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Abstract

We construct a general-purpose multi-input functional encryption scheme in the private-key
setting. Namely, we construct a scheme where a functional key corresponding to a function
f enables a user holding encryptions of x1, . . . , xt to compute f(x1, . . . , xt) but nothing else.
This is achieved starting from any general-purpose private-key single-input scheme (without
any additional assumptions), and is proven to be adaptively secure for any constant number of
inputs t. Moreover, it can be extended to a super-constant number of inputs assuming that the
underlying single-input scheme is sub-exponentially secure.

Instantiating our construction with existing single-input schemes, we obtain multi-input
schemes that are based on a variety of assumptions (such as indistinguishability obfuscation,
multilinear maps, learning with errors, and even one-way functions), offering various trade-offs
between security and efficiency.

Previous and concurrent constructions of multi-input functional encryption schemes either
rely on stronger assumptions and provided weaker security guarantees (Goldwasser et al. [EU-
ROCRYPT ’14], and Ananth and Jain [CRYPTO ’15]), or relied on multilinear maps and could
be proven secure only in an idealized generic model (Boneh et al. [EUROCRYPT ’15]). In com-
parison, we present a general transformation that simultaneously relies on weaker assumptions
and guarantees stronger security.
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1 Introduction

The emerging vision of functional encryption [SW08, BSW11, O’N10] extends the traditional “all-
or-nothing” view of encryption schemes. Specifically, functional encryption schemes offer additional
flexibility by supporting restricted decryption keys. These keys allow users to learn specific func-
tions of the encrypted data, without learning any additional information. Building upon the early
examples of functional encryption schemes for restricted function families (such as identity-based
encryption [Sha84, BF03, Coc01]), extensive research is currently devoted to the construction of
functional encryption schemes offering a variety of expressive families of functions (see, for example,
[SW08, BSW11, O’N10, GVW12, AGV+13, BO13, BCP14, GGH+13, GKP+13, Wat15, GGH+14,
AJ15, ABS+15, BS15, BV15, KSY15]).

Until very recently, research on functional encryption has focused on the case of single-input
functions. In a single-input functional encryption scheme, a functional key skf corresponding to a
function f enables a user holding an encryption of a value x to compute f(x), while not revealing any
additional information on x. In many scenarios, however, dealing only with single-input functions
is insufficient, and a more general framework allowing multi-input functions is required.

Goldwasser et al. [GGG+14] recently introduced the notion of a multi-input functional encryp-
tion scheme. In such a scheme, a functional key corresponding to a t-input function f enables a user
holding encryptions of x1, . . . , xt to compute f(x1, . . . , xt) without learning any additional informa-
tion on the xi’s. The work of Goldwasser et al. and their new notion are very well-motivated by a
wide range of applications based on mining aggregate information from several different data sources.
These include, for example, running SQL queries on encrypted databases, computing over encrypted
data streams, non-interactive differentially-private data release, and order-revealing encryption (all
of which are relevant in both the public-key setting and the private-key one [BLR+15]).

Goldwasser et al. presented a rigorous framework for capturing the security of multi-input
schemes in the public-key setting and in the private-key one. In addition, relying on indistinguisha-
bility obfuscation and one-way functions [BGI+12, GGH+13, KMN+14], they constructed the first
multi-input functional encryption schemes. In terms of functionality, their schemes are extremely
expressive, supporting all multi-input functions that are computable by bounded-size circuits. In
terms of security, however, their private-key scheme satisfies a weak selective notion, which does not
allow the adversary to access an encryption oracle (which is quite crippling in the private-key set-
ting), and requires an a-priori bound on the number of challenge ciphertexts (the ciphertext length
in their scheme depends on the number of challenge ciphertexts).

Following the work of Goldwasser et al. [GGG+14], a private-key multi-input functional encryp-
tion scheme that satisfies a more standard notion of security (one that allows access to an encryption
oracle) was constructed by Boneh et al. [BLR+15]. Their scheme is based on multilinear maps, and
is proven secure in the idealized generic multilinear map model. In addition, in an independent and
concurrent work, Ananth and Jain [AJ15] constructed a selectively-secure multi-input private-key
functional encryption scheme based on any general-purpose public-key functional encryption scheme
(as an intermediate step in constructing an indistinguishability obfuscator).

Thus, constructions of multi-input functional encryption schemes in the private-key setting have
so far either relied on stronger assumptions and provided weaker security guarantees [GGG+14,
AJ15]1, or could be proven secure only in an idealized generic model [BLR+15].

1In terms of assumptions, the recent work of Asharov and Segev [AS15] shows that indistinguishability obfuscation
and public-key functional encryption are significantly stronger primitives than private-key functional encryption. We
refer the reader to Section 1.1 for a more elaborate discussion.
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1.1 Our Contributions

In this paper we present a construction of private-key multi-input functional encryption from any
general-purpose private-key single-input functional encryption scheme (without introducing any ad-
ditional assumptions). The resulting scheme supports any set of efficiently-computable functions,
and provides adaptive security in the standard model for any constant number of inputs. Assuming
that the underlying private-key single-input scheme is sub-exponentially secure, our resulting scheme
provides adaptive security for a super-constant number of inputs (we refer the reader to Section 1.3
for more details). Following [AAB+13, BS15], our scheme provides not only message privacy, but in
fact a unified notion that captures both message privacy and function privacy (this notion is known
as full security – see Section 2.3 for more details).

Instantiations. Instantiating our construction with existing private-key single-input schemes, we
obtain new multi-input schemes based on a variety of assumptions in the standard model. Specifi-
cally, we obtain schemes that are secure for an unbounded number of encryption and key-generation
queries based on indistinguishability obfuscation or multilinear maps. In addition, if the number of
encryption and key-generation queries is a-priori bounded, we can rely on much milder assumptions
such as learning with errors [GKP+13] or even the existence of one-way functions or low-depth
pseudorandom generators [GVW12]. See Section 2.2 for further discussion.

Comparison with previous and concurrent work. Compared to the previous work of Gold-
wasser et al. [GGG+14] and Boneh et al. [BLR+15], our work yields stronger security guarantees and
at the same time relies solely on a necessary assumption. Specifically, whereas Goldwasser et al. and
Boneh et al. rely on indistinguishability obfuscation and multilinear maps, respectively, we rely on
the existence of any general-purpose private-key single-input scheme, which is obviously necessary.
Moreover, whereas the scheme of Goldwasser et al. provides a selective notion of security which, in
addition, does not allow adversaries to access an encryption oracle and requires an a-priori bound
on the number of challenge ciphertexts, and the scheme of Boneh et al. is proved secure only in an
idealized generic model that does not properly capture real-world adversaries, our scheme provides
adaptive security in the standard model for any number of challenge ciphertexts.

Compared to the concurrent work of Ananth and Jain [AJ15], our work again yields stronger
security guarantees while relying on a weaker assumption. Specifically, whereas the construction
of Ananth and Jain relies on public-key functional encryption and guarantees selective security
(where, in addition, the adversary is not allow to access an encryption oracle), our construction
relies on private-key functional encryption and guarantees full security. From the technical point
of view, the scheme of Ananth and Jain is essentially “Step 1” of our approach (see Section 1.3),
which was sufficient (together with additional techniques and assumptions) for constructing their
obfuscator. The vast majority of our efforts in this paper are devoted for providing better security
while simultaneously relying on weaker assumptions, as mentioned above.

Finally, we note that in terms of assumptions, the recent work of Asharov and Segev [AS15] shows
that private-key functional encryption is much weaker than any public-key primitive (in particular,
it is much weaker than public-key functional encryption). Specifically, they show that using the
currently-known techniques it is impossible to use a private-key functional encryption scheme for
constructing even a key-agreement protocol (and therefore, in particular, it is impossible to construct
a public-key encryption scheme or a public-key functional encryption scheme).

1.2 Additional Related Work

Extensive research has been devoted to the study of functional encryption, and for concreteness we
focus here only on those previous efforts that are directly relevant to the techniques used in this
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paper.

Function-private functional encryption. The security guarantees of functional encryption typ-
ically focus on message privacy. Intuitively, message privacy asks that a functional key skf does not
help in distinguishing encryptions of two messages, m0 and m1, as long as f(m0) = f(m1). In vari-
ous cases, however, it is also useful to consider function privacy [SSW09, BRS13, AAB+13, BS15],
asking that a functional key skf does not reveal any unnecessary information on the function f .
Specifically, in the private-key setting, function privacy asks that an encryption of a message m
does not help in distinguishing two functional keys, skf0 and skf1 , as long as f0(m) = f1(m). Brak-
erski and Segev [BS15] recently showed that any private-key functional encryption scheme can be
generically transformed into one that satisfies a unified notion of security, referred to as full security,
which considers both message privacy and function privacy.

Other than being a useful notion for various applications, function privacy was found useful as
a building block in the construction of several functional encryption schemes [ABS+15, KSY15].
One of the key insights that we utilize in this work is that function-private functional encryption
allows to successfully apply proof techniques “borrowed” from the indistinguishability obfuscation
literature (including, for example, a variant of the punctured programming approach of Sahai and
Waters [SW14]).

Key-encapsulation techniques in functional encryption. Key encapsulation (also known as
“hybrid encryption”) is an extremely useful approach in the design of encryption schemes, both
for improved efficiency and for improved security. Specifically, key encapsulation typically means
that instead of encrypting a message m under a fixed key sk, one can instead sample a random
key k, encrypt m under k and then encrypt k under sk. Recently, Ananth et al. [ABS+15] showed
that key encapsulation is useful also in the setting of functional encryption. They showed that it
can be used to transform any selectively-secure functional encryption scheme into an adaptively-
secure one (in both the public-key setting and the private-key one). Their construction and proof
technique hint that key encapsulation techniques may in fact be a general tool that is useful in
the design of functional encryption schemes. Our constructions incorporate key encapsulation tech-
niques, and exhibit additional strengths of this technique in the context of functional encryption
schemes. Specifically, as discussed in Section 1.3, we use key encapsulation techniques to create
“sufficient independence” between combinations of different ciphertexts, a crucial ingredient in our
constructions (see Section 1.3 for a detailed comparison between our technique and that of Ananth
et al.).

Multi-input functional encryption schemes and obfuscation. An important aspect in study-
ing multi-input functional encryption schemes is its tight connection to indistinguishability obfus-
cation. Goldwasser et al. [GGG+14] showed that the following three primitives are equivalent: (1)
selectively-secure private-key multi-input functional encryption scheme with polynomially many
inputs, (2) selectively-secure public-key two-input functional encryption scheme, and (3) indis-
tinguishability obfuscation. The works of Ananth and Jain [AJ15] and Ananth, Jain and Sahai
[AJS15] show how to construct a selectively-secure private-key multi-input functional encryption
scheme with polynomially many inputs (and thereby an indistinguishability obfuscator) from any
sub-exponentially-secure public-key single-input functional encryption scheme.2

2Bitansky and Vaikuntanathan [BV15] achieved the same result (an indistinguishability obfuscator) as [AJ15]
using a similar construction (at least conceptually) while relying essentially on the same assumptions. However, they
construct an indistinguishability obfuscator directly without going through the equivalence to multi-input functional
encryption schemes.
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1.3 Overview of Our Constructions and Techniques

In this section we provide a high-level overview of our constructions. For concreteness, we focus
here mainly on two-input schemes, and then briefly discuss the generalization of our approach to
more than two inputs (we refer the reader to Appendix A for the generalization to t-input schemes
for t ≥ 2). In what follows, we start by briefly describing the functionality and security properties
of two-input schemes in the private-key setting. Then, we explain the main ideas underlying our
constructions. We emphasize that the forthcoming overview is very high-level and ignores many
technical details. For the full details we refer to Sections 3 and 4.

Functionality and security. In a private-key two-input functional encryption scheme, the master
secret key msk of the scheme is used for encrypting any messages x and y (separately) to the first
and second coordinates, respectively, and for generating functional keys for two-input functions. A
functional key skf corresponding to a function f enables to compute f(x, y) given Enc(x) and Enc(y).
Building upon the previous notions of security for private-key multi-input functional encryption
schemes [GGG+14, BLR+15], we consider a strengthened notion of security that combines both
message privacy and function privacy (as in [AAB+13, BS15] for single-input schemes), to which we
refer as full security.3 Specifically, we consider adaptive adversaries that are given access to “left-
or-right” key-generation and encryption oracles. These oracles operate in one out of two modes
corresponding to a randomly-chosen bit b. The key-generation oracle receives as input pairs of the
form (f0, f1) and outputs a functional key for fb. The encryption oracle receives as input pairs
of the form (x0, x1) for the first coordinate, or (y0, y1) for the second coordinate, and outputs an
encryption of xb or yb. We require that no efficient adversary can guess the bit b with probability
noticeably higher than 1/2, as long as for each such three queries (f0, f1), (x0, x1) and (y0, y1) it
holds that f0(x0, y0) = f1(x1, y1).

Intuition: Input aggregation. Given a two-input function f(·, ·), one can view f as a single-input
function, f∗, that takes a tuple (x, y), which we denote by x∥y to avoid confusion, and computes
f∗(x∥y) = f(x, y). Using a single-input scheme, we can generate a functional key for the function
f∗. We thus remain with the problem of aggregating the input. That is, we need to be able to
encrypt inputs x and y, such that given Enc(x) and Enc(y) it is possible to compute Enc(x∥y). At
a very high-level, this is achieved by having the encryption of x be an “aggregator”: To encrypt x,
we will generate a functional key for the function AGGx(·), that on input y outputs an encryption of
x∥y.4 There are many technical difficulties in realizing this intuition, as we explain in the remainder
of this section.

Step 1: Functional keys as ciphertexts. Given any private-key single-input functional encryp-
tion scheme, 1FE, the first step in our transformation is to use both its ciphertexts and its functional
keys as ciphertexts for a two-input scheme 2FE: An encryption of a message x to the first coordinate
is a functional key skx corresponding to a certain functionality that depends on x, and an encryption
of a message y to the second coordinate is simply an encryption of y. Intuitively, the hope is that
the function privacy of 1FE will hide x, and that the message privacy of 1FE will hide y. More
specifically, a first attempt towards realizing this intuition is as follows:

3We consider a unified notion capturing both message privacy and function privacy not only as a useful feature
for various applications. In fact, the function privacy of the resulting two-input scheme plays a crucial role when
extending our results to more than two inputs.

4A somewhat related functionality was recently considered by Iovino and Zebrowski [IZ15] who introduced the
notion of mergeable functional encryption, where one can publicly transform encryptions, Enc(x) and Enc(y), of two
values into an encryption Enc(x∥y) of their concatenation. They show how to construct such a scheme for two inputs
building on the specific construction of [GGH+13] and assuming strong notions of obfuscation. In comparison, our
approach applies to many inputs (as discussed below), and is based on minimal assumptions.
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1. The master secret key consists of two keys, mskin and mskout, for the single-input scheme 1FE.
The key mskin is used for encryption, and the key mskout is used to decryption.

2. An encryption of a message x to the first coordinate is a functional key skx,mskout that is
generated using mskin and corresponds to the following functionality: Given an input y, it
outputs an encryption Encmskout(x||y) of x concatenated with y under mskout. An encryption
of a message y to the second coordinate is simply an encryption Encmskin(y) of y under mskin.

3. A functional key for a two-input function f is a functional key that is generated using mskout
for the function f when viewed as a single-input function.

4. Given a functional key for a function f , and two encryptions skx,mskout and Encmskin(y), we first
apply skx,mskout on Encmskin(y) for obtaining Encmskout(x||y), and then apply the functional key
for f on Encmskout(x||y).

It is straightforward to verify that the above scheme indeed provides the required functionality of a
two-input scheme. Proving its security, however, does not seem to go through: When “attacking” the
key mskout, we clearly cannot embed it in the encryptions skx,mskout generated to the first coordinate.
A typical approach for dealing with such a difficulty (e.g., [ABS+15, BS15, KSY15]) is to embed all
possibly-needed encryptions under mskout inside the ciphertexts of the two-input scheme (so that
the key mskout will not be explicitly needed). Note, however, that when an adversary makes T
encryption queries there may be roughly T 2 different pairs of the form (x, y), and these T 2 pairs
cannot be embedded into T ciphertexts (we note that T = T (λ) may be any polynomial and it is
not known in advance).

An additional approach is to use a public-key functional encryption scheme for the role played
by mskout (i.e., replacing skx,mskout with skx,pkout). Although this solution allows to prove security,
we view it as a “warm-up solution” as we would like to avoid relying on a stronger primitive than
necessary. Specifically, we would like to rely on private-key functional encryption and not on public-
key function encryption (as recently shown by Asharov and Segev [AS15], private-key functional
encryption is significantly weaker than any public-key primitive).

Step 2: Selective security via “one-sided” key encapsulation. Our approach for resolving
the difficulty described uses key-encapsulation techniques in functional encryption. Our main idea
here is that when encrypting a message x, we sample a fresh key msk⋆ for the single-input scheme,
and output two components: Encmskout(msk⋆) and skx,msk⋆ . Given an encryption Encmskin(y) of a
message y, the component skx,msk⋆ enables to compute Encmsk⋆(x||y). In addition, a functional key
for a function f is now generated using mskout for the following functionality: Given an input msk⋆,
it outputs a functional key for f (viewed as a single-input function) using msk⋆. This enables to
compute f(x, y) given Encmsk⋆(x||y) and provides the required functionality.

This “one-sided” key encapsulation enables us to prove a selectively-secure variant of our notion
of security.5 In this variant we require adversaries to specify their encryption queries in advance,
and they are then given adaptive access to the left-or-right key-generation oracle. The main idea
underlying the proof of security is that our one-sided key encapsulation approach yields sufficient
independence and allows attacking the x’s one by one, by attacking their corresponding encapsulated
keys. Focusing on one message x and its encapsulated keymsk∗, an adversary that make T encryption
queries y1, . . . , yT to the second coordinate induces only T pairs {(x, yi)}i∈[T ] (instead of T 2 pairs
as above). Moreover, given that the encryption queries are chosen in advance, we can embed an
encryption of x||yi under msk⋆ inside the encryption of each yi. This way the key msk⋆ is not
explicitly needed, and thus can be attacked (while not affecting any of the other x’s).

5“One-sided” here refers to the fact that the encapsulated key msk⋆ is generated only from the side of the x’s.
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As discussed in Section 1.2, key-encapsulation techniques have been introduced into the setting
of functional encryption by Ananth et al. [ABS+15]. Our approach builds upon and significantly
extends their initial observations, and enables us to create “sufficient independence” between com-
binations of different ciphertexts, a crucial ingredient in our constructions.

This enables us to construct a selectively-secure two-input scheme from any selectively-secure
single-input one (we refer the reader to Section 3 for the scheme and its proof of security). Note,
however, that this approach is limited to selective adversaries: embedding an encryption of x||yi
inside the encryption of yi requires knowing x before the adversary queries for the encryption of yi.

Step 3: Adaptive security via “two-sided” key encapsulation. Next, we present a generic
transformation from selective security to adaptive security (in fact, to our stronger notion of full
security). For this transformation we introduce a new technique which we call “two-sided” key
encapsulation, where each pair of messages x and y has its own encapsulated key msk⋆. This, more
subtle approach, enables us to “attack” a specific pair of messages each time, since each such pair
uses a different encapsulated key: If x is known before y then we embed x||y inside the encryption of
y, and if x is known after y then we embed x||y inside the encryption of x. This leaves the problem
of how to realize this idea of two-sided key encapsulation. Our two-sided key encapsulation works
as follows.

1. An encryption of a message y consists of two components: Encmskout(t) and Encmskin(y, t), where
t is a fresh random tag.

2. An encryption of a message x consists of two components: Encmskout(s) and skx,s, where s
is a fresh random tag. The functional key skx,s is generated using mskin and corresponds
to the following functionality: Given an input (y, t), derive msk⋆ = PRF(s, t),6 and output
Encmsk⋆(x||y).

3. A functional key for a function f is generated using mskout for the following functionality:
Given two inputs, s and t, derive msk⋆ = PRF(s, t), and output a functional key for f (viewed
as a single-input function) using msk⋆.

The crucial observation is that although now mskout is a master secret key for a two-input scheme,
it is only applied on random tags, and thus only needs to be selectively secure. Our two-sided key
encapsulation approach enables us to construct a fully-secure two-input scheme from any selectively-
secure one (we refer the reader to Section 4 for the scheme and its proof of security).

Comparison to the selective-to-adaptive transformation of Ananth et al. [ABS+15]. Our
two-sided key encapsulation technique shows that the usability of key-encapsulation in the context
of functional encryption, demonstrated by Ananth et al. [ABS+15], can be significantly extended.
Whereas their generic transformation from selective security to adaptive security for single-input
scheme uses a rather direct form of key encapsulation, our approach requires a significantly more
structured one in which the encapsulated key is not determined at the time of encryption, but rather
generated “freshly” (in a pseudorandom manner) for any two messages x and y as above.

Specifically, Ananth et al. encrypted a messagem under a selectively-secure key msk, by sampling
a fresh master secret key msk⋆ for a “one-time” adaptively-secure scheme, encrypted m under msk⋆

and then encrypted msk⋆ under msk. This direct encapsulation does not seem to extend to the
two-input setting, as applying it independently in each coordinate seems to hurt both the security
and the functionality of the scheme. By introducing our two-sided key-encapsulation idea we are
able to balance between the need for using key encapsulation in each coordinate and the need for
generating sufficient independence between different pairs of messages.

6More accurately, the key msk⋆ is computed by applying the setup algorithm of 1FE with randomness PRF(s, t).
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Step 4: Generalization to t-input schemes. The generalization of our result to t-input schemes,
for t ≥ 2, consists of two components. The first component is a construction that uses any (t− 1)-
input scheme for building a selectively-secure t-input scheme, for any t ≥ 2. The second component
is a construction that uses any selectively-secure t-input scheme for building a fully-secure t-input
scheme. Thus, for obtaining a fully-secure t-input scheme from any single-input scheme, one can
iteratively apply our first component t − 1 times, and then apply our second component on the
resulting t-input scheme.

This iterative application of our first component places a restriction on the number of supported
inputs. In general, each such application may result in a polynomial blow-up in the parameters of the
scheme. Therefore, t−1 applications may result in a blow-up of λ2O(t)

which must be kept polynomial.
Without any additional assumptions, this implies that t can be any fixed constant. Assuming, in
addition, that the underlying single-input scheme is sub-exponentially secure, the number of inputs
can be made super-constant. Specifically, for any constant 0 < ϵ < 1, when instantiating the
underlying single-input scheme with security parameter λ̃ = 2(log λ)

ϵ
, the first component can be

iteratively applied to reach t = Θ(log log λ) inputs. Obtaining a generic transformation that supports
a super-constant number of inputs without assuming sub-exponential security (or an alternative form
of “succinctness”) is left as an open problem.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an overview of the
notation, definitions, and tools underlying our constructions. In Section 3 we present a construction
of a selectively-secure two-input functional encryption scheme from any single-input scheme. In
Section 4 we present a construction of a fully-secure two-input functional encryption scheme from
any selectively-secure one. In Appendix A we generalize approach to t-input schemes for t ≥ 2, and
in Appendix B we provide the formal proofs of our claims from Sections 3 and 4.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n]
the set {1, . . . , n}. A function neg : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that neg(λ) < λ−c for all λ > Nc.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indis-
tinguishable if for any probabilistic polynomial-time algorithm A there exists a negligible function
neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all sufficiently large λ ∈ N.

Throughout the paper, we denote by λ the security parameter.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function family
with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary represen-
tation of the security parameter λ, and outputs a key K ∈ Kλ.
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• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ and
a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function
family, respectively. For easy of notation we may denote by PRF.EvalK(·) or PRFK(·) the function
PRF.Eval(K, ·) for K ∈ Kλ. The following is the standard definition of a pseudorandom function
family.

Definition 2.1 (Pseudorandomness). A function family PRF = (PRF.Gen,PRF.Eval) is pseudoran-
dom if for every probabilistic polynomial-time algorithm A there exits a negligible function neg(·)
such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr

f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely on the seem-
ingly stronger (yet existentially equivalent) notion of a puncturable pseudorandom function family
[KPT+13, BW13, SW14, BGI14]. In terms of syntax, this notion asks for an additional probabilistic
polynomial-time algorithm, PRF.Punc, that takes as input a key K ∈ Kλ and a set S ⊆ Xλ and out-
puts a “punctured” key KS . The properties required by such a puncturing algorithm are captured
by the following definition.

Definition 2.2 (Puncturable PRF). A pseudorandom function family PRF = (PRF.Gen,PRF.Eval,
PRF.Punc) is puncturable if the following properties are satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and for every x ∈ Xλ \S
it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS
(x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any probabilistic poly-
nomial-time algorithm such that A1(1

λ) outputs a set S ⊆ Xλ, a value x ∈ S, and state
information state. Then, for any such A there exists a negligible function neg(·) such that

AdvPRF,A(λ)
def
= |Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ neg(λ)

for all sufficiently large λ ∈ N, where (S, x, state) ← A1(1
λ), K ← PRF.Gen(1λ), KS =

PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be punctured only at one
point (i.e., in both parts of Definition 2.2 it holds that S = {x} for some x ∈ Xλ). As observed
by [KPT+13, BW13, SW14, BGI14] the GGM construction [GGM86] of PRFs from any one-way
function can be easily altered to yield such a puncturable pseudorandom function family.

2.2 Private-Key Single-Input Functional Encryption

A private-key single-input functional encryption scheme over a message space X = {Xλ}λ∈N and a
function space F = {Fλ}λ∈N is a quadruple (FE.S,FE.KG,FE.E,FE.D) of probabilistic polynomial-
time algorithms. The setup algorithm FE.S takes as input the unary representation 1λ of the security
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parameter λ ∈ N and outputs a master-secret key msk. The key-generation algorithm FE.KG takes as
input a master-secret key msk and a single-input function f ∈ Fλ, and outputs a functional key skf .
The encryption algorithm FE.E takes as input a master-secret key msk and a message x ∈ Xλ, and
outputs a ciphertext ct. In terms of correctness we require that for all sufficiently large λ ∈ N, for
every function f ∈ Fλ and message x ∈ Xλ it holds that FE.D(FE.KG(msk, f),FE.E(msk, x)) = f(x)
with all but a negligible probability over the internal randomness of the algorithms FE.S, FE.KG,
and FE.E.

In terms of security, we rely on the private-key variant of the existing indistinguishability-based
notions for message privacy and function privacy. In fact, following [AAB+13, BS15], our notion
of security combines both message privacy and function privacy. When formalizing this notion it
would be convenient to use the following standard notion of a left-or-right oracle.

Definition 2.3 (Left-or-right oracle). Let O(·, ·) be a probabilistic two-input functionality. For

each b ∈ {0, 1} we denote by Ob the probabilistic three-input functionality Ob(k, z0, z1)
def
= O(k, zb).

Intuitively, a private-key functional-encryption scheme is secure if encryptions of messages x1,
. . . , xT together with functional keys corresponding to functions f1, . . . , fT reveal essentially no
information other than the values {fi(xj)}i,j∈[T ]. We consider an adaptive notion of security, to
which we refer to as full security, in which adversaries are given adaptive access to left-or-right
encryption and key-generation oracles.

Definition 2.4 (Full security [AAB+13, BS15]). A private-key single-input functional encryption
scheme FE = (FE.S,FE.KG,FE.E,FE.D) over a message space X = {Xλ}λ∈N and a function space
F = {Fλ}λ∈N is fully secure if for any probabilistic polynomial-time adversary A there exists a
negligible function neg(·) such that

Advfull1FEFE,A,F (λ)
def
=

∣∣∣Pr [AKG0(msk,·,·),Enc0(msk,·,·)(1λ) = 1
]
− Pr

[
AKG1(msk,·,·),Enc1(msk,·,·)(1λ) = 1

]∣∣∣
≤ neg(λ)

for all sufficiently large λ ∈ N, where for every (f0, f1) ∈ Fλ × Fλ and (x0, x1) ∈ Xλ × Xλ with
which A queries the left-or-right key-generation and encryption oracles, respectively, it holds that
f0(x0) = f1(x1). Moreover, the probability is taken over the choice of msk ← FE.S(1λ) and the
internal randomness of A.

Known constructions. Private-key single-input functional encryption schemes that satisfy the
above notion of full security and support circuits of any a-priori bounded polynomial size are known
to exist based on a variety of assumptions.

Ananth et al. [ABS+15] gave a generic transformation from selective-message (or selective-
function) security to full security. Moreover, Brakerski and Segev [BS15] showed how to transform
any message-private functional encryption scheme into a functional encryption scheme which is
fully secure, and the resulting scheme inherits the security guarantees of the original one. Therefore,
based on [ABS+15, BS15], given any selective-message (or selective-function) message-private func-
tional encryption scheme we can generically obtain a fully-secure scheme. This implies that schemes
that are fully secure for any number of encryption and key-generation queries can be based on
indistinguishability obfuscation [GGH+13, Wat15], differing-input obfuscation [BCP14, ABG+13],
and multilinear maps [GGH+14]. In addition, schemes that are fully secure for a bounded number
T = T (λ) of encryption and key-generation queries can be based on the Learning with Errors (LWE)
assumption (where the length of ciphertexts grows with T and with a bound on the depth of al-
lowed functions) [GKP+13], based on pseudorandom generators computable by small-depth circuits
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(where the length of ciphertexts grows with T and with an upper bound on the circuit size of the
functions) [GVW12], and even based on one-way functions (for T = 1) [GVW12].

2.3 Private-Key Two-Input Functional Encryption

In this section we define the functionality and security of private-key two-input functional encryption
scheme (we refer the reader to Appendix A.1 for the generalization to t-input schemes for any t ≥ 2).
Let X = {Xλ}λ∈N, Y = {Yλ}λ∈N, and Z = {Zλ}λ∈N be ensembles of finite sets, and let F = {Fλ}λ∈N
be an ensemble of finite two-ary function families. For each λ ∈ N, each function f ∈ Fλ takes as
input two strings, x ∈ Xλ and y ∈ Yλ, and outputs a value f(x, y) ∈ Zλ. A private-key two-input
functional encryption scheme Π for F consists of four probabilistic polynomial time algorithm Setup,
Enc, KG and Dec, described as follows.

• Setup(1λ) – The setup algorithm takes as input the security parameter λ, and outputs a master
secret key msk.

• Enc(msk,m, i) – The encryption algorithm takes as input a master secret key msk, message
input m, and an index i ∈ [2], where m ∈ Xλ if i = 1 and m ∈ Yλ if i = 2. It outputs a
ciphertext cti.

• KG(msk, f) – The key-generation algorithm takes as input a master secret key msk and a
function f ∈ Fλ, and outputs a functional key skf .

• Dec(skf , ct1, ct2) – The (deterministic) decryption algorithm takes as input a functional key
skf and two ciphertexts ct1 and ct2, and outputs a string z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key two-input functional encryption scheme Π = (Setup,
Enc,KG,Dec) for F is correct if there exists a negligible function neg(·) such that for every λ ∈ N,
for every f ∈ Fλ, and for every (x, y) ∈ Xλ × Yλ, it holds that

Pr
[
Dec(skf ,Enc(msk, x, 1),Enc(msk, y, 2)) = f(x, y)

]
≥ 1− neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the internal random-
ness of Setup,Enc and KG.

Intuitively, we say that a two-input scheme is secure if for any two pairs of messages (x0, x1)
and (y0, y1) that are encrypted with respect to indices i = 1 and i = 2, respectively, and for every
pair of functions (f0, f1), the triplets (skf0 ,Enc(msk, x0, 1),Enc(msk, y0, 2)) and (skf1 ,Enc(msk, x1, 1),
Enc(msk, y1, 2)) are computationally indistinguishable as long as f0(x0, y0) = f1(x1, y1) (note that
this considers both message privacy and function privacy). The formal notions of security build
upon this intuition and capture the fact that an adversary may in fact hold many functional keys
and ciphertexts, and may combine them in an arbitrary manner. As in the case of single-input
schemes, we formalize our notions of security using left-or-right key-generation and encryption or-

acles. Specifically, for each b ∈ {0, 1} and i ∈ {1, 2} we let KGb(msk, f0, f1)
def
= KG(msk, fb) and

Encb(msk, (m0,m1), i)
def
= Enc(msk,mb, i). Before formalizing our notions of security we define the

notion of a valid two-input adversary.

Definition 2.6 (Valid two-input adversary). A probabilistic polynomial-time algorithm A is a valid
two-input adversary if for all private-key two-input functional encryption schemes Π = (Setup,KG,
Enc,Dec) over a message space X ×Y = {Xλ}λ∈N×{Yλ}λ∈N and a function space F = {Fλ}λ∈N, for
all λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ, ((x0, x1), 1) ∈ Xλ×Xλ×{1} and ((y0, y1), 1) ∈ Yλ×
Yλ × {2} with which A queries the left-or-right key-generation and encryption oracles, respectively,
it holds that f0(x0, y0) = f1(x1, y1).
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We consider two notions of security for two-input functional encryption schemes, both of which
combine message privacy and function privacy. The first notion, full security, considers adversaries
that have adaptive access to both the encryption oracle and the key-generation oracle. The second
notion, selective-message security, considers adversaries that must specify all of their encryption
queries in advance, but can then have adaptive access to the key-generation oracle. Full security
clearly implies selective-message security, and our work shows that the two notions are in fact
equivalent for multi-input schemes.

Definition 2.7 (Full security). A private-key two-input functional encryption scheme Π = (Setup,
KG,Enc,Dec) over a message space X ×Y = {Xλ}λ∈N×{Yλ}λ∈N and a function space F = {Fλ}λ∈N
is fully secure if for any valid two-input adversary A there exists a negligible function neg(·) such
that

Advfull2FEΠ,F ,A
def
=

∣∣∣∣Pr [Expfull2FEΠ,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expfull2FEΠ,F ,A(λ) is defined via the following
experiment:

1. msk← Setup(1λ), b← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (1λ, ).
3. If b′ = b then output 1, and otherwise output 0.

Definition 2.8 (Selective-message security). A private-key two-input functional encryption scheme
Π = (Setup,KG,Enc,Dec) over a message space X × Y = {Xλ}λ∈N × {Yλ}λ∈N and a function space
F = {Fλ}λ∈N is selective-message secure if for any valid two-input adversary A = (A1,A2) there
exists a negligible function neg(λ) such that

Advsel2FEΠ,F ,A
def
=

∣∣∣∣Pr [Expsel2FEΠ,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel2FEΠ,F ,A(λ) is defined via the following
experiment:

1. (x⃗, y⃗, state)← A1

(
1λ
)
, where x⃗ = ((x01, x

1
1), . . . , (x

0
T , x

1
T )) and y⃗ = ((y01, y

1
1), . . . , (y

0
T , y

1
T )).

2. msk← Setup(1λ), b← {0, 1}.
3. ct1,i ← Enc(msk, xbi , 1) and ct2,i ← Enc(msk, ybi , 2) for i ∈ [T ].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, ct1,1, . . . , ct1,T , ct2,1 . . . , ct2,T , state

)
.

5. If b′ = b then output 1, and otherwise output 0.

Our definitions of a two-input functional encryption scheme is inspired by the definition of
[BLR+15]. It is a natural generalization of the single-input case and gives rise to an order-revealing
encryption. Moreover, as a concrete motivation, a t-input scheme according to the above definition
is enough to construct indistinguishability obfuscation for circuits with t input bits [GGG+14].7

Additional natural ways to define two-input functional encryptions schemes exist. Specifically,
Goldwasser we al. [GGG+14] considered two such definitions. The first allows to encrypt a message
m independently of an index i ∈ [2]. Thus, given a key for a two-input function f and encryptions
of two messages x and of y, one can compute both f(x, y) and f(y, x). Hence, this definition

7Indeed, [AJ15] get a construction of a t-input scheme for any t ≥ 1 which implies an indistinguishability obfuscator.
Our construction falls short from being generalized to such extent (however, it relies on weaker assumptions).
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requires a stronger “validity requirement” (see Definition 2.6), which means it can support less
functionalities. A construction which satisfies our (indexed) definition can be easily transformed
into one which satisfies the above (non-indexed) definition by encrypting each message with respect
to both indices.

The second, referred to as “multi-client”, considers each index as a different “client” and gives
each of them his own secret key. In this setting, their security game is quite different, and in
particular, an adversary is allowed to obtain the secret keys of a subset of the clients of his choice.
The approach underlying our schemes does not seem to directly extend to the multi-client setting,
and we leave it as an interesting path for future exploration.

3 A Selectively-Secure Two-Input Scheme from any Single-Input Scheme

In this section we construct a private-key two-input functional encryption scheme that is selectively
secure. Let F = {Fλ}λ∈N be a family of two-ary functionalities, where for every λ ∈ N the set Fλ

consists of functions of the form f : Xλ×Yλ → Zλ. Our construction relies on the following building
blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S, 1FE.KG, 1FE.E, 1FE.D).

2. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

As discussed in Section 1.1, we assume that the scheme 1FE is sufficiently expressive in the sense
that 1FE supports the function family F (when viewed as a family of single-input functions), the
evaluation procedure of the pseudorandom function family PRF, the encryption and key-generation
procedures of the private-key functional encryption scheme 1FE, and a few additional basic opera-
tions. Our scheme 2FEsel = (2FEsel.S, 2FEsel.KG, 2FEsel.E, 2FEsel.D) is defined as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm 2FEsel.S
samples mskout,mskin ← 1FE.S(1λ) and outputs msk = (mskout,mskin).

• The key-generation algorithm. On input the master secret key msk and a function f ∈ Fλ,
the key-generation algorithm 2FEsel.KG samples a random string z ← {0, 1}λ and outputs skf
← 1FE.KG(mskout, Df,⊥,z,⊥), where Df,⊥,z,⊥ is a single-input function that is defined in Figure
1.

Df0,f1,z,u((msk⋆,K,w)):

1. If msk⋆ = ⊥, output u and HALT.

2. Compute r = PRF.Eval(K, z).

3. Output 1FE.KG(msk⋆, Cfw ; r).

Cf((x, y)):

1. Output f(x, y).

Figure 1: The single-input functions Df0,f1,z,u and Cf .

• The encryption algorithm. On input the master secret key msk, a message m and an index
i ∈ [2], the encryption algorithm 2FEsel.E has two cases:

– If (m, i) = (x, 1), it samples a master secret key msk⋆ ← 1FE.S(1λ), a PRF key K ←
PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then outputs a pair (ct1, sk1) defined
as follows:

ct1 ← 1FE.E(mskout, (msk⋆,K, 0))

sk1 ← 1FE.KG(mskin,AGGx,⊥,0,s,msk⋆,K),

where AGGx,⊥,0,s,msk⋆,K is a single-input function that is defined in Figure 2.
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– If (m, i) = (y, 2), it samples a random string t ∈ {0, 1}λ, and outputs

ct2 ← 1FE.E(mskin, (y,⊥, t,⊥,⊥)).

AGGx0,x1,a,s,msk⋆,K((y0, y1, t, s
′, v)):

1. If s′ = s output v and HALT.

2. Compute r = PRF.Eval(K, t).

3. Output 1FE.E(msk⋆, (xa, ya); r).

Figure 2: The single-input function AGGx0,x1,a,s,msk⋆,K .

• The decryption algorithm. On input a functional key skf and two ciphertexts, (ct1, sk1) and
ct2, the decryption algorithm 2FEsel.D computes ct′ = 1FE.D(sk1, ct2), sk

′ = 1FE.D(skf , ct1)
and outputs 1FE.D(sk′, ct′).

The correctness of the above scheme with respect to any family of two-ary functionalities follows
in a straightforward manner from the correctness of the underlying functional encryption scheme
1FE. Specifically, consider any pair of messages x and y and any function f . The encryption of x
with respect to the index i =1 and the encryption of y with respect to the index i = 2 result in
ciphertexts (ct1, sk1) and ct2, respectively. Using the correctness of the scheme 1FE, by executing
1FE.D(sk1, ct2) we obtain an encryption ct′ of the message (x, y) under the key msk⋆. In addition,
by executing 1FE.D(skf , ct1) we obtain a functional key sk′ for Cf under the key msk⋆. Therefore,
executing 1FE.D(sk′, ct′) outputs the value Cf ((x, y)) = f(x, y) as required.

The following theorem captures the security of the scheme, stating that under suitable assump-
tions on the underlying building blocks, the two-input scheme 2FEsel is selective-message secure (see
Definition 2.8).

Theorem 3.1. Assuming that (1) 1FE is fully secure, and (2) PRF is a pseudorandom function
family, then 2FEsel is selective-message secure.

We note that for proving that 2FEsel is selective-message secure it suffices to require selective-
message security from 1FE. However, given the generic transformations of Ananth et al. [ABS+15]
(from selective security to adaptive security) and of Brakerski and Segev [BS15] (from message
security to full security), for simplifying the proof of Theorem 3.1 we assume that 1FE is fully secure.
In addition, when assuming that 1FE is fully secure, the scheme 2FEsel can be shown to satisfy a
notion of security that seems in between selective-message security and full security. Specifically,
this notion considers adversaries that first have adaptive access to encryptions only for the first
coordinate, and then have adaptive access to encryptions only for the second coordinate (while
having adaptive access to the key-generation oracle throughout the experiment). However, given
our generic transformation from selective-message security to full security for multi-input schemes
(see Section 4), for simplifying the proof of Theorem 3.1 we focus on proving selective-message
security.

In addition, for concreteness we focus on the unbounded case where the underlying scheme
supports an unbounded (i.e., not fixed in advance) number of key-generation queries and encryption
queries. More generally, the proof of Theorem 3.1 shows that if the scheme corresponding to mskout
supports T1 encryption queries and T2 key-generation queries, the scheme corresponding to mskin
supports T3 encryption queries and T4 key-generation queries, and the scheme corresponding to each
msk⋆ supports T5 encryption queries and T6 key-generation queries, then the resulting scheme 2FEsel
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supports min{T1, T4, T5} encryption queries with respect to index i = 1, min{T3, T5} encryption
queries with respect to index i = 2 and min{T2, T6} key-generation queries. When the polynomials
T1, . . . , T6 are known in advance (i.e., do not depend on the adversary), such schemes are known
to exist based on the LWE assumption or even only one-way functions (see Section 2.2 for a more
elaborated discussion of the existing schemes).

Proof of Theorem 3.1. Let A = (A1,A2) be a valid adversary that issues at most T1 = T1(λ)
encryption queries with respect to index i = 1, at most T2 = T2(λ) encryption queries with respect
to index i = 2, and at most T3 = T3(λ) key-generation queries (note that T1, T2, and T3 may be any
polynomials and are not fixed in advance). We assume for simplicity and without loss of generality

that T1 = T2 = T3
def
= T .

We present a sequence of experiments and upper bound A’s advantage in distinguishing each two
consecutive experiments. The first experiment is the experiment Expsel2FE2FEsel,F ,A(λ) (see Definition 2.8),
and the last experiment is completely independent of the bit b. This enables us to prove that there
exists a negligible function neg(·) such that

Advsel2FE2FEsel,F ,A(λ)
def
=

∣∣∣∣Pr [Expsel2FE2FEsel,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N. In what follows we first describe the notation used throughout the
proof, and then describe the experiments.

Notation. We denote the ith ciphertext with respect to i = 1 by (sk1,i, ct1,i) and the ith ciphertext
with respect to i = 2 by ct2,i. We denote the ith input pair corresponding to the index i = 1 by
(x0i , x

1
i ), the random strings used for generating the resulting sk1,i by si, the master secret key and

the PRF key used for generating the resulting ct1,i and sk1,i by msk⋆i and Ki, respectively. We
denote the ith input pair corresponding to the index i = 2 by (y0i , y

1
i ), and the randomness used for

generating the resulting ct2,i by ti. Finally, we denote by (f0
1 , f

1
1 ), . . . , (f

0
T , f

1
T ) the function pairs

with which the adversary queries the key-generation oracle and by z1, . . . , zT the corresponding
random strings used for generating skf1 , . . . , skfT .

Experiment H(0)(λ). This is the original experiment corresponding to b ← {0, 1} chosen uni-
formly at random, namely, Expsel2FE2FEsel,F ,A(λ). In this experiment the encryptions are generated as
follows.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,⊥,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i ,⊥, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,⊥,zi,⊥

)

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying the
encryptions as follows. Given inputs (x0i , x

1
i ) and (y0i , y

1
i ), instead of setting the field x1 and y1 to

be ⊥ we set it to be x1i and y1i , respectively. The scheme has the following form:

14



• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGG
xb
i , x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y1i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,⊥,zi,⊥

)

Note that all the tokens that are issued as part of the encryption according to i = 1 are generated
with a = 0 (where a is the third hardwired item). Thus, the circuit AGGx0,x1,a,s,msk⋆,K always sets
x = xbi and y = ybi and ignores x1i and y1i (see Figure 2). Thus, the security the underlying scheme
1FE guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(0) and H(1). Specifically, let F ′ denote the family of functions AGGx0,x1,a,s,msk⋆,K (as defined in
Figure 2). In Appendix B.1 we prove the following claim:

Claim 3.2. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(0)→(1)(λ).

Experiment H(2)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
functional keys as follows. Given inputs (f0, f1), instead of setting the fields f1, f2 to be f b,⊥ we
set it to be f b, f1. The scheme has the following form:

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, D
fb
i , f

1
i ,zi,⊥

)

Note that all the ciphertexts that are issued as part of the encryption according to i = 1 are
generated with w = 0 (where w is the third hardwired item in ct1). Thus, the circuit Df0,f1,zi,u

always sets f = f b
i and ignores f1

i (see Figure 1). Thus, the security the underlying scheme 1FE (with
respect to mskout) guarantees that the adversary A has only a negligible advantage in distinguishing
experiments H(1) and H(2). Specifically, let F ′′ denote the family of functions Df0,f1,zi,u (as defined
in Figure 1). In Appendix B.1 we prove the following claim:

Claim 3.3. There exists a probabilistic polynomial-time adversary B(1)→(2) such that∣∣∣Pr [H(1)(λ) = 1
]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′′,B(1)→(2)(λ).

Experiment H(3,j)(λ). This experiment is obtained from the experiment H(2)(λ) by modifying
the encryptions as follows. The first j − 1 ciphertexts are generated such that a = 1 and w = 1
while the rest of the encryptions are generated as before.
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• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1 ))

sk1,i ← 1FE.KG(mskin,AGG
xb
i ,x

1
i , 1 ,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti,⊥,⊥))

• Ciphertexts (i = j, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)

Notice that H(3,1) = H(2).

Experiment H(4,j)(λ). This experiment is obtained from the experiment H(3,j)(λ) by modifying
the jth ciphertext to not include the master secret key msk⋆j and the PRF key Kj (that is, we replace

them with ⊥’s). Moreover, for every i ∈ [T ] in the ith ciphertext corresponding to i = 2 we hardwire
the pair (sj , γi), where γi = 1FE.E(msk⋆j , (x

b
j , y

b
i );PRF.Eval(Kj , ti)).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , x

1
i , ti, sj , γi ))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGG
xb
i ,x

1
i ,0,si, ⊥ , ⊥ )

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi ))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi ))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)
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We observe that the only combinations that are affected by this change are combinations that
include the jth ciphertext corresponding to i = 1. However, using the hardwired values γi for i ∈ [T ]
the functionalities stay the same. Thus, the security of the underlying 1FE scheme guarantees that
the adversary A has only a negligible advantage in distinguishing experiments H(3,j) and H(4,j). In
Appendix B.1 we prove the following claim:

Claim 3.4. There exists a probabilistic polynomial-time adversary B(3,j)→(4,j) such that∣∣∣Pr [H(3,j)(λ) = 1
]
− Pr

[
H(4,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(3,j)→(4,j)(λ).

Experiment H(5,j)(λ). This experiment is obtained from the experiment H(4,j)(λ) by modifying
the jth ciphertext as follows. We replace (msk⋆j ,Kj , 0) with (⊥,⊥, 0). Moreover, in the ith func-
tional key corresponding to the functions (f0

i , f
1
i ) we hardwire the value δi = 1FE.KG(msk⋆j , Cfb

i
;

PRF.Eval(Kj , zi)).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, ( ⊥,⊥ , 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,⊥,⊥

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i );PRF.Eval(Kj , ti))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, D
fb
i ,f

1
i ,zi, δi

)

δi = 1FE.KG(msk⋆j , Cfb
i
;PRF.Eval(Kj , zi))

We observe that the only combinations that are affected by this change are combinations that
include the jth ciphertext corresponding to i = 1. However, using the hardwired value δ the function-
ality stays the same. Thus, the security of the underlying scheme 1FE guarantees that the adversary
A has only a negligible advantage in distinguishing experiments H(4,j) and H(5,j). In Appendix B.1
we prove the following claim:
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Claim 3.5. There exists a probabilistic polynomial-time adversary B(4,j)→(5,j) such that∣∣∣Pr [H(4,j)(λ) = 1
]
− Pr

[
H(5,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(4,j)→(5,j)(λ).

Experiment H(6,j)(λ). This experiment is obtained from the experiment H(5,j)(λ) by modifying
the hardwired value γ1, . . . , γT and δ1, . . . , δT to use randomness sampled uniformly at random rather
than randomness generated using a PRF.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i ))

• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, (⊥,⊥, 0))
sk1,i ← 1FE.KG(mskin,AGGxb

i ,x
1
i ,0,si,⊥,⊥

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i ))

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
b
j , y

b
i ))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,δi

)

δi = 1FE.KG(msk⋆j , Cfb
i
)

The pseudorandomness of PRF.Eval(Kj , ·) guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(5,j) and H(6,j). In Appendix B.1 we prove the following
claim:

Claim 3.6. For every j ∈ [T ] there exists a probabilistic polynomial-time adversary B(5,j)→(6,j) such
that ∣∣∣Pr [H(5,j)(λ) = 1

]
− Pr

[
H(6,j)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(5,j)→(6,j)(λ).

Experiment H(7,j)(λ). This experiment is obtained from the experiment H(6,j)(λ) by modifying
the ciphertext as follows. In the ith ciphertext corresponding to i = 2 we embed in γi the encryption
of (x1j , y

1) rather than (xbj , y
b). Moreover, we replace the circuit embedded in δi in the ith functional

key to be Cf1
i
rather than Cfb

i
.
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• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x1j , y
1
i ) )

• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, (⊥,⊥, 0))
sk1,i ← 1FE.KG(mskin,AGGxb

i ,x
1
i ,0,si,⊥,⊥

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x1j , y
1
i ) )

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x1j , y
1
i ) )

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,δi

)

δi = 1FE.KG(msk⋆j , Cf1
i
)

The above change only affects evaluations that correspond to the combination of any ciphertext
corresponding to i = 2 with the jth ciphertext corresponding to i = 1. Using the fact that the
adversary is valid (see Definition 2.6), the functionality stays exactly the same. Thus, the security
of the underlying scheme 1FE guarantees that the adversary A has only a negligible advantage in
distinguishing experiments H(6,j) and H(7,j). In Appendix B.1 we prove the following claim:

Claim 3.7. There exists a probabilistic polynomial-time adversary B(6,j)→(7,j) such that∣∣∣Pr [H(6,j)(λ) = 1
]
− Pr

[
H(7,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(6,j)→(7,j)(λ).

Experiment H(8,j)(λ). This experiment is obtained from the experiment H(7,j)(λ) by modifying
the hardwired values γ1, . . . , γT and δ1, . . . , δT to use randomness generated using a PRF rather
than randomness sampled uniformly at random.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))
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• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, (⊥,⊥, 0))
sk1,i ← 1FE.KG(mskin,AGGxb

i ,x
1
i ,0,si,⊥,⊥

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,δi

)

δi = 1FE.KG(msk⋆j , Cf1
i
;PRF.Eval(Kj , zi))

The pseudorandomness of PRF.Eval(Kj , ·) guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(7,j) and H(8,j). The proof of the following claim is
analogous to the proof of Claim 3.6.

Claim 3.8. There exists a probabilistic polynomial-time adversary B(7,j)→(8,j) such that∣∣∣Pr [H(7,j)(λ) = 1
]
− Pr

[
H(8,j)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(7,j)→(8,j)(λ).

Experiment H(9,j)(λ). This experiment is obtained from the experiment H(8,j)(λ) by modifying
the jth ciphertext to contain the pair (msk⋆j ,Kj). Moreover, in the functional key corresponding to
the function fi for i ∈ [T ] we remove the hardwired value δi.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))

• Ciphertext (i = j):

ct1,i ← 1FE.E(mskout, ( msk⋆i ,Ki, 1 ))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,⊥,⊥

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))
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• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, sj , γi))

γi = 1FE.E(msk⋆j , (x
1
j , y

1
i );PRF.Eval(Kj , ti))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, D
fb
i ,f

1
i ,zi, ⊥

)

We observe that the only combinations that are affected by this change are combinations that
include the jth ciphertext corresponding to i = 1. However, using the fact that we replace (⊥,⊥)
in ct1,j with (msk⋆j ,Kj) and remove the hardwired values δi the functionality stays the same. Thus,
the security of the underlying scheme 1FE guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(8,j) and H(9,j). The proof of the following claim is
analogous to the proof of Claim 3.5.

Claim 3.9. There exists a probabilistic polynomial-time adversary B(8,j)→(9,j) such that∣∣∣Pr [H(8,j)(λ) = 1
]
− Pr

[
H(9,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(8,j)→(9,j)(λ).

Experiment H(10,j)(λ). This experiment is obtained from the experiment H(9,j)(λ) by modifying
the ciphertexts as follows. For the ith ciphertext corresponding to i = 2 we remove the hardwired
pair (sj , γi). Moreover, we encrypt the jth ciphertext corresponding to i = 1 with 2 = 1. Notice
that H(10,j) = H(3,j+1).

• Ciphertexts (i = 1, . . . , j ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, ⊥,⊥ ))

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,0,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti, ⊥,⊥ ))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)

We observe that the only combinations that are affected by this change are combinations that
include the jth ciphertext corresponding to i = 1. However, since the hardwired values γi for i ∈
[T ]∪{0} preserved the functionalities when a = 1 for the jth ciphertext, when we remove them and
add back msk⋆j and Kj the functionalities stay the same. Thus, the security of the underlying scheme
1FE guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(9,j) and H(10,j). The proof of the following claim is analogous to the proof of Claim 3.4.
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Claim 3.10. There exists a probabilistic polynomial-time adversary B(9,j)→(10,j) such that∣∣∣Pr [H(9,j)(λ) = 1
]
− Pr

[
H(10,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(9,j)→(10,j)(λ).

Experiment H(11)(λ). This experiment is obtained from the experimentH(3,T+1)(λ) by modifying
the ciphertexts not to include f b

i at all.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGGxb
i ,x

1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, (y
b
i , y

1
i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, D ⊥ ,f1
i ,zi,⊥

)

We observe that at this point all ciphertext have w = 1. Therefore, the first parameter f b
i is

always ignored and the functionalities stay the same. Thus, the security of the underlying 1FE scheme
guarantees that the adversary A has only a negligible advantage in distinguishing experiments
H(3,T+1) and H(11). The proof of the following claim is analogous to the proof of Claim 3.3.

Claim 3.11. There exists a probabilistic polynomial-time adversary B(3,T+1)→(11) such that∣∣∣Pr [H(3,T+1)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(3,T+1)→(11)(λ).

Experiment H(12)(λ). This experiment is obtained from the experiment H(11)(λ) by modifying
the ciphertexts not to include xbi and ybi at all. Notice that this experiment is completely independent
of the bit b, and therefore Pr[H(12)(λ) = 1] = 1/2.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 1FE.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← 1FE.KG(mskin,AGG ⊥ ,x1
i ,1,si,msk⋆i ,Ki

)

ct2,i ← 1FE.E(mskin, ( ⊥ , y1i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 1FE.KG(mskout, D⊥,f1
i ,zi,⊥

)

We observe that at this point all ciphertext have w = 1. Therefore, the first parameters f b
i are

always ignored and the functionalities stay the same. Thus, the security of the underlying 1FE scheme
guarantees that the adversary A has only a negligible advantage in distinguishing experiments H(11)

and H(12). The proof of the following claim is analogous to the proof of Claim 3.2.

Claim 3.12. There exists a probabilistic polynomial-time adversary B(11)→(12) such that∣∣∣Pr [H(11)(λ) = 1
]
− Pr

[
H(12)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(11)→(12)(λ).
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Finally, putting together Claims 3.2–3.12 with the facts that H(0)(λ) = Expsel2FE2FEsel,F ,A(λ), H
(2)(λ)

= H(3,1)(λ) and Pr
[
H(12)(λ) = 1

]
= 1/2, we observe that

Advsel2FE2FEsel,F ,A
def
=

∣∣∣∣Pr [Expsel2FE2FEsel,F ,A(λ) = 1
]
− 1

2

∣∣∣∣
=

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(12)(λ) = 1

]∣∣∣
≤

1∑
i=0

∣∣∣Pr [H(i)(λ) = 1
]
− Pr

[
H(i+1)(λ) = 1

]∣∣∣
+

T∑
i=1

10∑
j=3

∣∣∣Pr [H(j,i)(λ) = 1
]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(3,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(11)(λ) = 1

]
− Pr

[
H(12)(λ) = 1

]∣∣∣
≤ neg(λ).

4 From Selective to Adaptive Security for Two-Input Schemes

In this section we show how to transform any private-key selective-message secure two-input func-
tional encryption scheme (see Definition 2.8) into a fully secure one (see Definition 2.7). Our
construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme 1FE = (1FE.S, 1FE.KG, 1FE.E, 1FE.D).

2. A private-key two-input functional encryption scheme 2FEsel = (2FEsel.S, 2FEsel.KG, 2FEsel.E,
2FEsel.D).

3. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,PRF.Punc).

We assume that the schemes 1FE and 2FEsel are sufficiently expressive in the sense that they
support the function family F (when viewed as a family of single-input functions), the evaluation
procedure of the pseudorandom function family PRF, the setup, encryption and key-generation
procedures of the scheme 1FE, and a few additional basic operations. The scheme 2FE = (2FE.S,
2FE.KG, 2FE.E, 2FE.D) is defined as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm 2FE.S
samples msk1 ← 1FE.S(1λ) and msk2 ← 2FEsel.S(1λ) and then outputs msk = (msk1,msk2).

• The key-generation algorithm. On input the master secret key msk and a function f ∈
Fλ, the key-generation algorithm 2FE.KG outputs skf ← 2FEsel.KG(msk2, Df,⊥,1,⊥,⊥,⊥), where
Df,⊥,1,⊥,⊥,⊥ is a two-input function that is defined in Figure 3.
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Df0,f1,c,s′,t′,u((K
msk,Kkey, s, thr), (c′, t)):

1. If s′ = s and t′ = t, output u and HALT.

2. Compute r = PRF.Eval(Kmsk, t).

3. Compute r′ = PRF.Eval(Kkey, t).

4. Compute msks,t = 1FE.S(1λ; r).

5. If c ≤ thr and c′ ≤ thr set f = f1.

6. Else (if c > thr or c′ > thr) set f = f0.

7. Output 1FE.KG(msks,t, Cf ; r
′).

Cf((x, y)):

1. Output f(x, y).

Figure 3: The two-input function Df0,f1,c,s′,t′,u and the single-input function Cf .

• The encryption algorithm. On input the master secret key msk, a message m and an index
i ∈ [2], the encryption algorithm 2FE.E has two cases:

– If (m, i) = (x, 1), it samples s ← {0, 1}λ uniformly at random, three PRF keys Kenc,
Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1) defined as follows:

ct1 ← 2FEsel.E(msk2, (K
msk,Kkey, s, 0), 1)

sk1 ← 1FE.KG(msk1,AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥)

where the single-input function AGGx,⊥,0,s,Kmsk,Kenc,⊥,⊥ is defined in Figure 4.

– If (m, i) = (y, 2), it samples t← {0, 1}λ uniformly at random and outputs a pair (ct2, ct3)
defined as follows:

ct2 ← 2FEsel.E(msk2, (1, t), 2)

ct3 ← 1FE.E(msk1, (y,⊥, 1, t,⊥,⊥)).

AGGx0,x1,thr,s,Kmsk,Kenc,t′,v′((y0, y1, c, t, s′, u′)):

1. If t′ = t output v′ and HALT.

2. If s′ = s output u′ and HALT.

3. Compute r = PRF.Eval(Kmsk, t).

4. Compute r′ = PRF.Eval(Kenc, t).

5. Compute msks,t = 1FE.S(1λ; r).

6. If c ≤ thr set x = x1 and y = y1.

7. Else (if c > thr) set x = x0 and y = y0.

8. Output 1FE.E(msks,t, (x, y); r
′).

Figure 4: The single-input function AGGx0,x1,thr,s,Kmsk,Kenc,t′,v′ .

• The decryption algorithm. On input a functional key skf and two ciphertexts (ct1, sk1) and
(ct2, ct3), the decryption algorithm 2FE.D first computes the value sk′ = 2FEsel.D(skf , ct1, ct2),
then it computes the value ct′ = 1FE.D(sk1, ct3), and finally it outputs 1FE.D(sk′, ct′).

The correctness of the above scheme with respect to any family of two-ary functionalities follows
in a straightforward manner from the correctness of the underlying functional encryption schemes
1FE and 2FEsel. Specifically, consider any pair of messages x and y and any function f . The
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encryption of x with respect to the index i =1 and the encryption of y with respect to the index
i = 2 result in ciphertexts (ct1, sk1) and (ct2, ct3), respectively. Using the correctness of the scheme
2FEsel, by executing 2FEsel.D(skf , ct1, ct2) we obtain a functional key sk′ for Cf under the key msks,t.
In addition, by executing 1FE.D(sk1, ct3) we obtain a an encryption ct′ of (x, y) under the key msks,t.
Therefore, executing 1FE.D(sk′, ct′) outputs the value Cf ((x, y)) = f(x, y) as required.

The following theorem captures the security of the scheme. This theorem states that under
suitable assumptions on the underlying building blocks, the two-input scheme 2FE is fully secure
(see Definition 2.7).

Theorem 4.1. Assuming that (1) 1FE is fully secure, (2) 2FEsel is selective-message secure, and
(3) PRF is a puncturable pseudorandom function family, then 2FE is fully secure.

As in Section 3, for concreteness we focus on the unbounded case where the underlying schemes,
1FE and 2FEsel, support an unbounded (i.e., not fixed in advance) number of key-generation queries
and encryption queries. More generally, the proof of Theorem 4.1 shows that if the scheme corre-
sponding to msk1 supports T1 encryption queries and T2 key-generation queries, the scheme corre-

sponding to msk2 supports T
(1)
3 encryption queries with respect to index i = 1 and T

(2)
3 encryption

queries with respect to index i = 2, and T4 key-generation queries, and the scheme corresponding
to each msks,t supports a single encryption query and T5 key-generation queries, then the resulting

scheme 2FE supports min{T2, T
(1)
3 } encryption queries with respect to index i = 1, min{T1, T

(2)
3 }

encryption queries with respect to index i = 2 and min{T4, T5} key-generation queries. When the

polynomials T1, T2, T
(1)
3 , T

(2)
3 , T4 and T5 are known in advance (i.e., do not depend on the adversary),

such schemes are known to exist based on the LWE assumption or even only one-way functions (see
Section 2.2 for a more elaborated discussion of the existing schemes).

Proof of Theorem 4.1. LetA = (A1,A2) be a probabilistic polynomial-time adversary that issues
at most T1 = T1(λ) encryption queries with respect to index i = 1, at most T2 = T2(λ) encryption
queries with respect to index i = 2, and at most T3 = T3(λ) key-generation queries (note that T1,
T2 and T3 may be any polynomials and are not fixed in advance), and let F be a family of two-ary

functionalities. We assume for simplicity and without loss of generality that T1 = T2 = T3
def
= T .

We present a sequence of experiments and upper bound A’s advantage in distinguishing each
two consecutive experiments. The first experiment is the experiment in which A gets oracle ac-
cess to a left-or-right key generation oracle KGb(msk, ·, ·) and to a left-or-right encryption oracle
Encb(msk, (·, ·), ·) for b← {0, 1} chosen uniformly at random (see Definition 2.7), and the last exper-
iment is completely independent of the bit b. This enables us to prove that there exists a negligible
function neg(·) such that

Advfull2FE2FE,F ,A(λ)
def
=

∣∣∣∣Pr [Expfull2FE2FE,F ,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N. In what follows we first describe the notation used throughout the
proof, and then describe the experiments.

Notation. We denote the ith ciphertext with respect to i = 1 by (sk1,i, ct1,i) and the ith ciphertext
with respect to i = 2 by (ct2,i, ct3,i). Recall that the adversary A has unrestricted access to an
encryption oracle with respect to index i = 1 and i = 2. We denote the ith input the adversary
queries the encryption oracle with i = 1 by (x0i , x

1
i ), the random string used by si and the three

PRF keys used for sk1,i and ct1,i by Kmsk
i ,Kkey

i and Kenc
i . Similarly, we denote the ith input the

adversary queries the encryption oracle with i = 2 by (y0i , y
1
i ) and the random string used by ti.
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Finally we denote by (f0
1 , f

1
1 ), . . . , (f

0
T , f

1
T ) the function-pairs with which the adversary queries the

key-generation oracle.

Experiment H(0)(λ). This is the original experiment corresponding to b ← {0, 1} chosen uni-
formly at random. That is, A gets oracle access to the key-generation oracle KGb(msk, ·) and oracle
access to a left-or-right encryption oracle Encb(msk, (·, ·), ·) where b← {0, 1} is chosen uniformly at
random.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,⊥,0,si,Kmsk

i ,Kenc
i ,⊥,⊥)

ct2,i ← 2FEsel.E(msk2, (1, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i ,⊥, 1, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,⊥,1,⊥,⊥,⊥

)

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying the
encryptions as follows. Given inputs (x0i , x

1
i ) and (y0i , y

1
i ), instead of setting the field x1 and y1 to

be ⊥ we set it to be x1i and y1i , respectively. In addition, in the encryptions ct3,i corresponding to
i = 2 we embed a counter.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGG
xb
i , x

1
i ,0,si,Kmsk

i ,Kenc
i ,⊥,⊥

)

ct2,i ← 2FEsel.E(msk2, (1, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y1i , i , ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,⊥,1,⊥,⊥,⊥

)

Note that all the functional keys that are issued as part of the encryption according to i = 1
are generated with a = 0 (where a is the third hardwired item). Moreover, since thr = 0 it
always holds that thr < c which ensures that the functionality does not change. Thus, the circuit
AGGx0,x1,a,s,Kmsk,Kkey always sets x = xbi and y = ybi and ignores x1i and y1i (see Figure 4). Thus,
the security of the underlying scheme 1FE guarantees that the adversary A has only a negligible
advantage in distinguishing experiments H(0) and H(1). Specifically, let F ′ denote the family of
functions AGGx0,x1,a,s,Kmsk,Kkey (as defined in Figure 4). In Appendix B.2 we prove the following
claim:

Claim 4.2. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(0)→(1)(λ).
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Experiment H(2)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
functional keys as follows. Given inputs (f0

i , f
1
i ), instead of setting the field f1 to be ⊥ we set it

to be f1
i . In addition, in the ciphertexts ct2,i corresponding to i = 2 and in the functional keys we

embed a counter.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

ct2,i ← 2FEsel.E(msk2, ( i , t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, D
fb
i , f

1
i , i ,⊥,⊥,⊥

)

Note that all the functional keys that are issued as part of the encryption according to i = 1
are generated with w = 0 which ensures that the functionality does not change (Thus, the circuit
Df0,f1,s′,t′,u always sets fw = f b

i and ignores f1
i . Thus, the security of the underlying scheme 2FEsel

guarantees that the adversary A has only a negligible advantage in distinguishing experiments H(1)

and H(2). Specifically, let F ′ denote the family of functions Df0,f1,s′,t′,u (as defined in Figure 3). In
Appendix B.2 we prove the following claim:

Claim 4.3. There exists a probabilistic polynomial-time adversary B(1)→(2) such that∣∣∣Pr [H(1)(λ) = 1
]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(1)→(2)(λ).

Experiment H(3,j,k)(λ). This experiment is obtained from the experiment H(2)(λ) by modifying
the encryptions as follows. The first j − 1 ciphertexts are generated such that thr = T , the jth

ciphertext is generated such that thr = k and the rest of the ciphertexts are generated as before.

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGG
xb
i ,x

1
i , T ,si,Kmsk

i ,Kenc
i ,⊥,⊥

)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, k ), 1)

sk1,i ← 1FE.KG(msk1,AGG
xb
i ,x

1
i , k ,si,Kmsk

i ,Kenc
i ,⊥,⊥

)

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))
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• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,f

1
i ,i,⊥,⊥,⊥

)

Notice that H(3,1,0) = H(2).

Experiment H(4,j,k)(λ). This experiment is obtained from the experiment H(3,j,k)(λ) by modify-

ing the encryptions as follows. First, we sample in advance sj , tk, K
msk
j , Kkey

j andKenc
j , and compute

msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk
j , tk)). Then, we act according to the following two cases: If the

jth encryption with respect to index i = 1 comes before the kth encryption with respect to index i = 2,
we embed into ct3,k the pair of values (sj , γ) where γ = 1FE.E(msksj ,tk , (x

b
j , y

b
k);PRF.Eval(K

enc
j , tk)).

Otherwise, if the jth encryption with respect to index i = 1 comes after the kth encryption with
respect to index i = 2, we embed into ct1,j the pair of values (tk, γ).

Finally, instead of using Kmsk
j and Kkey

j in the jth encryption with respect to msk1, we use

Kmsk
j |{tk} and Kenc

j |{tk} which are the keys Kmsk
j and Kenc

j punctured at the point {tk}.
For concreteness we assume that the latter is the case, namely, that the jth encryption with

respect to index i = 1 came after the kth encryption with respect to index i = 2 (the other case is
handled similarly).

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, k), 1)

sk1,i ← 1FE.KG(msk1,AGG
xb
i ,x

1
i ,k,si K

msk
i |{tk} , Kenc

i |{tk} , tk, γ
)

msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk
i , tk))

γ = 1FE.E(msksj ,tk , (x
b
j , y

b
k);PRF.Eval(K

enc
i , tk))

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,f

1
i ,i,⊥,⊥,⊥

)

We observe that the combination of the kth ciphertext with respect to i = 2 with the jth

ciphertext with respect to i = 1 has the same functionality due to the hardwired pair (tk, γ) (or
(sk, γ) depending on the order they were queried on). For the rest of the combinations we have

28



that the functionality stays the same by the functionality property of the punctured PRF. Thus,
the security of the underlying 1FE scheme guarantees that the adversary A has only a negligible
advantage in distinguishing experimentsH(3,j,k) andH(4,j,k). In Appendix B.2 we prove the following
claim:

Claim 4.4. There exists a probabilistic polynomial-time adversary B(3,j,k)→(4,j,k) such that∣∣∣Pr [H(3,j,k)(λ) = 1
]
− Pr

[
H(4,j,k)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(3,j,k)→(4,j,k)(λ).

Experiment H(5,j,k)(λ). This experiment is obtained from the experiment H(4,j,k)(λ) by modi-

fying the encryptions as follows. First, instead of using Kmsk
j and Kkey

j in the jth encryption with

respect to msk2, we use Kmsk
j |{tk} and Kkey

j |{tk} which are the keys Kmsk
j and Kkey

j punctured at

the point {tk}. Second, we hardwire into every functional key for a pair (f0
i .f

1
i ) the triple (sj , tk, δ),

where δ = 1FE.KG(msksj ,tk , Cfb
i
;PRF.Eval(Kkey

j , tk)).

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, ( K
msk
i |{tk} , Kkey

i |{tk} , si, k), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,k,siK

msk
i |{tk},K

enc
i |{tk},tk,γ

)

msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk
i , tk))

γ = 1FE.E(msksj ,tk , (x
b
j , y

b
k);PRF.Eval(K

enc
i , tk))

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, D
fb
i ,f

1
i ,i, sj , tk, δ

)

msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk
j , tk))

δ = 1FE.KG(msksj ,tk , Cfb
i
;PRF.Eval(Kkey

j , tk))

We observe that the combination of the kth ciphertext with respect to i = 2 with the jth

ciphertext with respect to i = 1 has the same functionality due to the hardwired values (sj , tk, δ).
For the rest of the combinations we have that the functionality stays the same by the functionality
property of the punctured PRF. Thus, the security of the underlying 2FEsel scheme guarantees that
the adversary A has only a negligible advantage in distinguishing experiments H(4,j,k) and H(5,j,k).
In Appendix B.2 we prove the following claim:

29



Claim 4.5. There exists a probabilistic polynomial-time adversary B(4,j,k)→(5,j,k) such that∣∣∣Pr [H(4,j,k)(λ) = 1
]
− Pr

[
H(5,j,k)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(4,j,k)→(5,j,k)(λ).

Experiment H(6,j,k)(λ). This experiment is obtained from the experiment H(5,j,k)(λ) by mod-
ifying the encryptions as follows. Instead of using randomness generated using a PRF we use
randomness sampled uniformly at random. That is, msksj ,tk , γ and δ are generated using random-
ness that is sampled uniformly at random rather than generated using a PRF. We emphasize that
msksj ,tk is computed in advance once as msksj ,tk ← 1FE.S(1λ).

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, (K
msk
i |{tk},K

key
i |{tk}, si, k), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,k,siK

msk
i |{tk},K

enc
i |{tk},tk,γ

)

msksj ,tk = 1FE.S(1λ)

γ = 1FE.E(msksj ,tk , (x
b
j , y

b
k))

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,f

1
i ,i,sj ,tk,δ

)

δ = 1FE.KG(msksj ,tk , Cfb
i
)

The pseudorandomness of PRF.Eval(Kmsk
j , ·), PRF.Eval(Kkey

j , ·) and PRF.Eval(Kenc
j , ·) guarantee

that the adversary A has only a negligible advantage in distinguishing experiments H(5,j,k) and
H(6,j,k). In Appendix B.2 we prove the following claim:

Claim 4.6. There exists a probabilistic polynomial-time adversary B(5,j,k)→(6,j,k) such that∣∣∣Pr [H(5,j,k)(λ) = 1
]
− Pr

[
H(6,j,k)(λ) = 1

]∣∣∣ ≤ 3 · AdvPRF,B(5,j,k)→(6,j,k)(λ).

Experiment H(7,j,k)(λ). This experiment is obtained from the experiment H(6,j,k)(λ) by modify-
ing the encryptions as follows. Instead of having (xbj , y

b
k) hardwired in γ and Dfb

i
in δ, we hardwire

the values (x1j , y
1
k) and Df1

i
, respectively.
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• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, (K
msk
i |{tk},K

key
i |{tk}, si, k), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,k,siK

msk
i |{tk},K

enc
i |{tk},tk,γ

)

msksj ,tk = 1FE.S(1λ)

γ = 1FE.E(msksj ,tk , ( x
1
j , y

1
k ))

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,f

1
i ,i,sj ,tk,δ

)

δ = 1FE.KG(msksj ,tk , Cf1
i
)

We observe that the combination of the kth ciphertext with respect to i = 2 with the jth

ciphertext with respect to i = 1 has the same functionality due to the hardwired values (sj , tk, δ)
and the fact that the adversary is valid (see Definition 2.6). Thus, the security of the underlying
1FE scheme guarantees that the adversary A has only a negligible advantage in distinguishing
experiments H(6,j,k) and H(7,j,k). In Appendix B.2 we prove the following claim:

Claim 4.7. There exists a probabilistic polynomial-time adversary B(6,j,k)→(7,j,k) such that∣∣∣Pr [H(6,j,k)(λ) = 1
]
− Pr

[
H(7,j,k)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(6,j,k)→(7,j,k)(λ).

Experiment H(8,j,k)(λ). This experiment is obtained from the experiment H(7,j,k)(λ) by modify-
ing the encryptions as follows. Instead of using randomness sampled uniformly at random we use
randomness generated using a PRF. That is, msksj ,tk , γ and δ are generated using a PRF.

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)
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• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, (K
msk
i |{tk},K

key
i |{tk}, si, k), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,k,siK

msk
i |{tk},K

enc
i |{tk},tk,γ

)

msksj ,tk ← 1FE.S(1λ;PRF.Eval(Kmsk
j , tk))

γ ← 1FE.E(msksj ,tk , (x
1
j , y

1
k);PRF.Eval(K

enc
j , tk))

• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, Dfb
i ,f

1
i ,i,sj ,tk,δ

)

msksj ,tk ← 1FE.S(1λ;PRF.Eval(Kmsk
j , tk))

δ ← 1FE.KG(msksj ,tk , Cf1
i
;PRF.Eval(Kkey

j , tk))

The pseudorandomness of PRF.Eval(Kmsk
j , ·), PRF.Eval(Kkey

j , ·) and PRF.Eval(Kenc
j , ·) guarantee

that the adversary A has only a negligible advantage in distinguishing experiments H(7,j,k) and
H(8,j,k). The proof of the following claim is analogous to the proof of Claim 4.6.

Claim 4.8. There exists a probabilistic polynomial-time adversary B(7,j,k)→(8,j,k) such that∣∣∣Pr [H(7,j,k)(λ) = 1
]
− Pr

[
H(8,j,k)(λ) = 1

]∣∣∣ ≤ 3 · AdvPRF,B(7,j,k)→(8,j,k)(λ).

Experiment H(9,j,k)(λ). This experiment is obtained from the experiment H(8,j,k)(λ) by modify-

ing the encryptions as follows. First, instead of using a punctured keys Kmsk
j |{tk} and Kkey

j |{tk} in
the jth encryption with respect to msk2, we use the original keys Kmsk

j and Kkey
j . Second, we set

the threshold thr in ct1,j to k + 1. Lastly, we hardwire into every functional key for a pair (f0
i .f

1
i )

the triple (⊥,⊥,⊥) instead of (sj , tk, δ).

• Ciphertexts (i = 1 and i = 1, . . . , j − 1):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 1 and i = j):

ct1,i ← 2FEsel.E(msk2, ( K
msk
i , Kkey

i , si, k + 1 ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,k,siK

msk
i |{tk},K

enc
i |{tk},tk,γ

)

msksj ,tk ← 1FE.S(1λ;PRF.Eval(Kmsk
j , tk))

γ ← 1FE.E(msksj ,tk , (x
1
j , y

1
k);PRF.Eval(K

enc
j , tk))
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• Ciphertexts (i = 1 and i = j + 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,0,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, t, 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, D
fb
i ,f

1
i ,i, ⊥,⊥,⊥

)

We observe that the combination of the kth ciphertext with respect to i = 2 with the jth

ciphertext with respect to i = 1 has the same functionality due to the hardwired values (sj , tk, δ).
For the rest of the combinations we have that the functionality stays the same by the functionality
property of the punctured PRF. Thus, the security of the underlying 2FEsel scheme guarantees that
the adversary A has only a negligible advantage in distinguishing experiments H(8,j,k) and H(9,j,k).
The proof of the following claim is analogous to the proof of Claim 4.5.

Claim 4.9. There exists a probabilistic polynomial-time adversary B(8,j,k)→(9,j,k) such that∣∣∣Pr [H(8,j,k)(λ) = 1
]
− Pr

[
H(9,j,k)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(8,j,k)→(9,j,k)(λ).

Next, as in Claim 4.4 we observe that H(9,j,k)(λ) is indistinguishable from H(3,j,k+1)(λ). More-
over, we notice that H(3,j,T )(λ) = H(3,j+1,0)(λ).

Claim 4.10. There exists a probabilistic polynomial-time adversary B(9,j,k)→(3,j,k+1) such that∣∣∣Pr [H(9,j,k)(λ) = 1
]
− Pr

[
H(3,j,k+1)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(9,j,k)→(3,j,k+1)(λ).

Experiment H(10)(λ). This experiment is obtained from the experiment H(3,T+1,0)(λ) by modi-
fying the ciphertexts not to include f b

i at all.

• Ciphertexts (i = 1 and i = 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGGxb
i ,x

1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, (y
b
i , y

1
i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, D ⊥ ,f1
i ,i,⊥,⊥,⊥

)
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We observe that at this point all ciphertext have thr = T . Therefore, the first parameter
f b
i is always ignored and the functionalities stay the same. Thus, the security of the underlying
2FEsel scheme guarantees that the adversary A has only a negligible advantage in distinguishing
experiments H(3,T+1,0) and H(10). The proof of the following claim is analogous to the proof of
Claim 4.3.

Claim 4.11. There exists a probabilistic polynomial-time adversary B(3,T+1,0)→(10) such that∣∣∣Pr [H(3,T+1,0)(λ) = 1
]
− Pr

[
H(10)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(3,T+1,0)→(10)(λ).

Experiment H(11)(λ). This experiment is obtained from the experiment H(10)(λ) by modifying
the ciphertexts not to include xbi and ybi at all. Notice that this experiment is completely independent
of the bit b, and therefore Pr[H(11)(λ) = 1] = 1/2.

• Ciphertexts (i = 1 and i = 1, . . . , T ):

ct1,i ← 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1)

sk1,i ← 1FE.KG(msk1,AGG ⊥ ,x1
i ,T,si,K

msk
i ,Kenc

i ,⊥,⊥
)

• Ciphertexts (i = 2 and i = 1, . . . , T ):

ct2,i ← 2FEsel.E(msk2, (i, t), 2)

ct3,i ← 1FE.E(msk1, ( ⊥ , y1i , i, ti,⊥,⊥))

• Functional keys (i = 1, . . . , T ):

skfi ← 2FEsel.KG(msk2, D⊥,f1
i ,i,⊥,⊥,⊥

)

We observe that at this point all ciphertext have thr = T . Therefore, the first parameters xbi and
ybi are always ignored and the functionalities stay the same. Thus, the security of the underlying
1FE scheme guarantees that the adversary A has only a negligible advantage in distinguishing
experiments H(3,T+1) and H(10). The proof of the following claim is analogous to the proof of
Claim 4.2.

Claim 4.12. There exists a probabilistic polynomial-time adversary B(10)→(11) such that∣∣∣Pr [H(10)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(10)→(11)(λ).

Finally, putting together Claims 4.2–4.12 with the facts that Advfull2FE2FE,F ,A(λ) = H(0)(λ), H(2)(λ) =
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H(3,1,0)(λ) and Pr
[
H(11)(λ) = 1

]
= 1/2, we observe that

Advfull2FE2FE,F ,A
def
=

∣∣∣∣Pr [Expfull2FE2FE,F ,A(λ) = 1
]
− 1

2

∣∣∣∣
=

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤

1∑
i=0

∣∣∣Pr [H(i)(λ) = 1
]
− Pr

[
H(i+1)(λ) = 1

]∣∣∣
+

T∑
j=1

T∑
k=0

8∑
i=3

∣∣∣Pr [H(i,j,k)(λ) = 1
]
− Pr

[
H(i+1,j,k)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(3,T+1,0)(λ) = 1

]
− Pr

[
H(10)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(10)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤ neg(λ).
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A Generalization to t ≥ 2 Inputs

In this section we generalize our results to more than two inputs. In Appendix A.1 we generalize
the definitions introduced in Section 2.3, and in Appendices A.2 and A.3 we generalize the con-
structions from Sections 3 and 4, respectively. More precisely, in Appendix A.2 we show how to
obtain a selectively-secure t-input scheme assuming any fully secure (t − 1)-input scheme. Then,
in Appendix A.3 we show how to obtain a fully-secure t-input scheme assuming any fully-secure
(t− 1)-input scheme and a selectively-secure t-input scheme.

A.1 Private-Key t-Input Functional Encryption

In this section we generalize the framework introduced in Section 2.3 to the general case of t-input
schemes (Section 2.3 dealt with the case t = 2).

For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite sets, and let F = {Fλ}λ∈N be an
ensemble of finite t-ary function families. For each λ ∈ N, each function f ∈ Fλ takes as input t
strings, x1 ∈ (X1)λ, . . . , xt ∈ (Xt)λ, and outputs a value f(x1, . . . , xt) ∈ Zλ. A private-key t-input
functional encryption scheme Π for F consists of four probabilistic polynomial time algorithm Setup,
Enc, KG and Dec, described as follows. The setup algorithm Setup(1λ) takes as input the security
parameter λ, and outputs a master secret key msk. The encryption algorithm Enc(msk,m, i) takes
as input a master secret key msk, a message m, and an index i ∈ [t], where m ∈ (Xi)λ, and outputs a
ciphertext cti. The key-generation algorithm KG(msk, f) takes as input a master secret key msk and
a function f ∈ Fλ, and outputs a functional key skf . The (deterministic) decryption algorithm Dec
takes as input a functional key skf and t ciphertexts, ct1, . . . , ctt, and outputs a string z ∈ Zλ∪{⊥}.

Definition A.1 (Correctness). A private-key t-input functional encryption scheme Π = (Setup,
Enc,KG,Dec) for F is correct if there exists a negligible function neg(·) such that for every λ ∈ N,
for every f ∈ Fλ, and for every (x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[
Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)

]
≥ 1− neg(λ),

where msk ← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the internal random-
ness of Setup,Enc and KG.

Next, we generalize the security definitions from Section 2.3 to the t-input case. As in Section 2.3,
we start by defining the notion of a valid t-input adversary. Then, we define full security and
selective-message security.

Definition A.2 (Valid t-input adversary). A probabilistic polynomial-time algorithm A is a valid t-
input adversary if for all private-key t-input functional encryption schemes Π = (Setup,KG,Enc,Dec)
over a message space X1×· · ·×Xt = {(X1)λ}λ∈N×· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N,
for all λ ∈ N and b ∈ {0, 1}, and for all (f0, f1) ∈ Fλ and ((x0i , x

1
i ), i) ∈ Xi ×Xi × {i} (where i ∈ [t])

with which A queries the left-or-right key-generation and encryption oracles, respectively, it holds
that f0(x

0
1, . . . , x

0
t ) = f1(x

1
1, . . . , x

1
t ).

Definition A.3 (Full security). A private-key t-input functional encryption scheme Π = (Setup,
KG,Enc,Dec) over a message space X1 × · · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a function
space F = {Fλ}λ∈N is fully secure if for any valid t-input adversary A there exists a negligible
function neg(·) such that

AdvfullFEt
Π,F ,A

def
=

∣∣∣∣Pr [ExpfullFEt
Π,F ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),
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for all sufficiently large λ ∈ N, where the random variable ExpfullFEt
Π,F ,A(λ) is defined via the following

experiment:

1. msk← Setup(1λ), b← {0, 1}.
2. b′ ← AKGb(msk,·,·),Encb(msk,(·,·),·) (1λ).
3. If b′ = b then output 1, and otherwise output 0.

Definition A.4 (Selective-message security). A private-key t-input functional encryption scheme
Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N
and a function space F = {Fλ}λ∈N is selective-message secure if for any valid t-input adversary
A = (A1,A2) there exists a negligible function neg(λ) such that

AdvselFEt
Π,F ,A

def
=

∣∣∣∣Pr [ExpselFEt
Π,F ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt
Π,F ,A(λ) is defined via the following

experiment:

1. (x⃗1, . . . , x⃗t, state)← A1

(
1λ
)
, where x⃗i = ((x0i,1, x

1
i,1), . . . , (x

0
i,T , x

1
i,T )) for i ∈ [t].

2. msk← Setup(1λ), b← {0, 1}.
3. cti,j ← Enc(msk, xbi,j , 1) for i ∈ [t] and j ∈ [T ].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, {cti,j}i∈[t],j∈[T ], state

)
.

5. If b′ = b then output 1, and otherwise output 0.

A.2 A Selectively-Secure t-Input Scheme from any (t − 1)-Input Scheme

In this section we generalize the construction from Section 3 by presenting a construction of a
selectively-secure t-input scheme assuming any fully-secure (t− 1)-input scheme. Let F = {Fλ}λ∈N
be a family of t-input functionalities, where for every λ ∈ N the set Fλ consists of functions of the
form f : (X1)λ × · · · × (Xt)λ → Zλ. Our construction relies on the following building blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,FE1.KG,FE1.E,FE1.D).

2. A private-key (t−1)-input functional encryption scheme FEsel
t−1 = (FEsel

t−1.S,FE
sel
t−1.KG,FE

sel
t−1.E,

FEsel
t−1.D).

3. A pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FEsel
t = (FEsel

t .S,FEsel
t .KG,FEsel

t .E,FEsel
t .D) is defined as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm FEsel
t .S

samples mskout ← FE1.S(1
λ),mskin ← FEsel

t−1.S(1
λ) and outputs msk = (mskout,mskin).

• The key-generation algorithm. On input the master secret key msk and a function f ∈ Fλ,
the key-generation algorithm FEsel

t .KG samples a random string z ← {0, 1}λ and outputs skf
← FE1.KG(mskout, Df,⊥,z,⊥), where Df,⊥,z,⊥ is a single-input function that is defined in Figure
5.

Df0,f1,z,u((msk⋆,K,w)):

1. If msk⋆ = ⊥, output u and HALT.

2. Compute r = PRF.Eval(K, z).

3. Output FEsel
t−1.KG(msk⋆, Cfw ; r).

Cf((x1, x2), x3, . . . , xt):

1. Output f(x1, . . . , xt).

Figure 5: The single-input function Df0,f1,z,u and the (t− 1)-input function Cf .
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• The encryption algorithm. On input the master secret key msk, a message m and an index
i ∈ [t], the encryption algorithm FEsel

t .E has two cases:

– If (m, i) = (x1, 1), it samples a master secret key msk⋆ ← FEsel
t−1.S(1

λ), a PRF key
K ← PRF.Gen(1λ), and a random string s ∈ {0, 1}λ, and then outputs a pair (ct1, sk1)
defined as follows:

ct1 ← FE1.E(mskout, (msk⋆,K, 0))

sk1 ← FEsel
t−1.KG(mskin,AGGx1,⊥,0,s,msk⋆,K),

where AGGx,⊥,0,msk⋆,K is a (t− 1)-input function that is defined in Figure 6.

– If (m, i) = (xi, i) where i ∈ {2, . . . , t}, it samples a random string τi ∈ {0, 1}λ, and outputs

cti ← FEsel
t−1.E(mskin, (xi,⊥, τi,⊥,⊥), i− 1).

AGGx0
1,x

1
1,a,s,msk⋆,K((x0

2, x
1
2, τ2, s2, v2), . . . , (x

0
t , x

1
t , τt, st, vt)):

1. If s2 = · · · = st = s output (v2, . . . , vt) and HALT.

2. Set xi = xai for all i ∈ [t].

3. Compute ri = PRF.Eval(K, τi) for 2 ≤ i ≤ t.

4. Output (FEsel
t−1.E(msk⋆, (x1, x2), 1; r2),FE

sel
t−1.E(msk⋆, x3, 2; r3), . . . ,FE

sel
t−1.E(msk⋆, xt, t− 1; rt)).

Figure 6: The (t− 1)-input function AGGx0
1,x

1
1,a,s,msk⋆,K .

• The decryption algorithm. On input a functional key skf and ciphertexts (ct1, sk1), ct2,
. . . , ctt, the decryption algorithm FEsel

t .D computes (ct′2, . . . , ct
′
t) = FEsel

t−1.D(sk1, (ct2, . . . , ctt)),
sk′ = FE1.D(skf , ct1) and outputs FEsel

t−1.D(sk
′, (ct′2, . . . , ct

′
t)).

Theorem A.5. Assuming that (1) FE1 is fully secure, (2) FEsel
t−1 is selective-message secure, and

(3) PRF is a pseudorandom function family, then FEsel
t is selective-message secure.

As in Theorem 3.1, we note that for proving that FEsel
t is selective-message secure it suffices to re-

quire selective-message security from FE1. However, given the generic transformation for single-input
schemes [ABS+15, BS15] (from selective security to adaptive security and from message security to
full security, respectively), for simplifying the proof of Theorem A.5 we assume that FE1 is fully
secure.

Proof of Theorem A.5. Let A = (A1,A2) be a valid adversary that issues at most Ti = Ti(λ)
encryption queries with respect to index i ∈ [t] and at most T0 = T0(λ) key-generation queries (note
that T0, . . . , Tt may be any polynomials and are not fixed in advance). We assume for simplicity

and without loss of generality that T0 = · · · = Tt
def
= T .

We present a sequence of experiments and upper bound A’s advantage in distinguishing each two
consecutive experiments. The first experiment is the experiment ExpselFEt

FEsel
t ,F ,A(λ) (see Definition A.4),

and the last experiment is completely independent of the bit b. This enables us to prove that there
exists a negligible function neg(·) such that

AdvselFEt

FEsel
t ,F ,A(λ)

def
=

∣∣∣∣Pr [ExpselFEt

FEsel
t ,F ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ)

for all sufficiently large λ ∈ N. In what follows we first describe the notation used throughout the
proof, and then describe the experiments.
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Notation. We denote the ith ciphertext with respect to i = 1 by (sk1,i, ct1,i) and the ith ciphertext
with respect to i = ℓ, where 2 ≤ ℓ ≤ t, by ctℓ,i. We denote the ith encryption query corresponding
to the index i = 1 by (x01,i, x

1
1,i), the random strings used for generating the resulting sk1,i by si, the

master secret key and the PRF key used for generating the resulting ct1,i and sk1,i by msk⋆i and Ki,
respectively. We denote the ith encryption query corresponding to the index i = ℓ, where 2 ≤ ℓ ≤ t
by (x0ℓ,i, x

1
ℓ,i), and the randomness used for generating the resulting ctℓ,i by τℓ,i. Finally, we denote by

(f0
1 , f

1
1 ), . . . , (f

0
T , f

1
T ) the function pairs with which the adversary queries the key-generation oracle

and by z1, . . . , zT the corresponding random strings used for generating skf1 , . . . , skfT .

Experiment H(0)(λ). This is the original experiment corresponding to b ← {0, 1} chosen uni-
formly at random, namely, ExpselFEt

FEsel
t ,F ,A(λ). In this experiment the encryptions are generated as

follows.

• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,⊥,0,si,msk⋆i ,Ki

)

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i,⊥, τℓ,i,⊥,⊥), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,⊥,zi,⊥

)

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by modifying the
encryptions as follows. Given inputs (x0ℓ,i, x

1
ℓ,i), instead of setting the field x1 to be ⊥ we set it to

be x1ℓ,i. The scheme has the following form:

• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGG
xb
1,i, x

1
1,i ,0,si,msk⋆i ,Ki

)

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x1ℓ,i , τℓ,i,⊥,⊥), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,⊥,zi,⊥

)

As in Claim 3.2, we have the following claim:

Claim A.6. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ Adv
selFEt−1

FEsel
t−1,F ′,B(0)→(1)(λ).

Experiment H(2)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
functional keys as follows. Given inputs (f0, f1), instead of setting the fields f1, f2 to be f b,⊥ we
set it to be f b, f1. The scheme has the following form:
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• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i,⊥,⊥), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, D
fb
i , f

1
i ,zi,⊥

)

As in Claim 3.3 we have the following claim:

Claim A.7. There exists a probabilistic polynomial-time adversary B(1)→(2) such that∣∣∣Pr [H(1)(λ) = 1
]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′′,B(1)→(2)(λ).

Experiment H(3,j)(λ). This experiment is obtained from the experiment H(2)(λ) by modifying
the encryptions as follows. The first j − 1 ciphertexts are generated such that a = 1 and w = 1
while the rest of the encryptions are generated as before.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1 ))

sk1,i ← FE1.KG(mskin,AGG
xb
1,i,x

1
1,i, 1 ,si,msk⋆i ,Ki

)

• Ciphertexts (i = j, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i,⊥,⊥), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)

Notice that H(3,1) = H(2).

Experiment H(4,j)(λ). This experiment is obtained from the experiment H(3,j)(λ) by modifying
the jth ciphertext to not include the master secret key msk⋆j and the PRF key Kj (that is, we

replace them with ⊥’s). Moreover, for every i ∈ [T ] in the ith ciphertext corresponding to i = 2
we hardwire the pair (sj , γ), where γ = FE1.E(msk⋆j , (x

b
1,j , x

b
2,i);PRF.Eval(Kj , τ2,i)). Similarly, for

every i ∈ [T ] in the ith ciphertext corresponding to i = ℓ > 2 we hardwire the pair (sj , γ), where
γ = FE1.E(msk⋆j , x

b
ℓ,i;PRF.Eval(Kj , τℓ,i))

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)
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• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGG
xb
1,i,x

1
1,i,0,si, ⊥ , ⊥ )

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ ), 1)

γ = FE1.E(msk⋆j , (x
b
1,j , x

b
2,i);PRF.Eval(Kj , τ2,i))

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ ), ℓ− 1)

γ = FE1.E(msk⋆j , x
b
ℓ,i;PRF.Eval(Kj , τℓ,i))

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)

As in Claim 3.4 we have the following claim:

Claim A.8. There exists a probabilistic polynomial-time adversary B(3,j)→(4,j) such that∣∣∣Pr [H(3,j)(λ) = 1
]
− Pr

[
H(4,j)(λ) = 1

]∣∣∣ ≤ Adv
selFEt−1

FEsel
t−1,F ′,B(3,j)→(4,j)(λ).

Experiment H(5,j)(λ). This experiment is obtained from the experiment H(4,j)(λ) by modifying
the jth ciphertext as follows. We replace (msk⋆j ,Kj , 0) with (⊥,⊥, 0). Moreover, in the ith func-
tional key corresponding to the functions (f0

i , f
1
i ) we hardwire the value δ = FE1.KG(msk⋆j , Cfb

i
;

PRF.Eval(Kj , zi)).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, ( ⊥ , ⊥ , 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,⊥,⊥

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)
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• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ), 1)

γ = FE1.E(msk⋆j , (x
b
1,j , x

b
2,i);PRF.Eval(Kj , τ2,i))

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ), ℓ− 1)

γ = FE1.E(msk⋆j , x
b
ℓ,i;PRF.Eval(Kj , τℓ,i))

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, D
fb
i ,f

1
i ,zi, δ

)

δ = FE1.KG(msk⋆j , Cfb
i
;PRF.Eval(Kj , zi))

As in Claim 3.5 we have the following claim:

Claim A.9. There exists a probabilistic polynomial-time adversary B(4,j)→(5,j) such that∣∣∣Pr [H(4,j)(λ) = 1
]
− Pr

[
H(5,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′,B(4,j)→(5,j)(λ).

Experiment H(6,j)(λ). This experiment is obtained from the experiment H(5,j)(λ) by modifying
the hardwired value of the γ’s and the δ’s to use randomness sampled uniformly at random rather
than randomness generated using a PRF.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, (⊥,⊥, 0))
sk1,i ← FE1.KG(mskin,AGGxb

1,i,x
1
1,i,0,si,⊥,⊥

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ), 1)

γ = FE1.E(msk⋆j , (x
b
1,j , x

b
2,i))

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ), ℓ− 1)

γ = FE1.E(msk⋆j , x
b
ℓ,i)
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• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,δ

)

δ = FE1.KG(msk⋆j , Cfb
i
)

As in Claim 3.6 we have the following claim:

Claim A.10. For every j ∈ [T ] there exists a probabilistic polynomial-time adversary B(5,j)→(6,j)

such that ∣∣∣Pr [H(5,j)(λ) = 1
]
− Pr

[
H(6,j)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(5,j)→(6,j)(λ).

Experiment H(7,j)(λ). This experiment is obtained from the experiment H(6,j)(λ) by modifying
the ciphertext as follows. In the ith ciphertext corresponding to i = 2 we embed in γ the encryption
of (x11,j , x

1
2,i) rather than (xb1,j , x

b
2,i). In the ith ciphertext corresponding to i = ℓ > 2 we embed in

γ the encryption of x1ℓ,i rather than xbℓ,i. Moreover, we replace the circuit embedded in δ in the ith

functional key to be Cf1
i
rather than Cfb

i
.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, (⊥,⊥, 0))
sk1,i ← FE1.KG(mskin,AGGxb

1,i,x
1
1,i,0,si,⊥,⊥

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ), 1)

γ = FE1.E(msk⋆j , (x11,j , x
1
2,i) )

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ), ℓ− 1)

γ = FE1.E(msk⋆j , x1ℓ,i )

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,δ

)

δ = FE1.KG(msk⋆j , Cf1
i
)
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As in Claim 3.7 we have the following claim:

Claim A.11. There exists a probabilistic polynomial-time adversary B(6,j)→(7,j) such that∣∣∣Pr [H(6,j)(λ) = 1
]
− Pr

[
H(7,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′,B(6,j)→(7,j)(λ).

Experiment H(8,j)(λ). This experiment is obtained from the experiment H(7,j)(λ) by modifying
the hardwired values in the γ’s and in the δ’s to use randomness generated using a PRF rather than
randomness sampled uniformly at random.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, (⊥,⊥, 0))
sk1,i ← FE1.KG(mskin,AGGxb

1,i,x
1
1,i,0,si,⊥,⊥

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ), 1)

γ = FE1.E(msk⋆j , (x
1
1,j , x

1
2,i);PRF.Eval(Kj , τ2,i))

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ), ℓ− 1)

γ = FE1.E(msk⋆j , x
1
ℓ,i;PRF.Eval(Kj , τℓ,i))

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,δ

)

δ = FE1.KG(msk⋆j , Cf1
i
;PRF.Eval(Kj , zi))

As in Claim 3.8 we have the following claim:

Claim A.12. There exists a probabilistic polynomial-time adversary B(7,j)→(8,j) such that∣∣∣Pr [H(7,j)(λ) = 1
]
− Pr

[
H(8,j)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(7,j)→(8,j)(λ).

Experiment H(9,j)(λ). This experiment is obtained from the experiment H(8,j)(λ) by modifying
the jth ciphertext to contain the pair (msk⋆j ,Kj). Moreover, in the functional key corresponding to
the function fi for i ∈ [T ] we remove the hardwired value δ.
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• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j):

ct1,i ← FE1.E(mskout, ( msk⋆i , Ki , 1 ))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,⊥,⊥

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T ):

ct2,i ← FE1.E(mskin, (x
b
2,i, x

1
2,i, τ2,i, sj , γ), 1)

γ = FE1.E(msk⋆j , (x
1
1,j , x

1
2,i);PRF.Eval(Kj , τ2,i))

• Ciphertexts (i = 1, . . . , T , 3 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, sj , γ), ℓ− 1)

γ = FE1.E(msk⋆j , x
1
ℓ,i;PRF.Eval(Kj , τℓ,i))

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, D
fb
i ,f

1
i ,zi, ⊥

)

As in Claim 3.9 we have the following claim:

Claim A.13. There exists a probabilistic polynomial-time adversary B(8,j)→(9,j) such that∣∣∣Pr [H(8,j)(λ) = 1
]
− Pr

[
H(9,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′,B(8,j)→(9,j)(λ).

Experiment H(10,j)(λ). This experiment is obtained from the experiment H(9,j)(λ) by modifying
the ciphertexts as follows. For the ith ciphertext corresponding to i = ℓ ≥ 2 we remove the hardwired
pair (sj , γ). Moreover, we encrypt the jth ciphertext corresponding to i = 1 with w = 1. Notice
that H(10,j) = H(3,j+1).

• Ciphertexts (i = 1, . . . , j ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = j + 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 0))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,0,si,msk⋆i ,Ki

)
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• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i, ⊥,⊥ ), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, Dfb
i ,f

1
i ,zi,⊥

)

As in Claim 3.10 we have the following claim:

Claim A.14. There exists a probabilistic polynomial-time adversary B(9,j)→(10,j) such that∣∣∣Pr [H(9,j)(λ) = 1
]
− Pr

[
H(10,j)(λ) = 1

]∣∣∣ ≤ Adv
selFEt−1

FEsel
t−1,F ′,B(9,j)→(10,j)(λ).

Experiment H(11)(λ). This experiment is obtained from the experimentH(3,T+1)(λ) by modifying
the ciphertexts not to include f b

i at all.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGGxb
1,i,x

1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, (x
b
ℓ,i, x

1
ℓ,i, τℓ,i,⊥,⊥), ℓ− 1)

• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, D ⊥ ,f1
i ,zi,⊥

)

As in Claim 3.11 we have the following claim:

Claim A.15. There exists a probabilistic polynomial-time adversary B(3,T+1)→(11) such that∣∣∣Pr [H(3,T+1)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′,B(3,T+1)→(11)(λ).

Experiment H(12)(λ). This experiment is obtained from the experiment H(11)(λ) by modifying
the ciphertexts not to include xbi,i at all for i ∈ [t] and i ∈ [T ]. Notice that this experiment is

completely independent of the bit b, and therefore Pr[H(12)(λ) = 1] = 1/2.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← FE1.E(mskout, (msk⋆i ,Ki, 1))

sk1,i ← FE1.KG(mskin,AGG ⊥ ,x1
1,i,1,si,msk⋆i ,Ki

)

• Ciphertexts (i = 1, . . . , T , 2 ≤ ℓ ≤ t):

ctℓ,i ← FE1.E(mskin, ( ⊥ , x1ℓ,i, τℓ,i,⊥,⊥), ℓ− 1)
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• Functional keys (i = 1, . . . , T ):

skfi ← FE1.KG(mskout, D⊥,f1
i ,zi,⊥

)

As in Claim 3.12 we have the following claim:

Claim A.16. There exists a probabilistic polynomial-time adversary B(11)→(12) such that∣∣∣Pr [H(11)(λ) = 1
]
− Pr

[
H(12)(λ) = 1

]∣∣∣ ≤ Adv
selFEt−1

FEsel
t−1,F ′,B(11)→(12)(λ).

Finally, putting together Claims A.6–A.16 with the facts that H(0)(λ) = ExpselFEt

FEsel
t ,F ,A(λ), H

(2)(λ)

= H(3,1)(λ) and Pr
[
H(12)(λ) = 1

]
= 1/2, we observe that

AdvselFEt

FEsel
t ,F ,A

def
=

∣∣∣∣Pr [ExpselFEt

FEsel
t ,F ,A(λ) = 1

]
− 1

2

∣∣∣∣
=

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(12)(λ) = 1

]∣∣∣
≤

1∑
i=0

∣∣∣Pr [H(i)(λ) = 1
]
− Pr

[
H(i+1)(λ) = 1

]∣∣∣
+

T∑
i=1

9∑
j=3

∣∣∣Pr [H(j,i)(λ) = 1
]
− Pr

[
H(j+1,i)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(3,T+1)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(11)(λ) = 1

]
− Pr

[
H(12)(λ) = 1

]∣∣∣
≤ neg(λ).

A.3 From Selective to Adaptive Security for t-Input Schemes

In this section we generalize the construction from Section 4 to get a fully-secure t-input functional
encryption scheme assuming any fully-secure (t − 1)-input functional encryption scheme and any
selectively-secure t-input functional encryption scheme. Our construction relies on the following
building blocks:

1. A private-key single-input functional encryption scheme FE1 = (FE1.S,FE1.KG,FE1.E,FE1.D).

2. A private-key (t−1)-input functional encryption scheme FEt−1 = (FEt−1.S,FEt−1.KG,FEt−1.E,
FEt−1.D).

3. A private-key t-input functional encryption scheme FEsel
t = (FEsel

t .S,FEsel
t .KG,FEsel

t .E,FEsel
t .D).

4. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval,PRF.Punc).

The scheme FEt = (FEt.S,FEt.KG,FEt.E,FEt.D) is defined as follows.

• The setup algorithm. On input the security parameter 1λ the setup algorithm FEt.S samples
mskt−1 ← FEt−1.S(1

λ) and mskt ← FEsel
t .S(1λ) and then outputs msk = (mskt−1,mskt).
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• The key-generation algorithm. On input the master secret key msk and a function f ∈ Fλ,
the key-generation algorithm FEt.KG outputs skf ← FEsel

t .KG(mskt, Df,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥), where

Df,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥ is a t-input function that is defined in Figure 7.

Df0,f1,c,τ ′
1,...,τ

′
t ,u

((Kmsk,Kkey, τ1, thr2, . . . , thrt), (c2, τ2), . . . , (ct, τt)):

1. If τ ′i = τi for all i ∈ [t], output u and HALT.

2. Compute r = PRF.Eval(Kmsk, τ2 . . . τt).

3. Compute r′ = PRF.Eval(Kkey, τ2 . . . τt).

4. Compute mskτ1,...,τt = FE1.S(1
λ; r).

5. For i = 1, . . . , t do:
(a) If ci < thri then set f = f1 and exit loop.

(b) If ci > thri then set f = f0 and exit loop.

(c) If ci = thri and i < t continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t set f = f1.

6. Output FE1.KG(mskτ1,...,τt , Cf ; r
′).

Cf((x1, . . . , xt)):

1. Output f(x1, . . . , xt).

Figure 7: The t-input function Df0,f1,c,τ ′
1,...,τ

′
t,u

and the single-input function Cf .

• The encryption algorithm. On input the master secret key msk, a message m and an index
i ∈ [2], the encryption algorithm FEt−1.E has two cases:

– If (m, i) = (x1, 1), it samples τ1 ← {0, 1}λ uniformly at random, three PRF keys Kenc,
Kkey,Kmsk ← PRF.Gen(1λ) and outputs a pair (ct1, sk1) defined as follows:

ct1 ← FEsel
t .E(mskt, (K

msk,Kkey, τ1, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1 ← FEt−1.KG(mskt−1,AGGx1,⊥,0, . . . , 0︸ ︷︷ ︸
t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

where the single-input function AGGx1,⊥,0, . . . , 0︸ ︷︷ ︸
t−1 times

,τ1,Kmsk,Kenc,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥ is defined in Fig-

ure 8.

– If (m, i) = (xi, i) and i > 1, it samples τi ← {0, 1}λ uniformly at random and outputs a
pair (cti, ct

′
i) defined as follows:

cti ← FEsel
t .E(mskt, (1, τi), i)

ct′i ← FEt−1.E(mskt−1, (xi,⊥, 1, τi,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥), i− 1).

• The decryption algorithm. On input a functional key skf and t ciphertexts (ct1, sk1)
and (ct2, ct

′
2), . . . , (ctt, ct

′
t), the decryption algorithm FEt.D first computes the value sk′ =

FEsel
t .D(skf , ct1, . . . , ctt), then it computes the value ct′ = FEt−1.D(sk1, ct

′
2, . . . , ct

′
t), and finally

it outputs FE1.D(sk
′, ct′).
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AGGx0
1,x

1
1,thr2,...,thrt,τ1,K

msk,Kenc,τ1,2,...,τ1,t,u1

((x0
2, x

1
2, c2, τ2, τ2,1, τ2,3, . . . , τ2,t, u2), . . . , (x

0
t , x

1
t , ct, τt, τt,1, . . . , τt,t, ut)) :

1. If ∃i ∈ [t] such that ∀j ∈ [t] \ {i} it holds that τi,j = τj , then output ui and HALT.

2. Compute r = PRF.Eval(Kmsk, τ2 . . . , τt).

3. Compute r′ = PRF.Eval(Kenc, τ2 . . . , τt).

4. Compute mskτ1,...,τt = FE1.S(1
λ; r).

5. For i = 1, . . . , t do:
(a) If ci < thri then set xi = x1i for all i ∈ [t] and exit loop.

(b) If ci > thri then set xi = x0i for all i ∈ [t] and exit loop.

(c) If ci = thri and i < t continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t set xi = x1i for all i ∈ [t].

6. Output FE1.E(mskτ1,...,τt , (x1 . . . , xt); r
′).

Figure 8: The t-input function AGGx0
1,x

1
1,thr2,...,thrt,τ1,K

msk,Kenc,τ ′
1,2,...,τ

′
1,t,u1

.

The following theorem captures the security of the scheme. This theorem states that under
suitable assumptions on the underlying building blocks, the t-input scheme FEt is fully private (see
Definition 2.7).

Theorem A.17. Let t > 1 be any fixed integer. Assuming that (1) FE1 is fully secure, (2) FEt−1
is fully secure, (3) FEsel

t is selective-message secure, and (4) PRF is a puncturable pseudorandom
function family, then FEt is fully secure.

We note that the proof of Theorem A.17 assumes that t is a fixed constant. The reason for this
limitation is that the number of hybrids in the proof of security is λO(t), where λ is the security
parameter, which is polynomial for any constant t. If we assume that the underlying building blocks
are sub-exponentially secure, then the proof of Theorem A.17 can be used for a super-constant
number of inputs.

Proof of Theorem A.17. Let A = (A1,A2) be a valid adversary that issues at most Ti = Ti(λ)
encryption queries with respect to index i ∈ [t] and at most T0 = T0(λ) key-generation queries (note
that T0, . . . , Tt may be any polynomials and are not fixed in advance). We assume for simplicity

and without loss of generality that T0 = · · · = Tt
def
= T .

We present a sequence of experiments and upper bound A’s advantage in distinguishing each
two consecutive experiments. The first experiment is the experiment in which A gets oracle ac-
cess to a left-or-right key generation oracle KGb(msk, ·, ·) and to a left-or-right encryption oracle
Encb(msk, (·, ·), ·) for b ← {0, 1} chosen uniformly at random (see Definition A.3), and the last
experiment is completely independent of the bit b. This enables us to prove that there exists a
negligible function neg(·) such that

AdvfullFEt
FEt,F ,A

def
=

∣∣∣∣Pr [ExpfullFEt
FEt,F ,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ neg(λ),

for all sufficiently large λ ∈ N. In what follows we first describe the notation used throughout the
proof, and then describe the experiments.
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Notation. We denote the ith ciphertext with respect to i = 1 by (sk1,i, ct1,i) and the ith ciphertext
with respect to i = ℓ, where 2 ≤ ℓ ≤ t, by (ctℓ,i, ct

′
ℓ,i). We denote the ith encryption query corre-

sponding to the index i = 1 by (x01,i, x
1
1,i), the random strings used for generating the resulting sk1,i

by τ1,i, the PRF keys used for generating the resulting ct1,i and sk1,i by Kmsk
i ,Kkey

i and Kenc
i . We

denote the ith encryption query corresponding to the index i = ℓ ≥ 2 by (x0ℓ,i, x
1
ℓ,i), and the random-

ness used for generating the resulting (ctℓ,i, ct
′
ℓ,i) by τℓ,i. Finally, we denote by (f0

1 , f
1
1 ), . . . , (f

0
T , f

1
T )

the function pairs with which the adversary queries the key-generation oracle to get skf1 , . . . , skfT .

Experiment H(0)(λ). This is the original experiment corresponding to b ← {0, 1} chosen uni-
formly at random. That is, A gets oracle access to the key-generation oracle KGb(msk, ·) and oracle
access to a left-or-right encryption oracle Encb(msk, (·, ·), ·) where b← {0, 1} is chosen uniformly at
random.

• Ciphertexts (i = 1, . . . , T , ℓ = 2, . . . , t):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,⊥,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

ctℓ,i ← FEsel
t .E(mskt, (1, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i,⊥, 1, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(msk2, Dfb

i ,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥)

Experiment H(1)(λ). This experiment is This experiment is obtained from the experimentH(0)(λ)
by modifying the encryptions as follows. Given inputs (x0ℓ,i, x

1
ℓ,i), instead of setting the field x1 to

be ⊥ we set it to be x1ℓ,i. In addition, in the encryptions ct′ℓ,i corresponding to i = ℓ ≥ 2 we embed
a counter.

• Ciphertexts (i = 1, . . . , T , ℓ = 2, . . . , t):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGG
xb
1,i, x

1
1,i ,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥
)

ctℓ,i ← FEsel
t .E(mskt, (1, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x1ℓ,i , i , τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(msk2, Dfb

i ,⊥,1,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥)
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As in Claim 4.2 we have the following claim:

Claim A.18. There exists a probabilistic polynomial-time adversary B(0)→(1) such that∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(1)(λ) = 1

]∣∣∣ ≤ Adv
fullFEt−1

FEt−1,F ′,B(0)→(1)(λ).

Experiment H(2)(λ). This experiment is obtained from the experiment H(1)(λ) by modifying the
functional keys follows. Given inputs (f0

i , f
1
i ), instead of setting the field f1 to be ⊥ we set it to be

f1
i . In addition, in the ciphertexts ctℓ,i corresponding to i = ℓ ≥ 2 and in the functional keys we
embed a counter.

• Ciphertexts (i = 1, . . . , T , ℓ = 2, . . . , t):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

ctℓ,i ← FEsel
t .E(mskt, ( i , τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, D

fb
i , f

1
i , i ,⊥, . . . ,⊥︸ ︷︷ ︸

t times

,⊥
)

As in Claim 4.3 we have the following claim:

Claim A.19. There exists a probabilistic polynomial-time adversary B(1)→(2) such that∣∣∣Pr [H(1)(λ) = 1
]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEsel
t ,F ′,B(1)→(2)(λ).

Experiment H(3,j,k2...,kt)(λ). This experiment is obtained from the experiment H(2)(λ) by modi-
fying the encryptions as follows. The first j−1 ciphertexts with respect to index i = 1 are generated
such that thr2, . . . , thrt = T and w = 1, the jth ciphertext with respect to index i = 1 is generated
such that thri = ki for i ∈ [T ] and the rest of the ciphertexts are generated as before.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGG
xb
1,i,x

1
1,i, T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥
)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, k2, . . . , kt ), 1)

sk1,i ← FEt−1.KG(mskt−1,AGG
xb
1,i,x

1
1,i, k2, . . . , kt ,τ1,i,Kmsk

i ,Kenc
i ,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥
)
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• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, Dfb

i ,f
1
i ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t times

,⊥)

Notice that H(3,1,0,...,0) = H(2).

Experiment H(4,j,k2...,kt)(λ). This experiment is obtained from the experiment H(3,j,k2...,kt)(λ)

by modifying the encryptions as follows. First, we sample in advance τ1,j , τ2,k2 , . . . , τt,kt , K
msk
j , Kkey

j

and Kenc
j , and compute mskτ1,j ,τ2,k2 ,...,τt,kt = 1FE.S(1λ;PRF.Eval(Kmsk

j , τ2,k2 . . . τt,kt)). Then, assume

that the jth encryption comes after the ki
th encryption with respect to index i = i for all i > 1.

In this case, we embed into sk1,j the values (τ2,k2 , . . . , τt,kt , γ) where γ = 1FE.E(mskτ1,j ,τ2,k2 ,...,τt,kt ,

(xb1,j , x
b
2,k2

, . . . , xbt,kt);PRF.Eval(K
enc
j , τ2,k2 . . . τt,kt)). (More generally, we embed into the ciphertext

that comes last the corresponding values.) Finally, instead of using Kmsk
j and Kkey

j in the jth

encryption with respect to msk1, we use Kmsk
j |{τ2,k2 ...τt,kt} and Kenc

j |{τ2,k2 ...τt,kt} which are the keys

Kmsk
j and Kenc

j punctured at the point {τ2,k2 . . . τt,kt}.
For concreteness we assume that the latter is the case, namely, that the jth encryption with

respect to index i = 1 came after the ki
th encryption with respect to index i = i for every i > 1 (the

other cases are handled similarly).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, k2, . . . , kt), 1)

sk1,i ← FEt−1.KG


mskt−1,AGG

xb
1,i

,x1
1,i

,k2,...,kt,τ1,i, K
msk
i |{τ2,k2 ...τt,kt} ,

Kenc
i |{τ2,k2 ...τt,kt} , τ2,k2 , . . . , τt,kt , γ


mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1

λ;PRF.Eval(Kmsk
i , τk2 . . . τkt))

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , (x
b
1,j , x

b
2,k2 , . . . , x

b
t,kt);PRF.Eval(K

enc
i , τ2,k2 . . . τt,kt))
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• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, Dfb

i ,f
1
i ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t times

,⊥)

As in Claim 4.4 we have the following claim:

Claim A.20. There exists a probabilistic polynomial-time adversary B(3,j,k2...,kt)→(4,j,k2...,kt) such
that∣∣∣Pr [H(3,j,k2...,kt)(λ) = 1

]
− Pr

[
H(4,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ Adv
fullFEt−1

FEt−1,F ′,B(3,j,k2...,kt)→(4,j,k2...,kt)
(λ).

Experiment H(5,j,k2...,kt)(λ). This experiment is obtained from the experiment H(4,j,k2...,kt)(λ)

by modifying the encryptions as follows. First, instead of using Kmsk
j and Kkey

j in the jth en-

cryption with respect to mskt, we use Kmsk
j |{τ2,k2 ...τt,kt} and Kkey

j |{τ2,k2 ...τt,kt} which are the keys

Kmsk
j and Kkey

j punctured at the point {τ2,k2 . . . τt,kt}. Second, we hardwire into every functional

key for a pair (f0
i .f

1
i ) the list (τ1,j , τ2,k2 , . . . , τt,kt , δ), where δ = 1FE.KG(mskτ1,j ,τ2,k2 ,...,τt,kt , Cfb

i
;

PRF.Eval(Kkey
j , τ2,k2 . . . τt,kt)).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, ( K

msk
i |{τ2,k2 ...τt,kt} , Kkey

i |{τ2,k2 ...τt,kt} , τ1,i, k2, . . . , kt), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,k2,...,kt,τ1,i,K

msk
i |{τ2,k2 ...τt,kt

},K
enc
i |{τ2,k2 ...τt,kt

},τ2,k2 ,...,τt,kt ,γ
)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ;PRF.Eval(Kmsk

i , τk2 . . . τkt))

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , (x
b
1,j , x

b
2,k2 , . . . , x

b
t,kt);PRF.Eval(K

enc
i , τ2,k2 . . . τt,kt))

55



• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, D

fb
i ,f

1
i ,i, τ1,j , τ2,k2 . . . , τt,kt , δ

)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ;PRF.Eval(Kmsk

i , τk2 . . . τkt))

δ = FE1.KG(mskτ1,j ,τ2,k2 ...τt,kt , Cfb
i
;PRF.Eval(Kkey

j , τk2 . . . τkt))

As in Claim 4.5 we have the following claim:

Claim A.21. There exists a probabilistic polynomial-time adversary B(4,j,k2...,kt)→(5,j,k2...,kt) such
that∣∣∣Pr [H(4,j,k2...,kt)(λ) = 1

]
− Pr

[
H(5,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEsel
t ,F ′,B(4,j,k2...,kt)→(5,j,k2...,kt)

(λ).

Experiment H(6,j,k2...,kt)(λ). This experiment is obtained from the experiment H(5,j,k2...,kt)(λ)
by modifying the encryptions as follows. Instead of using randomness generated using a PRF we
use randomness sampled uniformly at random. That is, mskτ1,j ,τ2,k2 ,...,τt,kt , γ and δ are generated
using randomness that is sampled uniformly at random rather than generated using a PRF. We
emphasize that mskτ1,j ,τ2,k2 ,...,τt,kt is computed in advance once as mskτ1,j ,τ2,k2 ,...,τt,kt ← 1FE.S(1λ).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, (K

msk
i |{τ2,k2 ...τt,kt},K

key
i |{τ2,k2 ...τt,kt}, τ1,i, k2, . . . , kt), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,k2,...,kt,τ1,i,K

msk
i |{τ2,k2 ...τt,kt

},K
enc
i |{τ2,k2 ...τt,kt

},τ2,k2 ,...,τt,kt ,γ
)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ)

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , (x
b
1,j , x

b
2,k2 , . . . , x

b
t,kt))
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• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, Dfb

i ,f
1
i ,i,τ1,j ,τ2,k2 ...,τt,kt ,δ

)

δ = FE1.KG(mskτ1,j ,τ2,k2 ...τt,kt , Cfb
i
)

As in Claim 4.6 we have the following claim:

Claim A.22. There exists a probabilistic polynomial-time adversary B(5,j,k2...,kt)→(6,j,k2...,kt) such
that∣∣∣Pr [H(5,j,k2...,kt)(λ) = 1

]
− Pr

[
H(6,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ 3 · AdvPRF,B(5,j,k2...,kt)→(6,j,k2...,kt)(λ).

Experiment H(7,j,k2...,kt)(λ). This experiment is obtained from the experiment H(6,j,k2...,kt)(λ)
by modifying the encryptions as follows. Instead of having (xb1,j , x

b
2,k2

, . . . , xbt,kt) hardwired in γ and

Dfb
i
in δ, we hardwire the values (x11,j , x

1
2,k2

, . . . , x1t,kt) and Df1
i
, respectively.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, (K

msk
i |{τ2,k2 ...τt,kt},K

key
i |{τ2,k2 ...τt,kt}, τ1,i, k2, . . . , kt), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,k2,...,kt,τ1,i,K

msk
i |{τ2,k2 ...τt,kt

},K
enc
i |{τ2,k2 ...τt,kt

},τ2,k2 ,...,τt,kt ,γ
)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ)

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , ( x
1
1,j , x

1
2,k2 , . . . , x

1
t,kt ))

• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)
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• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, Dfb

i ,f
1
i ,i,τ1,j ,τ2,k2 ...,τt,kt ,δ

)

δ = FE1.KG(mskτ1,j ,τ2,k2 ...τt,kt , Cf1
i
)

As in Claim 4.7 we have the following claim:

Claim A.23. There exists a probabilistic polynomial-time adversary B(6,j,k2...,kt)→(7,j,k2...,kt) such
that ∣∣∣Pr [H(6,j,k2...,kt)(λ) = 1

]
− Pr

[
H(7,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ Advfull1FE
FE1,F ′,B(6,j,k2...,kt)→(7,j,k2...,kt)

(λ).

Experiment H(8,j,k2...,kt)(λ). This experiment is obtained from the experiment H(7,j,k2...,kt)(λ)
by modifying the encryptions as follows. Instead of using randomness sampled uniformly at random
we use randomness generated using a PRF. That is, mskτ1,j ,τ2,k2 ,...,τt,kt , γ and δ are generated using
a PRF.

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, (K

msk
i |{τ2,k2 ...τt,kt},K

key
i |{τ2,k2 ...τt,kt}, τ1,i, k2, . . . , kt), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,k2,...,kt,τ1,i,K

msk
i |{τ2,k2 ...τt,kt

},K
enc
i |{τ2,k2 ...τt,kt

},τ2,k2 ,...,τt,kt ,γ
)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ;PRF.Eval(Kmsk

i , τk2 . . . τkt))

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , (x
1
1,j , x

1
2,k2 , . . . , x

1
t,kt);PRF.Eval(K

enc
i , τk2 . . . τkt))

• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

58



• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, Dfb

i ,f
1
i ,i,τ1,j ,τ2,k2 ...,τt,kt ,δ

)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ;PRF.Eval(Kmsk

j , τk2 . . . τkt))

δ = FE1.KG(mskτ1,j ,τ2,k2 ...τt,kt , Cf1
i
;PRF.Eval(Kkey

j , τk2 . . . τkt))

As in Claim 4.8 we have the following claim:

Claim A.24. There exists a probabilistic polynomial-time adversary B(7,j,k2...,kt)→(8,j,k2...,kt) such
that∣∣∣Pr [H(7,j,k2...,kt)(λ) = 1

]
− Pr

[
H(8,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ 3 · AdvPRF,B(7,j,k2...,kt)→(8,j,k2...,kt)(λ).

Experiment H(9,j,k)(λ). This experiment is obtained from the experiment H(8,j,k2...,kt)(λ) by
modifying the ciphertexts as follows. First, instead of using a punctured keys Kmsk

j |{τ2,k2 ,...,τt,kt} and
Kkey

j |{τ2,k2 ,...,τt,kt} in the jth encryption with respect to msk2, we use the original keys Kmsk
j and

Kkey
j . Second, we set the threshold thr in ct1,j to k + 1. Lastly, we hardwire into every functional

key for a pair (f0
i .f

1
i ) the sequence (⊥, . . . ,⊥,⊥) instead of (τ1,j , τ2,k2 . . . , τt,kt , δ).

• Ciphertexts (i = 1, . . . , j − 1):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertexts (i = j)

ct1,i ← FEsel
t .E(mskt, ( K

msk
i , Kkey

i , τ1,i, k2, . . . , kt−1, kt + 1 ), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,k2,...,kt,τ1,i,K

msk
i |{τ2,k2 ...τt,kt

},K
enc
i |{τ2,k2 ...τt,kt

},τ2,k2 ,...,τt,kt ,γ
)

mskτ1,j ,τ2,k2 ...τt,kt = FE1.S(1
λ;PRF.Eval(Kmsk

i , τk2 . . . τkt))

γ = FE1.E(mskτ1,j ,τ2,k2 ...τt,kt , (x
1
1,j , x

1
2,k2 , . . . , x

1
t,kt);PRF.Eval(K

enc
i , τk2 . . . τkt))

• Ciphertexts (i = j + 1, . . . , T )

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, 0, . . . , 0︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,0, . . . , 0︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).
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• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, D

fb
i ,f

1
i ,i, ⊥, . . . ,⊥︸ ︷︷ ︸

t times

, ⊥ )

As in Claim 4.9 we have the following claim:

Claim A.25. There exists a probabilistic polynomial-time adversary B(8,j,k2...,kt)→(9,j,k2...,kt) such
that∣∣∣Pr [H(8,j,k2...,kt)(λ) = 1

]
− Pr

[
H(9,j,k2...,kt)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEsel
t ,F ′,B(8,j,k2...,kt)→(9,j,k2...,kt)

(λ).

Next, as in Claim 4.10, we observe that H(9,j,k2...,kt)(λ) and H(3,j,k2...,kt−1,kt+1)(λ) are indis-
tinguishable. Moreover, we notice that H(3,j,k2...,T )(λ) = H(3,j,k2...,kt−1+1,0)(λ) and more generally
H(3,j,k2...,ki,T,0,...,0)(λ) = H(3,j,k2...,ki+1,0,...,0)(λ).

Claim A.26. There exists a probabilistic polynomial-time adversary B(9,j,k2...,kt)→(3,j,k2...,kt−1,kt+1)

such that ∣∣∣Pr [H(9,j,k2...,kt)(λ) = 1
]
− Pr

[
H(3,j,k2...,kt−1,kt+1))(λ) = 1

]∣∣∣
≤ Adv

fullFEt−1

FEt−1,F ′,B(9,j,k2...,kt)→(3,j,k2...,kt−1,kt+1))(λ).

Experiment H(10)(λ). This experiment is obtained from the experiment H(3,T+1,0,...,0)(λ) by
modifying the ciphertexts not to include f b

i at all.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGGxb
1,i,x

1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, (x
b
ℓ,i, x

1
ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸

t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, D ⊥ ,f1

i ,i,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥
)

As in Claim 4.11 we have the following claim:

Claim A.27. There exists a probabilistic polynomial-time adversary B(3,T+1,0,...,0)→(10) such that∣∣∣Pr [H(3,T+1,0,...,0)(λ) = 1
]
− Pr

[
H(10)(λ) = 1

]∣∣∣ ≤ AdvselFEt

FEsel
t ,F ′,B(3,T+1,0,...,0)→(10)(λ).
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Experiment H(11)(λ). This experiment is obtained from the experiment H(10)(λ) by modifying
the ciphertexts not to include xbi,i at all for i ∈ [t] and i ∈ [T ] Notice that this experiment is

completely independent of the bit b, and therefore Pr[H(11)(λ) = 1] = 1/2.

• Ciphertexts (i = 1, . . . , T ):

ct1,i ← FEsel
t .E(mskt, (K

msk
i ,Kkey

i , τ1,i, T, . . . , T︸ ︷︷ ︸
t−1 times

), 1)

sk1,i ← FEt−1.KG(mskt−1,AGG ⊥ ,x1
1,i,T, . . . , T︸ ︷︷ ︸

t−1 times

,τ1,i,Kmsk
i ,Kenc

i ,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥
)

• Ciphertext (i = 1, . . . , T , ℓ = 2, . . . , t):

ctℓ,i ← FEsel
t .E(mskt, (i, τℓ,i), ℓ)

ct′ℓ,i ← FEt−1.E(mskt−1, ( ⊥ , x1ℓ,i, i, τℓ,i,⊥, . . . ,⊥︸ ︷︷ ︸
t−1 times

,⊥), ℓ− 1).

• Functional keys (i = 1, . . . , T ):

skfi ← FEsel
t .KG(mskt, D⊥,f1

i ,i,⊥, . . . ,⊥︸ ︷︷ ︸
t times

,⊥)

As in Claim 4.12 we have the following claim:

Claim A.28. There exists a probabilistic polynomial-time adversary B(10)→(11) such that∣∣∣Pr [H(10)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣ ≤ Adv
fullFEt−1

FEt−1,F ′,B(10)→(11)(λ).

Finally, putting together Claims A.18–A.28 with the facts that AdvfullFEt
FEt,F ,A(λ) = H

(0)(λ), H(2)(λ)

= H(3,1,0,...,0)(λ), and Pr
[
H(11)(λ) = 1

]
= 1/2, and that t is a fixed constant, we observe that

AdvfullFEt
FEt,F ,A

def
=

∣∣∣∣Pr [ExpfullFEt
FEt,F ,A(λ) = 1

]
− 1

2

∣∣∣∣
=

∣∣∣Pr [H(0)(λ) = 1
]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤

1∑
i=0

∣∣∣Pr [H(i)(λ) = 1
]
− Pr

[
H(i+1)(λ) = 1

]∣∣∣
+

T∑
j=1

T∑
k2=0

· · ·
T∑

kt=0

8∑
i=3

∣∣∣Pr [H(i,j,k2,...,kt)(λ) = 1
]
− Pr

[
H(i+1,j,k2,...,kt)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(3,T+1,0,...,0)(λ) = 1

]
− Pr

[
H(10)(λ) = 1

]∣∣∣
+
∣∣∣Pr [H(10)(λ) = 1

]
− Pr

[
H(11)(λ) = 1

]∣∣∣
≤ T t · neg(λ) ≤ neg(λ).
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B Deferred Proofs

B.1 Proofs of Claims 3.2–3.7

Proof of Claim 3.2. The adversary B(0)→(1) = B given input 1λ is defined as follows. First, B
samples mskout ← 1FE.S(1λ), b← {0, 1} and emulates the execution of A1 on input 1λ by simulating
the encryptions as follows: When A1 requests the encryption of the pair (x0, x1) ∈ Xλ (with respect
to index i = 1), B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), queries the key-
generation oracle KGσ(mskin, ·, ·) with the pair (AGGxb,⊥,0,s,msk⋆,K ,AGGxb,x1,0,s,msk⋆,K) and returns

the output to A1. Moreover, B runs 1FE.E(mskout, (msk⋆,Kkey, 0)) and returns the output to A1.
When A1 requests an encryption of (y0, y1) ∈ Yλ (with respect to index i = 2), B samples t ∈
{0, 1}λ, queries the encryption oracle Encσ(mskin, ·, ·) with the pair ((yb,⊥, t,⊥,⊥), (yb, y1, t,⊥,⊥))
and returns the output to A1. We do the above with all input pairs until A1 outputs state and halts.

Then, we emulate the execution of A2 on input 1λ, state and all the ciphertexts that were
already generated by simulating the key-generation oracle as follows: When A2 requests a functional
key for (f0, f1) ∈ F × F , B samples a random z ← {0, 1}λ, runs the key-generation procedure
1FE.KG(mskout, Dfb,⊥,z,⊥) and returns the output to A2. We do the above until A2 outputs b′ and
halts. Finally, B outputs 1 if b′ = b and otherwise it outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(0), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(1) described above.
Therefore, ∣∣∣Pr [H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ = Advfull1FE
1FE,F ′,B(0)→(1)(λ).

Proof of Claim 3.3. The adversary B(1)→(2) = B given input 1λ is defined as follows. First, B
samples mskin ← 1FE.S(1λ), b← {0, 1} and emulates the execution of A1 on input 1λ by simulating
the encryptions as follows: When A1 requests the encryption of (x0, x1) ∈ Xλ (with respect to
index i = 1), B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), runs the key-generation
procedure 1FE.KG(mskin, ·) with the input AGGxb,x1,0,s,msk⋆,K and returns the output to A1. More-

over, B queries the encryption oracle Encσ(mskout, ·, ·) with the pair ((msk⋆,Kkey, 0), (msk⋆,Kkey, 0))
and returns the output to A1. When A1 requests an encryption of (y0, y1) ∈ Yλ (with respect
to index i = 2), B samples t ∈ {0, 1}λ, runs the encryption oracle 1FE.E(mskin, ·) with the input
(yb, y1, t,⊥,⊥) and returns the output to A1.

Then, we emulates the execution of A2 on input 1λ, state and all the ciphertexts generated
before by simulating the key-generation oracle as follows: When A2 requests a functional key for
(f0, f1) ∈ F×F , B samples a random z ← {0, 1}λ, queries the key-generation oracle KGσ(mskout, ·, ·)
with the pair (Dfb,⊥,z,⊥, Dfb,f1,z,⊥) and returns the output to A2. We do the above until A2 outputs
b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(1), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(2) described above.
Therefore, ∣∣∣Pr [H(1)(λ) = 1

]
− Pr

[
H(2)(λ) = 1

]∣∣∣ = Advfull1FE
1FE,F ′,B(1)→(2)(λ).

Proof of Claim 3.4. The adversary B(3,j)→(4,j) = B given input 1λ is defined as follows. First, B
samples mskout ← 1FE.S(1λ), b ← {0, 1}, sj ← {0, 1}λ, msk⋆j ← 1FE.S(1λ) and Kj ← PRF.Eval(1λ),
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and emulates the execution of A1 on input 1λ by simulating the encryptions as follows: When
A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1)
for i ≤ j − 1, B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), queries the key-
generation oracle KGσ(mskin, ·, ·) with the pair (AGGxb,x1,1,s,msk⋆,K ,AGGxb,x1,1,s,msk⋆,K) and returns

the output to A1. Moreover, B runs 1FE.E(mskout, (msk⋆,Kkey, 1)) and returns the output to A1.
When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index
i = 1) for i = j, B sets s = sj , msk⋆ = msk⋆j , K = Kj , queries the key-generation oracle
KGσ(mskin, ·, ·) with the pair (AGGxb,x1,0,s,msk⋆,K ,AGGxb,x1,1,s,⊥,⊥) and returns the output to A1.

Moreover, B runs 1FE.E(mskout, (msk⋆,Kkey, 0)) and returns the output to A1. When A1 requests
for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i ≥ j + 1,
B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), queries the key-generation ora-
cle KGσ(mskin, ·, ·) with the pair (AGGxb,x1,0,s,msk⋆,K ,AGGxb,x1,0,s,msk⋆,K) and returns the output to

A1. Moreover, B runs 1FE.E(mskout, (msk⋆,Kkey, 0)) and returns the output to A1. When A1

requests an encryption of (y0, y1) ∈ Yλ (with respect to index i = 2) B samples t ∈ {0, 1}λ,
queries the encryption oracle Encσ(mskin, ·, ·) with the pair ((yb, y1, t,⊥,⊥), (yb, y1, t, sj , γ)), where
γ = 1FE.E(msk⋆j , (x

b
j , y

b);PRF.Eval(Kj , t)) and returns the output to A1.

Denote by (x0j , x
1
j ) the jth ciphertext pair issued with index i = 1. B emulates the execution of

A2 on input 1λ, state and all the ciphertexts from before by simulating the key-generation oracle as
follows: When A2 requests a functional key for (f0, f1) ∈ F ×F , B samples a random z ← {0, 1}λ,
runs the key-generation procedure 1FE.KG(mskout, ·) with the circuit Dfb,f1,z,⊥ and returns the
output to A2. We do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and
otherwise it outputs 0.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(3,j), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(4,j) described above.
Therefore, ∣∣∣Pr [H(3,j)(λ) = 1

]
− Pr

[
H(4,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(3,j)→(4,j)(λ).

Proof of Claim 3.5. The adversary B(4,j)→(5,j) = B given input 1λ is defined as follows. First, B
samples mskin ← 1FE.S(1λ), b ← {0, 1}, sj ← {0, 1}λ, msk⋆j ← 1FE.S(1λ) and Kj ← PRF.Eval(1λ),

and emulates the execution of A1 on input 1λ by simulating the encryptions as follows: When
A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for
i ≤ j−1, B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), runs the key-generation pro-
cedure 1FE.KG(mskin, ·) with the input AGGxb,x1,1,s,msk⋆,K and returns the output to A1. Moreover,

B queries the encryption oracle Encσ(mskout, ·, ·) with the pair ((msk⋆,Kkey, 1), (msk⋆,Kkey, 1)) and
returns the output to A1. When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ

(with respect to index i = 1) for i = j, B sets s = sj , msk⋆ = msk⋆j , K = Kj , runs the key-generation
procedure 1FE.KG(mskin, ·) with the input AGGxb,x1,0,s,msk⋆,K and returns the output to A1. More-

over, B queries the encryption oracle Encσ(mskout, ·, ·) with the pair ((msk⋆,Kkey, 0), (⊥,⊥, 0)) and
returns the output to A1. When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ

(with respect to index i = 1) for i ≤ j + 1, B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ←
PRF.Gen(1λ), runs the key-generation procedure 1FE.KG(mskin, ·) with the input AGGxb,x1,0,s,msk⋆,K

and returns the output to A1. Moreover, B queries the encryption oracle Encσ(mskout, ·, ·) with the
pair ((msk⋆,Kkey, 0), (msk⋆,Kkey, 0)) and returns the output to A1. When A1 requests an encryption
of (y0, y1) ∈ Yλ (with respect to index i = 2) B samples t ∈ {0, 1}λ, runs the encryption procedure
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1FE.E(mskin, ·) with the input (yb, y1, t, sj , γ), where γ = 1FE.E(msk⋆j , (x
b
j , y

b);PRF.Eval(Kj , t)) and
returns the output to A1

Denote by (x0j , x
1
j ) the jth ciphertext pair issued with index i = 1. B emulates the execution of

A2 on input 1λ, state and all the ciphertexts from before by simulating the key-generation oracle as
follows: When A2 requests a functional key for (f0, f1) ∈ F ×F , B samples a random z ← {0, 1}λ,
queries the key-generation oracle KGσ(mskout, ·, ·) with the pair (Dfb,f1,z,⊥, Dfb,f1,z,δ), where δ =

1FE.KG(msk⋆j , Dfb ;PRF(K
key
j , zi)), and returns the output to A2. We do the above until A2 outputs

b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it outputs 0.
Note that when σ = 0 then A’s view is identical to its view in the experiment H(4,j), and when

σ = 1 then A’s view is identical to its view in the modified experiment H(5,j) described above.
Therefore, ∣∣∣Pr [H(4,j)(λ) = 1

]
− Pr

[
H(5,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(4,j)→(5,j)(λ).

Proof of Claim 3.6. The adversary B(5,j)→(6,j) = B given input 1λ is defined as follows. Recall
that B has access to an oracle, denoted R(·), that is either a random function or a PRF and its goal
is to distinguish between the two cases. First, B samples mskin,mskout ← 1FE.S(1λ), b ← {0, 1},
sj ← {0, 1}λ and msk⋆j ← 1FE.S(1λ), and emulates the execution of A1 on input 1λ by simulating the

encryptions as follows: When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with
respect to index i = 1) for i ≤ j − 1, B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ),
runs the key-generation procedure 1FE.KG(mskin, ·) with the input AGGxb,x1,1,s,msk⋆,K and returns
the output to A1. Moreover, B runs the encryption procedure 1FE.E(mskout, ·) with the input
(msk⋆,Kkey, 1) and returns the output to A1. When A1 requests for the encryption of the ith

input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i = j, B sets s = sj , msk⋆ = msk⋆j ,
K = Kj , runs the key-generation procedure 1FE.KG(mskin, ·) with the input AGGxb,x1,0,s,⊥,⊥ and
returns the output to A1. Moreover, B runs the encryption procedure 1FE.E(mskout, ·) with the
input (⊥,⊥, 0) and returns the output to A1. When A1 requests for the encryption of the ith

input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i ≥ j + 1, B samples s ∈ {0, 1}λ,
msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), runs the key-generation procedure 1FE.KG(mskin, ·) with the
input AGGxb,x1,0,s,msk⋆,K and returns the output to A1. Moreover, B runs the encryption procedure

1FE.E(mskout, ·) with the input (msk⋆,Kkey, 0) and returns the output to A1. When A1 requests an
encryption of (y0, y1) ∈ Yλ (with respect to index i = 2) B samples t ∈ {0, 1}λ, runs the encryption
procedure 1FE.E(mskin, ·) with the input (yb, y1, t, sj , γ), where γ = 1FE.E(msk⋆j , (x

b
j , y

b);R(ti))),
where R(ti) is either the output of a PRF or a uniformly random string, and returns the output to
A1.

Denote by (x0j , x
1
j ) the jth ciphertext pair issued with index i = 1. B emulates the execution of

A2 on input 1λ and state by simulating the key-generation oracle as follows: When A2 requests a
functional key for (f0, f1) ∈ F × F , B samples a random z ← {0, 1}λ, queries the key-generation
oracle 1FE.KG(mskout, ·) with the circuit Dfb,f1,z,δ, where δ = 1FE.KG(msk⋆j , Dfb ;R(zi))), where
R(zi) is either the output of a PRF or a uniformly random string, and returns the output to A2. We
do the above until A2 outputs b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it outputs
0.

Note that when R(·) corresponds to a pseudorandom function then A’s view is identical to its
view in the experiment H(5,j), and when R(·) corresponds to a uniformly random function then A’s
view is identical to its view in the modified experiment H(6,j). Therefore,∣∣∣Pr [H(5,j)(λ) = 1

]
− Pr

[
H(6,j)(λ) = 1

]∣∣∣ ≤ AdvPRF,B(5,j)→(6,j)(λ).
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Proof of Claim 3.7. The adversary B(6,j)→(7,j) = B given input 1λ is defined as follows. First, B
samples mskin,mskout ← 1FE.S(1λ), b← {0, 1}, sj ← {0, 1}λ and Kj ← PRF.Eval(1λ), and emulates
the execution of A1 on input 1λ by simulating the encryptions as follows: When A1 requests for
the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i ≤ j − 1,
B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), runs the key-generation procedure
1FE.KG(mskin, ·) with the input AGGxb,x1,1,s,msk⋆,K and returns the output to A1. Moreover, B runs

the encryption procedure 1FE.E(mskout, ·) with the input (msk⋆,Kkey, 1) and returns the output to
A1. When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index
i = 1) for i = j, B sets s = sj and K = Kj , runs the key-generation procedure 1FE.KG(mskin, ·) with
the input AGGxb,x1,0,s,⊥,⊥ and returns the output to A1. Moreover, B runs the encryption procedure
1FE.E(mskout, ·) with the input (⊥,⊥, 0) and returns the output to A1. When A1 requests for
the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i ≥ j + 1,
B samples s ∈ {0, 1}λ, msk⋆ ← 1FE.S(1λ), K ← PRF.Gen(1λ), runs the key-generation procedure
1FE.KG(mskin, ·) with the input AGGxb,x1,0,s,msk⋆,K and returns the output to A1. Moreover, B runs

the encryption procedure 1FE.E(mskout, ·) with the input (msk⋆,Kkey, 0) and returns the output to
A1. When A1 requests for the encryption of (y0, y1) ∈ Yλ (with respect to index i = 2) B samples
t ∈ {0, 1}λ, queries the encryption oracle Encσ(msk⋆j , ·, ·) with the pair ((xbj , y

b), (x1j , y
1)) to get γ,

runs the encryption procedure 1FE.E(mskin, ·) with the input (yb, y1, t, sj , γ) and returns the output
to A1.

Denote by (x0j , x
1
j ) the jth ciphertext pair issued with index i = 1. B emulates the execution

of A2 on input 1λ and state by simulating the key-generation oracle as follows: When A2 requests
a functional key for (f0, f1) ∈ F × F , B samples a random z ← {0, 1}λ, queries the key gener-
ation oracle KGσ(msk⋆j , ·, ·) with the pair (Cfb , Cf1) to get δ, runs the key-generation procedure
1FE.KG(mskout, ·) with the input Dfb,f1,z,δ and returns the output to A2. We do the above until A2

outputs b′ and halts. Finally, B outputs 1 if b′ = b and otherwise it outputs 0.
Note that when σ = 0 then A’s view is identical to its view in the experiment H(6,j), and when

σ = 1 then A’s view is identical to its view in the modified experiment H(7,j) described above.
Therefore, ∣∣∣Pr [H(6,j)(λ) = 1

]
− Pr

[
H(7,j)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(6,j)→(7,j)(λ).

B.2 Proofs of Claims 4.2–4.7

Proof of Claim 4.2. The adversary B(0)→(1) = B given input 1λ is defined as follows. First, B
samples msk2 ← 2FEsel.S(1λ), b ← {0, 1} and emulates the execution of A on input 1λ by simu-
lating the encryption oracle as follows: When A queries the encryption oracle with (x0, x1) ∈ Xλ

(with respect to index i = 1), B samples s ∈ {0, 1}λ, Kmsk,Kkey,Kenc ← PRF.Gen(1λ), queries the
key-generation oracle KGσ(msk1, ·, ·) with the pair (AGGxb,⊥,0,s,Kmsk,Kenc,⊥,⊥,AGGxb,x1,0,s,Kmsk,Kenc,⊥,⊥)

and returns the output to A. Moreover, B runs 2FEsel.E(msk2, (K
msk,Kkey, s, 0), 1) and returns

the output to A. When A requests the ith encryption of (y0, y1) ∈ Yλ (with respect to in-
dex i = 2), B samples t ∈ {0, 1}λ, queries the encryption oracle Encσ(msk1, ·, ·) with the pair
((yb,⊥, 1, t,⊥,⊥), (yb, y1, i, t,⊥,⊥)) and returns the output to A. Moreover, B runs 2FEsel.E(msk2,
(1, t), 2) and returns the output to A. When A requests a functional key for (f0, f1) ∈ F × F , B
runs the key-generation procedure 2FEsel.KG(msk2, Dfb,⊥,1,⊥,⊥,⊥) and returns the output to A.
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Note that when σ = 0 then A’s view is identical to its view in the experiment H(0), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(1) described above.
Therefore, ∣∣∣Pr [H(0)(λ) = 1

]
− Pr

[
H(1)(λ) = 1

]∣∣∣ = Advfull1FE
1FE,F ′,B(0)→(1)(λ).

Proof of Claim 4.3. The adversary B(1)→(2) = (B1,B2) given input 1λ is defined as follows. First,

B1 samples msk1 ← 1FE.S(1λ) and b ← {0, 1}. Then, B1 samples Kmsk
1 , . . . ,Kmsk

T ,Kkey
1 , . . . ,Kkey

T ,
Kenc

1 , . . . ,Kenc
T ← PRF.Gen(1λ), s1, . . . , sT ← {0, 1}λ and t1, . . . , tT ← {0, 1}λ, where T is upper

bounded by the running time of A. For i ∈ [T ] the adversary B1 requests the encryption of the pair

((Kmsk
i ,Kkey

i , si, 0), (K
msk
i ,Kkey

i , si, 0)) with respect to index i = 1 and with the pairs ((1, ti), (i, ti))
with respect to index i = 2 to get ct1,1, . . . , ct1,T , ct2,1, . . . , ct2,T . Finally, B1 outputs the state
information state which is all its memory.

Next, B2 given as input 1λ, state and ct1,1, . . . , ct1,T , ct2,1, . . . , ct2,T emulates the execution of A
on input 1λ by simulating the encryption oracle as follows: When A queries for the ith time the
encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1), B2 runs the key-generation pro-
cedure 1FE.KG(msk1, ·) with the input AGGxb,x1,0,si,Kmsk

i ,Kenc
i ,⊥,⊥ to get sk1,i and returns (ct1,i, sk1,i)

to A. When A queries for the ith time the encryption oracle with (y0, y1) ∈ Yλ (with respect to
index i = 2), B2 runs the encryption procedure 1FE.E(msk1, ·) with the input (yb, y1, i, t,⊥,⊥)
to get ct3,i and returns the pair (ct2,i, ct3,i) to A. When A requests for the ith time a func-
tional key for (f0, f1) ∈ F × F , B2 queries the key-generation oracle KGσ(msk2, ·, ·) with the pair
(Dfb,⊥,1,⊥,⊥,⊥, Dfb,f1,i,⊥,⊥,⊥) and returns the output to A.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(1), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(2) described above.
Therefore, ∣∣∣Pr [H(1)(λ) = 1

]
− Pr

[
H(2)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(1)→(2)(λ).

Proof of Claim 4.4. The adversary B(3,j,k)→(4,j,k) = B given input 1λ is defined as follows. First,
B samples msk2 ← 2FEsel.S(1λ), sj , tk ← {0, 1}λ, Kmsk

j ,Kkey
j ,Kenc

j ← PRF.Gen(1λ), b ← {0, 1},
computes msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk

j , tk)) and emulates the execution of A on input 1λ by
simulating the encryption oracle as follows.

When A queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the
ith time for i ≤ j − 1, B samples s ∈ {0, 1}λ, Kmsk,Kkey,Kenc ← PRF.Gen(1λ), queries the key-
generation oracle KGσ(msk1, ·, ·) with the pair (AGGxb,x1,T,s,Kmsk,Kenc,⊥,⊥,AGGxb,x1,T,s,Kmsk,Kenc,⊥,⊥)

and returns the output to A. Moreover, B runs 2FEsel.E(msk2, (K
msk,Kkey, s, T ), 1) and returns the

output to A.
When A queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the ith

time for i = j, B queries the key-generation oracle KGσ(msk1, ·, ·) with (AGGxb,x1,k,sj ,Kmsk
j ,Kenc

j ,⊥,⊥,

AGGxb,x1,k,sj ,Kmsk
j |{tk},K

enc
j |{tk},tk,γ

), where γ = 1FE.E(msksj ,tk , (x
b
j , y

b
k);PRF.Eval(K

enc
i , tk)), and re-

turns the output to A. Moreover, B runs 2FEsel.E(msk2, (K
msk
j ,Kkey

j , sj , k), 1) and returns the output
to A.

When A queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the
ith time for i ≥ j + 1, B samples s ∈ {0, 1}λ, Kmsk,Kkey,Kenc ← PRF.Gen(1λ), queries the key-
generation oracle KGσ(msk1, ·, ·) with the pair (AGGxb,x1,0,s,Kmsk,Kenc,⊥,⊥,AGGxb,x1,0,s,Kmsk,Kenc,⊥,⊥)
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and returns the output to A. Moreover, B runs 2FEsel.E(msk2, (K
msk,Kkey, s, 0), 1) and returns the

output to A. When A requests the ith encryption of (y0, y1) ∈ Yλ (with respect to index i = 2), B
samples ti ∈ {0, 1}λ (unless i = k in which case ti is already known), queries the encryption oracle
Encσ(msk1, ·, ·) with the pair ((yb, y1, 1, ti,⊥,⊥), (yb, y1, i, ti,⊥,⊥)) and returns the output to A.
Moreover, B runs 2FEsel.E(msk2, (i, t), 2) and returns the output to A. When A requests a functional
key for (f0, f1) ∈ F × F , B runs the key-generation procedure 2FEsel.KG(msk2, Dfb,f1,i,⊥,⊥,⊥) and
returns the output to A.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(3,j,k), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(4,j,k) described above.
Therefore, ∣∣∣Pr [H(3,j,k)(λ) = 1

]
− Pr

[
H(4,j,k)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(3,j,k)→(4,j,k)(λ).

Proof of Claim 4.5. The adversary B(4,j,k)→(5,j,k) = (B1,B2) given input 1λ is defined as follows.

First, B1 samples msk1 ← 1FE.S(1λ), b ← {0, 1}, Kmsk
1 , . . . ,Kmsk

T ,Kkey
1 , . . . ,Kkey

T ,Kenc
1 , . . . ,Kenc

T ←
PRF.Gen(1λ), s1, . . . , sT ← {0, 1}λ and t1, . . . , tT ← {0, 1}λ, where T is upper bounded by the
running time of A. Then, B1 computes msksj ,tk = 1FE.S(1λ;PRF.Eval(Kmsk

j , tk)).
The adversary B1 proceeds as follows: For i ≤ j − 1 it requests the encryption of the pair

((Kmsk
i ,Kkey

i , si, T ), (K
msk
i ,Kkey

i , si, T )) with respect to index i = 1. For i = j it requests the

encryption of the pair ((Kmsk
i ,Kkey

i , si, k), (K
msk
i |{tk},K

key
i |{tk}, si, k)), where K

msk
i |{tk} and Kkey

i |{tk}
are the keys Kmsk

i and Kkey
i punctured at the point tk. For i ≥ j + 1 it requests the encryption of

the pair ((Kmsk
i ,Kkey

i , si, 0), (K
msk
i ,Kkey

i , si, 0)) with respect to index i = 1. All the above results
with ct1,1, . . . , ct1,T . Then, the adversary B1 requests the encryption of the pair ((i, ti), (i, ti)) with
respect to index i = 2 for i ∈ [T ] to get ct2,1, . . . , ct2,T . Finally, B1 outputs the state information
state which is all its memory.

Next, B2 emulates the execution of A on input 1λ by simulating the encryption oracle as follows:
When A queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the ith time
for i ≤ j−1, B2 runs the key-generation procedure 1FE.KG(msk1, ·) with AGGxb,x1,T,si,Kmsk

i ,Kenc
i ,⊥,⊥ to

get sk1,i and returns the pair (ct1,i, sk1,i) to A. When A queries the encryption oracle with (x0, x1) ∈
Xλ (with respect to index i = 1) for the ith time for i = j, B2, runs the key-generation procedure
1FE.KG(msk1, ·) with the input AGGxb,x1,k,sj ,Kmsk

j |{tk},K
enc
j |{tk},tk,γ

, where γ = 1FE.E(msksj ,tk , (x
b
j , y

b
k);

PRF.Eval(Kenc
i , tk)), to get sk1,i and returns the pair (ct1,i, sk1,i) toA. WhenA queries the encryption

oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the ith time for i ≥ j + 1, B2 runs the
key-generation procedure 1FE.KG(msk1, ·) with AGGxb,x1,0,si,Kmsk

i ,Kenc
i ,⊥,⊥ to get sk1,i and returns the

pair (ct1,i, sk1,i) to A. When A requests the ith encryption of (y0, y1) ∈ Yλ (with respect to index
i = 2), B2 runs the encryption procedure 1FE.E(msk1, ·) with the input (yb, y1, i, ti,⊥,⊥)) to get
ct3,i and returns the pair (ct2,i, ct3,i) to A. When A requests a functional key for (f0, f1) ∈ F ×F ,
B2 queries the key-generation oracle KG(msk2, ·, ·) with the pair (Dfb,f1,i,⊥,⊥,⊥, Dfb,f1,i,sj ,tk,δ

), where

δ = 1FE.KG(msksj ,tk , Cfb
i
;PRF.Eval(Kkey

j , tk)) and returns the output to A.
Note that when σ = 0 then A’s view is identical to its view in the experiment H(4,j,k), and when

σ = 1 then A’s view is identical to its view in the modified experiment H(5,j,k) described above.
Therefore, ∣∣∣Pr [H(4,j,k)(λ) = 1

]
− Pr

[
H(5,j,k)(λ) = 1

]∣∣∣ ≤ Advsel2FE
2FEsel,F ′,B(4,j,k)→(5,j,k)(λ).
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Proof of Claim 4.6. The proof of this claim proceeds by three hybrid experiments, which we
denote by H(5.1,j,k),H(5.2,j,k) and H(5.3,j,k) = H(6,j,k), such that in each we replace only one PRF
evaluation with sampling a string uniformly at random. Experiment H(5.1,j,k) corresponds to re-
placing PRF.Eval(Kmsk

j , tk) with a uniform string, experiment H(5.2,j,k) corresponds to replacing

PRF.Eval(Kkey
j , tk) and PRF.Eval(Kenc

j , tk), and finally experiment H(5.3,j,k) corresponds to H(6,j,k).
Since the three proofs of indistinguishability are very similar, we provide the proof for the first one
and omit the missing details. That is, in what follows we prove that the experiment H(5,j,k) is
indistinguishable from an experiment H(5.1,j,k) in which we only replace the value of msksj ,tk to be
computed using a uniform random string rather than as PRF.Eval(Kmsk

j , tk).

The adversary B(5,j,k)→(5.1,j,k) = B given input 1λ is defined as follows. First, B samples msk1 ←
1FE.S(1λ),msk2 ← 2FEsel.S(1λ), b← {0, 1} and sj , tk ← {0, 1}λ. Now, B is given R(tk), a punctures
PRF key Kmsk

j |{tk} and its goal is to guess if R(tk) is uniformly random or the output of a PRF.

B emulates the execution of A on input 1λ by simulating the encryption oracle as follows: When
A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1)

for i ≤ j − 1, B samples Kmsk
i ,Kkey

i ,Kenc
i ← PRF.Gen(1λ, si ← {0, 1}λ, executes the procedure

2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, T ), 1) to get ct1,i and the procedure 1FE.KG(msk1, ·) with the input
AGGxb,x1,T,si,Kmsk

i ,Kenc
i ,⊥,⊥ to get sk1,i, and returns to A the pair (ct1,i, sk1,i). When A1 requests

for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect to index i = 1) for i = j, B
samples Kkey

i ,Kenc
i ← PRF.Gen(1λ,, punctures Kenc

i and Kkey
i at the point tk to get Kenc

i |{tk} and
Kkey

i |{tk}, respectively, executes the procedure 2FEsel.E(msk2, (K
msk
i |{tk},K

key
i |{tk}, si, k), 1) to get

ct1,i and the procedure 1FE.KG(msk1,AGGxb,x1,k,si,Kmsk
i |{tk},K

enc
i |{tk},tk,γ

), where γ = 1FE.E(msksj ,tk ,

(xbj , y
b
k);PRF.Eval(K

enc
i , tk)) and msksj ,tk = 1FE.S(1λ;R(tk)) to get sk1,i, and returns to A the pair

(ct1,i, sk1,i). When A1 requests for the encryption of the ith input pair (x0, x1) ∈ Xλ (with respect

to index i = 1) for i ≥ j + 1, B samples Kmsk
i ,Kkey

i ,Kenc
i ← PRF.Gen(1λ, si ← {0, 1}λ, executes the

procedure 2FEsel.E(msk2, (K
msk
i ,Kkey

i , si, 0), 1) to get ct1,i and the procedure 1FE.KG(msk1, ·) with
the circuit AGGxb,x1,0,si,Kmsk

i ,Kenc
i ,⊥,⊥ to get sk1,i, and returns to A the pair (ct1,i, sk1,i). When A

requests the ith encryption of (y0, y1) ∈ Yλ (with respect to index i = 2), B samples ti ← {0, 1}λ,
runs the encryption procedure 1FE.E(msk1, ·) with the input (yb, y1, i, ti,⊥,⊥)) to get ct3,i and
the encryption procedure 2FEsel.E(msk2, (i, ti), 2) to get ct2,i and returns the pair (ct2,i, ct3,i) to
A. When A requests a functional key for (f0, f1) ∈ F × F , B runs the key-generation procedure

2FEsel.KG(msk2, ·) with the input Dfb,f1,i,sj ,tk,δ
, where δ = 1FE.KG(msksj ,tk , Cfb

i
;PRF.Eval(Kkey

j , tk))
and returns the output to A.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(5,j,k), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(5.1,j,k) described above.
The same argument applied to H(5.2,j,k) and H(5.3,j,k) to get∣∣∣Pr [H(5,j,k)(λ) = 1

]
− Pr

[
H(6,j,k)(λ) = 1

]∣∣∣ ≤ 3 · AdvPRF,B(5,j,k)→(6,j,k)(λ).

Proof of Claim 4.7. The adversary B(6,j,k)→(7,j,k) = B given input 1λ is defined as follows. First, B
samples msk1 ← 1FE.S(1λ), msk2 ← 2FEsel.S(1λ), sj , tk ← {0, 1}λ, Kmsk

j ,Kkey
j ,Kenc

j ← PRF.Gen(1λ),

b ← {0, 1} and punctures the PRF keys at tk to get Kmsk
j |{tk},K

key
j |{tk} and Kenc

j |{tk}, emu-

lates the execution of A on input 1λ by simulating the encryption oracle as follows: When A
queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the ith time
for i ≤ j − 1, B samples s ∈ {0, 1}λ, Kmsk,Kkey,Kenc ← PRF.Gen(1λ), runs the key-generation
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procedure 1FE.E(msk1, ·) with AGGxb,x1,T,s,Kmsk,Kenc,⊥,⊥ and returns the output to A. Moreover, B
runs 2FEsel.E(msk2, (K

msk,Kkey, s, T ), 1) and returns the output to A. When A queries the encryp-
tion oracle with (x0, x1) ∈ Xλ (with respect to index i = 1) for the ith time for i = j, B, runs
the key-generation procedure 1FE.KG(msk1, ·) with AGGxb,x1,k,sj ,Kmsk

j |{tk},K
enc
j |{tk},tk,γ

, where γ is the

output of the encryption oracle Encσ(msksj ,tk , ·, ·) on the pair ((xbj , y
b
k), (x

1
j , y

1
k)), and returns the

output to A. Moreover, B runs 2FEsel.E(msk2, (K
msk
j |{tk},K

key
j |{tk}, sj , k), 1) and returns the output

to A. When A queries the encryption oracle with (x0, x1) ∈ Xλ (with respect to index i = 1)
for the ith time for i ≥ j + 1, B samples s ∈ {0, 1}λ, Kmsk,Kkey,Kenc ← PRF.Gen(1λ), runs the
key-generation procedure 1FE.KG(msk1, ·) with AGGxb,x1,0,s,Kmsk,Kenc,⊥,⊥ and returns the output to

A. Moreover, B runs 2FEsel.E(msk2, (K
msk,Kkey, s, 0), 1) and returns the output to A. When A

requests the ith encryption of (y0, y1) ∈ Yλ (with respect to index i = 2), B samples ti ∈ {0, 1}λ
(unless i = k in which case ti is already known), runs the encryption procedure 1FE.E(msk1, ·) with
the input (yb, y1, i, ti,⊥,⊥) and returns the output to A. Moreover, B runs 2FEsel.E(msk2, (i, t), 2)
and returns the output to A. When A requests a functional key for (f0, f1) ∈ F × F , B runs the
key-generation procedure 2FEsel.KG(msk2, Dfb,f1,i,sj ,tk,δ

), where δ is the output of the key-generation
oracle KGσ(msksj ,tj , ·, ·) with the pair (Cfb , Cf1), and returns the output to A.

Note that when σ = 0 then A’s view is identical to its view in the experiment H(6,j,k), and when
σ = 1 then A’s view is identical to its view in the modified experiment H(7,j,k) described above.
Therefore, ∣∣∣Pr [H(6,j,k)(λ) = 1

]
− Pr

[
H(7,j,k)(λ) = 1

]∣∣∣ ≤ Advfull1FE
1FE,F ′,B(6,j,k)→(7,j,k)(λ).
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