
Key Recovery for LWE in Polynomial Time

Kim Laine1 and Kristin Lauter2

1 University of California, Berkeley
laine@math.berkeley.edu

2 Microsoft Research, Redmond
klauter@microsoft.com

Abstract. We present a generalization of the Hidden Number Problem and generalize the
Boneh-Venkatesan method [BV96, Shp05] for solving it in polynomial time. We then use this
to mount a key recovery attack on LWE which runs in polynomial time using the LLL lattice
basis reduction algorithm. Success can be guaranteed with overwhelming probability for narrow
error distribution when q ≥ 2O(n), where n is the dimension of the secret key, and we can give
an explicit constant in the exponent, but in practice the performance is significantly better. The
same attack can be used to break RLWE for the same parameter ranges.
Two main types of attacks are already known for LWE: the distinguishing attack [MR09] and the
decoding attack ([LP11]), which uses the BKZ algorithm. Our key recovery attack is interesting
because it runs in polynomial time and yields simple and concrete security estimates for a wide
range of parameters depending in a clear and explicit way on the effective approximation factor
in the LLL algorithm. We ran the attack for hundreds of LWE instances demonstrating successful
key recovery attacks and yielding information about the effective approximation factor as the
lattice dimension grows (see Figure 3). For example, we successfully recover the secret key for
an instance with n = 350 in about 3.5 days on a single machine.

Keywords: Hidden Number Problem, LWE, key recovery, lattice-based cryptography

1 Introduction

Learning with errors (LWE), introduced by Regev in 2005, is a generalization of the learning par-
ity with noise problem. Roughly speaking, the problem setting involves a system of d approximate
linear equations in n variables modulo q:

a0,0s0 + a0,1s1 + . . .+ a0,n−1sn−1 ≈ t0 (mod q)

a1,0s0 + a1,1s1 + . . .+ a1,n−1sn−1 ≈ t1 (mod q)

...
...

ad−1,0s0 + ad−1,1s1 + . . .+ ad−1,n−1sn−1 ≈ td−1 (mod q)

Two questions can now be asked. The decision version of LWE asks to distinguish whether a
vector t ∈ Zdq is of the form

[
t0, t1, . . . , td−1

]
or sampled uniformly at random from Zdq . The

search version asks to solve the system, i.e. to find s =
[
s0, s1, . . . , sn−1

]
.

In the seminal paper [Reg09] Regev proved that, in some parameter settings, if decision-LWE can
be solved in time polynomial in n, then there are polynomial time quantum algorithms for solving
worst cases of the lattice problems GapSVP3 and SIVP4 with γ = poly(n). These problems are
widely believed to be hard with the best known algorithms having exponential complexity in
n. In the same paper he proved that when q = poly(n) there is a rather simple polynomial
time search-to-decision reduction when decision-LWE can be solved with exponentially good
advantage.
Later Peikert [Pei09] presented a purely classical reduction to search-LWE in the case q = poly(n)
from a new lattice problem GapSVPζ,γ , which is an easier variant of GapSVPγ . Most importantly,

3 GapSVPγ takes as input a lattice Λ and a rational number L. The problem is to decide whether the shortest
vector in the lattice has length λ1(Λ) < L or λ1(Λ) > γ · L. This is essentially a decision version of SVP.

4 SIVPγ is the problem of finding a basis {b1, . . . ,bn} for a lattice Λ, such that ||bn|| < γ ·λn(Λ), where λi(Λ)
denotes the i-th shortest vector in the lattice.

there is no longer a reduction from the worst-case lattice search problem SIVP. When the modulus
is q ≥ 2n/2 the situation is slightly better: search-LWE can be classically reduced from the usual
worst-case GapSVP.

In [Reg09] Regev also presented a public-key cryptosystem based on LWE. Since then, the LWE
problem and its variant ring-LWE (RLWE) [LPR13] have become hugely important as build-
ing blocks for homomorphic and post-quantum private and public-key primitives and proto-
cols [BV11, Bra12, BGV12, BV14, LP11, LNV, GLN, BLN, LLN, BCNS14].

In this work we define a higher dimensional generalization of the Hidden Number Problem
and construct a polynomial time algorithm in the spirit of Boneh and Venkatesan [BV96] (see
also [Shp05]) to solve it. We then adapt this same approach to target LWE and obtain a poly-
nomial time key recovery attack to solve search-LWE, which applies in the case of exponentially
large modulus q and narrow error distribution. For large enough n, we find that success can be
guaranteed with high probability roughly when log2 q > 2n, but that in practice significantly
smaller moduli are vulnerable.

Our polynomial time key recovery attack should be viewed in the context of the known attacks
on LWE, namely the distinguishing attack [MR09], and the decoding attack [LP11]. The decoding
attack is stronger than the distinguishing attack in that it recovers the secret key, but it relies
on the BKZ algorithm so it does not run in polynomial time and its performance is difficult
to analyze. In practice, for applications [LNV, GLN, BLN, LLN, BCNS14], LWE parameters
are selected to avoid even the distinguishing attack and are not currently vulnerable to our
polynomial time key recovery, although vulnerable parameter ranges do appear very naturally
in applications to homomorphic encryption. This demonstrates the importance of following the
recommended parameters even if one does not care about the threat of the distinguishing attack.

But our attack is interesting for several additional reasons: First, it demonstrates that for large
enough q the classical reduction ([Pei09], see Theorem 6 below) is not relevant for cryptography
in the sense that both the search-LWE and GapSVP problems can be solved in polynomial time
for that parameter range (see Remark 5 below).

Second, our attack is efficient enough that we were able to run it for hundreds of LWE instances
for different parameter sizes. The results are shown in Figure 3, where the green dots indicate
successful secret key recovery, while the red dots indicate failed attempts. These experiments
allow us to observe the effective approximation factor in the LLL algorithm. Although theory
guarantees that LLL finds a vector of length no more than γ times the length of the shortest
vector, where γ = 2µN , N is the lattice dimension and µ = 1

2
, in practice it is known (see for

example [NS06]) that µ can be expected to be much smaller. More correctly, what we observe
is the effective approximation factor appearing in Babai’s nearest planes method [Bab86] given
an LLL reduced basis. Secure parameter selection for LWE depends heavily on the asymptotic
behavior of the number µ in the LLL-Babai algorithm, and our experiments shown in Figure 3
demonstrate the rough growth of µ as the lattice dimension grows, up to dimension around 800.

Finally, we show how practical the attack is by running it on increasingly large parameter sets.
For example, the attack for n = 350 terminates successfully in roughly 3.5 days, running on
a single machine. The actual running time for the attack in practice matches very closely the
predicted running time for optimized LLL implementation, O(N4 log2 q), which makes it easy
for us to predict the running time of the attack for larger parameter sizes.

The paper is organized as follows. In Section 2 we study an n-dimensional Generalized Hidden
Number Problem (GHNP), which is closely related to search-LWE. We describe a generalization
of the method of Boneh and Venkatesan [BV96, Shp05] for solving it in polynomial time when
the parameters are in certain ranges. Most importantly the modulus q must be exponential in
the dimension n. In Section 3 we use the results of Section 2 to mount a polynomial time key
recovery attack on search-LWE, which is guaranteed to succeed with overwhelming probability for
certain LWE parameter ranges. In Section 4 we study the attack in practice and present several
examples up to key dimension n = 350. We attempt to extrapolate these results to larger n to
understand better when a polynomial time attack can be expected to succeed. In Sections 5, 6
we study the security implications of our attack. We observe that vulnerable parameters come
up very naturally in applications of LWE to homomorphic cryptography and discuss implications
for LWE parameter selection.

2 Generalized Hidden Number Problem

We start by recalling the definition of the hidden number problem (HNP) and subsequently de-
scribe an n-dimensional generalization of it. Next we generalize the approach of [BV96, Shp05]
to find a polynomial time algorithm for solving this generalized hidden number problem (GHNP),
which is essentially solving an approximate-CVP in a particular lattice using LLL [LLL82] com-
bined with Babai’s nearest planes method [Bab86]. The main content of the result is to see that
while LLL-Babai is only guaranteed to solve CVP up an exponential approximation factor, it is
good enough in certain cases to solve GHNP.

Notation. In all of this work we assume that q is an odd prime and r := log2 q. By Zq we denote
integers modulo q, but as a set of representatives for the congruence classes we use integers in the
interval (−q/2, q/2). By a subscript q we denote the unique representative of an integer modulo q
within this interval.

Definition 1. By MSB`(k) we denote the ` most significant bits of the integer k not counting
the sign. For example,

MSB4(175) = 160 , MSB5(−175) = −168 .

Most importantly, we always have∣∣k −MSB`(k)
∣∣ < 2blog2 |k|c+1−` .

Definition 2 (HNP). Let s ∈ Zq be a fixed secret number chosen uniformly at random. Given d
samples of the form (

a,MSB`
(

[as]q
))
∈ Zq × Zq

where a ∈ Zq are chosen uniformly at random, the problem HNPr,`,d is to recover s.

Boneh and Venkatesan [BV96] showed how HNP can be solved in polynomial time. Their
method used polynomial time lattice reduction [LLL82] combined with Babai’s nearest planes
method [Bab86] to solve an approximate-CVP in a particular lattice. The algorithm for solving
the HNP was then used to attack the Diffie-Hellman problem in cryptography. More precisely,

Theorem 1 ([BV96, Shp05]). If d and ` are chosen appropriately, HNPr,`,d can be solved in
time poly(r). For instance, this happens when d = ` =

√
2r.

We will generalize Definition 2 and Theorem 1 to n dimensions.

Definition 3 (GHNP). Let s ∈ Znq be a fixed secret vector chosen uniformly at random. Given d
samples of the form (

a,MSB`
(
〈a, s〉q

))
∈ Znq × Zq ,

where a ∈ Znq are chosen uniformly at random, the problem GHNPn,r,`,d is to recover s.

In the rest of this section we will describe a probabilistic polynomial time algorithm for solving
GHNPn,r,`,d when r, d ∈ O(n) and n, ` are big enough. Our approach is a direct generalization
of the method of [BV96].

Notation. We denote the i-th coefficient of a vector v by v[i].

We want to solve GHNPn,r,`,d with samples (ai,MSB` (〈ai, s〉q)), where i = 0, . . . , d − 1. The
first step is to make this into a lattice problem by considering the full (n+d)-dimensional lattice
Λn,r,`,d spanned by the rows of

q 0 · · · 0 0 0 · · · 0
0 q · · · 0 0 0 · · · 0
...

. . .
. . . 0 0 0

. . . 0
0 0 · · · q 0 0 · · · 0

a0[0] a1[0] · · · ad−1[0] 1/2`−1 0 · · · 0

a0[1] a1[1] · · · ad−1[1] 0 1/2`−1 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

a0[n− 1] a1[n− 1] · · · ad−1[n− 1] 0 0 · · · 1/2`−1


. (1)

Clearly Λn,r,`,d contains the vector

v =
[
〈a0, s〉q, 〈a1, s〉q, . . . , 〈ad−1, s〉q, s[0]/2`−1, s[1]/2`−1, . . . , s[n− 1]/2`−1

]
. (2)

Denote
ui = MSB`

(
〈ai, s〉q

)
. (3)

The distance between 〈ai, s〉q and ui can be bounded using Definition 1:

|〈ai, s〉q − ui| < 2blog2 |〈ai,s〉q|c+1−` ≤ 2blog2(q−1)c−` < 2r−` . (4)

The vector
u =

[
u0, u1, . . . , ud−1, 0, . . . , 0

]
∈ Rn+d (5)

is not in Λn,r,`,d, but using (4) we can bound its Euclidean distance from v:

||v − u|| ≤
√
n+ d 2r−` .

Theorem 2 (LLL-Babai). Let Λ be a lattice of dimension N . An approximate-CVP in Λ can
be solved in polynomial time up to an approximating factor 2µN . A value of µ = 1/2 is guaranteed,
but in practice significantly better performance (smaller µ) can be expected.

Proof. The value µ = 1/2 follows from the result of Babai [Bab86] and the performance guarantee
of LLL [LLL82]. The arguments in [NS06] about average perfomance of LLL on random lattices
explains why LLL yields in some sense much better bases than the theoretical result of [LLL82]
promises. Due to this, the algorithm of Babai can also be expected to yield significantly better
results than is guaranteed by theory. Both LLL and Babai’s method have complexity polynomial
in N . ut

The key to solving GHNPn,r,`,d in polynomial time is to argue that, in many cases, the algorithm
LLL-Babai in Theorem 2 actually solves approximate-CVP for u well enough to recover v, from
which s can be read.
Consider what happens if we run LLL-Babai with input u. By Theorem 2 it is guaranteed to
output a vector

w =
[
〈a0, t〉+ qk[0], 〈a1, t〉+ qk[1], . . . , 〈ad−1, t〉+ qk[d− 1],

t[0]/2`−1, t[1]/2`−1, . . . , t[n− 1]/2`−1
]
∈ Λn,r,`,d ,

(6)

where t ∈ Zn, k ∈ Zd, such that

||v −w|| ≤ ||v − u||+ ||u−w|| ≤
(

1 + 2µ(n+d)
)
||v − u|| ≤

(
1 + 2µ(n+d)

)√
n+ d 2r−` . (7)

If this is the case, then all differences (v −w)[j] must lie in the interval[
−
(

1 + 2µ(n+d)
)√

n+ d 2r−`,
(

1 + 2µ(n+d)
)√

n+ d 2r−`
]
. (8)

We can assume that t ∈ Znq . Namely, let tred denote a vector in Znq that is obtained by reducing
the entries of t modulo q. By replacing t with tred in the definition of w, we obtain a new lattice
vector which differs in the first d entries from w by multiples of q. But adding suitable multiples
of the first n generators of the lattice Λn,r,`,d (first n rows of the matrix) to this vector yields
a lattice vector wred whose first d entries are the same as those of w and whose remaining n
entries are possibly smaller of absolute value than those of w.
The first d differences (v−w)[j] are of the form 〈aj , s− t〉q + qk̃[j], where k̃ ∈ Zd. If we assume
that (

1 + 2µ(n+d)
)√

n+ d 2r−` <
q

2
, (9)

or equivalently that

` > log2

[(
1 + 2µ(n+d)

)√
n+ d

]
+ 1 , (10)

then k̃ = 0, so for the first d differences we obtain the simple conditions∣∣〈aj , s− t〉q
∣∣ ≤ (1 + 2µ(n+d)

)√
n+ d 2r−` <

q

2
. (11)

The last n differences (v − w)[j] are of the form (s − t)[j]/2`−1 and these also need to be
contained in the interval (8), but since we know that s ∈ Znq and we can assume that t ∈ Znq as
was explained above, then certainly (s− t)[j]/2`−1 are in the interval (8).

We now work backwards by fixing a vector t ∈ Znq , t 6= s, and estimate the probability that
there is a vector k ∈ Zd such that w ∈ Zn+d formed from these, as in (6), can be the output of
LLL-Babai with input u in the sense that for the first d differences (11) holds. As was explained
above, this is automatic for the last n differences, so we do not need to worry about those. If a
vector a ∈ Znq is chosen uniformly at random, then 〈a, s− t〉q is distributed uniformly at random
in Zq, so the probability that 〈a, s− t〉q is in the interval (8) is

2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1

q
. (12)

So for the fixed vector t, for each j = 0, . . . , d− 1 independently, the probability that (11) holds
is given by (12).

Lemma 1. The probability that there is a vector k ∈ Zd such that w ∈ Zn+d formed from t
and k, as in (6), can be the output of LLL-Babai with input u in the sense that all (11) hold is

≤

2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1

q

d .
The probability is taken over the d vectors aj chosen uniformly at random from Znq . ut

Next we compute the probability that in addition to v there are no other vectors w 6= v close
enough to u for LLL-Babai to find them. More precisely, we compute the probability that in
addition to s, there are no other vectors t 6= s that would yield a w (as in (6)) close enough to u.
There are qn− 1 possible vectors t 6= s for which the experiment of Lemma 1 can succeed or fail.
Using Lemma 1, we immediately get the following result.

Lemma 2. The probability that v is the only vector LLL-Babai can output is

> 1−
(
qn − 1

qd

)[
2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1
]d
,

where the vectors aj are chosen uniformly at random from Znq . ut

All we need to do is to ensure that the probability in Lemma 2 is very large so that the vector
returned by LLL-Babai with input u is almost certainly the correct vector v, from which s can
be read. To get a concrete result, we ask that this probability is bigger than 1 − 1/2n, which
yields the inequality

2n
(
qn − 1

qd

)[
2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1
]d
< 1 .

A bit cleaner and just a tiny bit stronger is the inequality

2(r+1)n−rd
[(

1 + 2µ(n+d)
)√

n+ d 21+r−` + 1
]d
< 1 . (13)

To get an even simpler result, we instead ask that

2(r+1)n−rd
[
2µ(n+d)+2+r−`√n+ d

]3d/2
< 1 , (14)

which implies (13).

Remark 1. The exponent 3d/2 could be chosen to be significantly smaller. Namely, for large
enough n the exponent can be taken to be any arbitrarily small number bigger than 1. We will
discuss this later.

By taking logarithms in (14) we obtain

(r + 1)n+
rd

2
+

3d

2

[
µ(n+ d) + 2− `+ log2

√
n+ d

]
< 0 . (15)

For the sake of getting a neat result, we approximate

2 + log2

√
n+ d ≤ ε(n+ d) , ε =

2 + log2

√
n

n
,

to get

(r + 1)n+
rd

2
+

3d

2

[
µ(n+ d) + 2− `+ log2

√
n+ d

]
≤ (r + 1)n+

rd

2
+

3d

2
[(µ+ ε)(n+ d)− `] < 0 .

This simplifies into

3(µ+ ε)d2 − [3`− r − 3(µ+ ε)n] d+ 2(r + 1)n < 0 , (16)

which is possible when the discriminant is positive:

[3`− r − 3(µ+ ε)n]2 − 24(µ+ ε)(r + 1)n > 0 . (17)

We assume that 3` − r − 3(µ + ε)n > 0, i.e. ` > r/3 + (µ + ε)n. In this case solving (17) and
using r > ` yields

` >
r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n , r >

(
9

2
+ 3
√

2

√
1 +

1

3(µ+ ε)n

)
(µ+ ε)n . (18)

To get a nicer looking result, we use instead the bound

r >
21

2
(µ+ ε)n , (19)

which implies the bound for r in (18). Write

r =
21

2
(µ+ ε)n+ C ∈ O(n) ,

where C is a constant, so q ∈ 2O(n). The optimal value for d is

d =
3`− r − 3(µ+ ε)n

6(µ+ ε)
<

2r − 3(µ+ ε)n

6(2 + log2

√
n)
n <

3

2
(µ+ ε)n2 +

Cn

6
∈ O(n2) .

The last thing to check is that the bound (10) is indeed satisfied, but this follows easily from (15).

We have now obtained an analogue of Theorem 1.

Theorem 3. Let ε =
(
2 + log2

√
n
)
/n and suppose

r >
21

2
(µ+ ε)n , ` >

r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n , d =

⌈3`− r − 3(µ+ ε)n

6(µ+ ε)

⌋
.

Then GHNPn,r,`,d can be solved in probabilistic polynomial time in n. A value of µ = 1/2 is
guaranteed to work so that the algorithm succeeds with probability at least 1− 1/2n.

Proof. LLL-Babai finds the approximate closest vector in the (n+d)-dimensional lattice Λn,r,`,d
in polynomial time in n + d ∈ O(n2). By the arguments above, if r and ` satisfy the given
(loose) bounds, we can expect the vector given by LLL-Babai to be good enough to recover s
with probability at least 1− 1/2n. According to Theorem 2, LLL-Babai is guaranteed to return
the closest vector up to an approximating factor with µ = 1/2, although in practice significantly
better performance, i.e. smaller µ, can be expected. ut

As was mentioned in Remark 1, the exponent 3d/2 in (14) can be taken to be any arbitrarily
small number bigger than 1 as long as n is large enough. We consider now the extreme case
where the exponent is taken to be 1. Then instead of (16) we obtain

(µ+ ε)d2 − [`− (µ+ ε)n] d+ (r + 1)n < 0 .

The discriminant must be positive, which instead of (18) yields

` > (µ+ ε)n+ 2
√

(µ+ ε)(r + 1)n , r >

(
4 +
√

15

√
1 +

4

15(µ+ ε)n

)
(µ+ ε)n .

When n is large enough, it suffices to take for example r > 8(µ+ ε)n. In this case d = O(n).
As was mentioned earlier, a choice of µ = 1/2 is guaranteed to work [Bab86], but if the parameters
of LLL are chosen appropriately, then in fact µ ≈ 1/4 will work as long as n is large enough.
This means that r > 2n should work when n is large enough.

3 Key Recovery for LWE

In this section we apply Theorem 3 to attack search-LWE.

Definition 4 (search-LWE). Let n be a security parameter, q(n) a prime integer modulus,
r := log2 q, and χ an error distribution over Zq. Let s ∈ Znq be a fixed secret vector chosen
uniformly at random. Given access to d samples of the form(

a, [〈a, s〉+ e]q

)
∈ Znq × Zq ,

where a ∈ Znq are chosen uniformly at random and e are sampled from the error distribution χ,
the problem search-LWEn,r,d,χ is to recover s.

Definition 5 (decision-LWE). Let n be a security parameter, q(n) a prime integer modulus,
r := log2 q, and χ an error distribution over Zq. Let s ∈ Znq be a fixed secret vector chosen
uniformly at random. Given a vector t ∈ Zdq , the problem decision-LWEn,r,d,χ is to distinguish
with some non-negligible advantage whether t is of the form

t =
[

[〈a0, s〉+ e0]q , . . . , [〈ad−1, s〉+ ed−1]q

]
,

where ai ∈ Znq are chosen uniformly at random and ei are sampled from the error distribution χ,
or whether t is sampled uniformly at random from Zdq .

In practice, the distribution χ is always taken to be a discrete Gaussian distribution DZ,σ. This
is the probability distribution over Z that assigns to an integer x a probability

Pr(x) ∝ exp

(
− x2

2σ2

)
,

where σ is the standard deviation. It is efficient, but non-trivial, to sample from such a distribution
up to any level of precision [GPV08].

Theorem 4 ([Reg09]). If decision-LWE can be solved with exponentially good advantage in
polynomial time and q = poly(n), then search-LWE can be solved in polynomial time.

Remark 2. Theorem 4 fails for exponentially large moduli. Even if the distinguishing advantage
was perfect and takes only polynomial time, the time to recover the secret s would be proportional
to nq, so it would be still exponential in n.

The main result of [Reg09] was that when q = poly(n) LWE can be proven to be hard in the
following sense.

Theorem 5 ([Reg09]). If q = poly(n), σ >
√
n/(2π) and d = poly(n), then there exists a

polynomial time quantum reduction from worst-case GapSVPÕ(nq/σ) to decision-LWEn,r,d,DZ,σ .

For exponentially large q the following classical reduction can be used.

Theorem 6 ([Pei09]). If q ≥ 2n/2, σ >
√
n/(2π) and d = poly(n), then there exists a polyno-

mial time classical reduction from worst-case GapSVPÕ(nq/σ) to search-LWEn,r,d,DZ,σ .

Remark 3. For smaller values of q security can be based on a classical reduction to an easier and
less studied decision lattice problem GapSVPζ,γ [Pei09].

Remark 4. In practical applications to cryptography the standard deviation σ is often taken to
be so small that the reductions do not apply.

To find the LWE secret s directly using Theorem 3 we need a way to read MSB`
(
〈a, s〉q

)
from [〈a, s〉+ e]q. If σ is small enough and ` big enough, this is likely to be possible by sim-
ply reading the ` most significant bits of [〈a, s〉+ e]q since adding e is unlikely to change them.
It is not hard to bound the value ` that a particular σ permits (with high probability), but we
will instead take a different approach by slightly modifying the proof of Theorem 3. Instead of
taking ui to be the MSB` parts of the inner products in the LWE samples as in (3), simply take

ui = [〈ai, s〉+ ei]q (20)

from the LWE samples and form the vector u just as in (5):

u =
[
u0, u1, . . . , ud−1, 0, . . . , 0

]
∈ Rn+d . (21)

If the standard deviation σ is so small that the absolute values of ei are very unlikely to be larger
than 2r−`, we can form the vector v as in (2) and obtain inequalities

|〈ai, s〉q − ui| < 2r−`

as in (4), and the rest of the proof goes through without change.
One detail was ignored above. For the argument to work, we need

[〈ai, s〉+ ei]q = 〈ai, s〉q + ei .

In applications of LWE to cryptography this is typically needed for decryption to work correctly.
Since the errors are assumed to be small, the probability of this not being true is extremely small.
To make things simpler, we assume this to be the case for all LWE samples, although adding it
as an additional probabilistic condition would be very easy.

Definition 6. For all LWE samples in Definitions 4 and 5 we assume

[〈a, s〉+ e]q = 〈a, s〉q + e .

To connect ` to the standard deviation σ, we need to know something about the mass of the
distribution DZ,σ that lies outside the interval

(
− 2r−`, 2r−`

)
.

Lemma 3 ([Ban93]). Let B ≥ σ. Then

Pr [|DZ,σ| ≥ B] ≤ B

σ
exp

(
1

2
− B2

2σ2

)
.

According to Lemma 3, the probability that the error has absolute value at least 2r−` is

≤ σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)
.

Of course in practice we want the probability of this happening for none of the d samples to be
very close to 1.

Lemma 4. The top ` bits of 〈ai, s〉q can be read correctly from all d LWE samples with probability
at least [

1− σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)]d
.

Now we take ` to be the lower bound in Theorem 3 to obtain our main result.

Theorem 7. Let ε =
(
2 + log2

√
n
)
/n and suppose r > (21/2)(µ+ ε)n. Let

` =

⌈
r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n

⌉
, d =

⌈3`− r − 3(µ+ ε)n

6(µ+ ε)

⌋
.

Then search-LWEn,r,d,DZ,σ can be solved in probabilistic polynomial time in n. A value of µ = 1/2
is guaranteed to work so that the algorithm succeeds with probability at least(

1− 1

2n

)[
1− σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)]d
.

ut

Of course the discussion after Theorem 3 applies here also, meaning that success can (roughly
speaking) be guaranteed in the sense of Theorem 7 when n is large enough, r > 2n and d is
chosen appropriately.

Remark 5. It is important to understand that Theorem 7 does not contradict Theorem 6, be-
cause even if σ is large enough for the reduction to apply, for large q it is entirely plausible
that GapSVPÕ(nq/σ) is easy.

4 Practical Performance

In the proofs of Theorems 3 and 7 we performed several very crude estimates to obtain a provably
polynomial running time with high probability. In practice we can of course expect the attack
to perform significantly better than Theorem 7 suggests. In this section we try to get an idea of
what can be expected to happen in practice.
The estimate in (4) is very crude on average. In the proof of Theorem 7 the differences

∣∣〈ai, s〉q−
ui
∣∣ are exactly equal to the absolute values of the errors ei, which are distributed according

to DZ,σ. If instead of using the rows of the matrix (1) we use the rows of

q 0 · · · 0 0 0 · · · 0
0 q · · · 0 0 0 · · · 0
...

. . .
. . . 0 0 0

. . . 0
0 0 · · · q 0 0 · · · 0

a0[0] a1[0] · · · ad−1[0] dσe/2dre−1 0 · · · 0

a0[1] a1[1] · · · ad−1[1] 0 dσe/2dre−1 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...

a0[n− 1] a1[n− 1] · · · ad−1[n− 1] 0 0 · · · dσe/2dre−1


to generate the lattice Λn,r,`,d, the expectation value of ||v − u||2 is

≤ dE
[
D2

Z,σ
]

+ ndσe2 = d
(
σ2 + E [DZ,σ]2

)
+ ndσe2 ≤ (n+ d) dσe2 ,

so we can expect the distance ||v − u|| to be bounded from above by
√
n+ d dσe.

Another significant improvement to the running time is to define an (n+ d)× d matrix

q 0 0 · · · 0
0 q 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · q
a0[0] a1[0] a2[0] · · · ad−1[0]
a0[1] a1[1] a2[1] · · · ad−1[1]

...
...

...
. . .

...
a0[n− 1] a1[n− 1] a2[n− 1] · · · ad−1[n− 1]


(22)

and let A be its d × d row-Hermite normal form, i.e. A is a triangular matrix whose rows
generate the same Z-module as the rows of the matrix (22). Let Λ be the full d-dimensional
lattice generated by the rows of A. As before, let ui = [〈ai, s〉+ ei]q and set

u =
[
u0, u1, . . . , ud−1

]
∈ Rd . (23)

Now use LLL-Babai to find a vector close to u in the lattice Λ. This recovers a vector which is
an integral linear combinations of the rows of A. Simply express this in the original basis, i.e. in
terms of the rows of the matrix (22), to recover a candidate for s as the coefficients of the last n
rows. This is the approach that we will work with for the rest of this paper.
In this case we use

v =
[
〈a0, s〉q, 〈a1, s〉q, 〈a2, s〉q, . . . , 〈ad−1, s〉q

]
and find that the expected distance squared ||v − u||2 is

dE
[
D2

Z,σ
]

= d
(
σ2 + E [DZ,σ]2

)
= dσ2 ,

so that the expected distance ||v − u|| is σ
√
d.

A straightforward modification of the calculation yielding (13) shows that to succeed with prob-
ability at least p we can expect to need

log2(1− p) + r(d− n) > d log2

[
2
(

1 + 2µd
)
σ
√
d+ 1

]
. (24)

Remark 6. Instead of asking for a high success probability, we might only want to ask to succeed
with some positive probability, in which case we take p = 0.

4.1 Successful Attacks

All experiments described in the rest of this paper are examples of our key recovery attack run
for varying parameter sets. All attacks were run on a 2.6 GHz AMD Opteron 6276 using the
floating point variant of LLL [NS06] in PARI/GP [PARI2]. All LWE samples were generated
using the LWE oracle implementation in SAGE.
These experiments are intended to demonstrate the key points about our key recovery attack:

1. The time required to recover the secret key is roughly the running time of LLL, which has
been estimated in [NS06] to be approximately O(d4r2), where d is the dimension of the
lattice and r := log2 q. This prediction approximates very closely the running time of the
attack in practice, which is shown very clearly by the roughly linear graph in Figure 1 when
the running time is plotted against d4r2.

Fig. 1: Timings for Key Recovery Attacks (σ = 8/
√

2π, p = 0)

0 2e14 4e14 6e14 8e14 1e15
d4 r2

0

1000

2000

3000

4000

5000

T
im

e
 (

m
in

u
te

s)

2. The attack is practical in the sense that even running on a single machine, an instance of
LWE with n = 350 can be successfully attacked in roughly 3.5 days. Figure 2 shows the
running time of the attack (in minutes) for various n up to size 350.

Fig. 2: Timings for Key Recovery Attacks (σ = 8/
√

2π, p = 0)

100 150 200 250 300 350
Dimension of secret key: n

0

1000

2000

3000

4000

5000

T
im

e
 (

m
in

u
te

s)

3. The range of LWE parameters which can be successfully attacked via this polynomial time
key recovery attack depends very intimately on the approximation factor 2µd in the LLL-
Babai algorithm (LLL followed by Babai’s nearest planes method). Theorem 2 ([Bab86]) only
guarantees µ ≤ 1/2, but in practice significantly smaller µ can be expected. Any improvement
to the approximation factor in the LLL-Babai algorithm will have a direct and significant
impact on which LWE parameters are attackable in polynomial time.

4. Our attack gives an indirect way to measure the effective value of µ in the approximation
factor 2µd of LLL-Babai: Because we can predict whether our attack will succeed or fail
fairly accurately based on the value of µ, we can run it on various parameter sets and test
whether the secret key was successfully recovered or not. Because the attack is extremely
efficient we can run it hundreds of times, for varying parameters, thereby observing effective
bounds on µ. We have run these experiments and the results are show in Figure 3. The green
dots represent attacks which succeeded, thereby indicating that the effective approximation
factor was no more than the plotted value. The red dots represent key recovery attacks which
failed. These dots indicate a strong likelihood that for each key dimension n the effective
value of µ in the approximation factor lies somewhere between the adjacent green and red
dots, although this boundary is fuzzy due to probabilistic effects.

More specifically, to measure the practical performance of LLL-Babai and consequently of the
polynomial time key recovery attack, we define a function which is an expression for µ derived
from the formula for the likelihood that the attack will succeed (Equation 24):

µLLL(n, r, d, σ, p) :=
1

d
log2

[
(1− p)1/d 2r(1−n/d) − 1

2σ
√
d

− 1

]
,

This function measures the effective performance of LLL-Babai in the sense that for an attack to
succeed with probability at least p we can expect to need µ ≤ µLLL in the approximation factor
2µd.

The graphs in Figure 3 show a relatively clear boundary in the values of µLLL between failed and
succeeded attacks, which can then be extrapolated to bigger examples. We present the values
µLLL as functions of both and n and d, where d is the dimension of the lattice Λ for which LLL
was performed. A green dot indicates that the attack succeeded (correct s was recovered) and a
red dot that the attack failed (incorrect s was recovered).

The dimension d of course affects µLLL very strongly, so we want to choose it in an optimal
way given all the other parameters, i.e. in a way that maximizes µLLL. We let dopt be such that
∂dµLLL(n, r, dopt, σ, p) = 0 (rounded to an integer). Then parameter selection in all of the attacks
we performed was done by taking d ≈ dopt. For a particular value of n the experiments differ
mainly in the choice of r, and d ≈ dopt is always computed case-by-case. It is not hard to see

Fig. 3: Effective approximation constant µ in LLL-Babai algorithm (σ = 8/
√

2π, p = 0)

75 100 125 150 175 200 225 250 275 300 325 350
Dimension of secret key: n

0.014

0.016

0.018

0.02

0.022

0.024

0.026

µ
L
L
L

250 300 350 400 450 500 550 600 650 700 750 800
Dimension of lattice: d

0.014

0.016

0.018

0.02

0.022

0.024

0.026

µ
L
L
L

that when the example size increases, the value dopt approaches 2n. It is also worth pointing out
that the effect of p on µLLL is very small unless p is extremely close to 1.
In Table 1 we show more details of the experiments in Figure 3 that lie at the boundary of
succeeding and failing. In all these experiments q is taken to be the smallest prime larger than
some power of 2, so the value of r given is a very close approximation but not the exact value.

4.2 Practical Key Recovery

In practice, key recovery in polynomial time can be performed as follows. The LWE problem
determines n, r and σ. Now find dopt and see if the corresponding µLLL is small enough for there
to be a chance for the attack to succeed. This can be done e.g. by extrapolating the boundary
from Figure 3. For performance reasons you might want to decrease d to be as small as possible
so that the attack can still be expected to succeed based on the value of µLLL. Now observe d

Table 1: Key recovery attacks and running times (in minutes) (σ = 8/
√

2π, p = 0)
Succeeded︷ ︸︸ ︷ Failed︷ ︸︸ ︷

n log2 q d µLLL Time (min) log2 q d µLLL Time (min)

80 16 255 0.016602 10 15 265 0.013818 9
90 18 270 0.019443 16 17 280 0.016941 15
100 19 300 0.019510 25 18 310 0.017245 24
110 20 315 0.019594 37 19 325 0.017523 33
120 22 340 0.021610 54 21 350 0.019680 56
130 23 355 0.021578 70 22 360 0.019792 68
140 24 380 0.021563 98 23 385 0.019898 86
150 26 395 0.023131 135 25 400 0.021563 121
160 27 420 0.023050 173 26 425 0.021575 157
170 28 440 0.022990 213 27 445 0.021597 190
180 29 460 0.022944 263 28 465 0.021624 252
190 31 480 0.024169 353 30 485 0.022911 338
200 32 500 0.024085 430 31 505 0.022887 379
210 33 520 0.024014 520 32 525 0.022871 480
220 35 540 0.025052 691 34 545 0.023956 621
230 36 560 0.024956 758 35 565 0.023906 767
240 38 580 0.025882 968 37 585 0.024872 917
250 39 600 0.025769 1155 38 605 0.024798 1057
260 40 625 0.025667 1409 39 625 0.024733 1291
270 41 645 0.025576 1592 40 645 0.024674 1466
280 42 665 0.025493 1898 41 670 0.024623 1665
290 44 685 0.026260 2315 43 685 0.025418 2158
300 44 710 0.025350 2388 43 710 0.024537 2169
310 47 725 0.026867 3549 44 725 0.024498 2775
320 48 745 0.026762 3582 47 745 0.025996 3469
350 52 805 0.027193 5335 51 810 0.026491 4626

LWE samples, form the matrix (22), find the row-Hermite normal form A, form the lattice Λ
generated by the rows A and use LLL-Babai to find the closest lattice point to u (as in (23)),
express the closest vector in terms of the original basis (rows of (22)) and read the last n entries
to find s.

5 Security Implications

Key recovery for LWE in polynomial time is only possible when the modulus q is very large and
σ is very small. Such large moduli (relative to n) do not appear in any recommended parameter
ranges [Reg09, LP11, vdPS13, LN14]. These recommendations are typically calculated so that
the distinguishing attack [MR09, LP11] is infeasible, which gives good reason to believe that
also key recovery is infeasible. However, in applications to homomorphic cryptography, where
particularly deep circuits need to be homomorphically evaluated, parameters with very large q
and small σ might be desirable and ciphertext indistinguishability might be irrelevant. In these
cases it is of course particularly important to understand exactly how the polynomial time key
recovery attack performs.

We now recall how the distinguishing attack works. Suppose we have observed d ≥ n LWE
samples, computed the matrix A and formed the lattice Λ. By Λ∗ we denote the dual of Λ,
which is the lattice

Λ∗ = {y | 〈y,x〉 ∈ Z for every x ∈ Λ} .

Definition 7. The root-Hermite factor of a basis B = {b0, . . . ,bd−1} of a d-dimensional lattice
Λ is the number

δB :=

[
||b0||

| detΛ|1/d

]1/d
,

where || · || denotes the usual `2-norm.

The root-Hermite factor seems to be a very efficient way of measuring the quality of a basis
(smaller is better). In [NS06] it is argued that with LLL one can expect to find a basis with root-
Hermite factor of approximately 1.02 for a random lattice, but for the lattices in our examples

the root-Hermite factors of the LLL reduced bases are typically δB ≈ 2rn/d
2

< 1.02.
In the distinguishing attack the goal is to attack decision-LWE (Definition 5, i.e. to distinguish
with some non-negligible advantage if a vector u ∈ Zdq is sampled as in (23) or sampled uniformly
at random from Zdq . Let e ∈ Zd be a vector formed from the d errors ei. If we can find a short
integer vector y ∈ qΛ∗ that is non-zero modulo q, then

〈y,u〉 ≡ 〈u,A>s〉+ 〈y, e〉 ≡ 〈y, e〉 (mod q) ,

so if y is very short, then 〈y,u〉 (mod q) can be expected to be short and distributed as a sample
from a Gaussian with standard deviation ||y||σ. To be able to distinguish with high advantage
whether the sample is an honest LWE sample, we need ||y||σ/q to be small enough. If the
vector u is instead chosen uniformly at random from Zdq , the inner product can be expected
to be uniformly distributed modulo q. If the inner product modulo q is within (−q/4, q/4), the
attacker guesses that u comes from d LWE samples. The distinguishing advantage is (see [LP11])

exp
[
− π

(||y||√2π σ

q

)2]
.

If the attacker can compute a basis B∗ for qΛ∗ with root-Hermite factor δB∗ , then they can get
a distinguishing advantage of at least

exp
[
− π

(δdB∗ |detΛ∗|1/d
√

2π σ

q

)2]
≈ exp

[
− π

(δdB∗
√

2π σ

q1−n/d

)2]
, (25)

where we used that | detΛ∗| ≈ qn (see [vdPS13]). In this case the optimal choice for the dimension
is d =

√
nr/ log2 δB∗ [MR09]. If q is very large, according to (25) it suffices to find a basis

B∗ with fairly large root-Hermite factor and still expect a reasonable distinguishing advantage.
In [MR09, LP11, vdPS13, LN14] the authors attempt to estimate the computational effort needed
for this using various methods. It is conjectured in [GN08] that the computational complexity of
lattice reduction using the BKZ algorithm5 depends mostly on the achieved root-Hermite factor
and not so much on the dimension of the lattice. The BKZ simulation algorithm of [CN11] can
be used to estimate the performance of BKZ with large blocksize (≥ 50), which is needed to
achieve very small root-Hermite factors, and this was used in the recent analysis [LN14] to give
updated estimates for the security of LWE.
A series of papers presenting applications of homomorphic encryption ([LNV, GLN, BLN, LLN])
give recommended parameter sizes for RLWE based on the distinguishing attack as explained
above. For homomorphic computation, it is often necessary to ensure that q is very large in order
to allow for correct decryption after evaluating a deep circuit requiring many homomorphic
multiplications. For example, [GLN] recommend two parameter sets for simple machine learning
tasks to ensure 80 bits of security, (n, q) = (4096, 2128) and (n, q) = (8192, 2340), and [BLN]
suggests in addition (n, q) = (214, 2512) for evaluating the logistical regression function.

Example 1. In [LN14], estimates for an upper bound on the modulus q that provides 80 bits
of security are given (complexity of BKZ-2.0 needed to achieve a small enough root-Hermite
factor) with distinguishing advantage 2−80 and standard deviation σ = 8/

√
2π. Their results are

presented in Table 2.

LWE parameters with such small q are certainly not vulnerable to our polynomial time key
recovery attack. For example, for n = 1024 the smallest vulnerable r might be around 140, which
is much larger than the upper bound cited in Example 1. Of course these results are not exactly
comparable since the attacks are of such a different nature.

5 The state-of-the-art adaption of BKZ is the algorithm BKZ-2.0 by Chen and Nguyen [CN11].

Table 2: Bounds on r = log2 q for 80 bits of security against 2−80

distinguishing advantage (σ = 8/
√

2π)
n 1024 2048 4096 8192 16384

r ≤ 47.5 95.4 192.0 392.1 799.6

Example 2. For n = 1024 and r ≈ 140, with a lattice basis with root-Hermite factor δB∗ ≈
1.02 which is attainable with LLL for a random lattice according to [NS06], the distinguishing
advantage is near perfect according to (25). This means that distinguishing is very easy in these
cases, and here we estimate that with our attack we also recover the key in polynomial time.

Example 3. In [LN14], homomorphic evaluation of encryption and decryption circuits for block
ciphers is discussed and two homomorphic encryption schemes are compared, FV and YASHE. As
soon as one wishes to perform more than one multiplication, the lower bound on r increases
significantly. For example, using FV, to be able to do 10 homomorphic multiplications with n =
1024 one needs to have r ≥ 229 to ensure correct decryption. When n is increased the required
lower bound for r does increase, but not by as much as would be required for polynomial time
key recovery to work. For example, it suffices to take n ≥ 4096 for homomorphic-FV with 10
multiplications to be safe against a polynomial time attack.

According to Example 2 and the comment after Example 1, one way to view the polynomial time
key recovery attack is as follows. When q is exponential in n and σ is small, then distinguishing
can be done reliably in polynomial time and contrary to what Theorem 4 and Remark 2 suggest,
also key recovery can be done in polynomial time.

6 Conclusion

We conclude by presenting some estimates of parameters vulnerable to polynomial time key
recovery. Again we use σ = 8/

√
2π. Based on our experiments (e.g. Figure 3), we suggest some

upper bounds for µLLL with d = dopt, p = 0 that can be expected to be realized for large n.
Solving for a lower bound for r from (24) and extrapolating the observations of Figure 2 yields
the following results.

Table 3: Estimated smallest r vulnerable to polynomial time key recovery (σ = 8/
√

2π)
n µLLL < (est.) r > Time (est.)

512 0.030 76 25 Days
1024 0.032 147 4 Years
2048 0.035 303 275 Years
4096 0.038 640 19700 Years

We generalized the Hidden Number Problem to higher dimensions and showed how it also admits
a polynomial time solution, provided that certain restrictions on the parameters are met. Next
we modified the proof to also show a key recovery attack on LWE and found that when the
modulus q is large enough and the standard deviation σ of the error distribution is small enough,
the LWE secret s ∈ Znq can be recovered in time poly(n) when the number of samples is chosen
appropriately. Many examples of successful attacks were presented and used to estimate the
effective approximation constant in the LLL algorithm.

References

[Bab86] L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem, Combina-
torica 6 (1986), Issue 1, pp. 1-13.

[Ban93] W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers,
Mathematische Annalen 296, no. 1 (1993), pp. 625-635.

[BCNS14] J. Bos, C. Costello, M. Naehrig, D. Stebila, Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem, IACR Cryptology ePrint Archive
Report 2014/599, 2014.

[BLN] J. Bos, K. Lauter, M. Naehrig. Private Predictive Analysis on Encrypted Medical Data,
Journal of Biomedical Informatics (2014) DOI 10.1016/j.jbi.2014.04.003

[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) fully homomorphic encryption
without bootstrapping, In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pp. 309-325, ACM, 2012.

[BV14] Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (stan-
dard) LWE, SIAM Journal on Computing 43, no. 2 (2014), pp. 831-871.

[BV11] Z. Brakerski, V. Vaikuntanathan, Fully homomorphic encryption from ring-LWE and
security for key dependent messages, In Advances in Cryptology–CRYPTO 2011, pp.
505-524, Springer Berlin Heidelberg, 2011.

[BV96] D. Boneh, R. Venkatesan, Hardness of computing the most significant bits of secret
keys in Diffie-Hellman and related schemes, Advances in Cryptology—CRYPTO’96,
pp. 129-142, Springer Berlin Heidelberg, 1996.

[Bra12] Z. Brakerski, Fully homomorphic encryption without modulus switching from classical
GapSVP, In Advances in Cryptology–CRYPTO 2012, pp. 868-886, Springer Berlin Hei-
delberg, 2012.

[CN11] Y. Chen, P. Nguyen, BKZ 2.0: Better lattice security estimates, In Advances in Cryp-
tology–ASIACRYPT 2011, pp. 1-20, Springer Berlin Heidelberg, 2011.

[GN08] N. Gama, P. Nguyen, Predicting lattice reduction, In Advances in Cryptol-
ogy–EUROCRYPT 2008, pp. 31-51, Springer Berlin Heidelberg, 2008.

[GPV08] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new crypto-
graphic constructions, In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pp. 197-206. ACM, 2008.

[GLN] T. Graepel, K. Lauter, M. Naehrig. ML Confidential: Machine Learning on Encrypted
Data, International Conference on Information Security and Cryptology – ICISC 2012,
Lecture Notes in Computer Science 7839, pages 1–21. Springer Verlag, December 2012.

[LLN] Kristin Lauter, Adriana Lopez-Alt, Michael Naehrig. Private Computation on En-
crypted Genomic Data. LatinCrypt 2014 (GenoPri 2014).

[LNV] K. Lauter, M. Naehrig, V. Vaikuntanathan. Can Homomorphic Encryption Be Practi-
cal? CCSW 2011, ACM Cloud Computing Security Workshop 2011.

[LLL82] A. Lenstra, H. Lenstra, L. Lovász, Factoring polynomials with rational coefficients,
Math. Ann. 261 (1982), no. 4, pp. 515-534.

[LN14] T. Lepoint, M. Naehrig, A comparison of the homomorphic encryption schemes FV
and YASHE, In Progress in Cryptology–AFRICACRYPT 2014, pp. 318-335, Springer
International Publishing, 2014.

[LN13] M. Liu, P. Nguyen, Solving BDD by enumeration: An update, In Topics in
Cryptology–CT-RSA 2013, pp. 293-309, Springer Berlin Heidelberg, 2013.

[LP11] R. Lindner, C. Peikert, Better key sizes (and attacks) for LWE-based encryption, In
Topics in Cryptology–CT-RSA 2011, pp. 319-339, Springer Berlin Heidelberg, 2011.

[LPR13] V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over
rings, Journal of the ACM (JACM) 60, no. 6 (2013), 43.

[MR09] D. Micciancio, O. Regev, Lattice-based cryptography, In Post-quantum cryptography,
pp. 147-191, Springer Berlin Heidelberg, 2009.

[NS06] P. Nguyen, D. Stehlé, LLL on the average, Algorithmic Number Theory, pp. 238-256,
Springer Berlin Heidelberg, 2006.

[PARI2] The PARI Group, PARI/GP version 2.7.2, 2014, Bordeaux, available online from
http://pari.math.u-bordeaux.fr/.

[Pei09] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pp.
333-342, ACM, 2009.

[Reg09] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
Journal of the ACM (JACM) 56, no. 6 (2009): 34.

[Shp05] I. Shparlinski, Playing ”hide-and-seek” with numbers: the hidden number problem, lat-
tices, and exponential sums, In Proceedings Of Symposia In Applied Mathematics, vol.
62, p. 153, 2005.

http://pari.math.u-bordeaux.fr/

[vdPS13] J. van de Pol, N. Smart, Estimating key sizes for high dimensional lattice-based systems,
In Cryptography and Coding, pp. 290-303, Springer Berlin Heidelberg, 2013.

	Key Recovery for LWE in Polynomial Time

