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Abstract. Ring signature enables an user to anonymously sign a message on behalf of a group of
users termed as ‘ring’ formed in an ‘ad-hoc’ manner. A naive scheme produces a signature linear in
the size of the ring, but this is extremely inefficient when ring size is large. Dodis et al. proposed a
constant size scheme in EUROCRYPT’13, but provably secure in random oracle model. Best known
result without random oracle is a sub-linear size construction by Chandran et al. in ICALP’07 and
a follow-up work by Essam Ghadafi in IMACC’13. Therefore, construction of a constant size ring
signature scheme without random oracle meeting stringent security requirement still remains as an
interesting open problem.
Our first contribution is a generic technique to convert a compatible signature scheme to a constant-
sized ring signature scheme. The technique employs a constant size set membership check that may
be of independent interest. Our construction is instantiated over asymmetric pairing of composite
order and optimally efficient. The scheme meets strongest security requirements, viz. anonymity
under full key exposure and unforgeability against insider-corruption without using random oracle
under simple hardness assumptions. We also provide a concrete instantiation of the scheme based
on Full Boneh-Boyen signatures.
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1 Introduction

The idea of ring signature was introduced by Rivest, Shamir and Tauman [29]. The signature leaks no
information more than the endorsement of the message by some ring member. Unlike a group in a group
signatures [10], a ring is not administered by a manager. In practice, ring members may be completely
unaware of each others’ inclusion in the ring. To form a ring, the real signer arbitrarily chooses a set of
potential signers including himself, thus concealing his identity. Since rings are formed on-the-fly, notions
such as addition or deletion of users, revocation of signing rights or divulging the anonymity of the actual
signer etc. are irrelevant.

Apart from regular properties, e.g. correctness and unforgeability that any signature scheme must
have, ring signature [2] mandates anonymity. Correctness allows a ring member to sign on a message on
behalf of the ring. Unforgeability is defined by the impossibility of a new signature to be generated by an
adversary on behalf of the ring. Finally, anonymity demands a signature not being traceable to its signer.
In other words, signatures produced on a message by any two members of the ring look alike.

The prime application of ring signature is in anonymous leaking of sensitive secrets as suggested in the
original paper [29]. Another application is designated verifier signatures [22], where the verifier designated
by confirmer/prover can obtain validity or invalidity of the proof. For more applications, refer to [12, 27].
Such protocol, often with additional blindness requirement, finds its relevance in e-voting or e-cash.

Table 1 gives a quick survey on the state-of-the-art of PKI based ring signatures.

1.1 Motivation

Most of the ring signature constructions [29, 1, 4, 20, 2, 11, 32, 6, 31, 7] are of linear size with respect to the
size of the ring. First four constructions are in Random Oracle Model(ROM), remaining ones but last are
without Random Oracle (RO) and the last one is in standard model. Often there are some limitations, e.g.
[2] makes use of generic ZAP, which is a 2-round, public-coin, witness-indistinguishable proof system for
any language in NP, hence inefficient and far from being practical. Chow et al. introduced a new strong
assumption in [11]. First sub-linear size ring signature scheme (O(

√
N)) was proposed by Chandran,

Groth and Sahai [8] followed by Ghadafi [14]. Both the schemes are provably secure without random
oracle. To the best of our knowledge, only constant size ring signature scheme in PKI setting known
so far is by Dodis et al. [12]. But, their approach uses Fiat-Shamir transformation and provably secure
in random oracle model. So the idea of achieving constant-size ring signature without random oracle
motivated our research.
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Table 1. Survey of Ring Signatures in PKI Setting

Author Reference Size Model Remarks

Rivest, Shamir, Tauman [29] O(N) ROM Trapdoor permutation

Abe, Ohkubo, Suzuki [1] O(N) ROM RSA and DL based signatues

Boneh, Gentry, Lynn, Shacham [4] O(N) ROM Co-GDH based signature

Herranz, Sez [20] O(N) ROM Based on Schnorr Ring Signature

Bender, Katz, Morselli [2] O(N) w/o ROM ZAP based, Inefficient, Impractical

Chow, Wei, Liu, Yuen [11] O(N) w/o ROM (q, n)−DsjSDH assumption

Shacham, Waters [32] O(N) w/o ROM All user keys belongs to same group

Boyen [6] O(N) w/o ROM -

Schage, Schwenk [31] O(N) w/o ROM Weak notion of unforgeability

Brakerski, Kalai [7] O(N) Standard Weak notion of unforgeability

Chandran, Groth, Sahai [8] O(
√
N) w/o ROM -

Ghadafi [14] O(
√
N) w/o ROM -

Dodis, Kiayias, Nicolosi, Shoup [12] O(1) ROM Fiat-Shamir transformation

Our construction - O(1) w/o ROM Composite order group

1.2 Our Contribution

Our major contribution is to present a generic technique to build a ring signature scheme on top of any
compatible signature scheme, (such as Full-Boneh-Boyen [3]) having size independent of the cardinality of
the ring. The scheme is instantiable in the most efficient Type-3 bilinear setting without any compromise
in efficiency. We have attained the strongest possible security [2], e.g. anonymity under full key exposure
and unforgeability against insider-corruption without using random oracle. Also we present a concrete
instantiation of the technique to compare it with the existing schemes.

Lastly, our ring signature uses an O(1) size membership checking protocol for an integer to be in
a public set. It makes use of Groth-Sahai [16] commitment to realize witness indistinguishability and
zero-knowledgeness. The protocol as well as its proof may be of independent interest.

1.3 Paper Organization

The paper is organized as follows: section 2 provides the necessary background pertaining to the ideas
used in the paper. In section 3, we introduce a non-interactive, constant size membership proof to prove
the knowledge of an element of a public set. Our main contribution, the construction of a constant-sized
ring signature for PKI based cryptosystems is outlined in section 4. We have instantiated our construction
in section 5. Conclusion and future directions are offered in section 6.

2 Preliminaries

2.1 Notations

By PPT, we mean a probabilistic polynomial time algorithm with respect to a security parameter κ. All
adversaries defined here will be PPT except stated otherwise. Given a probability distribution D and an
element y, y ← D denotes selecting an element y according to D. Let A be a probabilistic algorithm ,
then A(x1...xn) describes the output distribution of A based on inputs x1, x1, ..., xn. Zn denotes set of all
integers modulo n, where n is composite, product of two safe primes. The set of all polynomials in x with
coefficients in Zn is represented by Zn[x]. A function ν : N → R+ is said to be negligible if ∀c > 0, ∃k′
such that ν(k) < k−c for all k′ < k.
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2.2 Bilinear Groups

A bilinear pairing defined to be G = (n,G1,G2,GT , e, g1, g2) where we choose G1 = 〈g1〉, G2 = 〈g2〉 and
GT as multiplicative groups of order n. A bilinear pairing e is a map e : G1 × G2 → GT having the
following properties.

• Bilinearity : For g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zn the following holds true: e(ga1 , g
b
2) = e(g1, g2)ab.

• Non-degeneracy : For any X ∈ G1 and Y ∈ G2, if e(X ,Y) = 1T , the identity element of GT , then
either X is the identity of G1 or Y is the identity of G2.

• Efficiently Computable : The map e should be efficiently computable.

Three main types of pairings exist in the literature[13, 33].

– Type-1. The groups G1 and G2 are the same.
– Type-2. G1 6= G2, but an efficiently computable isomorphism ζ : G2 → G1 exists.
– Type-3. G1 6= G2 and no efficiently computable isomorphism are known between G1 and G2.

We will use asymmetric pairing over groups of composite order which can be shown to be generated
efficiently using the method in [24]. Meiklejohn et.al have shown that this setting has an advantage of
the resulting curve having an embedding degree k = 1 and thus optimally efficient.

2.3 Hardness Assumptions

All the hardness assumptions are stated below:

• Discrete logarithm Assumption (DL). Given a generator g of G and a ∈R Zn and for all PPT
adversary ADL, the probability

|Pr[ADL(g, ga) = a]| < ν(κ)

• Decisional Diffie-Hellman Assumption (DDH)[28]. Given a cyclic group G = 〈g〉, a tuple
(g, ga, gb, gab, gc) where a, b, c ∈R Zn and for all PPT adversaries ADDH , the probability

|Pr[ADDH(g, ga, gb, gab) = 1]− Pr[ADDH(g, ga, gb, gc) = 1]| < ν(κ)

• Symmetric External Diffie-Hellman Assumption (SXDH). DDH holds in both groups G1 and
G2.

• Decisional Linear Assumption (DLIN). For Type-1 bilinear groups where G1 = G2 = G and
G = 〈g〉, given 〈ga, gb, gra, gsb, gt〉 and a, b, s, r, t ∈ Zp being unknown, it is hard to tell whether
t = r + s or t is random.

• Subgroup Hiding Assumption (SGH). Given a generation algorithm G, which takes security
parameter κ as input and gives output a tuple 〈G, sk〉, where G = (n,G,GT , e) and sk = (p, q) such
that e : G×G→ GT and G and GT are both groups of order n = pq, it is computationally in feasible
to distinguish between an element of G and an element of Gp. More formally all PPT adversaries
ASGH , the probability

|Pr[(G, sk)← G(1κ);G = (n,G,GT , e, x);n = pq; sk = (p, q);x← G;ASGH(n,G,GT , e, x) = 0]

− Pr[(G, sk)← G(1κ);G = (n,G,GT , e, x);n = pq; sk = (p, q);x← G : ASGH(n,G,GT , e, xq) = 0]|
< ν(κ)

where ASGH outputs a 1 if it believes x ∈ Gp and 0 otherwise.
SGH to be hard in asymmetric pairing over composite order groups means, it is hard in both G1 and
G2.

• q-Strong Diffie-Hellman Assumption (q-SDH)[3]. Let α ∈R Zp. Given as input a (q + 1)-tuple

〈g, gα, gα2

, ..., gα
q 〉 ∈ Gq+1, for every adversary Aq-SDH , the probability

Pr[Aq-SDH(g, gα, gα
2

, ..., gα
q

) = 〈c, g
1

α+c 〉] < ν(κ)

for any value of c ∈ Zp\{−α} Though naturally q-type assumptions are defined on prime order groups,
it has been shown in [9] that all q-type assumptions can also be proven to be secure in composite
order groups provided subgroup hiding assumption holds.
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• Square Root Modulo Composite (SQROOT)[25]. Given a composite integer n and a ∈ Qn(the
set of quadratic residues modulo n), it is computationally hard to find a square root of a mod n;
that is an integer x such that x2 ≡ a mod n, where n = pq, product of two safe primes.

In all the above definitions ν(κ) is negligible in the security parameter κ.

2.4 Groth-Sahai Proofs

Groth-Sahai[16, 17] introduced a highly efficient and flexible proof system in common reference string(CRS)
model that yields Non-Interactive Witness-Indistinguishable(NIWI) and Zero-Knowledge(NIZK) proofs.
This system can be used for proving satisfiability of certain types of equations under various crypto-
graphic assumptions. This proof system can be instantiated both in prime and composite order bilinear
groups. The set of equations provable in this framework are as follows:

X1, ...,Xm ∈ G1,Y1, ...,Yn ∈ G1, x1, ..., xm′ ∈ Zn and y1, ..., yn′ ∈ Zn are variables.

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(X i,Bi) ·
m∏
i=1

n∏
j=1

e(X i,Yj)
γij = tT

For constants Ai ∈ G1,Bi ∈ G2, tT ∈ GT , γij ∈ Zn

Multi-scalar multiplication equation in G1:

n′∑
i=1

y
i
Ai +

m∑
i=1

biX i +

m∑
i=1

n′∑
j=1

γijyjX i = T1

For constants Ai, T1 ∈ G1 and bi, γij ∈ Zn

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +

m′∑
i=1

xiBi +

m′∑
i=1

n∑
j=1

γijxiYj = T2

For constants Bi, T2 ∈ G2 and ai, γij ∈ Zn

Quadratic equation in Zn:

n′∑
i=1

aiyi +

m′∑
i=1

xibi +

m′∑
i=1

n′∑
j=1

γijxiyj = t

For constants ai, bi, γij , t ∈ Zn For clarity we will underline the elements of the witness in the description
of equations.

With multiplicative notation, Multi-scalar multiplication equations will be Multi-scalar multi-exponential
equations.

The Groth-Sahai proof systems consists of following PPT algorithms as defined in [14]

(GSSetup,GSCRSGen,GSCommit,GSProve,GSVerify)

• GSSetup(1κ): It takes security parameter κ as input and produces description of bilinear group G
and secret key sk as output.
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• GSCRSGen(G, sk): Given group description G as input, it outputs common reference string(CRS)
crs and an extraction key xk.

• GSCommit(w, τw): Given a witness w ∈ G and randomness τw, it produces a commitment to w
with randomness τw, We denote the commitment to a witness w as Υw in this paper.

• GSProve(G, crs, x, w): It uses GSCommit(.,.) internally and outputs proof φ = 〈Υ ,Γ 〉, where
Υ = 〈c,d〉 and Γ = 〈π,θ〉 as defined in [17, p. 12]. In symmetric setting Υ = 〈c〉 and Γ = 〈π〉. In
asymmetric setting for linear equation Υ = 〈c〉. Here, Υ is called commitment to witnesses.

• GSVerify(G, crs, x, φ): It takes the tuple (G, crs, x, φ) as input and outputs 1 if proof φ is accepted
or 0 if rejected.

In addition to the above algorithms we also define the following ones:

(GSExtract,GSSimSetup,GSSimProve)

• GSExtract(G, crs, xk, φ): It takes the tuple (G, crs, xk, φ) as input and outputs the witness w used
in the proof φ.

• GSCRSSimGen(G): It takes group description G and outputs simulated CRS crssim and a trapdoor
key td.

• GSSimProve(G, crssim, td, x): It takes G, simulated CRS crssim and a trapdoor key td and generates
simulated proofs φsim.

The system works by first committing to the elements of the witness and then producing the proof
of satisfiability of all equations. If one witness component is involved in more than one equation, then
same commitment is used during verification, thereby making the proofs correlated. First let R be a
some efficiently computable ternary relation having elements of the form (G, x, w). let L be the set of
all statements in R for a fixed G. The proof system will have the following properties as defined in [17, 16]:

1. Perfect Completeness: We say (GSSetup, GSCRSGen, GSProve, GSVerify) is perfectly complete
if for all adversaries A we have

Pr[(G, xk)← GSSetup(1κ); crs← GSCRSGen(G, sk); (x,w)← A(G, crs);
φ← GSProve(G, crs, x, w) : GSVerify(G, crs, x, φ) = 1 if (G, x, w) ∈ R] = 1

2. Perfect Soundness: A non-interactive proof is sound if it is impossible to prove a false statement.
More formally, for all adversaries A we have:

Pr[(G, sk)← GSSetup(1κ); crs← GSCRSGen(G, sk); (x, φ)← A(G, crs)
: GSVerify(G, crs, x, φ) = 0 if x /∈ L] = 1

3. Perfect Lco-Soundness: We can consider Lco is language that depends upon G and crs. Standard
soundness is a special case of Lco soundness where L̄ = Lco and an adversary tries to create a valid
proof for statement in L̄. In the literature[19, 18] it has been shown that it is impossible to create valid
proof for statements in Lco. So we say (GSSetup, GSCRSGen, GSProve, GSVerify) is Lco-sound if
for all adversaries A we have:

Pr[(G, sk)← GSSetup(1κ); crs← GSCRSGen(G, sk); (x, φ)← A(G, crs)
: GSVerify(G, crs, x, φ) = 0 if x ∈ Lco] = 1

4. Composable Witness Indistinguishability: Composable witness indistinguishability introduces
the notion of simulated CRS. An adversary can not distinguish between a real CRS and simulated
CRS. It is also required that on a simulated CRS different witnesses used to construct the proof are
also indistinguishable. Formally for all adversaries A we have:

Pr[(G, sk)← GSSetup(1κ); crs← GSCRSGen(G, sk) : A(G, crs) = 1]

− Pr[(G, sk)← GSSetup(1κ); crssim ← GSCRSSimGen(G, sk) : A(G, crssim) = 1] < v(κ)
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and for all adversaries A we have

Pr[(G, sk)← GSSetup(1κ); crssim ← GSCRSSimGen(G, sk); (x,w0, w1)← A(G, crssim);

φ← GSProve(G, crssim, x, w0) : A(φ) = 1]

= Pr[(G, sk)← GSSetup(1κ); crssim ← GSCRSSimGen(G, sk); (x,w0, w1)← A(G, crssim);

φ← GSProve(G, crssim, x, w1) : A(φ) = 1]

(G, x, w0), (G, x, w1) ∈ R
5. Composable Zero-Knowledge: Composable Zero-Knowledge states that an adversary can not

distinguish between a real CRS and simulated CRS. Even if it is given access to some secret trap-
door information td, it can not distinguish between real proofs and simulated proofs on simulated
CRS. Therefore, (GSSetup, GSCRSGen, GSProve, GSVerify) is composable zero-knowledge if for
all adversaries A we have:

Pr[(G, sk)← GSSetup(1κ); (crssim, td)← GSCRSSimGen(G, sk); (x,w)← A(G, crssim, td);

φ← GSProve(G, crssim, x, w) : A(φ) = 1]

= Pr[(G, sk)← GSSetup(1κ); (crssim, td)← GSCRSSimGen(G, sk); (x,w)← A(G, crssim, td);

φsim ← GSCRSSimProve(G, crssim, td, x) : A(φsim) = 1]

2.5 Ring Signatures - Definitions

Definition 1 (Ring signature): A ring signature scheme is a quadruple of PPT algorithms RSig :=

(RSetup, RKeyGen, RSign, RVerify) which generates public parameters, keys for users, signs message
and verifies the validity of signature on a message produced by user.

• RSetup(1κ): It takes security parameter κ as input and produces public parameters rParam as
output.

• RKeyGen(rParam): Given rParam as input, it produces a secret key SK and a public key PK.

• RSign(m,SKs,R): Given a private signing key SKs as input, it outputs a signature Σ on message
m with respect to a ring R := (PK1, PK2, ..., PKn). We require that PKs ∈ R for s ∈ [1, n] where
n ∈ N and (PKs, SKs) is a valid key pair.

• RVerify(m,Σ,R): It verifies a signature Σ on message m with respect to a set of public keys in R
and outputs 1 if succeeds, otherwise 0.

The quadruple (RSetup, RKeyGen, RSign, RVerify) is a secure ring signature if it satisfies the follow-
ing properties from the literature [2, 8].

Definition 2 (Correctness)[2]: A ring signature (RSetup, RKeyGen, RSign, RVerify) has correct-

ness if for any polynomial p(.), set of secret-public key pairs {(PKi, SKi)}p(κ)i=1 generated by RKeyGen(.),
any message m and any index j ∈ [1, p(κ)], the signature Σ produced by RSign(m,SKj ,R) will be
accepted by RVerify(m,Σ,R). Here R = (PK1, PK2...PKp(κ))

Definition 3 (Anonymity against full key exposure)[2]: A ring signature scheme (RSetup, RKeyGen,

RSign, RVerify) achieves anonymity (with respect to full key exposure ) if for any adversary A and for
any polynomial p(.), the probability that A succeeds in the following game is negligibly close to 1/2:

1. Key pairs (PKi, SKi)
p(κ)
i=1 are generated by the challenger using rParam ← RSetup(1κ) and

RKeyGen(rParam, ωi) for randomly chosen ωi. A is given S := (PKi)
p(κ)
i=1 .

2. Throughout the game, A has access to a signing Oracle Osign(.,.,.), where Osign(s,m,R) outputs
RSign(m,SKs,R) and we require PKs ∈ R and s ∈ [1, p(κ)].

3. A is also given access to the corrupt oracle Corrupt(.) , where Corrupt(i) outputs ωi.
4. A outputs a message m, two distinct indices i0 and i1 and a ring R with the only condition that
PKi0 , PKi1 ∈ R. It interacts with the challenger to get a signature Σ ← RSign(m,SKib ,R) where
b← {0, 1}.
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5. A outputs a bit b′ and succeeds if b = b′.

Definition 4 (Unforgeability with respect to insider corruption)[2]: A ring signature scheme
(RSetup, RKeyGen, RSign, RVerify) is unforgeable (with respect to insider corruption) if for any
adversary A and for any polynomial p(.), the probability that A succeeds in the following game is
negligible:

1. Key pairs (PKi, SKi)
p(κ)
i=1 are generated by the challenger using RKeyGen(rParam). A is given S :=

(PKi)
p(κ)
i=1

2. Throughout the game, A has access to a signing Oracle Osign(.,.,.), where Osign(s,m,R) outputs
RSign(m,SKs,R) and we require PKs ∈ R.

3. A is also given access to the corrupt oracle Corrupt(.) , where Corrupt(i) outputs SKi.
4. A outputs (R?,m?, Σ?) and succeeds if RVerify(m?, Σ?,R?) = 1, A never queried (?,m?,R?) and
R? ⊆ S − C, where C is the set of corrupted users.

2.6 Polynomial Commitments

Polynomial commitment means committing to a polynomial with a short string used by some verifier to
confirm the claimed evaluations of the committed polynomial. Let us consider committing a polynomial
F (x) ∈ Zp[x] with degree t and coefficients (f0, f1, ..., ft). One way of committing it is to commit to
the string (f0||f1||...||ft) or any other equivalent representation of F (x). However, this is not suitable for
many cryptographic applications, since opening commitment will reveal the entire polynomial. Another
solution could be to commit to the coefficients e.g., C = (gf1 , gf2 , ..., gft). In that case commitment
size becomes t+ 1 group elements. All of the above problems can be overcome by an efficient polynomial
commitment scheme found in the literature [23]. The main idea of the paper [23] was to efficiently commit
the polynomial F (x) over a bilinear pairing group with two different types of commitment schemes
PolyCommitDL and PolyCommitPed based on discrete log and Pedersen commitments. It ensures the size
of the commitment to be constant, a single group element.

An immediate application of the above polynomial commitment scheme is Zero Knowledge Sets(ZKS)
[26]. In short, a ZKS allows a committer to create a short commitment to the set of values contained
in S and later prove statements like sj ∈ S or sj /∈ S without revealing S or the upper bound of |S|.
Another relaxation of ZKS is nearly ZKS where the information about the size of the set can be revealed
and this is more suitable for practical applications. Kate et al.[23] have given an efficient application of
polynomial commitments in nearly ZKS and have shown that the membership or non-membership of an
element in a particular set is Zero-Knowledge. It also achieves constant communication complexity. Our
primary idea of a constant size membership proof of an element in a public set is derived from the idea
above.

3 Constant Size Set Membership Proof

We provide a non-interactive, constant-sized set membership proof technique based on the application of
polynomial commitment scheme in ZKS [23] and Groth-Sahai NIZK proof system [16, 17]. The technique
allows a prover to prove the containment of an element αδ in a set S = {α1, α2, ..., αδ, ...αN} ∈ ZNn .

The sub-linear size membership proof in [14] arranges the set elements in the form of a square matrix.
Each element of a vertical and horizontal bit vector is committed using Groth-Sahai (GS) scheme resulting
in an expensive sub-linear blowup both in number of proofs and commitment components. GS proofs for
O(
√
|S|) number of MSME and QE equations as well as GS commitments contribute to the final size of

the proof.
Our formulation constructs a polynomial F (x) having only αi ∈ S,∀i ∈ [1, |S|] as roots. The prover

aims to demonstrate the existence of some secret value αδ ∈ S to the verifier in a non-interactive
manner without revealing its value. While correctness of the proof system follows from the construction
itself, soundness relies on the hardness of q-SDH assumption. Verification equations are in the form
of Pairing Product Equation (PPE) and Multi-Scalar Multiplication Equation (MSME) respectively as
defined by GS framework. Variables which could potentially leak out the secret value αδ are committed
using GS commitment scheme to provide required zero-knowledgeness. Our proof works both in prime
and composite order groups. However, to be able to fit it as-is in our ring signature scheme, we use
asymmetric pairing of composite order in the presentation.

Our membership proof consists of following four algorithms:
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– MemSetup(1κ, q): This algorithm is run by a trusted authority (possibly a distributed one to enhance
security) to generate required q-SDH tuple and initialize GS protocol.

• Initialize GS protocol 〈G, sk〉 ← GSSetup(1κ) in symmetric setting of composite order n = p.q
where sk = 〈p, q〉, G = 〈n,G1,G2,GT , e, g1, g2〉 and q-SDH assumption holds in G1. p and q are
large prime numbers.

• Generate common reference string (crs, xk)← GSCRSGen(G, sk)

• Choose a secret key β ∈R Z∗n

• Generate a (q+1) tuple qSDH = 〈g1, g
β
1 , g

β2

1 , ..., gβ
q

1 〉 ∈ Gq+1
1 to accommodate a set of cardinality

≤ q. Note that the secret key is not needed any more and can be discarded.

• Publish public parameters mParam = 〈G, crs, qSDH, gβ2 〉

– MemWitness(mParam,αδ, S): This algorithm is run by the prover to generate witness W testifying
the presence of αδ ∈ S.

• Compute the polynomial F (x) =
∏|S|
i=1(x− αi) =

∑|S|
j=0 Fjx

j , αi ∈ S

• Compute the polynomial ψ(x) = F (x)
(x−αδ) =

∑|S|−1
i=0 ψix

i

• Compute w = g
ψ(β)
1 =

∏|S|−1
i=0 (gβ

i

1 )ψi . Note that the components of the form gβ
i

1 are available to
the prover as part of qSDH tuple.

• Compute D = gαδ2

• Output the tuple W = 〈αδ, w,D〉 as witness.

– MemProve(mParam, S,W ): This algorithm is run by the prover to generate commitments for
variables and GS proofs for verification equations.

• Compute C = g
F (β)
1 =

∏|S|
i=0(gβ

i

1 )Fi . Note that the components of the form gβ
i

1 are available to
the prover as part of qSDH tuple.

• Compute t = e(C, g2)

• Compute the membership proof φmem = 〈{Υw, Υαδ , ΥD},Γmem〉

φmem ← GSProve{G, crs, {e(w, gβ2 /D) = t ∧D = g
αδ
2 }, (αδ, w,D)}

• Send the proof φmem to the verifier.

– MemVerify(mParam, S, φmem): This algorithm is run by the verifier to verify the presence of the
element αδ chosen by the prover in the set S.

• Compute F (x), C and t in the same way as the prover did from publicly available information.

• Compute c← GSVerify{G, crs, {e(w, gβ2 /D) = t ∧D = g
αδ
2 }, φmem}

• Announce ‘Success’ if c = 1, ‘Failure’ otherwise

Theorem 1. The set membership proof technique is correct, perfectly sound and zero-knowledge.

Proof: Detailed proof of the theorem above is presented in Appendix C.

Complexity of the membership proof: We present the cost of membership proof and associated
commitments of our construction in terms of group elements of G1 and G2 in Table 2. Detailed calculation
of the size of the membership proofs are given in Appendix A.



Constant Size Ring Signature Without Random Oracle 9

Table 2. Cost of our membership proofs

Components | Instantiations DLING DDHG1 + DLING2 SXDHG1,G2

G G1 G2 G1 G2

GS Commitments 9 4 3 4 2
GS Proofs 18 8 6 8 6

Membership Proofs 27 21 20

4 Generic Construction of Ring Signature

We now present a construction of constant size ring signature scheme based on our membership proof
outlined in section 3. Signature scheme is a four algorithm protocol Sig := (SSetup, SKeyGen, SSign,

SVerify). Let, G be a bilinear group, M be the message space, 〈SKi = {ski1, ski2, ..., skiM}, PKi =
{pki1, pki2, ..., pkiN}〉 be the secret and public keys of the signer i with respect to the signature scheme
Sig. ∆ = 〈∆1, ∆2, ...,∆n〉 be the signature on message m ∈M and R be the ring. The signature scheme
must be a ‘compatible’ one satisfying the following characteristics:

– Our construction requires G = 〈n,G1,G2,GT , e, g1, g2〉 to be a bilinear group of composite order in
asymmetric setting [24] to be able to instantiate GS commitment scheme under SXDH assumption.
Apparently for composite order groups, SGH instantiation of GS scheme in symmetric setting could
have been the most obvious choice. But, the reason such a construction wouldn’t work in our case is
GS commitments are not fully extractable in this setting as we require in the unforgeability game.
Moreover, proofs are Lco sound rather than being perfectly sound in this case.

– q-SDH assumption must be hard in G1 for our constant size set membership proof to be plugged-in.
– Secret key SKi ∈ ZMn and public key PKi ∈ GNk , k ∈ [1, 2]
– Verification equations of the scheme must be MSME or PPE committable in GS framework.
– We commit signature components in GS framework. Signature component ∆i that depends on SKi

must be a group element of G1 or G2 committable in GS framework. Unless committed, an adversary
may trivially break the signature anonymity by test verifying ∆i with ∀PKj ∈ R. Extractability is
important to demonstrate the impossibility of forgery by the challenger in the unforgeability game.

Our ring signature construction is as follows:

– RSetup(1κ, q): This algorithm is run by a trusted authority (possibly a distributed one to enhance
security). GS proof system is instantiated and a suitable hash function is chosen to associate message
to ring information.

• mParam ← MemSetup(1κ, q). Parse mParam as public parameters 〈G, crs, qSDH, gβ2 〉 of the
constant size membership proof technique as outlined in section 3. Parse G as a description of a
bilinear group 〈n,G1,G2,GT , e, g1, g2〉 of composite order n = p.q where q-SDH assumption holds
in G1. p and q are large prime numbers.

• Choose a collision-resistant hash function H : {0, 1}∗ → M used to map the concatenation of
some pre-agreed representation of message m and R to M

• sParam← SSetup(1κ)

• Publish public parameters rParam = 〈sParam,mParam,H〉

– RKeyGen(rParam): Key generation protocol is assumed to have run by each of the prospective
ring members to generate their own secret-public key pairs.

• Generate key-pair (SKi, PKi)← SKeyGen(sParam,G) for all prospective ring member i ∈ R

• Extend the public key of the signature scheme by computing public integers qij = sk2ij (mod
n) ∈ Zn,∀skij ∈ SKi for all prospective ring member i ∈ R. Going ahead, these components will
help us in showing the correlation between the public key PKi and ring R. Augment the public
key PKi by including qi = {qij}, j ∈ [1,M ]. PK ′i = 〈PKi, qi1, qi2, ..., qiM 〉 acts as the extended
public key for signer i of our signature algorithm.
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• Publish extended public keys {PK ′i} to the world.

– RSign(m,SKs, rParam): This algorithm is run by the real signer s having key-pair (SKs, PKs). A
ring is an M -tuple R = 〈R1,R2, ...,RM 〉. R is formed by s choosing a set of k potential signers, which
includes himself. There are as many ring components as q-components present in extended public key.
We denote j-th ring component as Rj = {q1j , q2j , ...qsj , ..., qkj}. Message m and ring information R
are made available for public verification.

• Associate the message to the ring by computing m′ ← H(m||R), m ∈ {0, 1}∗

• Signer s runs ∆← SSign(m′, SKs, sParam)

• Generate GS proofs for the signature:

φsig ← GSProve(G, crs, {SVerify(PKs,m
′, ∆) = 1}, (PKs, ∆

′))

• Compute witnesses:

Wj = MemWitness(mParam, qsj ,Rj),∀j ∈ [1,M ]

Define W = {Wj},∀j ∈ [1,M ]

• Generate the membership proof:

φmemj ← MemProve(mParam,Rj ,Wj),∀j ∈ [1,M ]

Define φmem = {φmemj},∀j ∈ [1,M ].

• Generate proofs of correlation between qsj and sksj :

φqj ← GSProve(G, crs, {qsj = sksj
2}, (qsj , sksj)),∀j ∈ [1,M ]

Define φq = {φqj},∀j ∈ [1,M ]

• Generate proofs of correlation between SK ′si ⊆ SKs and PKs where pksi = fpki(SK
′
si),
⋃
i

SK ′si =

SKs:
φpki ← GSProve(G, crs, {pksi = fpki(SK

′
si)}, (pksi, SK ′si)),∀pksi ∈ PKs

Define φpk = {φpki},∀pksi ∈ PKs. Note that computing f−1pki is always hard.

• Publish message m, ring signature Σ ← (φsig, φmem, φq, φpk, ∆\∆′) and ring information R

– RVerify(m,R, Σ, rParam): The verifier runs this algorithm to verify the validity of the ring signature
on the message with respect to the ring information published.

• Let V E = {V Ei} be the set of verification equations of the signature scheme Sig. Verify the
consistency of the signature,

csig ← GSVerify(G, crs, {V E}, φsig)

• Verify the membership of each q-component of signer’s extended public key in the ring,

cmemi ← MemVerify(mParam,R, φmemi),∀φmemi ∈ φmem

• Verify proofs of correlation between qsj and sksj :

cqj ← GSVerify(G, crs, {qsj = sksj
2}, φqj ),∀j ∈M

• Verify proofs of correlation between SK ′si ⊆ SKs and PKs where pksi = fpk(SK ′si),
⋃
i

SK ′si =

SKs:
cpki ← GSVerify(G, crs, {pksi = fpk(SK ′s)}, φpki),∀pksi ∈ PKs

• Announce ‘Success’ if (csig ∧ (∧
i
cmemi) ∧ (∧

i
cqi) ∧ (∧

i
cpki)) = 1, ‘Failure’ otherwise
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The idea of the proof system above is to show correlation among commitments shared across equations.
If a witness is involved in more than one equation, prover must use the same set of randomness to commit
to that particular witness throughout. On the other hand, verifier re-uses the same commitment during

verification which makes the proofs correlated. Intuitively, public key PKs
φpk−−−→ SKs

φq−−−→ qs
φmem−−−→

ring R

Theorem 2. The generic construction of ring signature scheme outlined above is a secure one satisfying
correctness, anonymity and unforgeability.

Proof: Detailed proof of the theorem above is presented in Appendix D.

5 Instantiation Based on Full Boneh-Boyen Signature (FBB) Scheme

To quantify the reduction in size our construction offers, we will now pick up FBB scheme for a concrete
instantiation. [3] proves the security of the signature scheme for prime order groups. Their proof trans-
lates directly to composite order model as shown by [8]. Our construction is in asymmetric setting over
composite order group [24] where both q-SDH [9] and SXDH assumptions hold.

– RSetup(1κ, q): This algorithm is run by a trusted authority (possibly a distributed one to enhance
security).

• mParam ← MemSetup(1κ, q). Parse mParam as public parameters 〈G, crs, qSDH, gβ2 〉 of the
constant size membership proof technique as outlined in section 3. Parse G as a description of a
bilinear group 〈n,G1,G2,GT , e, g1, g2〉 of composite order n = p.q where q-SDH assumption holds
in G1. p and q are large prime numbers.

• Choose a collision-resistant hash function H : {0, 1}∗ → Zn

• Publish public parameters rParam← 〈mParam,H〉

– RKeyGen(rParam): Key generation protocol is assumed to have run by each of the prospective
ring member i ∈ R to generate their own secret-public key pairs.

• Uniformly choose secret key SKi = 〈ai, bi〉 ∈ Z2
n

• Generate FBB public key PKi = 〈Ai, Bi〉 = 〈gai2 , g
bi
2 〉. Compute qia = a2i (mod n) and qib =

b2i (mod n). Extended public key PK ′i = 〈PKi, qia, qib〉

• Publish extended public keys {PK ′i} to the outer world.

– RSign(m,SKs, rParam): This algorithm is run by the real signer s having key-pair (SKs = 〈as, bs〉, PKs =
〈As, Bs〉). Choose k potential signers to construct a ring R = {Ra,Rb}. Message m and ring infor-
mation R are made available for public verification. Rename a = as, b = bs, A = As, B = Bs

• Compute m′ ← H(m||R), m ∈ {0, 1}∗

• Uniformly choose r ← Zn \ {−a+m
′

b }

• Generate the signature ∆← g
1

a+r.b+m′
1

• Generate GS proofs for the signature:

φsig ← GSProve(G, crs, {Br = B′ ∧ e(∆,A)e(∆,B′)e(∆, gm
′

2 ) = e(g1, g2)}, (∆,A,B,B′))

• Compute witnesses W = 〈Wa,Wb〉:

Wa ← MemWitness(mParam, qsa,Ra)

Wb ← MemWitness(mParam, qsb,Rb)



12 Priyanka Bose, Dipanjan Das, and C. Pandu Rangan

• Generate the membership proof φmem = 〈φmema , φmemb〉:

φmema ← MemProve(mParam,Ra,Wa)

φmemb ← MemProve(mParam,Rb,Wb)

• Generate proofs of correlation φq = 〈φqa , φqb〉 between qs = 〈qsa, qsb〉 and SKs = 〈a, b〉:

φqa ← GSProve(G, crs, {qsa = a2}, (qsa, a))

φqb ← GSProve(G, crs, {qsb = b2}, (qsb, b))

• Generate proofs of correlation φpk = 〈φpkA , φpkB 〉 between SKs and PKs:

φpkA ← GSProve(G, crs, {A = g
a
2}, (A, a))

φpkB ← GSProve(G, crs, {B = g
b
2}, (B, b))

• Publish message m, ring signature Σ ← (φsig, φmem, φq, φpk, ∆\∆′, r) and ring information R

– RVerify(m,Σ,R): The verifier runs this algorithm to verify the validity of the ring signature on the
message with respect to the ring information published.

• Verify the consistency of the signature

csig ← GSVerify(G, crs, {Br = B′ ∧ e(∆,A)e(∆,B′)e(∆, gm
′

2 ) = e(g1, g2)}, φsig)

• Verify the membership of each q-component of signer’s extended public key in the ring,

cmema ← MemVerify(mParam,Ra, φmema)

cmemb ← MemVerify(mParam,Rb, φmemb)

• Verify proofs of correlation between qs and SKs:

cqa ← GSVerify(G, crs, {qsa = a2}, φqa)

cqb ← GSVerify(G, crs, {qsb = b2}, φqb)

• Verify proofs of correlation between SKs and PKs:

cpkA ← GSVerify(G, crs, {A = g
a
2}, φpkA)

cpkB ← GSVerify(G, crs, {B = g
b
2}, φpkB )

• Announce ‘Success’ if (csig ∧ (cmema ∧ cmemb)∧ (cqa ∧ cqb)∧ (cpkA ∧ cpkB )) = 1, ‘Failure’ otherwise

Theorem 3. The construction of ring signature scheme outlined above is a secure conditioned if SXDH
assumption holds, q-SDH assumption hold in G1 and the hash function H is collision-resistant.

Proof: The proof for the theorem above follows directly from Theorem 2 and the security proof for FBB
scheme [3].

Complexity of the signature instantiation: Under SXDH instantiation of GS proof system, size of
our ring signature construction based on FBB signature scheme is G50

1 + G42
2 + Z3

p elements. Detailed
calculation of the size of the signature elements is given in Appendix B.

6 Conclusion and Open Problems

Our main contribution is a construction of an O(1) size ring signature scheme based on FBB signatures
without using random oracle. We introduce a general purpose constant size membership proof technique
which ‘plugs-in’ to a compatible signature scheme to yield a ring signature of constant size.

It would be interesting to explore the possibility of applying the generic construction to signature
schemes other than FBB to achieve the same objective. Extending the ring signature protocol to obtain
a constant-sized blind ring signature is also a problem which we leave open for further research.
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7 Appendix A: Cost of Membership Proof

We provide here the detailed break up of the cost of membership proof (in terms of number of group
elements involved) below:

Type - 1 (DLING):

Table 3. Cost split up under DLIN assumption[17, p. 28]

Item Type Item CostG CostZp

Commitment Υw G3 -
Commitment ΥD G3 -
Commitment Υαδ G3 -
PPE Proof ΓmemPPE G9 -

MSME Proof ΓmemMSME G9 -

Total Cost - G27 -

Type - 2 (DDHG1+ DLING2):

Table 4. Cost split up under DDH and DLIN assumption[17, p. 23,28]

Item Type Item CostG1 + CostG2 CostZp

Commitment Υw G2
1 - -

Commitment ΥD - G3
2 -

Commitment Υαδ G2
1 - -

PPE Proof ΓmemPPE G4
1 G3

2 -
MSME Proof ΓmemMSME G4

1 G3
2 -

Total Cost - G12
1 + G9

2 -

Type - 3 (SXDH):
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Table 5. Cost split up under SXDH assumption[17, p. 23]

Item Type Item CostG1 + CostG2 CostZp

Commitment Υw G2
1 - -

Commitment ΥD - G2
2 -

Commitment Υαδ G2
1 - -

PPE Proof ΓmemPPE G4
1 G4

2 -
MSME Proof ΓmemMSME G4

1 G2
2 -

Total Cost - G12
1 + G8

2 -

8 Appendix B: Cost of FBB Instantiation

We provide cost split up of FBB (Full Boneh - Boyen) instantiation of ring signature (in terms of number
of group elements involved) below:

Type - 3 (SXDH):

Table 6. Cost split up under SXDH assumption[17, p. 23,28]

Item Type Item CostG1 + CostG2 CostZp

Commitment Υ∆ G2
1 - -

Commitment ΥA - G2
2 -

Commitment ΥB - G2
2 -

Commitment ΥB′ - G2
2 -

Commitment Υa G2
1 G2

2 -
Commitment Υb G2

1 G2
2 -

PPE Proof ΓsigPPE G4
1 G4

2 -
Linear MSME(G2) ΓsigMSME - - Z2

p

Constant r - - Z1
p

Membership Proof φmema G12
1 G8

2 -
Membership Proof φmemb G12

1 G8
2 -

Correlation Proof Γqa G2
1 G2

2 -
Correlation Proof Γqb G2

1 G2
2 -

QE Equality Proof* - G2
1 G2

2 -

QE Equality Proof* - G2
1 G2

2 -

Correlation Proof ΓpkA G4
1 G2

2 -
Correlation Proof ΓpkB G4

1 G2
2 -

Total Cost - G50
1 + G42

2 + Z3
p

*We considered correlation QEs to be of the form x1y1 − x2 = 0 having 〈{a, a}, qsa〉 and 〈{b, b}, qsb〉 as
witnesses. To deal with only one group of variables in Zn, we implicitly added equations of the form
x1 = y1

9 Appendix C: Security of Membership Proof

Theorem 1. The set membership proof technique is correct, perfectly sound and zero-knowledge.

Proof: Correctness, perfect soundness and zero-knowledgeness of the set membership proof technique
follow from Lemma 1, 2 and 3 respectively.

Lemma 1. If GS proof system is perfectly complete, the set membership proof technique is correct.

Proof: The set membership proof technique is correct if an honest prover committing to an element αδ
can convince an honest verifier whenever the element belongs to the set and the prover holds a witness
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tuple W = 〈αδ, w,D〉 testifying to the fact.

Pr[mParam← MemSetup(1κ, q) ∧ W ← MemWitness(mParam,αδ, S) ∧
φmem ← MemProve(mParam, S,W ) ∧ MemVerify(mParam, S, φmem) = 1, if αδ ∈ S] = 1

Verifying correctness of the algorithm is trivial, because

e(w, gβ2 /D) = e(g
ψ(β)
1 , gβ2 /g

αδ
2 )

= e(g1, g2)ψ(β)(β−αδ)

= e(g1, g2)F (β)

= e(g
F (β)
1 , g2)

= e(C, g2)

= t

Correctness of membership proof remains intact since GS protocol is complete.

Lemma 2. If GS proof system is perfectly sound and q-SDH assumption holds in G1, the set membership
proof technique is perfectly sound.

Proof: Perfect soundness prohibits an adversary from proving a false statement. The technique is perfectly
sound if for all adversarial PPT algorithm A = {A1,A2}, we have

Pr[mParam← MemSetup(1κ, q) ∧ W ′ ← A1(mParam,αδ, S) ∧
φ′mem ← A2(mParam, S,W ′) ∧ MemVerify((mParam, S, φ′mem) = 1, if αδ /∈ S] < ν(κ)

Suppose there exists an adversary A1 against the soundness of the scheme that produces a witness tuple
〈α∗δ , w∗, D∗〉 accepted by MemVerify though α∗ /∈ S. We demonstrate, using A1 how a challenger B can
be constructed to break q-SDH assumption.

It follows from polynomial remainder theorem (Little Bezout theorem [30, 21]) that for any uni-
variate polynomial P (x) ∈ Zn[x], (x − α) is a divisor of (P (x) − P (α)),∀α ∈ Zn. Recall that, w∗ =

g
ψ∗(β)
1 , D∗ = gα

∗

2 . Defining ψ′(β) = F (β)−F (α∗)
β−α∗ , w′ = g

ψ′(β)
1 , D′ = gα

∗

2 , it can trivially be checked that

e(w′, gβ2 /D
′)e(g1, g2)F (α∗) = e(g

F (β)
1 , g2) = e(C, g2) = t [∵ α∗ /∈ S ∴ F (α∗) 6= 0]. Adversary manages to

satisfy verification equation, hence e(w∗, gβ2 /D
∗) = t. Equating both the equations above,

e(w′, gβ2 /D
′)e(g1, g2)F (α∗) = e(w∗, gβ2 /D

∗)

e(g
ψ′(β)
1 , gβ−α

∗

2 )e(g1, g2)F (α∗) = e(g
ψ∗(β)
1 , gβ−α

∗

2 )

ψ′(β)(β − α∗) + F (α∗) = ψ∗(β)(β − α∗)
(ψ∗(β)− ψ′(β))(β − α∗) = F (α∗)

1

β − α∗
=
ψ∗(β)− ψ′(β)

F (α∗)

g
1

β−α∗

1 = g
ψ∗(β)−ψ′(β)

F (α∗)
1

g
1

β−α∗

1 =
(w∗
w′

) 1
F (α∗)

Therefore the game between challenger B and adversary A1 proceeds as follows:

– B presents a q-SDH instance to A1

– A1 returns a witness tuple 〈α∗δ , w∗, D∗〉 accepted by MemVerify though α∗ /∈ S
– B honestly computes the tuple 〈α∗, w′, D′〉
– After a small constant amount of calculation, B returns 〈−α∗, g

1
β−α∗

1 〉 as a solution to q-SDH instance

It’s apparent that the success probability of B is same as that of A1. Also, A2 has little probability of
success since GS protocol is perfectly sound.
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Lemma 3. If GS proofs are zero-knowledge for the satisfiability of quadratic equations, the set membership
proof technique is zero-knowledge.

Proof: Groth-Sahai (GS) proofs are inherently non-interactive witness-indistinguishable (NIWI). Verifi-
cation equation is in the form of a Pairing Product Equation (PPE) in GS framework. Non-interactive
zero-knowledge (NIZK) proofs for such equations are exactly same as NIWI proofs, but there is an ad-
ditional cost involved in attaining composable ZK (cf. 5) for PPE with e(C, g2) for known C and g2. In
this case, the verification PPE is rewritten and an extra MSME is added to the set for the ZK simulator
to be able to simulate zero knowledge. ZK simulator can simply simulate proofs by committing for trivial
witnesses by setting all variables to zero as outlined in [17].

10 Appendix D: Security of Generic Ring Signature

Theorem 2. The generic construction of ring signature scheme outlined in section 4 is a secure one
satisfying correctness, anonymity and unforgeability.

Proof: Correctness, anonymity and unforgeability of the ring signature scheme follow from Lemma 4, 5
and 6 respectively.

Lemma 4. If GS proof system is perfectly complete and underlying signature scheme Sig is correct, the
ring signature scheme is correct.

Proof: Obvious.

Lemma 5. If GS proof system is hiding (i.e. witness-indistinguishable/zero-knowledge), then the ring
signature scheme is anonymous under full key exposure.

Proof: Let A be any PPT adversary against the anonymity of the ring signature scheme in the full-key-
exposure security game described in [2, p. 7]. We will show that the simulator B can break the hiding
property of GS commitment scheme if A breaks the anonymity of the ring signature scheme under full
key exposure.

We instantiate GS system in simulation setting for membership (φmem), signature (φsig) and corre-
lation (φq, φpk) proofs. All three instantiations of GS proof system, viz. Subgroup Decision, SXDH and
DLIN, two types of commitment keys, i.e. hiding and binding keys are computationally indistinguishable.
Hence, adversary A has negligible advantage in distinguishing between simulation and soundness settings.
All the queries to signature oracle OSign(s,M,R) will return ring signatures with hiding commitments.

We are committing signer’s public key PKi and all those components of signature ∆′ which depend
on signer’s secret key SKi while forming signature proof (φsig). In all other proofs, we are using the same
commitment for signer’s extended public key PK ′i. Whatever be the public values ring signature scheme
exposes, those are independent of signer’s secret or public key, therefore not immediately traceable to
signer’s identity. Also an adversary A gets little advantage by querying the corrupt oracle Corrupt(i)
to obtain random coins ωi, ∀i ∈ [1, |R|] and thereby learning the key-pairs 〈SKi, PKi〉, ∀i ∈ [1, |R|],
since the signature Σ hides signer’s key-pair behind GS commitments. If the adversary can reveal the
witnesses 〈SKi, PKi〉 used in the proofs, it reduces to simulator B breaking the hiding property of GS
commitments and therefore, compromising witness-indistinguishability/zero-knowledgeness of GS proof
system [17].

Lemma 6. If GS proof system is perfectly sound, the hash function H is collision-resistant, and the sig-
nature scheme Sig is existentially unforgeable against adaptive chosen-message attack, the ring signature
scheme is unforgeable in the presence of insider corruption.

Proof: Let D be a PPT adversary against the unforgeability of the ring signature scheme in the presence
of insider corruption (UF-IC) as described in [2, p. 8]. We identify five types of possible forgeries:

– Type - I: Forging signatures by producing proofs for false statements.
– Type - II: Forging signatures by producing a message m∗ and ring R∗ such that, H(m∗||R∗) =
H(mi||Ri) for some previous query (mi,Ri) 6= (m∗,R∗), ∀i ∈ [1, q], assuming A2 has made q queries
to sign oracle.
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– Type - III: Forging signatures by producing a message m∗ and ring R∗ such that, H(m∗||R∗) 6=
H(mi||Ri) for some previous query (mi,Ri) 6= (m∗,R∗), ∀i ∈ [1, q], assuming A3 has made q queries
to sign oracle.

– Type - IV: Forging signature by recovering secret key SKi = {skij} of i-th member of ring having
k members from {qij}, i ∈ [1, k], j ∈ [1,M ],M = |SKi|

– Type - V: Forging signature by recovering secret key SKi = {skij} of i-th member of ring having k
members from {pkij}, i ∈ [1, k], j ∈ [1,M ],M = |SKi|

Let A1 be an adversary against the perfect soundness of GS commitment scheme. We instantiate GS
proof system in soundness setting. Due to inherent binding property, adversary A1 has zero advantage
in faking proofs for false statements. Therefore, AdvSoundGS,A1

(δ) = 0
Let A2 be an adversary against the collision resistance property of hash function H. We can reduce

Type - II forgeries to breaking collision-resistance property of hash function. A collision-resistant hash
functions does not have any known technique more efficient than brute-force to find collisions computa-
tionally. Therefore, AdvCollH,A2

(δ) ≤ ν(δ)
Let A3 be an adversary against the existential unforgeability of underlying signature scheme Sig

under chosen-message attack (EUF-CMA). Consider a simulator B playing the game EUF-CMA with
A3. We will finally present a reduction of Type - III forgeries to EUF-CMA [15]. Our reduction proves
non-negligible advantage of A3 in EUF-CMA security game, provided there exists an adversary D that
successfully breaks the unforgeability of the ring signature [5, p. 3] in the presence of insider corruption.

The interaction between A3 and D is modeled as follows:

– A3 generates public parameter of the ring signature scheme rParam by instantiating GS proof system
in soundness setting. Also, A3 arbitrarily chooses i∗ ∈ [1, k] and generates (k − 1) secret-public key-
pairs for i ∈ [1, k]\{i∗}, where k = n(t), n(x) being a polynomial and t ∈ N. A3 obtains the public
key PKi∗ which it wants to be challenged on from simulator B. B doesn’t reveal corresponding secret
key SKi∗ and keeps it with itself. A3 hands over the tuple (rParam, {PK1, PK2, ..., PKi∗ , ..., PKk})
to ring adversary D.

– When D queries for Corrupt(i) on any i 6= i∗, A3 reveals corresponding secret key SKi. If the same
query is on i = i∗, A3 aborts with probability 1/n.

– When D queries for Sign(s,M,R) on any i 6= i∗, A3 plays the ring signature protocol itself and
hands the output over to D. If the same query is on i = i∗, A3 queries the sign oracle of its own
unforgeability game on H(M ||R), generates the remaining part of the ring signature itself and hands
the output over to D.

– After a series of Corrupt(i) and Sign(s,M,R) queries, D eventually terminates by outputting a
message-ring signature-ring tuple (M∗, Σ∗,R∗). Let T be the set of corrupted users. A3 verifies that
all members in R∗ are indeed honest, in other words, A3 has never answered a query Sign(∗,M∗,R∗),
R∗ ⊆ S − T . If all conditions are met, A3 extracts public key PK∗ and signature ∆∗ by invoking
GSExtract(.) as it has access to secret trapdoor xk. In an extreme situation, T = {} and |R∗| = n. Note
that, during corruption phase, A3 was unable to supply SKi∗ . Therefore, PKi∗ ∈ R∗ with probability
1/n at most. If PK∗ 6= PKi∗ ,A3 aborts. Otherwise,A3 returns (H(M∗||R∗), ∆∗) as successful forgery

to the challenger B in its own unforgeability game. Therefore, AdvUnforgSig,A3
(δ) ≥ (1/n)AdvUnforgRSig,D (δ),

or AdvUnforgRSig,D (δ) ≤ n(δ) ·AdvUnforgSig,A3
(δ)

Let A4 be an adversary solving an SQROOT instance which we can reduce Type - IV forgeries to.
Therefore, AdvSQRTA4

(δ) ≤ ν(δ)
Let A5 be an adversary attempting to recover secret keys from the knowledge of public keys. We

remark that such an adversary are no stronger than A3 type of adversary and advantage due to it is
encompassed by AdvUnforgSig,A3

(δ)

Combining the advantages of all three types of adversaries,

AdvUnforgRSig,D (δ) ≤ AdvSoundGS,A1
(δ) +AdvCollH,A2

(δ) + n(δ) ·AdvUnforgSig,A3
(δ) +AdvSQRTA4

(δ)
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