
Silent Simon:
A Threshold Implementation under 100 Slices

Aria Shahverdi, Mostafa Taha and Thomas Eisenbarth

Worcester Polytechnic Institute,
Worcester, MA 01609, USA

Email: {ashahverdi, mtaha, teisenbarth}@wpi.edu

Abstract. Lightweight Cryptography aims at achieving security com-
parable to conventional cryptography at a much lower cost. Simon is
a lightweight alternative to AES, as it shares same cryptographic pa-
rameters, but has been shown to be extremely area-efficient on FPGAs.
However, in the embedded setting, protection against side channel analy-
sis is often required. In this work we present a threshold implementation
of Simon. The proposed core splits the information between three shares
and achieves provable security against first order side-channel attacks.
The core can be implemented in less than 100 slices of a low-cost FPGA,
making it the world smallest threshold implementation of a block-cipher.
Hence, the proposed core perfectly suits highly-constrained embedded
systems including sensor nodes and RFIDs. Security of the proposed
core is validated by provable arguments as well as practical DPA attacks
and tests for leakage quantification.

1 Introduction

Simon is a block cipher recently published by NSA as a lightweight alternative
to the widely-used AES [1]. Simon is very promising for hardware-based embed-
ded applications as its internal structure is very simple and bit-oriented. Indeed,
its authors show that the ASIC implementation of Simon requires only 1234 GE
(Gate Equivalent) for 128 bits of security, compared to 2400 GE for the smallest
AES to date [2]. Also, it was shown that a bit-serialized FPGA implementation
of Simon sets a new area record with only 36 slices for 128 bits of security [3],
compared to 264 equivalent slices for AES (including the BRAMs) [4] and 117
slices for Present [5]. However, in order to actually implement Simon on practi-
cal embedded platforms, protection against side-channel analysis must be taken
into account.

Side-channel analysis (SCA) can break cryptosystems by exploiting vulnera-
bilities in the practical implementation of cryptographic schemes. SCA harvests
the information leaked through variations in the power consumption, electro-
magnetic radiation, or execution time. Typically, the adversary builds a power
model using a key hypothesis and compares the result with the actual power
consumption until the correct key is found. An SCA attack that is mounted
using a single trace is called Simple Power Analysis (SPA), while an attack that

combines information across many traces at different inputs is called Differential
Power Analysis (DPA). Attacks analyzing the first moment of a single point in
the leakage trace are called first order attacks. Higher order DPA attacks ex-
tract information from the higher order moments of one or more leakage points.
However, higher order attacks suffer from higher noise levels and hence have a
worse key distinguishability.

Side-channel analysis of Simon has been studied in [6] and [7]. Moreover,
a side-channel countermeasure for Simon was proposed in [6]. They proposed
a low-cost realization of the masking scheme. The scheme uses only one data-
path and works by partially unmasking the internal variables just before the
non-linear operation, and using the input mask to re-randomize the internal
state following the Feistel structure. This scheme may practically work if the
demasking, processing, and remasking are performed within a single table look-
up. Hence, it depends on the realization and is not provably secure. Furthermore,
the mask value is fixed throughout the cipher which is not recommended in
masking schemes. Moreover, it is not clear how to map the scheme to other
hardware architectures.

In this paper, we propose a provably secure masking scheme for Simon us-
ing secret-sharing with three shares. Our design achieves all the requirements
for being a threshold implementation, which is a special class of secret-sharing
countermeasures that are provably secure against first-order SCA attacks [8].
Our core can be realized in less than 100 slices of a low-cost FPGA, making it
the smallest protected implementation of a block cipher to date. In fact, the size
of our core is comparable to most unprotected block ciphers. Hence, the proposed
core perfectly suits highly-constrained embedded systems including sensor nodes
and RFIDs. Security of the proposed scheme is validated by provable arguments,
and practical tests for leakage quantification.

The paper is organized as follows. Section 2 reviews some background about
Simon, the previous unprotected implementation and the requirements for thresh-
old implementations. Section 3 introduces the required equations for the thresh-
old implementation of Simon. Section 4 discusses details of the two FPGA de-
signs proposed in this paper, along with a thorough comparison to previous
designs. In Section 5, we study the practical security of the proposed designs
with both differential power analysis and leakage quantification. The paper is
concluded in Section 6.

2 Background

2.1 Simon

Simon is a block cipher based on the Feistel structure. Simon accepts plaintexts
of size 32, 48, 64, 96 and 128 bits. For each input size, Simon has a set of
allowable key sizes ranging from 64 bits to 256 bits. The input is evenly split
into two words, following the principles of Feistel structure. The key is also split
into two to four words, which are used in the first rounds of Simon. The key

scheduling algorithm is used to generate the following round keys. The number
of rounds in Simon ranges from 32 rounds to 72 rounds. For example, Simon
64/128 accepts 64 bits of plaintext at a word size of 32 bits and 128 bits of key
(four words). It generates a ciphertext after 44 rounds.

Assuming that the input words of round i are li and ri, the output words
are:

li+1 = ri ⊕ l2i ⊕ (l1i ∧ l8i)⊕ ki ri+1 = li

The upper index Xs indicates left circular shift by s bits. This can be expressed
in GF(2), where the XOR operation becomes addition and the AND operation
becomes multiplication, as:

li+1 = ri + l2i + (l1i ∗ l8i) + ki ri+1 = li

Also, assuming that the input words of the key, which are also the first round
keys, are k0 and k1 (and possibly k2 and k3, depending on the key size), the next
round key is computed as:

ki+2 = ki + k−3
i+1 + k−4

i+1 + ci Two and Three Words

ki+4 = ki + ki+1 + k−1
i+1 + k−3

i+3 + k−4
i+3 + ci Four Words

where ci is a round constant.

2.2 Bit-Serialized Implementation

Aysu et al. in [3] proposed a bit-serialized implementation of Simon where only
one bit of the internal state is processed in each clock cycle. Hence, a single
round of Simon completes after n cycles, where n is the size of input word.
Moreover, two shift-registers were used to store the internal states to simplify
the control of sequentially processing and storing individual bits. In fact, the left
share of the internal state is passed over as-is to the right share, hence only one
shift register of the same size as the input block is actually needed. Here, Simon
is implemented as a special class of non-linear feedback shift registers, where
the output of the feedback function changes the state only after completing the
round function. Since the feedback function requires only four bits of the state,
namely ri, l

1
i , l2i and l8i , only those bits need to be stored. This storage is realized

by an extra 8-bit shift register. An overview of this implementation is shown in
Fig. 1 in Section 4.

2.3 Threshold Implementation

The Threshold Implementation (TI) countermeasure was proposed by Nikova et
al. in [8]. TI applies secret-sharing to achieve provable resistance against first
order side channel attacks if the following three requirements are fulfilled:

1. Correctness: Correctness means that combining the output of the different
shares retrieves the original output in a correct way.

2. Non-completeness: Non-completeness means that the equation used to
evaluate any output share should be missing at least one input share. This
requirement enforces that the information required to compute the secret
value (all the shares) is not present in the system at any time instant. Hence,
any vulnerability in the implementation (e.g. glitches) cannot leak the secret
key.

3. Uniformity: If the input shares are uniformly distributed, the output shares
must also be uniformly distributed.

Threshold Implementation of block ciphers have been published for AES [2,9]
and Present [10], as well as for Keccak [11].

3 Threshold Implementation of Simon

We propose the required equations to process Simon as a threshold implementa-
tion. Although a three-shares implementation is required to overcome glitches in
hardware modules, we start with a two-shares implementation as a preliminary
step.

3.1 Simon with Two Shares

In order to process Simon in two shares, we use the following equations. We
denote the random mask that affects the input plaintext as m[p][1] and m[p][2].
The input words are given as:

r[a]0 = m[p][1] r[b]0 = m[p][1] + r0

l[a]0 = m[p][2] l[b]0 = m[p][2] + l0

Then, the round functions can be expressed as:

r[a]i+1 = l[a]i r[b]i+1 = l[b]i

l[a]i+1 = r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + k[a]i

l[b]i+1 = r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[b]i

where k[a] and k[b] are the two shares of the round key. We use a different mask
to process the key schedule, denoted by m[k]. The size of the mask should be
equal to the size of the key. Equations for splitting the key schedule into two
shares are straightforward, being an entirely linear operation.

This masking scheme is correct and uniform. However, it is not non-complete
because the two input shares are required to process any output share. This
masking scheme can work in software implementations if we enforce the order of
processing the equation to be from left to right. Hence, we ensure that the com-
piler does not generate any intermediate variable that is free from the random
mask. However, this masking scheme is not provable in hardware implementa-
tions where glitches can leak the relation between the two shares. In order for
the secret-sharing scheme to provably work in hardware implementations, we
need to enforce the requirement of non-completeness. Hence, we propose the
three-sharing scheme in the next subsection.

3.2 Simon with Three Shares

The equations used to process Simon in three shares follow the same reasoning
of the two shares. Here, we use two random variables, each with the same size as
the input plaintext. This generates three shares of each word, denoted by [a], [b]
and [c]. The equations used to process the r part are straightforward and hence
omitted. The equations to process the l part are as follows:

l[a]i+1 = r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[c]8i + l[c]1i ∗ l[b]8i + k[b]i

l[b]i+1 = r[c]i + l[c]2i + l[c]1i ∗ l[c]8i + l[c]1i ∗ l[a]8i + l[a]1i ∗ l[c]8i + k[c]i

l[c]i+1 = r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[a]i

This masking scheme is correct, uniform and non-complete. It is non-complete
because the equation used to process any output share (e.g. [a]) does not in-
clude at least one input share ([a]). Although the system of equations in the
data-path (every term in the equations aside from the key) is not invertible, i.e.,
its mapping is not guaranteed to be one-to-one, which suggests non-uniformity,
uniformity is guaranteed by the randomness brought by the key shares (k[a], k[b]
and k[c]). The key shares are uniformly distributed as the system of equations to
generate them is linear and invertible (assuming that the input random masks
are uniform). Then, it is easy to prove that the result of addition in GF(2)
between an arbitrary variable that is not necessarily uniform (the data-path)
and a uniformly distributed random variable (the key shares), is uniformly dis-
tributed. This implies that the above system of equations is uniform. Although
the random variable used in one round depends the random variables used in the
previous rounds, this does not result in any vulnerability for univariate attacks
that harvest information from a single point in the trace.

4 FPGA Implementation

Fig. 1 shows the structure of the Simon implementation. At first, the input is
loaded into the Shift Register Up (SRU), FIFO1 and FIFO2. During the first 8
cycles (phase 1), the look-up table (LUT) processes three bits from the SRU, a
key bit and the output of FIFO2, and the result is stored in the Shift Register
Down (SRD). During this phase, SRD stores the new values, while SRU stores
the old ones for further processing. Once the SRD is full and before overflowing
occurs, instead of SRU, SRD will be connected to FIFO1, where the new values
will be stored (phase 2). SRU will still work as the old register for storing old bit
values from FIFO1 output. This phase continues for 56 cycles until the round is
completed. In the next round, the functionality of SRU and SRD will be flipped,
representing phase 3 and 4 as shown in the Fig. 1.

In order to design a threshold implementation for Simon there are two
choices, parallel and serial. In both cases the state will be divided into three
shares.

FIFO2FIFO1

SRU
KEY

SRD

LUT
64 bits56 bits

8 bits

First 8 Clock Cycles Next 56 Clock Cycles

3

1 2

3 4

FIFO2FIFO1

SRU
KEY

SRD

LUT

3

FIFO2FIFO1

KEY

SRD

LUT
3

FIFO2FIFO1

KEY

SRD

LUT
3

SRU SRU

Fig. 1. Data-path of the Simon cipher. In each round, after the first 8 cycles the input
of FIFO1 will change. Based on the round, the SRU and SRD will function as input
or output of the LUT block.

4.1 Parallel Simon

The parallel implementation uses three copies of the data-path and key schedule
units, i.e. one for each share. Note that the three data path units and key schedule
units need only one instance of the control unit. Throughout this section we
use f(s, k) to denote the modular addition between key bit k and state bit s
(f(s, k) = s+ k). The state bit and key bit are as follows:

s = r[α] + l[α]2 + l[α]1 ∗ l[α]8 + l[α]1 ∗ l[β]8 + l[β]1 ∗ l[α]8

k = k[α]

where α and β denote different input shares.
As can be seen in Fig. 2, the input to the function block comes from two

shares (denoted by old) based on the above equation along with one bit from
the key. The output is written into one share (denoted by new). The function
block is implemented using LUTs. The old share is SRU (or SRD) and the new
share is SRD (SRU), if the round is even (odd). The parameters α and β can
be extracted from equations in Section 3.2. At each clock cycle the key schedule
unit and data-path unit are enabled to ensure that new values are written for
all three shares at each clock cycle.

In order to ensure that each output share is independent of at least one input
share the “Keep Hierarchy” property of synthesize tool should be enabled. The
keep hierarchy property ensures that parallel LUTs are synthesized so that they
never share in one slice. The resistance analysis presented in the next section
shows that this level of separation is sufficient for security. Although no compo-
nent of this core receives all three shares as an input, hence preventing glitches
from leaking first-order information, the core as a whole still processes all three

f(s,k)k[b]

old [a] old [b] old [c]

f(s,k)f(s,k) k[c] k[a]

new [a] new [b] new [c]

Fig. 2. Parallel Simon. All the three shares are processed at the same time. Each
output share is independent of at least one input share.

shares in the same clock cycle. Under rare circumstances, this might result in
remaining first order leakage. For this reason, we propose the serialized version of
the protected core where each share is strictly accessed in different clock cycles.

4.2 Serial Simon

The serial Simon processes only one share at each clock cycle as opposed to
parallel implementation. More specifically, in each clock cycle, only one bit is
computed and only one register is being shifted. So, updating the three shares
takes three clock cycles. To ensure the correctness of the design, Read After Write
(RAW) hazard should be prevented. This requires one extra register, added to
one of the shares to save the previous value of that share. In order to reduce the
overhead caused by the mentioned register, we modify the non-completeness of
the equations in Section 3.2, such that shares [a], [b] and [c] are independent of
shares [c], [a] and [b], respectively. Based on the new set of equations, only share
[a] will face the RAW hazard, so the extra register is added for share [a]. Fig. 3
illustrates the new architecture. Since the design is based on shift registers,
adding an extra register is achieved by taking one register out of FIFO1 and
adding it to SRU and SRD.

The design ensures that at each cycle only one key bit along with proper
states will go through the MUX. The computed result will then be routed in the
DEMUX unit and written into the proper share.

4.3 Implementation Results

The mentioned designs were implemented in Verilog HDL and synthesized for
Spartan-3 xc3s50 using ISE 14.7. Table 1 summarizes the results and provides
a comparison to previous implementations on the same platform. Our proposed
parallel implementation needs 87 slices when synthesized by setting the opti-
mization goal to area and picking slices using PlanAhead. The occupied slices
are less than three times of the unprotected design, since the control logic is

k[a]

old [a] old [b] old [c]

k[b]

k[c]

f(s,k)

new [a] new [b] new [c]

Fig. 3. Serial Simon. Only one share is processed at a time. The extra register is added
to share [a] for saving purposes. At each cycle only one key bit along with proper states
will go through the MUX. The DEMUX will route the result to the proper share.

not replicated for the parallel design. We also synthesized the parallel design
by choosing speed as the main optimization goal, letting synthesize tool pick
slices. The serial design is slightly larger than the parallel one, because of the
overhead in control logic and some minor changes in the data-path, as discussed
above. As highlighted in Table 1, our implementation is more compact than
some unprotected ciphers, namely AES and Present. In fact, the small AES
implementation from [4] is also outperformed in all compared metrics, though
that implementation is not protected against SCA.

Table 1. Implementation results of Parallel and Serial Simon and comparison
with the previous work.

Design
Area

(Slices)
Max. Frequency

(MHz)
Throughput

(Mbps)

AES [4] 264 67 2.2
Present [5] 117 113 28.4
Unpro-Simon [3] 36 136 3.6

TI-Simon
Parallel (area) 87 108 3
Parallel (speed) 96 137 3.8
Serial (area) 131 84 0.7
Serial (speed) 137 110 1

5 Resistance Analysis

In this section, we propose a practical attack against the unprotected core of
Simon 128/128 as defined in [3]. We highlight that, the previous SCA attacks
proposed in [6] and [7] were developed against the full-state implementation, and
cannot be used against the bit-serialized version of our focus. Then, we show the
results of this attack against the protected core along with a thorough leakage
quantification. We implemented this design in a way that the input to the core
is already in masked form and the random masks are applied from an external
source. Here, we use x(a)b to denote bit number b ∈ [0 : 63] of the word x : l∨r in
round number a ∈ [1 : 64]. x can also denote the key k. The practical test setup
consists of a SASEBO-GII board to develop the hardware design, a Tektronix
DPO-5104 oscilloscope to collect the power traces and a ZFL-1000LN amplifier
to improve resolution of the collected traces.

5.1 Practical Attack

The first step in DPA is to identify a sensitive intermediate variable, which
depends on both the input data and the secret key in a non-linear equation with
as low confusion as possible. Linear equations can also work (as used in [6]),
but the attack in this case will need more traces to distinguish between the
correct key and close-by ones. Low confusion means that the non-linear operation
processes a small number of the key-bits. This is recommended to break the
complexity of the secret key into smaller portions (divide-and-conquer).

Hence, we focus on attacking the output of the non-linear operation (the AND
gate) in the second round of Simon, where the first key word (k(1)) becomes part
of l(2) to compute l(3). We do this analysis bit-by-bit following the bit-serialized
implementation. The equation for the first bit of l(3) is:

l(3)0 = r(2)0 + k(2)0 + l(2)62 + (l(2)63 ∗ l(2)56)

where

r(2)0 = l(1)0 , and

l(2)i = k(1)i + r(1)i + l(1)i−2 + (l(1)i−1 ∗ l(1)i−8)

where i ∈ {62, 63, 56} for this particular bit and the subtraction in indexes is
done modulo 64. A similar equation can be written for all the bits of the internal
state. In short, one bit of the left word in round three (e.g. l(3)0) depends non-
linearly on two key-bits (k(1)63 and k(1)56) and linearly on another two key bits
(k(2)0 and k(1)62), along with some input data.

The second step of a successful DPA attack is to select an accurate power
model, which is a function that converts the sensitive intermediate variable into
relative power consumption. In this work, we use the Hamming Distance (HD)
power model which is suitable for hardware modules. The HD represents the
number of bit-flips between two clock cycles. For example, we focus on the activ-
ity of the first register of the left word, representing the operation of overwriting

bit l(3)0 by bit l(3)1 between cycle 65 and 66. However, we first need to consider
an equation for the system power consumption.

The system power equation of the unprotected structure (only one share) is:

P = PSRU + PSRD + PFIFO1 + PFIFO2 +N

where PSRU , PSRD, PFIFO1 and PFIFO2 represent the power consumption of
the SRU, the SRD and the FIFO registers, respectively. N is a noise component
which represents the measurement noise along with all on-board activities that
do not depend on the input data including the key-schedule circuit. We did not
write a separate term for the LUT as its effect can be included in its output
register, which is the first register of SRU or SRD depending on the clock cycle
(SRU in our example). During the update of cycle 65/66 and following the HD
model, the power consumption of each component is:

PSRU = HW
((
l(3)0||r(2)63:55

)
⊕
(
l(3)1||l(3)0||r(2)63:54

))
PSRD + PFIFO1 = HW

(
l(2)1 ⊕ l(2)2

)
PFIFO2 = HW

(
|(l(2)0||r(2))|64 ⊕ |(l(2)1||l(2)0||r(2))|64

)
where HW is the Hamming weight function (the number of set-bits), Xs is a
circular shift right by s bits and |x|64 denotes trimming x to the first 64 bits.
PSRD + PFIFO1 and PFIFO2 depend linearly on the plaintexts and the bits
of k(1). PSRU is the only component in the system power consumption that
depends non-linearly on key bits.

Fig. 4 gives the results of attacking the studied Simon cores with Correlation
Power Analysis (CPA) [12]. In this attack, we used a 4-bit key hypothesis to
represent the non-linear key-bits involved in the computation of l(3)0 and l(3)1.
Figures (a) and (b) show results for attacking the unprotected core. Figure 4(a)
shows the correlation coefficient as a function of time. Figure 4(b) shows the
correlation associated with the correct key against those of the incorrect keys
as the number of analyzed traces increases. Although the results highlight the
success rate of recovering only four bits of the secret key, the remaining key-bits
could also be recovered by selecting another points in the algorithm using the
same number of traces. These results shows that the unprotected core can be
broken with less than 1200 traces. Figures 4(c) and 4(d) show the results of the
same attacks against the protected core. In this experiment, we collected 500,000
traces of the parallel version synthesized with speed optimization. If this core
passes the attack and the leakage quantification tests, the serialized version will
pass for being designed with more conservative assumptions. It is clear that the
attack fails to recover any secret key, which supports our claim of secrecy.

5.2 Leakage Quantification

Although the aforementioned DPA attack is necessary to prove the SCA-security
of the proposed module, the attack examines the leakage of a single point in the

0 500 1000 1500 2000 2500 3000 3500 4000
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time instances

C
o

rr
e

la
tio

n

(a)

0 0.5 1 1.5 2 2.5

x 10
4

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Number of Traces

C
o

rr
e

la
tio

n

(b)

0 500 1000 1500 2000 2500
-6

-4

-2

0

2

4

6
x 10

-3

Time instances

C
o

rr
e

la
tio

n

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Number of Traces

C
o
rr

e
la

tio
n

(d)

Fig. 4. CPA results for the studied cores: (a) and (b) show the results against the
unprotected core. (c) and (d) show the results against the protected core.

trace which is not sufficient. In contrary, the technique of leakage quantification
examines the entire trace searching for any point where the leakage can be dis-
tinguished from random. Here, we do not use any key-recovery attack, but we
use statistical tools to prove the indistinguishably of the collected traces.

We use the test suite developed in [13] and previously used in [14, 15]. The
test suite consists of two different experiments: Fixed Versus Random (FVR)
and Random Versus Random (RVR).

The FVR test depends on collecting two sets of leakage traces, one with a
fixed plaintext while the other with randomly varying plaintexts. The traces are
collected in an interleaved way to minimize the effect of noise. We compute the
sample mean (µ) and sample standard deviation (σ) of the traces in each set.
Then, we compute the result of Welchs t-test:

t =
µa − µb√

(σ2
a/Na) + (σ2

b/Nb)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-80

-60

-40

-20

0

20

40

60

80

100

Time Samples

t

(a)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(b)

 0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(c)

 0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

4

6

8

10

12

14

Time Samples

t

(d)

Fig. 5. Results of leakage quantification. (a) and (b) report results of the FVR and
RVR tests for the unprotected core. (c) and (d) results for the protected core.

where a and b denote the two sets and Ni denote the number of traces in set
i : a∨b. The device fails the FVR test if the value of t exceeds a certain threshold.
In this paper, we follow the threshold of ±4.5 used in [13] and [14].

The RVR test applies the same analysis as above however, all the traces are
collected with randomly varying plaintexts. In this case, the two groups of traces
are separated based on an intermediate variable. We apply the RVR test to the
HD between the first bits of the left and right words of the first two rounds. We
also apply the RVR test to the HW of these bits.

These tests are stronger than the previous DPA attack, as they search for
the distinguishability in any trace point that may or may not lead to a full
key recovery. Fig. 5 shows the results of the FVR and the RVR tests against the
studied cores. Figures 5(a) and 5(b) report results of the FVR and the RVR tests
for the unprotected core at 100,000 traces, respectively. Figures 5(c) and 5(d)
report results for the protected core at 2,000,000 traces. We applied all the
aforementioned RVR tests, however, we report results of only one intermediate
variable due to space limitation (the HD in the first register during cycle 65/66).

The unprotected core failed all the leakage quantification tests (as expected),
while the protected code did pass all the tests which again supports our claim
of secrecy.

6 Conclusion

In this paper, we proposed a threshold implementation of Simon block cipher
that can be implemented in less than 100 slices of a low-cost FPGA platform. The
proposed core perfectly suits highly-constrained embedded systems that require
protection against side-channel attacks including sensor nodes and RFIDs. We
showed that the protected core is secure against all first order attacks using
provable arguments, practical DPA attacks and tests for leakage quantification.

Acknowledgment

This material is based upon work supported by the National Science Foundation
under Grant No. #1261399 and #1314770.

References

1. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK Families of Lightweight Block Ciphers.,” IACR Cryp-
tology ePrint Archive, vol. 2013, p. 404, 2013.

2. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the Limits:
A Very Compact and a Threshold Implementation of AES,” in Advances in Cryp-
tology — EUROCRYPT 2011 (K. G. Paterson, ed.), vol. 6632 of Springer LNCS,
pp. 69–88, 2011.

3. A. Aysu, E. Gulcan, and P. Schaumont, “SIMON Says: Break Area Records of
Block Ciphers on FPGAs,” Embedded Systems Letters, IEEE, vol. 6, pp. 37–40,
June 2014.

4. T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest,” in
Cryptographic Hardware and Embedded Systems CHES 2005 (J. Rao and B. Sunar,
eds.), vol. 3659 of Springer LNCS, pp. 427–440, 2005.

5. P. Yalla and J. Kaps, “Lightweight Cryptography for FPGAs,” in Interna-
tional Conference on Reconfigurable Computing and FPGAs, 2009. ReConFig ’09.,
pp. 225–230, Dec 2009.

6. S. Bhasin, T. Graba, J.-L. Danger, and Z. Najm, “A look into SIMON from a side-
channel perspective,” in IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 2014, pp. 56–59, May 2014.

7. D. Shanmugam, R. Selvam, and S. Annadurai, “Differential Power Analysis Attack
on SIMON and LED Block Ciphers,” in Security, Privacy, and Applied Cryptogra-
phy Engineering (R. Chakraborty, V. Matyas, and P. Schaumont, eds.), vol. 8804
of Springer LNCS, pp. 110–125, 2014.

8. S. Nikova, C. Rechberger, and V. Rijmen, “Threshold Implementations Against
Side-Channel Attacks and Glitches,” in Information and Communications Security
(P. Ning, S. Qing, and N. Li, eds.), vol. 4307 of Springer LNCS, pp. 529–545, 2006.

9. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “A More Efficient AES
Threshold Implementation,” in Progress in Cryptology –AFRICACRYPT 2014
(D. Pointcheval and D. Vergnaud, eds.), vol. 8469 of Springer LNCS, pp. 267–
284, 2014.

10. S. Kutzner, P. Nguyen, A. Poschmann, and H. Wang, “On 3-Share Threshold
Implementations for 4-Bit S-boxes,” in Constructive Side-Channel Analysis and
Secure Design (E. Prouff, ed.), vol. 7864 of Springer LNCS, pp. 99–113, 2013.

11. B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Assche, “Effi-
cient and First-Order DPA Resistant Implementations of Keccak,” in Smart Card
Research and Advanced Applications (A. Francillon and P. Rohatgi, eds.), Springer
LNCS, pp. 187–199, 2014.

12. E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leak-
age Model,” in Cryptographic Hardware and Embedded Systems — CHES 2004
(M. Joye and J.-J. Quisquater, eds.), vol. 3156 of Springer LNCS, pp. 135–152,
2004.

13. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodol-
ogy for sidechannel resistance validation.” Non-Invasive Attack Test-
ing Workshop, 2011. http://www.cryptography.com/public/pdf/

a-testing-methodology-for-side-channel-resistance-validation.pdf.
14. A. J. Leiserson, M. E. Marson, and M. A. Wachs, “Gate-Level Masking under a

Path-Based Leakage Metric,” in Cryptographic Hardware and Embedded Systems
– CHES 2014 (L. Batina and M. Robshaw, eds.), vol. 8731 of Springer LNCS,
pp. 580–597, 2014.

15. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-order threshold
implementations,” in Advances in Cryptology ASIACRYPT 2014 (P. Sarkar and
T. Iwata, eds.), vol. 8874 of Springer LNCS, pp. 326–343, 2014.

