al. [1].

Theorem 1. If SIG is a strongly unforgeable signature scheme, PKE is a CCA2-secure public key encryp-
tion, then the above functional encryption construction FE is simulation-secure (Definition 6).

Proof: We here prove that our scheme achieves the strong fully-adaptive simulation-security as defined in
Definition 6. In order to prove the security, we need to construct a simulator Sim which interacts with an
adversary A. The ideal experiment ExptidealFE,A,Sim(1κ) is as follows:

– Upon obtaining functionality F from the adversary, the simulator runs (vk, sk)← SIG.Gen() and (ek, dk)←
PKE.Gen(), and set MPK = (ek, vk), and give MPK to the adversary. From now on, oracle access to the
token will be simulated for the adversary.

– In the key generation, upon receiving the request on K from the adversary, the simulator computes
σK ← SIG.Signsk(K), and returns σK to the adversary. Note that now the simulator records (K,σK) into
history.

– At any point when the adversary provides message M , the simulator is allowed to see the length |M | and
it is granted an oracle F (·,M). The simulator then computes ct← PKE.Enc(0|M |;ω) where ω is randomly
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chosen, and sets ct as a pointer to the oracle F (·,M). The simulator records (|M |, ct) into history, and
returns ct to the adversary. If the same ct is recorded twice in the history, then the simulator returns
Abort.

– At any point when the adversary queries the token with tuple (ct,K, σK), the simulator first checks if
(K,σK) has been recorded in the history. If not, then it returns ⊥. Else if the pair (K,σK) has been
recorded, and ct has also been recorded in the history, then the simulator queries the corresponding oracle
F (·,M), and learns m = F (K,M). Then the simulator returns m to the adversary. Otherwise, if (K,σK)
has been recorded but ct has not, the simulator computes M ← PKE.Decdk(ct) and m← F (K,M), and
returns m to the adversary.

– Let M∗1 , . . . ,M
∗
n be the messages that the adversary queried for ciphertexts. If the adversary finally

outputs a value α, output (α, {M∗i }i∈[n]).

From the above simulation, we can easily see that only valid users who participate in the key generation
are able to use the token to decrypt ciphertexts. Furthermore, for a ciphertext ct = PKE.Enc(M), the
adversary cannot learn any extra information beyond {F (Ki,M)}i where {Ki}i have been registered in the
key generation.

Next, we show that the ideal experiment is computationally close to the real experiment, by developing
a sequence of hybrids between them.

Hybrid 0: This is the real experiment ExptrealFE,A(1κ). As described in construction FE , upon obtaining
functionality F , we first generate (MPK,MSK,T)← FE.Setup(1κ, F ) where MPK = (ek, vk) and MSK =
sk, and give MPK to the adversary. At any moment when the adversary queries FE.Key() with K, we
return SKK = σK where σK ← SIG.Signsk(K). At any point when the adversary outputs M∗i , we return
the adversary with CT∗i = ct∗i where ct∗i ← PKE.Encek(M

∗
i ;ω∗i ). At any point when the adversary queries

the token with tuple (ct,K, σK), the token will behave as follows: if the pair (K,σK) is not verified, then
return ⊥. Otherwise if the pair is verified, i.e., SIG.Vrfyvk(K,σK) = 1, then use dk to decrypt ct into
M ← PKE.Decdk(ct), and return m = F (K,M). We then return m to the adversary. Let M∗1 , . . . ,M

∗
n

be the values that the adversary queried for ciphertexts. If the adversary finally outputs a value α, we
output (α, {M∗i }i∈[n]).

Hybrid 1: This hybrid is the same as Hybrid 0 except the following: In this hybrid, we change the token’s
responses to the adversary. At any point when the adversary queries the token with tuple (ct,K, σK), if
SIG.Vrfyvk(K,σK) = 1 while the pair (K,σK) never appears in the queries to FE.Key(), then the hybrid
outputs Abort.
Hybrid 1 and Hybrid 0 are the same except that Abort occurs. Based on the strong unforgeability of
SIG, we claim the event of Abort occurs with negligible probability. Therefore, Hybrid 1 and Hybrid
0 are computationally indistinguishable. Towards contradiction, assume there is a distinguisher A can
distinguish Hybrid 0 from Hybrid 1. We next show an algorithm B that breaks the strong unforgeability
of SIG as follows:

– Upon receiving the encryption key vk, B internally simulates A. B works the same as in Hybrid
0 except the following: At any point when the adversary provides functionality F , B computes
(ek, dk)← PKE.Gen(), and sets MPK := (ek, vk). At any moment when the adversary queries FE.Key()
with K, B queries its own signing oracle with K and receives σK , and then B returns σK to A as
the response.
At any point when the adversary queries the token with tuple (ct,K, σK), if SIG.Vrfyvk(K,σK) = 1,
but (K,σK) never appears in the queries to FE.Key(), then the event Abort occurs, B halts and
output (K,σK) to its challenger as the forged pair.

We note that the view of the above simulated A is the same as that in Hybrid 1. We further note that
as long as the event Abort does not occur, A’s view is the same as that in Hybrid 0. Since A is able to
distinguish the two hybrids, that means the event Abort will occur with non-negligible probability. That
says, B is a successful unforgeability attacker against SIG, which reaches a contradiction. Therefore,
Hybrid 0 and Hybrid 1 are computationally indistinguishable.

Hybrid 2: This hybrid is the same as Hybrid 1 except the following: Whenever the adversary queries on
M∗i , we compute ĉt

∗
i ← PKE.Encek(M

∗
i ;ω∗i ), and record (|M∗i |, ĉt

∗
i ). Here we can easily simulate an oracle

F (·,M∗i ) based on M∗i , and we set the ciphertext ct∗ as the pointer to the oracle. Furthermore, we change
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the token’s responses to the adversary. At any point when the adversary queries the token with tuple
(ct,K, σK) where the pair (K,σK) has been recorded, we carry out the following: if ct has been recorded
then we based on it query the corresponding oracle F (·,M∗i ) with K and receive m = F (K,M∗i ). Then
we return m to the adversary.
We can easily see that the views of A are the same in Hybrid 1 and Hybrid 2.

Hybrid 3.j, where j = 0, . . . , n : Here n is the total number of messages the adversary has queried for
ciphertexts. This hybrid is the same as Hybrid 2 except the following:
When the adversary queries on {M∗i }i∈[n], the messages {M∗1 , . . . ,M∗j } are blocked; instead, we are al-
lowed to see the length of the messages, i.e, |M∗1 |, . . . , |M∗j |, and have oracle access to F (·,M∗1 ), . . . , F (·,M∗j ).
Note that we are now still allowed to see the messages {M∗j+1, . . . ,M

∗
n}, and therefore we can easily sim-

ulate the oracles F (·,M∗j+1), . . . , F (·,M∗n).
We change the response to the adversary’s query on {M∗i }i=1,...,n. We now return the adversary with
CT∗i = ĉt

∗
i for all i ∈ [n]. Here ĉt

∗
i ← PKE.Encek(0

|M∗i |;ω∗i ) for all i ∈ [1, . . . , j], and ĉt
∗
i ← PKE.Encek(M

∗
i ;ω∗i )

for all i ∈ [j + 1, . . . , n].
Based on the CCA2-security of PKE , we claim Hybrid 3.j and Hybrid 3.(j + 1) are computationally
indistinguishable for all j = 0, . . . , n − 1. Towards contradiction, assume there is a distinguisher A
who can distinguish Hybrid 3.j from Hybrid 3.(j + 1). We next show an algorithm B that breaks the
CCA2-security of PKE as follows:

– Upon receiving the encryption key ek, B internally simulates A. B works the same as in Hybrid 3.j
except the following:
• Upon A’s query on M∗j+1, B queries LR-oracle LR with (M∗j+1, 0

|M∗j+1|); in turn it gets back a

ciphertext ct∗j+1 which is PKE.Enc(0|M
∗
j+1|) or PKE.Enc(M∗j+1) from the LR-oracle.

• Upon receiving A’s query to the token with tuple (ct,K, σK) where (K,σK) has been recorded,
if ct has been recorded then B simulates the corresponding oracle F (·,M∗i ) for K and provides
m = F (K,M∗i ) to A. If ct has not been recorded, then B queries its decryption oracle to obtain
the plaintext M of the ciphertext ct, and then return m = F (K,M) to the adversary.

– Finally, B outputs whatever A outputs.

Let β be the hidden bit associated with the LR oracle. We note that when β = 0, the algorithm B exactly
simulates the Hybrid 3.j to A; when β = 1, B simulates exactly the Hybrid 3.(j + 1) to A. Under the
assumption, since A is able to distinguish the two hybrids in non-negligible probability, that means the
constructed B is successful CCA2 attacker against PKE , which reaches a contradiction. Therefore Hybrid
3.j and Hybrid 3.(j + 1) are computationally indistinguishable.
Furthermore, we note that Hybrid 3.0 is the same as Hybrid 2, and Hybrid 3.n is the ideal experi-
ment. Based on the above argument we already see the real experiment and the ideal experiment are in
distinguishable. This means the construction FE is simulation secure as defined in Definition 6.

4.3 Token-based FE Construction — Solution #2

In our solution #1 presented in the previous section, the token size is linear of function F . Here we present
our solution #2, a functional encryption scheme FE = FE.{Setup,Key,Enc,Dec} in the token model where
the complexity of token is independent of the complexity of F . We use the following tools: FHE, digital
signature, publicly verifiable SNARG, and simulation-extractable NIZK. (Please refer to Section 2 for the
definitions.)

In the setup stage, the authority generates key pairs (ek, dk) and (vk, sk) for FHE and for digital signature
respectively. The authority also sets up the reference strings crs and (rs, vrs) for NIZK and for SNARG
respectively. Note that the reference string vrs for SNARG verification is very short and it is independent of
F . The authority sets (ek, vk, crs, rs, vrs) as its master public key MPK, and sk as the master secret key MSK.
In addition, the authority initializes the token T with the public information (ek, vk, crs, vrs), and the secret
decryption key dk.

The key generation stage is the same as that in the previous solution; for each user associated with a
key K, the authority uses the MSK to generate a signature σK on the key K; in addition the authority
sends the user an identical copy of the token. The encryption algorithm is different from that in the previous
solution: To encrypt a message M , one takes two steps: (1) encrypt it using the FHE public key ek; that
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– Setup: on input a security parameter 1κ, a functionality F ∈ Fκ, the setup algorithm Setup() performs
the following steps to generate MPK, MSK, and a deterministic stateless token T.
• Execute (ek, dk)← FHE.Gen(1κ), (vk, sk)← SIG.Gen(1κ), and crs← NIZK.Gen(1κ).
• Define F̂ (K, ct) , FHE.Evalek(ct, F (K, ·)). Execute (rs, vrs)← SNARG.Gen(1κ, F̂ ).
• Initiate a token T with values (dk, ek, vk, crs, vrs).
• Output MPK = (ek, vk, crs, rs, vrs), MSK = (sk).

– Key Generation: on input a master secret key MSK and a functionality key K, Key() generates SKK
as:
• Execute σK ← SIG.Signsk(K). Output SKK = (σK).

– Encryption: on input a master public key MPK and a message M , the encryption algorithm Enc()
generates CT as follows.
• Execute ct← FHE.Encek(M ;ω), where ω is the randomness used in the encryption.
• Execute π ← NIZK.P (crs, (ek, ct), (M,ω)) with respect to the relation

RFHE = {((ek, ct), (M,ω)) : FHE.Encek(M ;ω) = ct}.

• Output CT = (ct, π)
– Decryption: on input SKK and a ciphertext CT = (ct, π) of a message M , with access to a token T,

the decryption algorithm DecT() performs the following steps to decrypt m = F (K,M):
• Execute (c̃t, $)← SNARG.P (rs, (K, ct)). Here c̃t = F̂ (K, ct) = FHE.Evalek(ct, F (K, ·)).
• Query the token m← T(CT,K, SKK , c̃t, $). Output m.

– Token Operations: on query (CT,K, SKK , c̃t, $), where CT = (ct, π) and SKK = σK , the token T
carries out the following operations.
• Execute SIG.Vrfyvk(K,σK), NIZK.V (crs, (ek, ct), π), and SNARG.V (vrs, (K, ct), c̃t, $).
• Return FHE.Decdk(c̃t) if all above verifications accept, and return ⊥ otherwise.

Fig. 2. Solution #2. Here FHE.{Gen,Enc,Eval,Dec} is a fully homomorphic encryption, SIG.{Gen, Sign,Vrfy} is a
signature scheme, SNARG.{Gen, P, V } is a SNARG scheme, NIZK.{Gen, P, V } is a NIZK scheme.

is, the ciphertext is ct← FHE.Encek(M); (2) generate an NIZK that the ciphertext ct is honestly generated.
The ciphertext for message M is (ct, π).

The decryption algorithm is different from that in the previous solution as well. Our goal as stated before
is to obtain a solution in which the complexity of the token is independent of the complexity of F . The idea is
to let the token to “outsource” most of the computation of F to the user. Concretely, to decrypt a ciphertext
(ct, π), the user who is associated with key K computes the transformed ciphertext c̃t by homomorphically
evaluating ct with F (K, ·); to be sure that the transformation is carried out correctly, the user also provides
a SNARG $. Then the user queries the token T with an input tuple (ct, π,K, σK , c̃t, $); the token first
verifies if signature, NIZK, SNARG are all valid; if so, the token decrypts the ciphertext c̃t into message m
and returns m, and it returns ⊥ otherwise. A formal description of our scheme can be found in Figure 2.

Note that, similar to solution #1, our scheme here also has succinct ciphertext size. Our ciphertext
consists of an FHE ciphertext and an NIZK, both of which are independent of the complexity of F . On the
other hand, here our token does not need to evaluate F to decrypt, and thus the complexity of the token is
independent of the complexity of F .

Our scheme here also satisfies the strong fully-adaptive simulation-security as defined in Definition 4.
The proof idea is very similar to that in the previous section, which crucially relies on the fact that in the
simulation, the simulator gets to simulate token’s answers to the queries made by the adversary. Next, we
briefly highlight the differences between the two solutions. In both constructions, the user can only provide
authenticated inputs to the hardware token, and digital signature is used to authenticate K. But two different
approaches are used to authenticate the ciphertext: in solution #1, the authentication is guaranteed by the
CCA2 security of the encryption, while in solution #2, the authentication is provided by the simulation-
extractability of the NIZK, and the soundness of the SNARG.

Theorem 2. If SNARG is a publicly verifiable SNARG scheme, NIZK is a zero-knowledge and simulation-
extractable NIZK scheme, SIG is a strong unforgeable signature scheme, FHE is a secure fully homomorphic
encryption scheme, then the above construction FE is simulation-secure functional encryption scheme.
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Proof can be found in the full version.
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