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Abstract

The availability of vast amounts of data is changing how we can make medical discoveries,
predict global market trends, save energy, improve our infrastructures, and develop new educa-
tional strategies. One obstacle to this revolution is the willingness of different entities to share
their data with others.

The theory of secure multiparty computation (MPC) seemingly addresses this problem in
the best way possible. Namely, parties learn the minimum necessary information: the value
of the function computed on their joint data and nothing else. However, the theory of MPC
does not deal with an important aspect: when do different players receive their output? In
time-sensitive applications, the timing and order of output discovery may be another important
deciding factor in whether parties choose to share their data via the MPC.

In this work, we incorporate time and order of output delivery into the theory of MPC.
We first extend classical MPC to ordered MPC where different players receive their outputs
according to an order which in itself is computed on the inputs to the protocol, and to refine
the classical notions of guaranteed output delivery and fairness to require instead ordered output
delivery and prefix-fairness. We then define timed-delay MPCs where explicit time delays are
introduced into the output delivery schedule. We show general completeness theorems for or-
dered MPCs and timed-delay MPCs. We also introduce a new primitive called time-line puzzles,
which are a natural extension of classical timed-release crypto, in which multiple events can be
serialized in time.

Next, we show how ordered MPC can give rise to MPCs which are provably “worth” joining,
in competitive settings where relative time of output discovery may deter parties from joining
the protocol. We formalize a model of collaboration and design a mechanism in which n self-
interested parties can decide, based on their inputs, on an ordering of output delivery and a
distribution of outputs to be delivered in the mandated order. The mechanism guarantees a
higher reward for all participants when joining an ordered MPC or declares that such a guarantee
is impossible to achieve. We show a polynomial time algorithm to compute the mechanism for
a range of model settings.

1 Introduction

The availability of vast amounts of data is changing how we can make medical discoveries, pre-
dict global market trends, save energy, improve our infrastructures, and develop new educational
strategies. When parts of the data are held by disjoint and competing parties, such as companies
competing for market share or research laboratories competing for scientific credit, the parties face
a clear dilemma – is it better to share data or proceed independently of each other?
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The theory of multiparty computation (MPC) sheds little light on this quandary. Although
MPC makes it possible to compute a function on the union of many parties’ data without having
to disclose the data fully, it gives no clue as to whether it is in the parties’ interest to compute the
function in the first place: that is, whether the gain that a party A makes by learning the function
value outweighs the loss incurred by a competitor party learning the function value (based on A’s
data) as well.

In this paper, we incorporate an important new aspect into the theory of MPC: the dimension
of time and order of output delivery. We then show an application of the resulting theory to
mechanisms for collaboration which are provably “worth” joining for all players, in a formal sense
that is captured in a model of data-centered scientific collaboration.

We chose to focus on the order of output delivery as a crucial aspect of our data-sharing mech-
anisms, since we believe that this is an important and primarily unaddressed issue in data-based
collaborations. For example, in the scientific research community, data sharing can translate to
losing a prior publication date. An interesting real-life case is the 2003 Fort Lauderdale meeting on
large-scale biological research [Wel03], in which the participating researchers recognized that “pre-
publication data release can promote the best interests of [the field of genomics]” but “might conflict
with a fundamental scientific incentive – publishing the first analysis of one’s own data”. Researchers at
the meeting agreed to adopt a set of principles by which although data is shared upon discovery,
researchers hold off publication until the original holder of the data has published a first analysis.
Being a close-knit community in which reputation is key, this was a viable agreement. However,
more generally, they state that “ incentives should be developed by the scientific community to support
the voluntary release of [all sorts of] data prior to publication”.

We proceed with an informal description of our results on time and order in MPC in section
1.1, then give an overview of our model and results in the setting of data-centered collaborations in
section 1.2.

1.1 Extending MPC and fairness notions to incorporate order and time

In the MPC landscape, fairness is the one notion that addresses the idea that either all parties
participating in an MPC should benefit, or none should. The thesis of our paper is that fairness is
not enough. In certain settings, the ordering of when outputs are delivered may be just as important.

1.1.1 Ordered MPC

We extend the classical notion of MPC to ordered MPC, where players receive their outputs in
order which can depend on the inputs to the protocol: that is, the outputs are delivered to the n
players according to a particular permutation π : [n] → [n], which is computed during the MPC
and may itself be a function of the players’ inputs. In the latter case, the “ordering function” can
be considered to be a parameter to the MPC along with the functionality to be computed.

We refine the classical notions of guaranteed output delivery and fairness to require instead
ordered output delivery and prefix-fairness, where either no players receive an output, or those who
do strictly belong to a prefix of the mandated order. We adapt the standard privacy requirement
for the ordered MPC setting: we require that no player learns more information about the other
players’ inputs than can be learned from his own input and output1, and his own position in the
output delivery order. We show that ordered output delivery can be achieved when the faulty players

1This is formalized in the usual simulation-based paradigm.
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are in minority, and prefix-fairness can always be achieved, regardless of the number of faulty players
under the same assumptions underlying the classical MPC constructions (such as [GMW87]).

Definition (informal). A protocol Π achieves ordered output delivery if ∀i, j such that π(i) < π(j),
Π delivers output to player i before player j, where π is the permutation induced by the players’
inputs. We say that Π achieves prefix-fairness if ∀i, j such that π(i) < π(j), if player j receives his
output then so will player i.

Fairness in MPC requires that either all or none of the players receive outputs. Without honest
majority, fairness cannot be achieved in general [Cle86]. The situation with prefix-fairness is dif-
ferent: it can be achieved for any number of honest players under standard (computational MPC)
assumptions.

Theorem (informal). Given any standard MPC protocol (such as [GMW87]), there is a secure
ordered MPC protocol that achieves ordered output delivery for honest majority, and is prefix-fair
even if the honest players are in minority.

1.1.2 Proportional fairness

Interestingly, using an ordered MPC protocol as a subroutine, we achieve a probabilistic guarantee
on fairness in (traditional) MPC that “scales” with the number of faulty players, which we name
proportional fairness. Essentially, proportional fairness has a probabilistic guarantee of fairness that
“degrades gracefully” as the number of malicious parties t grows, as follows.

Definition (informal). Let n be the number of parties, and let Fair denote the event that either all
parties receive their outputs before protocol termination, or no parties receive their outputs before
protocol termination. For any ppt adversary A that corrupts up to t parties, we say that a protocol
achieves proportional fairness if for t < n/2, Pr[Fair] = 1 and for t ≥ n/2,Pr[Fair] ≥ (n− t)/n.

Theorem (informal). Given any standard MPC protocol (such as [GMW87]), there is an MPC
protocol that securely computes any function correctly and privately and is proportionally fair for
any number of faulty players.

1.1.3 Timed-delay MPC

Analyzing more closely the question, discussed earlier, of whether collaboration is worthwhile, it
becomes clear that we may sometimes need not only ordering of the MPC outputs, but also to
introduce a delay between deliveries. This can enable players to have time to reap the advantage
of receiving an output earlier than other players. We define timed-delay MPC as an ordered MPC
with the additional guarantee that in between players receiving their outputs, there will be a delay
in time, and we construct protocols to realize this MPC definition.

Theorem (informal). Given any MPC protocol secure in the presence of honest majority, there
is a timed-delay MPC protocol that securely computes any function with fairness in the presence
of an honest majority.

The above theorem makes no additional assumptions to achieve time-delay, since it essentially
enforces time passage by adding empty message exchange rounds. The drawback of this is that all
(honest) parties continue interacting in the protocol, until the last party has received his output:
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that is, the protocol duration is as long as the sum of the delays. It would be more desirable if
parties could stop participating after they receive their own output, or even that the MPC protocol
would serve as a “pre-computation phase” after which the computed data could be non-interactively
released with delays.

Time-line puzzles. In order to achieve this feature, we turn to “timed-release crypto” which was
introduced by [May93] and constructed first by Rivest, Shamir and Wagner [RSW96]. Informally,
a time-lock puzzle is a primitive which allows “locking” of data, such that it will only be released
after a certain time delay. We extend the concept of time-lock puzzles to a novel primitive which
we call a time-line puzzle, which allows locking of multiple data items with different delays into a
single puzzle. These can be useful for locking together many data items with different delays for
a single recipient, or for locking data items with different delays for a group of recipients. In the
latter case, an assumption is required on the similarity of computing power of different parties.

Using time-line puzzles, we construct a second timed-delay MPC protocol, which (as above)
achieves security and fairness for honest majority, and has the additional feature that the protocol
duration essentially does not depend on the delay lengths: the players’ interaction terminates even
before the first player gets his output.

Theorem (informal). Given a secure time-line puzzle and any MPC protocol secure in the
presence of honest majority, and assuming that the differences in parties’ computing power are
bounded (pairwise) by a logarithmic factor, there is a timed-delay MPC protocol that securely
computes any function with complete fairness in the presence of an honest majority.

Time-line puzzles can be implemented either using the modular exponentiation function in a way
quite similar to [RSW96] (which requires making the same computational assumptions as they do,
about inherent sequentiality of the modular squaring function), or using the black-box assumption
that inherently sequential hash functions exist (i.e. the random oracle assumption) as suggested by
Mahmoody, Moran and Vadhan [MMV13]. Furthermore, it was recently shown by [Bit+] how to
build time-lock puzzles based on indistinguishability obfuscation and a complexity-theoretic assump-
tion on the existence of worst-case non-parallelizing languages, and their construction is extensible
to time-lines.

1.2 A model for data-centered collaborations

We present a formal model of data-sharing collaborations in which n self-interested players can
jointly decide whether they are “better off” collaborating via an MPC or not. Our model setup
assumes an underlying metric in which the quality of an “outside option” (that is, parties’ utility
when they work on their own and do not collaborate) and the quality of players’ outputs (when
they do collaborate via MPC) can be compared.

We present our results using the terminology of scientific collaborations and publications, but
we emphasize that the importance of “beating a competitor to the punch” is certainly not exclusive
to this domain. It also exists, say, in financial enterprises where timing of investments and stock
trading can translate to large financial gains or losses.

Our model captures the following stylized features of scientific collaboration.

• Different participants may share data, but each will learn a different result.

• Results will be delivered in order and will improve on each other.
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• Earlier output delivery can be worth more. Thus, players may have to agree in which order
they want to receive their output.

• Groups can learn from other groups’ publications. Thus, data-sharing protocols must take
into account that information leaks as publications appear.

We define and design mechanisms for sharing data in our model. Suppose that each research
group i has a dataset xi, and the ideal outcome of a collaboration is learning the output of a function
f(x1, ..., xn). Let y = f(x1, ..., xn). The output of the mechanism on players’ inputs x1, ..., xn will
consist of: an ordering in which the players should receive their outputs, and a sequence of random
variables (corresponding to players’ outputs) y1, ..., yn such that E[y1] = E[y2] = ... = E[yn] =
f(x1., , , xn). Since n results will be published, and results must strictly improve on each other,
the data-sharing mechanism that the players agree on cannot simply output y to all the players,
since then the first research group to obtain y would simply publish it, and pre-empt all future
publications. Thus, any data-sharing mechanism must reveal the information slowly and in order.
The mechanism’s goal is to either guarantee a higher reward for all participants when joining an
ordered (or timed-delay) MPC, or declare that such a guarantee is impossible to achieve.

The reason why players may choose not to collaborate is that they may think they might
get more credit by publishing the results they can get on their own. That is, player i has some
constant value αi that he assigns to not collaborating, In the case of collaboration, he gets a reward
Ri(σ, y1, ..., yn) which may depend not only on the assigned estimates y1, ..., yn but also on the order
of publication σ. Player i will collaborate if and only if Ri(σ, y1, ..., yn) ≥ αi. When each player
wants to collaborate as long as all other players are collaborating, we say that a collaborative Nash
equilibrium exists.2

One delicate issue with such a protocol is that, when the protocol reveals yi to player i, she is not
necessarily forced to publish result yi. Instead, she may publish a result zi with variance V ar(zi) <
V ar(yi) (that is, a “better” result) if she has extra information in addition to yi. This extra
information may leak to a future player j, inducing j to incorporate that into her own publication,
etc.

In order to give meaningful results, we bound the amount of information players can learn
through these side channels. The way we bound the information will make a big difference on
whether sharing data in our model is computationally efficient or intractable. Informally, if a data-
sharing protocol gives player i an estimate yi with variance V ar(yi), then player i may publish any
result zi with variance in the interval [V ar(yi)− λ, V ar(yi)], where λ is a learning bound that may
depend on previous players’ publications zj (assuming player j gets her result before i) as well as
the order in which these results were revealed.

We show two main results in our model. The first theorem shows that, when the amount that
player i learns from player j’s publication is bounded by some number µj which only depends on j
and not i, then there exists a feasible data-sharing mechanism.

Theorem (informal). Assume that when player j publishes her result, all players i who have
not published yet can reduce the variance of their own estimate by at most µj . Then there exists

2Note that, in our model, the players only have two actions, collaboration or non-collaboration. We implicitly
assume that players cannot lie about their data xi once they have chosen to collaborate, since this data can be verified
by peer review. Furthermore, the payoffs αi from not collaborating are known, and can model how “good” the data of
team i is. A higher αi corresponds to better individual data, which allows for better results from not collaboration.
This allows data sharing mechanisms to give greater credit to players with better data (as measured by αi) since
otherwise these players will not collaborate.
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a polynomial time data-sharing mechanism that outputs an ordering of players σ and estimates
(y1, ..., yn) such that collaboration is a Nash equilibrium. If no such ordering and estimates exist,
then the mechanism outputs NONE.

The algorithm for sharing data is non-trivial, and uses the fact that minimum weight perfect
matchings can be found in polynomial time [Edm65]. In this result, we assume there is a bound
µj on the amount that any player can learn from player j’s publication. It may seem reasonable
to make this bound depend also on the “learner” i – however, it turns out that this additional
complexity makes collaboration intractable.

Theorem (informal). Assume that when player j publishes her result, all players i who have not
published yet can reduce the variance of their own estimates by at most µij . Then the problem of
deciding whether there exists a collaborative Nash equilibrium is NP-complete.

We formally describe our data-sharing model and results in section 4. We conclude the intro-
duction with a couple of remarks.

Example. As mentioned earlier, there are other settings besides scientific collaboration, in which
ordering of MPC outputs makes a difference. Another simple application where players may want
to reveal the outputs in a predetermined order is collaboration between companies. Assume that
we have n companies seeking to develop a new medical treatment. Concretely, if each company’s
data is xi, then the new treatment is y = f(x1, . . . , xn) where f(·, . . . , ·) is a function known to all
the parties.

Why would the companies want to reveal a partial answer yi at a different period in time to
each party? One possibility is that each company i contributes a different amount to the discovery
of the drug. Thus, companies that contribute “more" will agree to collaborate only if they can get
some priority in the use of the new treatment. The companies with the largest contributions will be
able to have a monopoly on the treatment (and, after multiple firms receive their yi, an oligopoly).

Remark. We recognize that in a collaboration, different entities may be asymmetric in the amount,
type, or quality of data they hold3. Instead of imposing the restriction of trying to “reward parties
based on the quality of their contribution”, our mechanism guarantees that each player in an MPC
will receive a reward which improves on the reward he can obtain without participating.

1.3 Other related work

The problem of how to make progress in a scientific community has been studied in other contexts.
Banerjee, Goel and Krishnaswamy [BGK14] consider the problem of partial progress sharing, where
a scientific task is modeled as a directed acyclic graph of subtasks. Their goal is to minimize the
time for all tasks to be completed by selfish agents who may not wish to share partial progress.

Kleinberg and Oren [KO11] study a model where researchers have different projects to choose
from, and can work on at most one. Each researcher i has a certain probability of being able to solve
a problem j, and she gets a reward wj if she is the only person to solve it. If multiple researchers solve
the problem, they study how to split the reward in a socially optimal way. They show that assigning
credit asymmetrically can be socially optimal when researchers seek to maximize individual reward,

3For example, a hospital with more patients will clearly have more patient data than a small facility, and yet
access to data of small but homogenous or rare communities can at times be more valuable than access to larger
heterogenous sets of data.
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and they suggest implementing a “Matthew Effect”, where researchers who are already credit-rich
should be allocated more credit than in an even-split system. Interestingly, this is coherent with
the results of our paper, where it is socially optimal to obfuscate data so that researchers who are
already “ahead” (in terms of data), end up “ahead” in terms of credit.

Cai, Daskalakis and Papadimitriou [CDP14] study the problem of incentivizing n players to
share data, in order to compute a statistical estimator. Their goal is to minimize the sum of
rewards made to the players, as well as the statistical error of their estimator. In contrast, our
goal is to give a decentralized mechanism through which players can pool their data, and distribute
partial information to themselves in order so as to increase the utility of every collaborating player.

Boneh and Naor [BN00] construct timed commitments that can be “forced open” after a certain
time delay, and discuss applications of their timed commitments to achieve fair two-party contract
signing (and coin-flipping) under certain timing assumptions including bounded network delay and
the [RSW96] assumption about sequentiality of modular exponentiation.

2 Ordered MPC and Notions of Fairness

We introduce formal definitions of ordered MPC and associated notions of fairness and ordered
output delivery, and give protocols that realize these notions.

Notation. For a finite set A, we will write a← A to denote that a is drawn uniformly at random
from A. For n ∈ N, [n] denotes the set {1, 2, . . . , n}. The operation ⊕ stands for exclusive-or. The
relation

c
≈ denotes computational indistinguishability. negl(n) denotes a negligible function in n,

and poly(n) denotes a polynomial in n. An efficient algorithm is one which runs in probabilistic
polynomial time (ppt). ◦ denotes function composition, and for a function f , we write f t to denote
f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

t

.

Throughout this work, we consider computationally bounded (rushing) adversaries in a syn-
chronous complete network, and we assume the players are honest-but-curious, since any protocol
secure in the presence of honest-but-curious players can be transformed into a protocol secure against
malicious players [GMW87].

2.1 Definitions

Let f be an arbitrary n-ary function and p be an n-ary function that outputs permutation [n]→ [n].
An ordered MPC protocol is executed by n parties, where each party i ∈ [n] has a private input
xi ∈ {0, 1}∗, who wish to securely compute f(x1, . . . , xn) = (y1, . . . , yn) ∈ ({0, 1}∗)n where yi is the
output of party i. Moreover, the parties are to receive their outputs in a particular ordering dictated
by p(x1, . . . , xn) = π ∈ ([n]→ [n]). That is, for all i < j, party π(i) must receive his output before
party π(j) receives her output.

Following [GMW87], the security of ordered MPC with respect to a functionality f and permuta-
tion function p is defined by comparing the execution of a protocol to an ideal process FOrdered-MPC

where the outputs and ordering are computed by a trusted party who sees all the inputs. An or-
dered MPC protocol F is considered to be secure if for any real-world adversary A attacking the
real protocol F , there exists an ideal adversary S in the ideal process whose outputs (views) are
indistinguishable from those of A. Note that this implies that no player learns more information
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about the other players’ inputs than can be learned from his own input and output, and his own
position in the output delivery order.

Ideal functionality FOrdered-MPC

In the ideal model, a trusted third party T is given the inputs, computes the functions f, p on the
inputs, and outputs to each player i his output yi in the order prescribed by the ordering function. In
addition, we model an ideal process adversary S who attacks the protocol by corrupting players in the
ideal setting.

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; and p : ({0, 1}∗)n → ([n]→ [n]), the ordering function.

Private parameters. Each player i ∈ [n] holds a private input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T .

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn) and π = p(x1, . . . , xn).

3. Output. The output proceeds in n sequential rounds. At the start of the jth round, T sends the
output value yπ(j) to party π(j), and sends the message ⊥ to all other parties. When party π(j)
receives his output, he responds to T with the message ack. (The players who receive ⊥ are not
expected to respond.) Upon receipt of the ack, T proceeds to the (j + 1)th round – or, if j = n,
then the protocol terminates.

4. Output of views. At each sequential round, after receiving his message from T , each party
involved outputs a view of the computation so far. Each uncorrupted party i outputs yi if he has
already received his output, or ⊥ if he has not. Each corrupted party outputs ⊥. Additionally,
the adversary S outputs an arbitrary function of the information that he has learned during the
execution of the ideal protocol, which comprises all the messages seen by the corrupt players, and
the outputs that they received.
Let the view outputted by party i in the jth round be denoted by Vi,j , and let the view outputted
by S in the jth round be denoted by VS,j . Let V ideal

Ordered-MPC denote the collection of all views for
all stages:

V ideal
Ordered-MPC = ((VS,1,V1,1, . . . ,Vn,1), . . . , (VS,n,V1,n, . . . ,Vn,n)) .

(If the protocol is terminated early, then views for rounds which have not yet been started are
taken to be ⊥.)

Definition 2.1 (Security). A multi-party protocol F is said to securely realize FOrdered-MPC, if the
following conditions hold.

1. The protocol includes a description of n check-points C1, . . . , Cn corresponding to events during
the execution of the protocol.

2. Take any ppt adversary A attacking the protocol F by corrupting a subset of players S ⊂ [n],
which outputs an arbitrary function VA,j of the information that it has learned in the protocol
execution after each check-point Cj. Let

V real
A = ((VA,1, V1,1, . . . , Vn,1), . . . , (VA,n, V1,n, . . . , Vn,n))
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be the tuple consisting of the adversary A’s outputted views along with the views of the real-
world parties as specified in the ideal functionality description. Then there is a ppt ideal
adversary S which, given access to FOrdered-MPC and corrupting the same subset S of players,
can output views VS,j such that V real

A
c
≈ V ideal

Ordered-MPC.

In the context of ordered MPC, the standard guaranteed output delivery notion is insufficient.
Instead, we define ordered output delivery, which requires in addition that all parties receive their
outputs in the order prescribed by p.

Definition 2.2 (Ordered output delivery). An ordered MPC protocol satisfies ordered output de-
livery if for any inputs x1, . . . , xn, functionality f , and ordering function p, it holds that all parties
receive their outputs before protocol termination, and moreover, if π(i) < π(j), then party i receives
his output before party j receives hers, where π = p(x1, . . . , xn).

We also define a natural relaxation of the fairness requirement for ordered MPC, called prefix-
fairness. Although it is known that fairness is impossible for general functionalities in the presence
of a dishonest majority, we show in the next subsection that prefix-fairness can be achieved even
when a majority of parties are corrupt.

Definition 2.3 (Prefix-fairness). An ordered MPC protocol is prefix-fair if for any inputs x1, . . . , xn,
it holds that the set of parties who have received their outputs at the time of protocol termination
(or abortion) is a prefix of (π(1), . . . , π(n)), where π = p(x1, . . . , xn) is the permutation induced by
the inputs.

Prefix-fairness can be useful, for example, in settings where it is more important for one party to
receive the output than the other; or where there is some prior knowledge about the trustworthiness
of each party (so that more trustworthy parties may receive their outputs first).

2.2 Construction

Ordered MPC is achievable by standard protocols for general MPC, as described in Protocol 1. A
little care must be taken during the output stage, as the ordering may be a function of the input
data and thus may reveal private information.

Protocol 1

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; and p : ({0, 1})∗ → ([n]→ [n]), the ordering function.

1. Using any general secure MPC protocol (such as [GMW87]), jointly compute4 the desired
function (y1, . . . , yn) = f(x1, . . . , xn) and permutation π = p(x1, . . . , xn) on the players’
inputs. Before any outputs are issued to players, proceed to step 2.

2. Each value yi will be outputted to the corresponding player i, and the outputs will be
issued in the order prescribed by permutation π, as follows. The outputs will occur in
n rounds, and in the ith round, player π(i) will receive his output. Moreover, in the ith

9



round, all players other than π(i) will receive a “fake” output with value ⊥. All of the
values issued to party i during these output rounds will be masked by a secret random
value known only to party i, so that it is not revealed to anyone but the recipient who
receives his “real” output in which round.

Theorem 2.4. Protocol 1 securely realizes FOrdered-MPC. In the case of honest majority, fairness
is achieved. If half or more the parties are dishonest, then Protocol 1 achieves prefix-fairness.

Proof. Take any adversary A attacking Protocol 1 by corrupting some subset S ⊂ [n] of parties.
Consider any check-point Cj (for j ∈ [n]) of the real protocol. Recall that an adversary’s view may
be an arbitrary function of the information that he has learned during the execution of the ideal
protocol, which comprises all the messages seen by the corrupt players, and the outputs that they
received. Let Aj(M) and Aj(M) denote the functions that A outputs after check-point Cj (and
before Cj+1), where M is the sequence of messages the corrupt players have seen so far (including
output messages).

Let M0 denote the sequence of messages seen by the corrupt players during step 1 (“the compu-
tation phase”) of Protocol 1. By the security of the underlying general MPC protocol, it holds that
any arbitrary function ofM0 can be simulated by an ideal adversary S∗. (We refer to this simulator
S∗ later in the proof.) Similarly, define M0 = () to be the (empty) sequence of messages seen by
the corrupt players before any outputs are issued in the ideal protocol.

In the real execution: Let Mj denote the sequence of messages seen by corrupt players up
to and including check-point Cj . By the definition of the check-point, for any j ∈ [n], it holds that

Mj =

{
Mj−1||(yπ(j)) if j ∈ S
Mj−1||(⊥) otherwise

, (1)

where the || operator denotes concatenation of tuples.
In the ideal execution: Let Mj and Oj be defined in the corresponding way for the ideal

execution. Also with the ideal check-points, it holds that

Mj =

{
Mj−1||(yπ(j)) if j ∈ S
Mj−1||(⊥) otherwise

. (2)

In order to construct an ideal-world simulator S for the real-world adversary A, we define some
auxiliary algorithms. For j ∈ [n], define A′j to be the following algorithm:

A′j(M,O) = A
(
M ||(zπ(1), . . . , zπ(j))

)
, where zπ(i) =

{
yπ(i) if i ∈ S
⊥ otherwise

.

By equation 3, for each j ∈ [n], it holds that Mj = M ||(zπ(1), . . . , zπ(j)). Hence, A′j(M0, O0) =
Aj(Mj , Oj). We define a ideal adversary S which simulates A as follows. S simulates each
view Aj(Mj , Oj) outputted by the real-world adversary A by using the simulator S∗ to compute
A′j(M0, O0). This is possible since:

• S∗ can simulate any function of (M0, O0), as remarked above; and
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• S knows Mj in the ideal execution, which (by equation 4) contains exactly the zπ(1), . . . , zπ(j)
that need to be hard-wired into the function A′j that is to be computed.

2.3 A fairness notion that scales with number of corruptions

Since standard fairness is impossible for general functionalities in the presence of a dishonest ma-
jority, it is natural to ask what relaxed notions of fairness are achievable. One such notion is the
prefix-fairness which was defined above. An alternative interesting definition could require fairness
to “degrade gracefully” with the number of malicious parties t: that is, the “fairness” guarantee
becomes weaker as t increases. A new definition that captures this idea is given below.

Definition 2.5 (Proportional fairness). An MPC protocol is proportionally fair if the following two
properties hold. Let n be the number of parties, and let Fair denote the event that either all parties
receive their outputs before protocol termination, or no parties receive their outputs before protocol
termination. For any ppt adversary A that corrupts up to t parties:

1. If t < n/2, Pr[Fair] = 1.

2. If t ≥ n/2, Pr[Fair] ≥ (n− t)/n.

The probabilities are taken over the random coins of the honest parties and A.

We show that using Protocol 1 as a building block, we can obtain a simple new protocol
which achieves proportional fairness. The new protocol uses one-time message authentication codes
(MACs) as a building block5. In describing Protocol 2, without loss of generality, we assume that
the output to all players is the same6.

Protocol 2

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; MAC =
(Gen,Sign,Verify) a MAC scheme; and f : ({0, 1}∗)n → {0, 1}∗, the function to be computed.

1. Each party Pi provides as input: his input value xi ∈ {0, 1}∗, a signing key ki ← Gen(1κ),
and a random string ri ← {0, 1}n

2 . Let r = r1 ⊕ · · · ⊕ rn. The random string r is used
to sample7a random permutation π ∈ [n]→ [n]. The computation of r and the sampling
are performed using any general secure MPC protocol (such as [GMW87]), but the result
π is not outputted to any player (it can be viewed as secret-shared amongst the players).

5See Appendix B for formal definitions of MACs.
6An MPC protocol where a different output yi is given to each party i can be transformed into one where all

players get the same output, as follows. The output in the new protocol is (y1, . . . , yn) ⊕ (r1, . . . , rn) where ri is a
random “mask” value supplied as input by party i, and ⊕ denotes component-wise XOR. Each party can “unmask”
and learn his own output value, but the other output values look random to him.
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2. Define functionality f ′ as follows:

f ′ ((x1, k1), . . . , (xn, kn)) = (y, σ1, . . . , σn) ,

where y = f(x1, . . . , xn) and σi = Signki(y). Use Protocol 1 to securely compute f ′ with
ordering function p, where p is the constant function π.

3. Any player who has received the output y′ = (y, σ1, . . . , σn) sends y′ to all other players.
Any player Pi who receives the above message y′ accepts y as the correct output value of
f(x1, . . . , xn) if and only if Verifyki(y, σi) = true.

The proof below refers to the security of standard MPC, the definition of which may be found
in Appendix A.

Theorem 2.6. Protocol 2 is a secure, correct, and proportionally fair MPC protocol.

Proof. Let n be the number of parties and t be the number of malicious parties, and let Fair denote
the event that either all parties receive their outputs before protocol termination, or no parties
receive their outputs before protocol termination.

If t < n/2, then by standard MPC results, all parties are guaranteed to receive their output.
Security and correctness in this case follow immediately from the security and correctness of Pro-
tocol 1. It remains to consider the more interesting case t ≥ n/2.

Correctness: By the correctness of Protocol 1, any received outputs in step 2 must be correct.
We now consider step 3. In order for an incorrect message (y∗, σ∗1, . . . , σ

∗
n) in step 3 to be accepted

by an honest player Pi, it must be the case that Verifyki(y
∗, σ∗i ) = true. Note that y = f(x1, . . . , xn)

is independent of the (honest players’) keys ki. Hence, by the security of the MAC, no adversary
(having seen (y, σ1, . . . , σn) in step 2) can generate y∗, σ∗i such that y∗ 6= y and Verifyki(y

∗, σ∗i ) =
true. Therefore, any output value y∗ accepted by an honest player in step 3 must be equal to the
correct y = f(x1, . . . , xn) that was outputted in step 2.

Security: By the security of the general MPC protocol used in step 1, all messages exchanged
during step 1 can be simulated in the ideal process. No outputs are issued in step 1.

The ordering π is independent of the inputs xi, so cannot reveal any information about them.
Hence, it follows from the ordered MPC security of Protocol 1 (which was proven in Theorem 2.4)
that step 2 of Protocol 2 is (standard MPC) secure when f ′ is the function to be computed. Recall,
however, that the function to be computed by Protocol 2 is f , not f ′. By the security of Protocol 1,
an adversary S in the ideal process can simulate the output value y. It follows that an adversary S ′
in the ideal process in Protocol 2 can simulate the output (y, σ1, . . . , σn) given in step 2, by using S
to generate a y∗ which is indistinguishable from y, then generating σ∗i as Signk∗i (y), where S samples
the keys k∗i ← Gen(1κ) independently for each i. By the security of the MAC scheme and since
y

c
≈ y∗, these σ∗1, . . . , σ∗n are indistinguishable from the σi = Signki(y) produced in the real world

using the real players’ keys ki. Hence, all messages and outputs in step 2 can be simulated in the
ideal process, even when the functionality to be computed is f rather than f ′.

7Note that this is possible, since the number of possible permutations is n!, and the number of possible values of
r is 2n

2

> n!.
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Finally, in step 3, the only messages transmitted are equal to the output value y′ that is outputted
in step 2, which we have already shown can be simulated.

Prefix-fairness: If step 1 is completed (that is, not aborted prematurely), then by the cor-
rectness of the general MPC protocol, r = r1 ⊕ · · · ⊕ rn has been correctly computed. Then, since
honest parties sample their ri uniformly at random, and we can assume there is at least one hon-
est party, r is uniformly random, and so π is a random permutation. Note that no outputs are
issued until step 2 of the protocol, so if any player receives an output, then step 1 must have been
completed.

By Theorem 2.4, Protocol 1 is prefix-fair, so the set of players who have received their outputs
at the time of protocol termination must be a prefix of (π(1), . . . , π(n)), where π = p(x1, . . . , xn).
In particular, if any party has received his output from Protocol 1, then player π(1) must have
received her output. We consider two cases:

1. The protocol terminates before any players have received their outputs. Then Fair occurs.

2. The protocol terminates after some players have received their outputs. Then, π(1) must
have received her output. Moreover, step 1 must have been completed, so π is a random
permutation. If π(1) is honest, then she will execute step 3, after which all players will know
their correct output. That is, if π(1) is honest, then Fair must occur. The probability that
π(1) is honest is (n − t)/t, since π is a random permutation. Therefore, Fair occurs with at
least (n− t)/t probability.

Hence, for any ppt adversary A that corrupts up to t parties, the probability (over the random
coins of the honest parties and A) that Fair occurs is at least (n− t)/t when t ≥ n/2.

3 Timed-Delay MPC

In this section, we implementing time delays between different players receiving their outputs. The
model is exactly as before, with n players wishing to compute a function f(x1, . . . , xn) in an ordering
prescribed by p(x1, . . . , xn) – except that now, there is an additional requirement of a delay after
each player receives his output and before the next player receives her output. To realize the timed-
delay MPC functionality, we make use of time-lock and time-line puzzles, which are introduced in
section 3.2.

3.1 Ideal functionality with time delays

We measure time delay in units of computation, rather than seconds of a clock: that is, rather than
making any assumption about global clocks (or synchrony of local clocks)8, we measure time by the
evaluations of a particular function (on random inputs), which we call the clock function.

Ideal functionality FTimed-Delay-MPC

8A particular issue that arises when considering clocks is that it is not clear that we can reasonably assume or
prove that clocks are in synchrony between the real and ideal world – but this is necessary to prove security by
simulation in the ideal functionality.
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In the ideal model, a trusted third party T is given the inputs, computes the functions f, p on the
inputs, and outputs to each player i his output yi in the order prescribed by the ordering function.
Moreover, T imposes delays between the issuance of one party’s output and the next. In addition, we
model an ideal process adversary S who attacks the protocol by corrupting players in the ideal setting.

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1}∗)n → ([n] → [n]), the ordering function; and
G = G(κ) ∈ N, the number of time-steps between the issuance of one party’s output and the next.

Private parameters. Each player i ∈ [n] holds a private input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T . If, instead of sending his input, any player sends
the message quit, then the computation is aborted.

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn) and π = p(x1, . . . , xn).

3. Output. The output proceeds in n sequential stages. At each stage j, T waits for G time-steps,
then sends the jth output, yπ(j), to party π(j).

4. Output of views. There are n check-points9during the protocol execution, at which the parties
output their views. Each check-point Cj corresponds to the event of outputting a value yπ(j) to
party π(j) (there are n distinct such events). Each uncorrupted party i outputs yi as his view if he
has already received his output, or ⊥ if he has not. Each corrupted party outputs ⊥. Additionally,
the adversary S outputs an arbitrary function of the information that he has learned during the
execution of the ideal protocol, after each check-point. The adversary may output his view at any
time after the current check-point and before the next one (or, if the current checkpoint is the
last one, then he can output the view any time after the checkpoint).
Let the vector of all check-points be denoted by C = (C1, . . . ,Cn). For i ∈ [n]∪{S} and j ∈ [G], let
Vi,j be the view outputted by i for the check-point Cj . Let V ideal

Timed-Delay-MPC denote the collection
of all views for all check-points:

V ideal
Timed-Delay-MPC = ((VS,1,V1,1, . . . ,Vn,1), . . . , (VS,n,V1,n, . . . ,Vn,n)) .

Definition 3.1 (Security). A multi-party protocol F (with parameters κ, n, f, p,G) is said to securely
realize FTimed-Delay-MPC, if the following conditions hold.

1. The protocol includes a description of n check-points C1, . . . , Cn corresponding to events during
the execution of the protocol.

2. Take any ppt adversary A attacking the protocol F by corrupting a subset of players S ⊂ [n],
which outputs an arbitrary function VA,j of the information that it has learned in the protocol
execution after each check-point Cj. Let

V real
A = ((VA,1, V1,1, . . . , Vn,1), . . . , (VA,n, V1,n, . . . , Vn,n))

be the tuple consisting of the adversary A’s outputted views along with the views of the real-
world parties as specified in the ideal functionality description. Then there is a ppt ideal
adversary S which, given access to FTimed-Delay-MPC and corrupting the same subset S of
players, can output views VS,j such that V real

A
c
≈ V ideal

Timed-Delay-MPC.
9The use of checkpoints is introduced to capture the views of players and the adversary at intermediate points in

protocol execution.
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3. There exists a “clock function” g such that between any two consecutive checkpoints Ci, Ci+1

during an execution of F , any one of the parties (in the real world) must be able to locally run
Ω(G) sequential evaluations of g on random inputs. g may also be a protocol (involving n′ ≤ n
parties) rather than a function, in which case we instead require that any subset consisting of
n′ parties must be able to run Ω(G) sequential executions of g (on random inputs) over the
communication network being used for the main multi-party protocol F . Then, we say that F
is “clocked by g”.

A simple protocol for securely realizing timed-delay MPC is to implement delays by running
G “dummy rounds” of communication (amongst all players) in between issuing outputs to different
players.

Protocol 3

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1})∗ → ([n]→ [n]), the ordering function; and
G = poly(κ), the number of time-steps between the issuance of one party’s output and the next.

1. Using any general secure MPC protocol (such as [GMW87]) jointly compute the desired
function (y1, . . . , yn) = f(x1, . . . , xn) and permutation π = p(x1, . . . , xn) on the players’
inputs. Before any outputs are issued to players, proceed to step 2.

2. Each value yi will be outputted to the corresponding player i, and the outputs will be
issued in the order prescribed by permutation π. The outputs will occur in n rounds, and
in the ith round, player π(i) will receive his output. Moreover, in the ith round, all players
other than π(i) will receive a “fake” output with value ⊥.
In each round, before the output (and fake outputs) are issued to any player, the players
run G “dummy rounds” of communication. A dummy round of communication is a “mini-
protocol” defined as follows (let this mini-protocol be denoted by gdum):

• each player initially sends the message challenge to every other player;

• each player responds to each challenge he receives with a message response.

Check-points. There are n check-points. For i ∈ [n], the check-point Ci is the event of outputting
yπ(i) to party π(i).

Theorem 3.2. In the honest-but-curious setting with honest majority, Protocol 3 securely realizes
FTimed-Delay-MPC.

Proof. Take any adversary A attacking Protocol 1 by corrupting some subset S ⊂ [n] of parties.
Consider any check-point Cj (for j ∈ [n]) of the real protocol. Recall that an adversary’s view may
be an arbitrary function of the information that he has learned during the execution of the ideal
protocol, which comprises all the messages seen by the corrupt players, and the outputs that they
received. Let Aj(M) and Aj(M) denote the functions that A outputs after check-point Cj (and
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before Cj+1), where M is the sequence of messages the corrupt players have seen so far (including
output messages).

Let M0 denote the sequence of messages seen by the corrupt players during step 1 (“the compu-
tation phase”) of Protocol 1. By the security of the underlying general MPC protocol, it holds that
any arbitrary function ofM0 can be simulated by an ideal adversary S∗. (We refer to this simulator
S∗ later in the proof.) Similarly, define M0 = () to be the (empty) sequence of messages seen by
the corrupt players before any outputs are issued in the ideal protocol.

The only messages that are sent in the real protocol apart from the output messages yπ(j) are
the “dummy” messages challenge and response, which are fixed messages that do not depend on the
players’ inputs. To be precise, between each pair of checkpoints, each player (including corrupt
players) will send n−1 challenge messages, receive n−1 challenge messages, and send n−1 response
messages. Let DummyTuple denote the tuple consisting of these 2n − 2 challenge messages and
n− 1 response messages.

In the real execution: Let Mj denote the sequence of messages seen by corrupt players up
to and including check-point Cj . By the definition of the check-point, for any j ∈ [n], it holds that

Mj =

{
Mj−1||DummyTuple||(yπ(j)) if j ∈ S
Mj−1||DummyTuple||(⊥) otherwise

, (3)

where the || operator denotes concatenation of tuples.
In the ideal execution: Let Mj and Oj be defined in the corresponding way for the ideal

execution. For the ideal check-points, it holds that

Mj =

{
Mj−1||(yπ(j)) if j ∈ S
Mj−1||(⊥) otherwise

. (4)

In order to construct an ideal-world simulator S for the real-world adversary A, we define some
auxiliary algorithms. For j ∈ [n], define A′j as follows:

A′j(M,O) = A
(
M ||zπ(1)|| . . . ||zπ(j)

)
,

where zπ(i) =

{
DummyTuple||(yπ(i)) if i ∈ S
DummyTuple||(⊥) otherwise

.

By equation 3, for each j ∈ [n], it holds that Mj = M ||(zπ(1), . . . , zπ(j)). Hence, A′j(M0, O0) =
Aj(Mj , Oj). We define a ideal adversary S which simulates A as follows. S simulates each
view Aj(Mj , Oj) outputted by the real-world adversary A by using the simulator S∗ to compute
A′j(M0, O0). This is possible since:

• S∗ can simulate any function of (M0, O0), as remarked above; and

• S knows Mj in the ideal execution, which (by equation 4) contains exactly the zπ(1), . . . , zπ(j)
that need to be hard-wired into the function A′j that is to be computed.

Finally, it remains to show that condition 3 of the security definition (Definition 3.1) is satisfied.
The players are literally running g over the MPC network G times in between issuing outputs, so
it is clear that condition 3 holds.
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One downside of the simple solution above is that it requires all (honest) parties to be online and
communicating until the last player receives his output. To address this, we propose an alternative
solution based on timed-release cryptography, at the cost of an additional assumption that all players
have comparable computing speed (within a logarithmic factor).

3.2 Time-lock and time-line puzzles

The delayed release of data in MPC protocols can be closely linked to the problem of “timed-release
crypto” in general, which was introduced by [RSW96] with their proposal of time-lock puzzles. We
assume time-lock puzzles with a particular structure (that is present in all known implementations):
namely, the passage of “time” will be measured by sequential evaluations of a function (TimeStep).
Unlocking a t-step time-lock puzzle can be considered analogous to following a chain of t pointers,
at the end of which there is a special value xt (e.g. a decryption key) that allows retrieval of the
locked data.

x x1 x2 . . . xt

locked data

x1 = f(x) x2 = f(x1) x3 = f(x2) xn = f(xn−1)

unlock

Definition 3.3 (Time-lock puzzle scheme). A time-lock puzzle scheme is a tuple of ppt algorithms
T = (Lock,TimeStep,Unlock) as follows:

• Lock(1κ, d, t) takes parameters κ ∈ N the security parameter, d ∈ {0, 1}` the data to be locked,
and t ∈ N the number of steps needed to unlock the puzzle, and outputs a time-lock puzzle
P = (x, t, b, a) ∈ {0, 1}n × N× {0, 1}n′′ × {0, 1}n′ where `, n, n′, n′′ = poly(κ).

• TimeStep(1κ, x′, a′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information a′, and outputs a bit-string x′′ ∈ {0, 1}n.

• Unlock(1κ, x′, b′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n, and
auxiliary information b′ ∈ {0, 1}n′ , and outputs some data d′ ∈ {0, 1}`.

To unclutter notation, we will sometimes omit the initial security parameter of these functions
(writing e.g. simply Lock(d, t)). We now define some auxiliary functions. For a time-lock puzzle
scheme T = (Lock,TimeStep,Unlock) and i ∈ N, let IterateTimeStepTi denote the following function:

IterateTimeStepT (i, x, a) = TimeStep(TimeStep(. . . (TimeStep(x, a), a) . . . ), a)︸ ︷︷ ︸
i

.

Define CompleteUnlockT to be the following function:

CompleteUnlockT ((x, t, b, a)) = Unlock(IterateTimeStepT (t, x, a), b),

that is, the function that should be used to unlock a time-lock puzzle outputted by Lock.
The following definitions formalize correctness and security for time-lock puzzle schemes.
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Definition 3.4 (Correctness). A time-lock puzzle scheme T = (Lock,TimeStep,Unlock) is correct
if the following holds (where κ is the security parameter):

Pr
(x,t,b,a)←Lock(d,t)

[
CompleteUnlockT ((x, t, b, a)) 6= d

]
≤ negl(κ).

For an algorithm A, let the run-time of A on input inp be denoted by timeA(inp). If A is
probabilistic, the run-time will be a distribution over the random coins of A. Note that the exact
run-time of an algorithm will depend on the underlying computational model in which the algorithm
is run. In this work, all algorithms are assumed to be running in the same underlying computational
model, and our definitions and results hold regardless of the specific computational model employed.

Definition 3.5 (Security). Let T = (Lock,TimeStep,Unlock) be a time-lock puzzle scheme. T is
secure if it holds that: for all d, d′ ∈ {0, 1}`, t = poly(κ), if there exists an adversary A that solves
the time-lock puzzle Lock(d, t), that is,

Pr[A(Lock(d, t)) = d] = ε for some non-negligible ε,

then for each j ∈ [t− 1], there exists an adversary Aj such that

Pr[Aj(Lock(d′, j)) = d′] ≥ ε, and

Pr[timeA(Lock(d, t)) ≥ (t/j) · timeAj (Lock(d′, j)) | A(Lock(d, t)) = d] > 1− negl(κ).

3.2.1 Time-line puzzles.

We now introduce the more general, novel definition of time-line puzzles, which can be useful for
locking together many data items with different delays for a single recipient, or for locking data
for a group of people. In the latter case, it becomes a concern that computation speed will vary
between parties: indeed, the scheme will be unworkable if some parties have orders of magnitude
more computing power than others, so some assumption is required on the similarity of computing
power among parties. This issue is discussed further in the next section.

Definition 3.6 (Time-line puzzles). A time-line puzzle scheme is a family of ppt algorithms T =
{(Lockm,TimeStepm,Unlockm)}m∈N as follows:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes parameters κ ∈ N the security parameter, (d1, . . . , dm) ∈
({0, 1}`)m the data items to be locked, and (t1, . . . , tm) ∈ Nm the number of steps needed to
unlock each data item (respectively), and outputs a puzzle

P = (x, (t1, . . . , tm), (b1, . . . , bm), a) ∈ {0, 1}n × N× ({0, 1}n′′)m × {0, 1}n′

where n, n′, n′′ = poly(κ), and a can be thought of as auxiliary information.

• TimeStepm(1κ, x′, a′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information a′, and outputs a bit-string x′′ ∈ {0, 1}n.

• Unlockm(1κ, x′, b′) takes parameters κ ∈ N the security parameter, a bit-string x′ ∈ {0, 1}n,
and auxiliary information b′ ∈ {0, 1}n′ , and outputs some data d′ ∈ {0, 1}`.
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In terms of the “pointer chain” analogy above, solving a time-line puzzle may be thought of
as following a pointer chain where not one but many keys are placed along the chain, at different
locations t1, . . . , tm. Each key xti in the pointer chain depicted below enables the “unlocking” of the
locked data bi: for example, bi could be the encryption of the ith data item di under the key xti .

x x1 . . . xt1−1 xt1 xt1+1 . . . xt2 . . . xtm−1 xtm

b1 b2 bm

unlock unlock unlock

Using similar notation to that defined for time-lock puzzles: for a time-line puzzle scheme T ,
let IterateTimeStepTm denote the following function:

IterateTimeStepTm(i, x, a) = TimeStepm(TimeStepm(. . . (TimeStepm(x, a), a) . . . ), a)︸ ︷︷ ︸
i

.

Define CompleteUnlockTm,i to be the following function:

CompleteUnlockTm,i((x, ti, bi, a)) = Unlockm(IterateTimeStepTm(ti, x, a), bi),

that is, the function that should be used to unlock the ith piece of data locked by a time-line puzzle
which was generated by Lockm. We now define correctness and security for time-line puzzle schemes.

Definition 3.7 (Correctness). A time-line puzzle scheme T is correct if for all m = poly(κ) and
for all i ∈ [m], it holds that

Pr
(x,~t,~b,a)←Lockm(~d,~t)

[
CompleteUnlockTi ((x, ti, bi, a)) 6= di

]
≤ negl(κ),

where κ is the security parameter, ~d = (d1, . . . , dm), and ~t = (t1, . . . , tm).

Security for time-line puzzles involves more stringent requirements than security for time-lock
puzzles. We define security in terms of two properties which must be satisfied: timing and hiding.
The timing property is very similar to the security requirement for time-lock puzzles, and gives a
guarantee about the relative amounts of time required to solve different time-lock puzzles. The
hiding property ensures (informally speaking) that the ability to unlock any given data item that
is locked in a time-line puzzle does not imply the ability unlock any others. The security definition
(Definition 3.8, below) refers to the following security experiment.

The experiment HidingExpA,T (κ)

1. A outputs m = poly(κ) and data vectors ~d0, ~d1 ∈ ({0, 1}`)m and a time-delay vector ~t ∈ Nm.

2. The challenger samples (β1, . . . , βm) ← {0, 1}m, computes the time-line puzzle (x,~t,~b, a) =
Lockm(1κ, ((dβ1

)1, . . . , (dβm)m),~t), and sends (x, a) to A.

19



3. A sends a query i ∈ [m] to the challenger. The challenger responds by sending bi to A. This step
may be repeated up to m− 1 times. Let I denote the set of queries made by A.

4. A outputs i′ ∈ [m] and β′ ∈ {0, 1}.

5. The output of the experiment is 1 if i′ /∈ I and β′ = βi′ . Otherwise, the output is 0.

Definition 3.8 (Security). Let T = {(Lockm,TimeStepm,Unlockm)}m∈N be a time-line puzzle
scheme. T is secure if it satisfies the following two properties.

• Timing: For all m = poly(κ) and ~d, ~d′ ∈ ({0, 1}`)m and ~t = (t1, . . . , tm), if there exists an
adversary A that solves any one of the puzzles defined by the time-line, that is,

Pr[A(Lockm(~d,~t)) = di] = ε for some non-negligible ε and some i ∈ [m],

then for all j ∈ [ti − 1] and all ~t′ ∈ [tm]m, there exists an adversary Aj,t′ such that

Pr[Aj,t′(Lockm(~d′, ~t′)) = dj ] ≥ ε, and

Pr[timeA(Lockm(~d,~t)) ≥ (t′j/ti) · timeAj,t′ (Lockm(~d,~t′)) | A(Lockm(~d,~t)) = di] > 1− negl(κ).

• Hiding: For all ppt adversaries A, it holds that

Pr[HidingExpA,T (κ) = 1] ≤ 1/2 + negl(κ).

3.2.2 Black-box construction from inherently-sequential hash functions

Definition 3.9 (Inherently-sequential hash function). Let Hκ = {hs : {0, 1}κ → {0, 1}κ}k∈{0,1}n
for n = poly(κ) be a family of functions and suppose that evaluating hs(r) for r ← {0, 1}κ takes
time Ω(T ). Hκ is said to be inherently-sequential if evaluating hts(r) for s ← {0, 1}n, r ← {0, 1}κ
takes time Ω(t · T ), and the output of hts(r) is pseudorandom.

The time-line puzzle construction in this section relies on the following assumption about the
existence of inherently-sequential functions.

Assumption 1. There exists a family of functions

H̃κ = {h̃s : {0, 1}κ → {0, 1}κ}s∈{0,1}n

which is inherently-sequential (where n = poly(κ)).

Definition 3.10. BB-TimeLinePuzzle is a time-line puzzle defined as follows, where H̃κ is the
inherently-sequential hash function family from Assumption 1:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes input data (d1, . . . , dm) ∈ {0, 1}κ, samples random
values s← {0, 1}n, x← {0, 1}κ, and outputs the puzzle

P =
(
x, (t1, . . . , tm), s,

(
d1 ⊕ h̃t1s (x), . . . , dm ⊕ h̃tms (x)

))
.
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• TimeStepm(1κ, i, x′, a′) outputs h̃a′(x′).

• Unlockm(1κ, x′, b′) outputs x′ ⊕ b′.

It is clear that BB-TimeLinePuzzle satisfies correctness, so we proceed to prove security.

Theorem 3.11. If Assumption 1 holds, then BB-TimeLinePuzzle is a secure time-line puzzle.

Proof. Given a time-line puzzle, in order to correctly output a piece of locked data di, the adversary
A must compute the associated mask h̃tis (x). This is because

• all components of the puzzle apart from the masked value di ⊕ h̃tis (x) are independent of the
locked data di, and

• the mask h̃tis (x) is pseudorandom (by Assumption 1), so the masked value di ⊕ h̃tis (x) is
indistinguishable from a truly random value without knowledge of the mask.

Moreover, by Assumption 1, since H̃κ is an inherently-sequential function family, it holds that there
is no (asympotically) more efficient way for a ppt adversary to compute h̃tis (x) than to sequentially
compute h̃s for ti iterations. It follows that BB-TimeLinePuzzle is a secure time-line puzzle.

3.2.3 Concrete construction based on modular exponentiation

In this subsection we present an alternative construction quite similar in structure to the above, but
based on a concrete hardness assumption. Note that the [RSW96] time-lock puzzle construction
was also based on this hardness assumption, and our time-line puzzle may be viewed as a natural
“extension” of their construction.

Assumption 2. Let RSAκ be the distribution generated as follows: sample two κ-bit primes p, q uni-
formly at random and output N = pq. The family of functions Hsquare = {hN : ZN → ZN}N←RSAκ,
where the index N is drawn from distribution RSA and hN (x) = x2 mod N , is inherently-sequential.

Definition 3.12. Square-TimeLinePuzzle is a time-line puzzle defined as follows:

• Lockm(1κ, (d1, . . . , dm), (t1, . . . , tm)) takes input data (d1, . . . , dm) ∈ {0, 1}κ, samples random
κ-bit primes p, q, sets N = pq, and outputs the puzzle

P =
(
x, (t1, . . . , tm), N,

(
d1 ⊕ ht1N (x), . . . , dm ⊕ htmN (x)

))
.

• TimeStepm(1κ, i, x′, a′) outputs ha′(x′) = x′2 mod a′.

• Unlockm(1κ, x′, b′) outputs x′ ⊕ b′.

Again, it is clear that Square-TimeLinePuzzle satisfies correctness, so we proceed to prove security.

Theorem 3.13. If Assumption 2 holds, Square-TimeLinePuzzle is a secure time-line puzzle.

Proof. This follows from Assumption 2 in exactly the same way as Theorem 3.11 follows from
Assumption 1, so we refer the reader to the proof of Theorem 3.11.
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An advantage of this construction over BB-TimeLinePuzzle is that the Lock algorithm can be
much more efficient. In the case of black-box inherently-sequential hash functions, we can only
assume that the values h̃ts(x) (which are XORed with the data values by the Lock algorithm) are
computed by sequentially evaluating h̃s for t iterations – that is, there is a linear dependence on
t. However, Lock can implemented much faster with the Square-TimeLinePuzzle construction, as
follows. Since p, q are generated by (and therefore, available to) the Lock algorithm, the Lock
algorithm can efficiently compute φ(N). Then, htN (x) can be computed very efficiently by first
computing e = 2t mod ϕ(N), then computing htN (x) = xe mod N . Exponentiation (say, by
squaring) has only a logarithmic dependence on the security parameter.

Finally, we note that although both of the time-line puzzle constructions presented here lock
κ bits of data per puzzle (for security parameter κ), this is not at all a necessary restriction.
Using encryption, it is straightforwardly possible to lock much larger amounts of data for any given
parameter sizes of the time-line puzzles presented here: for example, one can encrypt the data as
Enck(d) using a secure secret-key encryption scheme, then use the given time-line puzzle schemes to
lock the key k (which is much smaller than d) under which the data is encrypted. Such a scheme,
with the additional encryption step, would be much more suitable for realistic use.

3.3 Time-lock-based construction of timed-delay MPC

Because of the use of time-lock puzzles by different parties in the protocol that follows, we require
an additional assumption that all players have comparable computing power (within a logarithmic
factor).

Assumption 3. The difference in speed of performing computations between any two parties i, j ∈
[n] is at most a factor of B = O(log(κ)).

Protocol 4

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed; p : ({0, 1})∗ → ([n] → [n]), the ordering function;
B = O(log(κ)), the maximum factor of difference between any two parties’ computing power;
G = poly(κ), the number of time-steps between the issuance of one party’s output and the next;
and T = {Lock,TimeStep,Unlock} a time-lock puzzle scheme.

1. Using any general MPC protocol (such as [GMW87]) secure in the presence of an honest
majority, jointly compute the desired function (y1, . . . , yn) = f(x1, . . . , xn) and permuta-
tion π = p(x1, . . . , xn) on the players’ inputs. Before any outputs are issued to players,
proceed to step 2.

2. Again using the general MPC protocol, compute n time-lock puzzles Pi = (xi, ti, ai, bi)
for i ∈ [n], each computed as

Pi = Lock(yi ⊕ ri, ti),

where we define t1 = 1 and ti+1 = (B ·G+ 1) · ti for i ∈ [n− 1], and each ri is a random
string provided as input by party i.

22



3. For each i ∈ [n], output Pi to player i. (Each player receives his tuple at the same time,
then recovers his output yi by solving his time-lock puzzle, and “unmasking” the result
by XORing with his random input ri. We assume each player uses the fastest possible
algorithm that gets the correct answer10.)

Check-points. There are n check-points. For i ∈ [n], the check-point Ci is the event of party
π(i) learning his eventual output yπ(i) (i.e. the point at which he finishes solving his time-lock
puzzle).

Theorem 3.14. If Assumption 3 holds, then Protocol 4 securely realizes FTimed-Delay-MPC in the
honest-but-curious setting with honest majority.

Proof. Exactly as in the proof of Theorem 3.2, any real-world adversary attacking step 1 of Proto-
col 4 can be simulated in the ideal world: this follows directly from the security of the underlying
general MPC protocol. Moreover (again as in the proof of Theorem 3.2) the output messages (which
only occur at check-points) can be simulated in the ideal functionality since they are the same (and
occur at the same checkpoints) in the real and ideal functionalities. In order to simulate the real
adversary’s view entirely, it remains only to prove that the non-output messages in the real protocol
can also be simulated in the ideal world. The non-output messages are comprised of the time-lock
puzzle parameters that are outputted to each player. The data items “locked” by the time-lock puz-
zles are perfectly indistinguishable from uniformly random, without knowledge of the input random
values ri. Hence, the ideal adversary can perfectly simulate all of these non-output messages by
generating n puzzles using Lock, using the same delay values t1, . . . , tn as in the real protocol, but
substituting the data items d1, . . . , dn with uniformly random values d′1, . . . , d′n.

Now we have shown that the first two conditions of the security definition (Definition 3.1) hold,
and it remains to prove that condition 3 is satisfied. Let Ai denote the algorithm that party i uses
to solve his time-lock puzzle, and let the time at which party i learns his answer yi be denoted by
τi = timeAi(Pi). By the security of the time-lock puzzles, there exists an algorithm A′i that player
i could use to solve the puzzle Lock(0`, 1) in time τi/ti. Moreover, by Assumption 3, it holds that
no player can solve the puzzle Lock(0`, 1) more than B times faster than another player: that is,
maxi(τi/ti) ≤ B ·mini(τi/ti). It follows that even the slowest player (call him i∗) would be able to
run ti/B executions of A′i∗ within time τi, for any i.

Without loss of generality, assume that the ordering function p is the identity function. Consider
any consecutive pair of checkpoints Ci, Ci+1. These checkpoints occur at times τi and τi+1, by
definition. We have established that in time τi, player i∗ can run ti/B executions of A′i∗ , and in
time τi+1, he can run ti+1/B executions of A′i∗ . It follows that in between the two checkpoints
(i.e. in time τi+1 − τi), he can run (ti+1 − ti)/B executions of A′i∗ . Substituting in the equation
ti+1 = (B · G + 1) · ti from the protocol definition, we get that player i∗ can run G · ti executions
of A′i∗ between checkpoints Ci and Ci+1. Since ti ≥ 1 for all i, this means that i∗ can run at least

10Without this assumption, any further protocol analysis would not make sense: there can always be a “lazy” player
who willfully uses a very slow algorithm to solve his puzzle, who will as a result learn his eventual output much later
in the order than he could otherwise have done. The property that we aim to achieve is that every player could learn
his output at his assigned position in the ordering π, with appropriate delays before and after he learns his output.
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G executions of A′i∗ between any consecutive pair of checkpoints. Hence, condition 3 holds, and
Protocol 4 securely realizes FTimed-Delay-MPC clocked by A′i∗ .

A few remarks are in order. In Protocol 4, all the parties can stop interacting as soon as all
the puzzles are outputted. When the locking algorithm Lock(d, t) has run-time that is independent
of the delay t, the run-time of Protocol 4 is also independent of the delay parameters. (This is
achievable using the [RSW96] time-lock construction, for example.) Alternatively, using a single
time-line puzzle in place of the time-lock puzzles in Protocol 4 can improve efficiency, since the time
required to generate a time-line puzzle is dependent only on the longest delay tn, whereas the time
required to generate n separate time-lock puzzles depends on the sum of all the delays, t1 + · · ·+ tn.

4 Finding Feasible Orders for Scientific Collaboration

We present a model of scientific collaboration, addressing whether it is beneficial for parties to
collaborate, and if so, how : in particular, since the order of research publication matters, we examine
the problem of finding a feasible collaboration order. Once an order is found, the ordered and
timed-delay MPC protocols of the previous sections may be used to securely implement beneficial
collaborations.

We propose a model of collaboration between n research groups which captures the following
features. Groups may pool their data, but each group will publish their own results. Moreover, only
results that improve on the “state of the art” may be published. That is, a new result must improve
on prior publications. However, more credit is given to earlier publications. Finally, a group will
learn not only from pooling their data with other groups, but also from other groups’ publications.
To formalize these intuitions, we specify a model as follows:

• There is a set [n] of players.

• For each i ∈ [n], there is a set Xi of possible datasets, and a dataset xi ∈ Xi that the player knows.
Let X denote X1 × · · · ×Xn.

• A set of outputs Y ⊂ R. ∆(Y ) denotes the set of random variables over Y .

• A function f : X → Y , whose output y def
= f(x1, . . . , xn) the players wish to learn.

• All players commonly know an “initial result” y0 ∈ ∆(Y ) such that E[y0] = y.

• A collaboration outcome is given by a permutation π : [n] → [n] and a vector of random variables
(zπ(1), . . . , zπ(n)) ∈ ∆(Y )n such that E[zπ(t)] = y and V ar(y0) > V ar(zπ(1)) > · · · > V ar(zπ(n)).
The intuition behind this condition is that, at time t, player π(t) will publish result zπ(t). This result is
unbiased, but has a variance of V ar(zπ(t)) A result zπ(t) is higher quality if it’s variance is lower. Since
only results that improve on the “state of the art" can be published, we must have that V ar(zπ(t))
decreases with the time of publication t.

• If ω = (π, z) is an outcome, the player who publishes at time t obtains a rewardRt(π, z) = βt[V ar(zπ(t−1))−
V ar(zπ(t))] where β ∈ (0, 1) is a discount factor which penalizes later publications, and V ar(zπ(t−1))−
V ar(zπ(t)).11

• For each player i, we denote by αi ≥ 0 their reward from not collaborating. This models the best
“outside payoff" that they could receive from publishing on their own. We denote by A = Rn+ the set
of all outside option vectors.

11This is motivated by market scoring rules [Han12], where different experts only receive a reward equal to how
much they improve existing predictions.
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4.1 Data-sharing mechanisms

Definition 4.1. Given a function f : X → Y , a data sharing mechanism is a function Mf :
X × A→ ([n]→ [n])×∆(Y )n which takes as inputs a vector (x1, . . . , xn) of datasets and a vector
(α1, . . . , αn) of outside options. The outputs from such a mechanism are an ordering π of the
players, and a vector of random variables (y1, . . . , yn) such that E[yi] = f(x1, . . . , xn).

One issue with the above definition is that player i may not publish the suggested result yi, but
may instead publish a result zi with lower variance than yi. The published result zi may depend
on yi, xi, as well as from the publications of players who published before her. We bound the
amount that player i can learn from others (and from her own dataset) by introducing learning
bound vectors.

Definition 4.2. A learning bound vector {λπ,i}π∈([n]→[n]),i∈[n] is a non-negative vector such that, if
(π, (y1, . . . , yn)) is a collaboration outcome proposed by a data-sharing mechanism, and zi is the best
result that player i knows at time π−1(i), then V ar(zi) ≥ V ar(yi)− λπ,i. We denote by Λ = Rn!×n+

the set of all learning bound vectors.

We will henceforth refer to the player who publishes at time t as π(t).

Definition 4.3. Let {λπ,i}π∈([n]→[n]),i∈[n] be a vector of learning bounds. Let π ∈ ([n] → [n])
be an ordering of the players and let (y1, . . . , yn) be a vector of random variables with E[yi] = y
and variance V ar(yi). The set of inferred publications derived from (π, y) is the set I(π,y) =
{(z1, . . . , zn) : V ar(yπ(t))− λπ,π(t) ≤ V ar(zπ(t)) ≤ V ar(yπ(t))}.

The intuition behind the above definition is that the amount of information that player π(t) can
learn from prior publications is measured by how much she can reduce the variance of her prediction.
This reduction in variance is bounded by λπ,π(t). Thus, her eventual publication will be some zπ(t)
with variance between V ar(yπ(t))− λπ,π(t) and V ar(yπ(t)).

In our model, each research group π(t) will collaborate only if the credit they obtain from doing
so is greater than the “outside option” reward απ(t). We want to design a mechanism that guarantees
collaboration whenever possible. Our data-sharing mechanisms will depend on {λπ,π(t)}, so we often
write M(x, α, λ) instead of M(x, α) to emphasize the dependence on the learning bound vector.

Given the above definition, we can define the following equilibrium concept.

Definition 4.4. Let (x, α, λ) ∈ X×A×Λ and (π,y) = Mf (x, α, λ). Let I(π,y) be the set of inferred
publications from (π, y). We say that (π,y) is a collaborative Nash equilibrium if ∀z ∈ I(π,y) we
have βt(V ar(zπ(t−1))− V ar(zπ(t))) ≥ απ(t).

Our goal is to find data-sharing mechanisms Mf for which collaboration is an equilibrium.
Although we will show that this problem is, in general, NP -complete, there is a very large subset
of learning vectors for which we can efficiently find a collaborative Nash equilibrium, if one exists.
The feasible case corresponds to when there is a bound µj on the amount that any player can learn
from player j’s publication. Formally, we define a learning bound vector to be rank-1 if it satisfies
this property.

Definition 4.5. We say that a learning vector λ ∈ Λ is rank-1 if there exists a non-negative vector
{µj}nj=1 such that λπ,π(t) =

∑t−1
τ=1 µτ . We denote by Λ1 ⊂ Λ the set of all rank-1 learning vectors.
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When λ is a rank-1 learning vector, the amount that any player i learns from publication j is
bounded above by µj . Thus, the total amount that player π(t) learns from all prior publications
is
∑t−1

τ=1 µτ . Below, we show that when λ is a rank-1 vector, we can find a collaborative Nash
equilibrium in polynomial time.

Theorem 4.6. There exists a polynomial-time data-sharing mechanism SHARE-DATA : X × A ×
Λ1 that, given inputs (x, α, λ) where λ is a rank-1 learning vector, outputs a collaborative Nash
equilibrium (π,y) if such an equilibrium exists.

SHARE-DATA(x1, . . . , xn, α1, . . . , αn, µ1, . . . , µn)

• Let y = f(x1 . . . , xn) and δ0 = V ar(y0).
• Construct a complete weighted bipartite graph G = (L,R,E) where L = [n], R =

[n], E = L×R. For each edge (i, t), assign a weight w(i, t) = αi
βt + (n− t)µi

• LetM be the minimum-weight perfect matching on G. For each node t ∈ R, let π(t) ∈ L
be the node that it is matched with. If the weight of M is larger than δ0, output NONE.
Else, define δπ(n) = 0, yπ(n) = y.

• For t from n to 2:
• Let δπ(t−1) = δπ(t) +

απ(t)

βt +
∑t−2
τ=1 µπ(τ).

• Let yπ(t−1) = yπ(t) +Normal(0, δπ(t−1) − δπ(t)).12

• Output ω = (π, (yπ(1), . . . , yπ(n))).

The theorem follows from Lemmas 4.7 and 4.8 and Theorem 4.9, given below.

Lemma 4.7. If there exists a collaborative Nash equilibrium (π,y) given (x, α, λ) then the following
condition holds

∑n
t=1

απ(t)
βt +

∑n
t=1(n − t)µπ(t) ≤ V ar(y0) where (µ1, . . . , µn) is a vector such that

λπ,π(t) =
∑t−1

τ=1 µτ .

Proof. Let (π,y) be a proposed collaborative equilibrium, and let z ∈ I(π,y) be a possible vector
of inferred publications. For every t, we must have that

βt(V ar(zπ(t−1))− V ar(zπ(t))) ≥ απ(t)

V ar(zπ(t−1))− V ar(zπ(t)) ≥
απ(t)

βt
.

The worst case for player π(t) is when player π(t− 1) learns as much as possible from prior publi-
cations and player π(t) learns as little as possible. That is

V ar(zπ(t−1)) = V ar(yπ(t−1))− µπ(1) − · · · − µπ(t−2)

V ar(zπ(t)) = V ar(yπ(t))

12Here Normal(0, δπ(t−1)− δπ(t)) is a normal random variable with mean 0 and variance δπ(t−1)− δπ(t). Note that
by construction, the random variables yπ(1), . . . , yπ(n) are correlated in a way that player π(t) cannot learn anything
more from observing yπ(1), . . . , yπ(t−2), yπ(t−1) that he didn’t know from observing yπ(t). However, player π(t) actually
observes zπ(1), . . . , zπ(t−1) as well as π, which may contain some extra information about xπ(1), . . . , xπ(t−1) that is
not revealed by yπ(1), . . . , yπ(t−1). Thus, the extra learning captured by I(π, ~y) does not come from observing the
“independent draws” yπ(1), . . . , yπ(t−1) (which by construction are not independent), but by observing the leaked
information about xπ(τ) contained in zπ(τ).
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In this case, the equilibrium condition becomes V ar(yπ(t−1)) −
∑t−2

τ=1 µπ(τ) − V ar(yπ(t)) ≥
απ(t)
βt .

Letting δπ(t) = V ar(yπ(t)), we have δπ(t) − δπ(t−1) ≤ −
απ(t)
βt −

∑t−2
τ=1 µπ(τ).

Summing over all t yields δπ(n)−δπ(0) ≤ −
∑n

t=1
απ(t)
βt −

∑n
t=1(n− t)µπ(t), where δπ(0) = V ar(y0)

is the variance of the prior knowledge (and can be interpreted as the “size of the pie” of credit to be
allocated). Flipping the signs in the inequality, the existence of a collaborative equilibrium implies

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ V ar(y0)− δπ(n) ≤ V ar(y0)

Lemma 4.8. If there exists a permutation π such that
∑n

t=1
απ(t)
βt +

∑n
t=1(n − t)µπ(t) ≤ V ar(y0),

there is a collaborative Nash equilibrium (π,y) of the game specified by (x, α, λ).

Proof. Note that we have that the sufficient conditions for (π,y) being a collaborative Nash equi-
librium

δπ(t−1) − δπ(t) ≥
απ(t)

βt
+

t−2∑
τ=1

µπ(τ)

for all t, where δπ(t) = V ar(yπ(t)).
We need to construct (y1, . . . , yn) such that (π,y) is a Nash equilibrium. We construct y

inductively as follows: let δπ(n) = 0, and for any t such that 2 ≤ t ≤ n, let δπ(t−1) = δπ(t) +
απ(t)
βt +

∑t−2
τ=1 µπ(τ). Note that defining {δπ(t)}}nt=1 in this way, if we set yi ← Normal(0, δi) then

the sufficient conditions hold for all t ≥ 2. Finally, to check that the condition holds for t = 1,
note that δπ(0) = V ar(y0), so the condition becomes V ar(y0) ≥ δπ(1) +

απ(1)
β . Replacing δπ(t−1) =

δπ(t) +
απ(t)
βt +

∑t−2
τ=1 µπ(τ) iteratively, we get V ar(y0) ≥

∑n
t=1

απ(t)
βt +

∑n
t=1(n − t)µπ(t) which is

guaranteed by assumption.

Theorem 4.9. The algorithm SHARE-DATA can be computed in polynomial time, and outputs a
collaborative Nash equilibrium if it exists, and it outputs NONE if no such equilibrium exists.

Proof. The fact that the algorithm runs in polynomial time is immediate, since additions, compar-
isons, drawing normal random variables and finding minimum weight matchings in a graph [Edm65]
can all be done in (randomized) polynomial time.

By our lemmas, a collaborative Nash equilibrium exists if and only if there exists a permutation
π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t) ≤ V ar(y0).

Note that our algorithm constructs a complete bipartite graph G = (L∪R,E) where the weight
on every edge is w(i, t) = αi

βt + (n − t)µi. A matching M on this graph induces a permutation π

where, for every t ∈ R, we have π(t) = i such that (i, t) ∈M . The weight of such a matching is

n∑
t=1

απ(t)

βt
+

n∑
t=1

(n− t)µπ(t).
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Thus, there exists a collaborative equilibrium if and only if the maximum-weight matching in G
has weight less than or equal to V ar(y0). Note that when the weight of the maximum-matching is
greater than V ar(y0), our algorithm outputs NONE, indicating such an equilibrium does not exist.

Finally, when the weight of the maximum matching is less than or equal to V ar(y0), the algo-
rithm outputs (π,y) where E[yπ(t)] = y and V ar(yπ(t−1))− V ar(yπ(t)) =

απ(t)
βt +

∑t−2
τ=1 µπ(τ), so the

sufficient conditions for (π,y) to be an equilibrium are satisfied.

Remark. Note that by construction, the random variables yπ(1), . . . , yπ(n) are correlated in a way
that player π(t) cannot learn anything more from observing yπ(1), . . . , yπ(t−2), yπ(t−1) that he didn’t
know from observing yπ(t). However, player π(t) actually observes zπ(1), . . . , zπ(t−1) as well as
π, which may contain some extra information about xπ(1), . . . , xπ(t−1) that is not revealed by
yπ(1), . . . , yπ(t−1). Thus, the extra learning captured by I(π, ~y) does not come from observing the “in-
dependent draws” yπ(1), . . . , yπ(t−1) (which by construction are not independent), but by observing
the leaked information about xπ(τ) contained in zπ(τ).

Finally, one may wonder if we can get an efficient mechanism for learning vectors which are not
rank-1. We show that this is unlikely, since finding a collaborative Nash equilibrium is NP -complete
even under a weak generalization of rank-1 learning vectors.

Definition 4.10. We say that a learning vector λ ∈ Λ is rank-2 if there exists a non-negative
matrix {µij}ni,j=1 such that λπ,π(t) =

∑t−1
τ=1 µπ(t),π(τ). We denote by Λ2 ⊂ Λ the set of all rank-2

learning vectors.

When λ is a rank-2 learning vector, the amount that player π(t) learns from publication π(τ)
is bounded above by µπ(t),π(τ). Thus, the total amount that player π(t) learns from all prior publi-
cations is

∑t−1
τ=1 µπ(t),π(τ). The corresponding necessary condition for a collaborative equilibrium is

that there is a permutation π such that
n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ V ar(y0).

We show that even checking whether this condition holds is NP -complete.

Theorem 4.11. Given inputs y0,α and {µij}ni,j=1, it is NP -complete to decide whether there exists
π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ V ar(y0).

Proof. It is clear that the problem is in NP , since we can always guess a permutation π and check
in polynomial time whether the condition holds.

To show that the problem is NP -hard, we reduce it to the minimum weighted feedback arcset
problem. The unweighted version of this problem was shown to be NP -complete by Karp [Kar72],
and the weighted version is also NP -complete [ENSS95].

Minimum−Weight− Feedback −Arcset
• INPUTS: A graph G = (V,E) and a weight function w : E → R≥0, a threshold
γ ∈ R≥0
• OUTPUT: Whether or not there exists a set S ⊂ E of edges which intersects every
cycle of G and has weight less than γ.
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All that we need to show is that, given a graph G, a set S of edges is a feedback arcset if and
only if there exists a permutation π of the vertices of V such that S = {(π(t), π(s)) ∈ E : s < t}.

To see this, note that if π is a permutation and S = {(π(t), π(s)) ∈ E : s < t} then the set S
intersects every cycle of G. This is because, if C = {(π(i1), π(i2)), (π(i2), π(i3), . . . , (π(ik), π(i1))}
is a cycle in G, then there must exist s, t such that s < t and (π(t), π(s)) ∈ C, so S intersects C.
Thus, S is a feedback arcset.

Conversely, if S is a feedback arcset, then G′ = (V,E−S) is a directed acyclic graph, and we can
induce an ordering π on V following topological sort. Any edge (π(t), π(s)) ∈ E − S must satisfy
t < s. Thus, any edge (π(t), π(s)) where s < t must be in S. Thus, given π from the topological
sort, we must have S ⊃ {(π(t), π(s)) ∈ E : s < t}. Since weights are non-negative, the minimal
feedback arcset S∗ will correspond to a permutation π∗ such that S∗ = {(π∗(t), π∗(s)) ∈ E : s < t}.

We show how to reduce Minimum − Weight − Feedback − Arcset to our problem. Given
G = (V,E), w : E → R≥0 and t ∈ R≥0, let V ar(y0) = γ, α = 0, and µij = w(i, j) if (i, j) ∈ E and
µij = 0 otherwise.

Suppose there exists a permutation π such that

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ V ar(y0).

Plugging in our choices of α, µij , V ar(y0), this becomes∑
(π(s),π(t))∈E:s>t

w(π(s), π(t)) ≤ γ.

Since the set S = {(π(s), π(t)) ∈ E : s > t} is a feedback arcset, we have that there exists a feedback
arcset with weight less than γ.

Conversely, assume no such permutation π exists. That is,∑
(π(s),π(t)):s>t

µπ(s),π(t) > V ar(y0)

for all permutations π. Note that whether s comes before t or vice-versa does not matter, since this
inequality holds for all permutations. Thus, we can also write

∑
(π(s),π(t)):s<t µπ(s),π(t) > V ar(y0)

for all permutations π. From the argument above, the minimum weight feedback arcset S∗ induces
a permutation π∗ such that S∗ = {(π∗(t), π∗(s)) ∈ E : s < t}. The weight of S∗ is∑

(π∗(s),π∗(t))∈E:s<t

w(π∗(s), π∗(t)) =
∑

(π∗(s),π∗(t)):s<t

µπ∗(s),π∗(t) > V ar(y0) = t.

Thus, there does not exist a feedback arcset with weight less than or equal to t.
We conclude that if we can efficiently check whether

n∑
t=1

απ(t)

βt
+

n∑
t=1

∑
s>t

µπ(s),π(t) ≤ V ar(y0),

then we can efficiently check whether there exists a feedback arcset S with weight less than t. Thus,
the feedback arcset problem reduces to ours, and our problem is NP -complete.
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We have shown that in our stylized model of scientific collaboration, it can indeed be very
beneficial to all parties involved to collaborate under certain ordering functions, and such beneficial
orderings can be efficiently computed in certain realistic situations (but probably not in the general
case).
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A MPC security definition

Ideal functionality FMPC

In the ideal model, a trusted third party T is given the inputs, computes the function f on the
inputs, and outputs to each player i his output yi. In addition, we model an ideal process adversary S
who attacks the protocol by corrupting players in the ideal setting.

Public parameters. κ ∈ N, the security parameter; n ∈ N, the number of parties; and f : ({0, 1}∗)n →
({0, 1}∗)n, the function to be computed.

Private parameters. Each player i ∈ [n] holds a private input xi ∈ {0, 1}∗.

1. Input. Each player i sends his input xi to T .

2. Computation. T computes (y1, . . . , yn) = f(x1, . . . , xn).

3. Output. For each i ∈ [n], T sends the output value yi to party i.
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4. Output of views. After the protocol terminates, each party outputs a view of the computation.
Each uncorrupted party i outputs yi if he has received his output, or ⊥ if not. Each corrupted
party outputs ⊥. Additionally, the adversary S outputs an arbitrary function of the information
that he has learned during the execution of the ideal protocol, which comprises all the messages
seen by the corrupt players, and the outputs that they received.
Let the view outputted by party i be denoted by Vi, and let the view outputted by S be denoted
by VS . Let V ideal

MPC denote the collection of all the views:

V ideal
MPC = (VS ,V1, . . . ,Vn) .

Definition A.1 (Security). A multi-party protocol F is said to securely realize FMPC if for any ppt
adversary A attacking the protocol F by corrupting a subset of players S ⊂ [n], there is a ppt ideal
adversary S which, given access to FMPC and corrupting the same subset S of players, can output
a view VS such that

VA
c
≈ VS ,

where VA is the view outputted by the real-world adversary A (this may be an arbitrary function of
the information that A learned in the protocol execution).

B Message authentication codes

Definition B.1 (Message authentication code (MAC)). A message authentication code MAC =
{Gen, Sign,Verify} is a tuple of ppt algorithms as follows:

• Gen(1κ) takes as input κ ∈ N, the security parameter, and outputs a secret key k ∈ K.

• Signk(m) takes as input a key k ∈ K and a message m ∈ M, and outputs an authentication
tag σ ∈ U .

• Verifyk(m,σ
′) takes a input a key k ∈ K, a message m ∈M, and an authentication tag σ ∈ U ,

and outputs a value in {true, false}.

We call K,M, and U the key space, message space, and tag space, respectively.

Definition B.2 (Correctness). A message authentication code MAC = {Gen, Sign,Verify} satisfies
correctness if for all m ∈M, it holds that

Pr [Verifyk (m,σ) = false | k ← Gen(1κ) and σ ← Signk(m)] ≤ negl(κ).

Next, we describe a security experiment that will be used in the security definition that follows.

The experiment ForgingExpA,MAC(κ)

1. The challenger generates a key k ← Gen(1κ).

2. A has oracle access to Signk(·) and Verifyk(·), and can make polynomially many queries to these.
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3. The output of the experiment is 1 if A made a query (m∗, σ∗) to Verifyk, where

• Verifyk(m∗, σ∗) = true, and

• A did not already query Signk on input m∗.

Otherwise, the output of the experiment is 0.

Definition B.3 (Security). A message authentication code MAC = {Gen, Sign,Verify} is secure if
for all ppt adversaries A, it holds that

Pr
[
ForgingExpA,MAC(κ) = 1

]
≤ 1/2 + negl(κ).
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