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Abstract. Nagao had proposed a decomposition method for divisors of hyperelliptic curves de-
fined over a field IFqn with n ≥ 2. Joux and Vitse had later proposed a variant which provided
relations among the factor basis elements. Both Nagao’s and the Joux-Vitse methods require solv-
ing a multi-variate system of non-linear equations. In this work, we revisit Nagao’s approach with
the idea of avoiding the requirement of solving a multi-variate system. While this cannot be done
in general, we are able to identify special cases for which this is indeed possible. Our main result
is for curves C : y2 = f(x) of genus g defined over IFq2 having characteristic greater than two.
If f(x) has at most g consecutive coefficients which are in IFq2 while the rest are in IFq, then we
show that it is possible to obtain a single relation in about (2g + 3)! trials. The method combines
well with a sieving method proposed by Joux and Vitse. Our implementation of the resulting
algorithm provides examples of factor basis relations for g = 5 and g = 6. We believe that none
of the other methods known in the literature can provide such relations faster than our method.
Other than obtaining such decompositions, we also explore the applicability of our approach for
n > 2 and also for binary characteristic fields.
Keywords: hyperelliptic curves, index calculus algorithm, Nagao’s decomposition, Joux-Vitse
sieving.

1 Introduction

For a finite cyclic group 〈g〉 of order q, the discrete log problem (DLP) is the following: Given
g and h ∈ 〈g〉, find an i in {0, 1 . . . , q − 1} such that h = gi. For certain groups, the discrete
log problem is known to be computationally hard. Such groups find applications in designing
cryptographic protocols such as the Diffie-Hellman key agreement protocol [2] which was origi-
nally proposed over a suitable subgroup of the multiplicative group of an appropriately chosen
finite field.

Cryptographic use of groups obtained from elliptic curves over finite fields was introduced
independently by Miller [13] and Koblitz [10]. A few years later, the use of groups obtained
from hyperelliptic curves (HEC) was proposed by Koblitz [11]. In the present state-of-the-art,
there are known choices for both elliptic curves and genus two hyperelliptic curves which lead
to the realisation of secure cryptographic schemes.

From the cryptanalytic viewpoint, there have been attempts to find algorithms for solving
DLP in cryptographic groups. Presently, the main approach to solving the DLP is the so-called
index calculus algorithm which consists of three steps. The first step is to identify a factor basis
which is a subset of G. Elements of the factor basis are in some sense “simpler” than a general
element of G. The next step is to obtain a method whereby relations can be obtained between
the elements of the factor basis. These relations are converted into linear relations between
the discrete logs of the elements of the factor basis. Typically the relations which arise are
extremely sparse and the resulting system of linear equations can be solved using either the
Lanczos or the block Wiedemann algorithm. This yields the discrete logs of the elements of



the factor basis. The final step is to obtain a decomposition of the target element over the
factor basis. Since the discrete log of the factor basis elements have already been computed,
the discrete log of the target element can now be determined. For certain variants of the index
calculus algorithm, the relation collection step itself ensures that relations are obtained between
the target element and the elements of the factor basis. In such cases, the discrete log of the
target element is obtained immediately after the linear algebra step.

We briefly mention some of the earlier works on index calculus algorithms for hyperelliptic
curves which are relevant to our work. Adleman, DeMarrais and Huang Decomposition [1]
provided an index calculus algorithm for function fields which provided a sub-exponential time
algorithm for higher genus hyperelliptic curves. Later work along this line have been reported
in [5, 3, 4, 18].

For small genus curves, the algorithm is no longer a sub-exponential time algorithm. It
can still, however, be faster than the generic Pollard rho algorithm. This was described by
Gaudry [6] which led to an algorithm that was used to solve certain HEC-DLP challenges.
Variants of Gaudry’s algorithm called the large prime variant [17] and the double large prime
variant [8] were proposed later. A more recent work [15] shows an alternative to Gaudry’s
decomposition method.

The above mentioned algorithms work for hyperelliptic curves defined over a finite field
IFq for any prime power q. When the field is IFqn , for n ≥ 2, Nagao [14] presented a new
decomposition method. In his method, the factor basis consists of divisors represented by
single points whose x-coordinates are in the base field IFq. Nagao showed that testing about
(ng)! random divisors results in obtaining one divisor which is smooth over the factor basis.
Testing each divisor requires solving a system of ng(n − 1) non-linear equations in ng(n − 1)
variables.

A variant of this method was proposed by Joux and Vitse [9] who showed how to obtain
relations among the elements of the factor basis. To obtain relations, the Joux-Vitse method
consists of initially solving a system of ng(n − 1) + 2(n − 1) equations in ng(n − 1) + 2n
variables. Any such solution provides two free variables which are then varied to generate
triangular systems of equations. Solving about (ng + 2)! of these simpler systems provides a
single relation. Joux and Vitse use their method as an intermediate step in solving DLP for
certain elliptic curves.

Nagao had reported [14] solutions for the systems of non-linear equations arising in his
method for (n, g) equal to (2, 2), (2, 3) and (3, 2). It was mentioned that for other values of the
pair (n, g) it becomes difficult to solve the resulting system of non-linear equations. This issue
was also briefly reiterated by Joux and Vitse [9] though in their application to elliptic curves
they only required (n, g) to be (2, 3) and (3, 2).

Our Contributions: We follow the approach of Nagao and Joux-Vitse and consider the
problem of obtaining relations among the elements of the factor basis proposed by Nagao. Our
goal is to obtain a method which avoids solving a system of non-linear equations. Though this
cannot be done in general, for certain special kinds of curves we show how this can be done.

Our main result is for curves defined over quadratic extension fields of characteristic greater
than two. Suppose C : y2 = f(x) is such a curve of genus g ≥ 1. If there are no restrictions on
the coefficients of f(x), we show that one relation can be obtained in about (4g+4)! trials. This
quickly becomes impractical. For a sub-class of curves we provide a better result. Suppose C is
such that at most g consecutive coefficients of f(x) are in IFq2 while the rest of the coefficients
of f(x) are in the base field IFq. For such curves we show that one relation can be obtained



in (2g + 3)! trials. This is combined with a sieving method introduced by Joux and Vitse [9].
The resulting method has been implemented and we report examples of relations among factor
basis elements for g = 5 and g = 6. This is to be contrasted with the previous methods of
Nagao and Joux-Vitse which only reported examples for g = 2 and g = 3.

For the special type of curves considered here, the new technique suggests a faster method
for carrying out discrete log computations for g = 4 and g = 5. For generating relations among
the factor basis elements, the new method is faster than Nagao’s and the Joux-Vitse methods.
So, the relations are to be generated using the method proposed here. On the other hand, the
new method (as well as the Joux-Vitse method) does not provide a decomposition of a divisor
over the factor basis. So, Nagao’s technique has to be used for this step. This, however, is a
one-time decomposition. The speed-up in the discrete log computation arises from replacing
Nagao’s technique by the new method for the relation collection step.

We describe other results that can be obtained using our techniques. Suppose C is a curve
defined over IFqn with no restriction on n (i.e., n ≥ 1) such that only the constant term of
f(x) is a general element of IFqn while all other elements are in IFq. For such curves we show
that it is possible to easily obtain q/(2(2g+ 1)! ) relations. When g = 1, i.e., for elliptic curves,
this gives a method for obtaining q/12 relations. The obtained relations are of a special type
and can be used to reduce the size of the factor basis. Curves defined over characteristic two
fields are also briefly considered and we describe methods for obtaining factor basis relations
for certain sub-classes of such curves.

2 Background on Hyperelliptic Curves

We start with a brief description of hyperelliptic curves based on the discussion given in [12].
Let K be a field and K be its algebraic closure. A hyperelliptic curve C of genus g ≥ 1 over
K is given by an equation of the following form.

C : y2 + h(x)y = f(x) (1)

where f(x) ∈ K[x] is a polynomial of degree 2g+ 1 and h(x) ∈ K[x] is a polynomial of degree
at most g. A point (x, y) ∈ K ×K is said to be singular if it simultaneously satisfies the curve
equation C and also the partial derivatives 2y + h(x) = 0 and h′(x)y = f ′(x). If char(K) 6= 2,
a change of variables x → x, y → (y − h(x)/2) transforms the curve to the form y2 = f(x)
where deg(f) = 2g + 1. Further, if h(x) = 0, then C has no singular points if and only if
f(x) has no repeated roots in K. If C does not have any singular point, then it is said to be
non-singular. Only non-singular curves are considered for cryptographic applications. When
g = 1, the corresponding curves are called elliptic curves.

Let L be an extension of K. The set of all L-rational points of C, denoted C(L) consists of
all points (x, y) ∈ L × L which lie on C (i.e., satisfy C) along with a special point at infinity
denoted ∞. The set C(K) will simply be denoted as C. The points in C other than ∞ are
called finite points. Let P (x, y) be a finite point on C. The notation x(P ) and y(P ) denote
the x-coordinate and y-coordinate of P . The opposite of P , denoted as P̃ , is defined to be
P̃ = (x,−y−h(x)). The opposite of∞ is itself, i.e., ∞̃ =∞. A finite point P such that P̃ = P
is said to be special; otherwise P is said to be ordinary.

The coordinate ring of C over K is defined to be K[x, y]/(y2 + h(x)y − f(x)) and is
denoted as K[C]. Any element of K[C] can be written as a(x) − yb(x) for some polynomials
a(x), b(x) ∈ K[x]. A non-zero polynomial G(x, y) = a(x) − yb(x) in K[C] is assigned degree



deg(G) = max(2 degx(a), 2g+1+2degx(b)). Similarly, one defines the coordinate ring K[C] of C
over K. An element of K[C] is called a polynomial function and it represents a polynomial map
from C to K. The norm of G(x, y) = a(x)− yb(x) is defined to be N(G) = a2(x)− f(x)b2(x).
The norm N(G) of G is a polynomial in the single variable x and the degree of N(G) in x is
equal to the degree of G(x, y).

Since C is non-singular, the polynomial y2 + h(x)y − f(x) is necessarily irreducible over
K and hence K[C] is an integral domain. The function field K(C) of C over K is the field
of fractions of K[C]. Similarly, the function field K(C) is the field of fractions of K(C). The
elements of K(C) are called rational functions on C.

Let G(x, y) = a(x) − y(b) be a non-zero polynomial function, i.e., a non-zero element of
K[C] and let P be a point in C. The order of G at P , denoted as ordP (G), is defined in the
following manner.

1. If P = (α, β) is a finite point, then let r be the highest power of (x−α) which divides both
a(x) and b(x) and write G(x, y) = (x−α)r(a0(x)− yb0(x)). If a0(α)− βb0(α) 6= 0, then let
s = 0; otherwise, let s be the highest power of (x− α) which divides N(a0(x)− yb0(x)) =
a2

0(x)− a0(x)b0(x)h(x)− b20(x)f(x). If P is an ordinary point, then define ordP (G) = r+ s;
if P is a special point, then define ordP (G) = 2r + s.

2. If P =∞, then ordP (G) = −max(2degx(a), 2g + 1 + 2degx(b)).

The order of a rational function R = G/H at a point P is defined to be ordP (R) = ordP (G)−
ordP (H).

A divisor D is a formal sum D =
∑
P∈C mP (P ) of points in C, where mP ’s are integers

and only finitely many of the mP ’s are zero. The degree of D is the sum
∑
P∈C mP and the

order of D at P is mP . Let D1 =
∑
mP (P ) and D2 =

∑
nP (P ) be two divisors. Their gcd is

defined to be gcd(D1, D2) =
∑

min(mP , nP )(P )− (
∑

min(mP , nP ))(∞).
The set D of all divisors forms an abelian group and the set D0 of all degree 0 divisors form

a subgroup of this group. Let R be a rational function in K(C). The divisor of R is defined
to be div(R) =

∑
P∈C ordP (R)(P ), where ordP (R) is the order of R at the point P . It can

be shown that div(R) is a zero divisor. A divisor is said to be principal if it is the divisor of
a rational function. The set P of all principal divisors forms a subgroup of D0. The quotient
group

JC
∆
= D0/P (2)

is called the Jacobian of the curve C.
Two zero divisors D1 and D2 are said to be equivalent, written D1 ∼ D2, if D1 − D2 is

the divisor of a rational function and so D1−D2 ∈ P. For a divisor D, its support supp(D) is
defined to be the set {P ∈ C : mP 6= 0}.

A divisor of the form D =
∑
mi(Pi)−(

∑
mi)(∞) is said to be semi-reduced if the following

conditions hold: (i) mi ≥ 0, (ii) Pi’s are finite points, (iii) if Pi ∈ supp(D), then P̃i /∈ supp(D)
unless Pi = P̃i in which case mi = 1. For a semi-reduced divisor D, if

∑
mi ≤ g, then D is

said to be a reduced divisor. It can be shown that for each divisor D in D0, there is a unique
reduced divisor D1 such that D1 ∼ D.

Let σ be an automorphism of K over K. Then for a point P = (x, y) on C, the point

P σ
∆
= (xσ, yσ) is also a point on C. A divisor D =

∑
mP (P ) is said to be defined over K if

Dσ ∆
=
∑
mP (P σ) is equal to D for all automorphisms σ of K over K. A principal divisor is

defined over K if and only if it is the divisor of a rational function that has coefficients in K.



The set JC(K) of all divisor classes in JC that have a representative that is defined over K is
a subgroup of JC .

For cryptographic applications, it is required to choose K and C such that the order of
JC(K) has a large prime factor and cryptographic schemes are implemented over the corre-
sponding prime order subgroup of JC(K). Determining K and C such that JC(K) is suitable
for doing cryptography is a non-trivial problem. A requirement for doing cryptography is to
be able to add elements of JC(K), i.e., to be able to add divisors.

In terms of computation, it is convenient to view reduced divisors via their Mumford
representations. A divisor in this representation is given by a pair of polynomials (u(x), v(x))
with u(x), v(x) ∈ K[x] such that u(x) is monic, deg(v) < deg(u) ≤ g and u divides v2 +vh−f .
Such a pair of polynomials represents the divisor gcd(div(u(x)),div(v(x)− y)) and this divisor
is simply denoted as div(u, v). If deg(u) < g, then the divisor is said to be degenerate, otherwise
it is called non-degenerate. When elements of JC(K) are given by their Mumford representation
their addition in JC(K) is made possible by Cantor’s algorithm.

3 Nagao Type Decompositions

Let K = IFqn be a field of characteristic greater than 2. Let C : y2 = f(x) be a hyperelliptic
curve of genus g so that f(x) is a monic polynomial of degree 2g + 1. The assumption on the
characteristic is not essential and the method can be modified to work over characteristic two
fields.

Define the factor basis to be the following.

FB = {D ∈ JC(K) : D = (P )− (∞), P ∈ C(K), x(P ) ∈ IFq}. (3)

In other words, the factor basis consists of all divisors of the form (P ) − (∞) where P is an
IFqn-rational point on C and the x-coordinate of P is in IFq. There is no restriction on the
y-coordinate of P , i.e., it is a general element of IFqn .

We discuss how a divisor D = div(u(x), v(x)) in JC(K) can be decomposed over the factor
basis. Given D, consider a bi-variate polynomial

G(x, y) = u(x)λ(x) + (y − v(x))µ(x) (4)

where λ(x) and µ(x) are in IFqn [x] and are of degrees m1 and m2 respectively. The choices
of the degrees m1 and m2 are to be made appropriately as we discuss later. If α is a root of
u(x) and β = v(α), then (α, β) is a zero of G(x, y). This shows that all points of D are zeros
of G(x, y). The choices of λ(x) and µ(x) lead to additional zeros of G(x, y) through which a
decomposition is obtained.

Eliminating y between y2 = f(x) and G(x, y) = 0 gives the polynomial

S(x) = (−u(x)λ(x) + v(x)µ(x))2 − µ2(x)f(x) (5)

By the property of Mumford representation, u(x) divides v2(x)− f(x) and so u(x)|S(x). So,

H(x) =
S(x)

u(x)
=

(−u(x)λ(x) + v(x)µ(x))2 − µ2(x)f(x)

u(x)
(6)

is a polynomial. Let γ be such that H(γ) = 0 and u(γ) 6= 0. Further, let δ = v(γ) −
(u(γ)λ(γ))/µ(γ). Then (γ, δ) is a zero of G(x, y) which is not a point of D.



Suppose H(x) is in IFq[x] and is smooth over IFq. Then all roots of H(x) are in IFq. Let
these roots be γ1, . . . , γh, where h = degx(H(x)). Define δi = v(γi)− (u(γi)λ(γi))/µ(γi). Then
we have

div(G) = D +
h∑
i=1

((γi, δi)− (∞)).

Since G is a rational function, we obtain the following relation:

−D ∼
h∑
i=1

((γi, δi)− (∞)). (7)

The divisors (γi, δi)− (∞) are in the factor basis and so the above relation provides a decom-
position of D over the factor basis.

Nagao describes the above decomposition with the only difference that he refers to the
Riemann-Roch theorem to define the polynomial G(x, y). That does not appear to be necessary.
One can simply start with a bi-variate polynomial of the form in (4) to see how a decomposition
is obtained.

The number of points in the decomposition is determined by the degree of H(x). The
degrees of S(x) and H(x) are separately determined in two cases as follows:

D = div(u(x),v(x)) with v(x) 6= 0: In this case, we have

degx(S) = max(2degx(u) + 2degx(λ), 2degx(v) + 2degx(µ), 2g + 1 + 2degx(µ));
degx(H) = max(degx(u) + 2degx(λ), 2degx(v) + 2degx(µ)− degx(u),

2g + 1 + 2degx(µ)− degx(u));

 (8)

When degx(u) = g, the degrees of S(x) and H(x) are respectively max(2g+2m1, 2g+1+2m2)
and max(g + 2m1, g + 1 + 2m2).

D = div(1,0): In this case, D is the Mumford representation of 0 and (7) provides a relation
among the elements of the factor basis. Since u(x) = 1 and v(x) = 0, the degrees of S(x) and
H(x) are degx(S) = max(2degx(λ), 2g+ 1 + 2degx(µ)) and degx(H) = max(2degx(λ), 2g+ 1 +
2degx(µ).

In the above description, there is no restriction on the extension degree n, i.e., n ≥ 1. Both
Nagao and Joux-Vitse, on the other hand, consider n ≥ 2. In the rest of this work, we will also
consider n ≥ 2. The case for n = 1 has been worked out in details in [15].

For n ≥ 2, we briefly mention how a nonlinear system of equations arises and the conditions
on the number of variables and equations for the system to have a solution. Consider the
decomposition of a divisor D = div(u(x), v(x)) and suppose the degree of H(x) given by (6) is
h.

The control variables in the expression for H(x) in (6) are the coefficients of λ(x) and µ(x)
which are λ0, . . . , λm1 and µ0, . . . , µm2 . Either λm1 or µm2 will be 1 to ensure that H(x) is
monic. So, there are a total of m1 + m2 + 1 variables and each of these are elements of IFqn .
Expressing these using a polynomial basis over IFq gives a total of n(m1 + m2 + 1) variables
over IFq.

For H(x), apart from the leading coefficient (which is one), the other h coefficients can
be expressed in terms of the n(m1 +m2 + 1) variables over IFq obtained from λ(x) and µ(x).
Requiring the coefficients of H(x) to be elements of IFq leads to a total of h(n−1) multivariate



non-linear equations over IFq in n(m1 +m2 + 1) variables over IFq. If the number of variables
is less than the number of equations, then the system is under-defined and it is not possible to
solve such a system. So, we require the following condition.

n(m1 +m2 + 1) ≥ h(n− 1). (9)

The choices of m1 and m2 made by Nagao and Joux-Vitse are the following.

1. For a divisor D = div(u(x), v(x)) with degx(u) = g, Nagao chooses m1 = b(n− 1)g/2c and
m2 = b((n− 1)g − 1)/2c so that m1 +m2 + 1 = ng − g and the degree h of H(x) is ng. As
a result, both sides of (9) equal ng(n − 1) and the relation holds with equality. Solving a
system of ng(n − 1) equations in ng(n − 1) variables provides an H(x) which is in IFq[x].
Such an H(x) is not necessarily smooth. Trying about (ng)! random divisors results in a
smooth H(x) and hence a decomposition of the corresponding divisor. In the context of
discrete log, the random divisors are generated using a random walk technique as in [6].

2. Joux and Vitse consider obtaining a relation among the elements of the factor basis and so
v(x) = 0. They choose m1 = bm/2c and m2 = b(m− 1)/2c − g. In this case, the degree h
of H(x) is max(2m1, g+ 1 + 2m2) = m and m1 +m2 + 1 = m− g. So, the left side of (9) is
n(m−g) and the right side is m(n−1). Joux and Vitse set m to be equal to ng+ 2 whence
the number of equations is m(n − 1) = ng(n − 1) + 2(n − 1) and the number of variables
is n(m − g) = ng(n − 1) + 2n. So, there are two extra variables which play the role of
control variables. Solution of the system of equations results in a triangular system in the
two control variables. Varying the control variables generates solutions of the triangular
system. Since the degree of H(x) is ng + 2 after about (ng + 2)! trials it is possible to find
a relation.

4 Obtaining Relations Between Factor Basis Elements

For n ≥ 2, the decomposition technique proposed by Nagao [14] and the one by Joux and
Vitse [9] both require solving a system of non-linear equations using Gröbner basis techniques.
We consider whether it is possible to avoid this step of the decomposition. In general this is
not possible, but, there are special cases where this is indeed possible.

The setting is that of Section 3. Let IFq be a field of characteristic greater than two and
for an integer n > 1, we are interested in the Jacobian JC(IFqn) of the curve C : y2 = f(x).
The factor basis is as defined in (3). Following Joux and Vitse, we are interested in obtaining
relations between elements of the factor basis. In other words, we wish to obtain relations of
the form D1 + · · ·+Dm = 0 where D1, . . . , Dm ∈ FB. We will call such a decomposition to be
an m-point decomposition.

The crux of the decomposition method is to obtain polynomials λ(x), µ(x) ∈ IFqn [x] such
that H(x) = λ2(x) − µ2(x)f(x) defined in (6) (with u(x) = 1 and v(x) = 0) is in IFq[x].
Our idea is that given f(x), we try to select λ(x) and µ(x) appropriately such that H(x) is
guaranteed to be over IFq. The choices of λ(x) and µ(x) depend upon the form of f(x) and the
attempt is to adjust for the coefficients of f(x) which are in IFqn . Smoothness of the resulting
H(x) is not guaranteed and has to be ensured iteratively. For iteration to be possible, we have
to ensure that there are some control variables which can be varied to obtain different possible
H(x)’s.



4.1 Subfield Curves

If all coefficients of f(x) are in IFq, then C is called a subfield curve. Let C be a subfield curve
and consider the extension degree n to be even.

Choose µ(x) to be a constant, i.e., µ(x) = µ0 ∈ IFqn such that b = µ2
0 is in IFq. A necessary

condition for µ2
0 to be in IFq is that n should be even. So, we are assuming that b ∈ IFq is a

quadratic residue in IFqn . On the other hand, we do not want b to be a quadratic residue in
IFq the reason for which we will explain shortly.

For any non-zero λ(x) ∈ IFq[x] consider the polynomial H(x)/b = bλ2(x) − f(x). This
polynomial is in IFq[x] and is of degree max(2m1, 2g+ 1). If this polynomial is smooth, then so
is H(x) and we obtain an m-point decomposition where m = max(2m1, 2g + 1). The number
of control variables are the coefficients of λ(x). Taking λ(x) to be monic, the number of control
variables is m1. Since λ(x) ∈ IFq, each control variable ranges over IFq and so the total number
of options that can be tried with m1 control variables is qm1 .

Suppose α ∈ IFq is a root of H(x)/b. So, f(α) = bλ2(α) = (µ0λ(α))2 and setting β = µ0λ(α)
gives the points (α,±β) on the curve C. If b is a quadratic residue in IFq, then µ0 is also in IFq
and hence so is β. In this case, we only obtain decompositions in JC(IFq) and not in JC(IFqn).
For this reason, we need b to be a quadratic non-residue in IFq.

In the above, we have chosen µ(x) to be a constant polynomial. Instead one can choose
λ(x) to be a constant polynomial λ(x) = λ0 ∈ IFqn such that c = λ2

0 ∈ IFq and c is not a
quadratic residue in IFq. Once more considering the smoothness of H(x) = λ2

0 − f(x)µ2(x) =
c−f(x)µ2(x) ∈ IFq we will obtain m-point decompositions where m is now equal to 2g+1+2m2.
The m in this case is larger than in the previous case.

4.2 Partial Sub-Field Curve

Suppose C : y2 = f(x) is such that only the constant term of f(x) is in IFqn while all other
coefficients of f(x) are in IFq. Such a curve is not a sub-field curve and may be called a partial
sub-field curve.

In this case it is possible to obtain a number of relations between the elements of the factor
basis. The following simple result provides the basis for doing this.

Proposition 1. Suppose C : y2 = f(x) and f(x) = xφ(x) + A0 where φ(x) ∈ IFq[x] and
A0 ∈ IFqn. Suppose t is an element of IFq such that A0 + t is a quadratic residue in IFqn and
let λ2

0 = A0 + t. Then setting λ(x) = λ0 and µ(x) = 1 gives H(x) in IFq[x].

Proof. Recall that H(x) = λ2(x) − f(x)µ2(x). With the given values of λ(x) and µ(x), we
obtain H(x) = λ2

0 − f(x). Using λ2
0 = A0 + t and f(x) = xφ(x) + A0, we get H(x) =

A0 + t− xφ(x)−A0 = xφ(x) + t which is in IFq[x]. ut

When H(x) = λ2
0 − f(x) is smooth over IFq, we obtain a (2g + 1)-point decomposition. If α is

a root of H(x), then f(α) = λ2
0 and so (α,±λ0) are points on C. Note that for two distinct

roots α1 and α2 of H(x), the corresponding points on C are (α1,±λ0) and (α2,±λ0), i.e., the
y-coordinates are the same. This corresponds to the line y = λ0 which is parallel to the x-axis
cutting the curve at (2g + 1)-points. Since all the corresponding x-coordinates are in IFq, the
obtained decomposition is not trivial. For example, in the case of elliptic curves, if we apply
the line-and-chord rule to two points whose x-coordinates are in IFq, it is not guaranteed that
the x-coordinate of the sum will also be in IFq.



Suppose t0 6= t1 are such that A0 + t0 and A0 + t1 are both squares in IFqn and the corre-
sponding H-polynomials A0 +t0−f(x) and A0 +t1−f(x) are both smooth over IFq. Let a0 and
a1 be such that a2

0 = A0 +t0 and a2
1 = A0 +t1. The divisors in the decomposition corresponding

to t0 are defined from points all of whose y-coordinates are equal to ±a0. Similarly, the divisors
in the decomposition corresponding to t1 are defined from points all of whose y-coordinates
are equal to ±a1. As a result, the two sets of divisors in the two decompositions are disjoint.
More generally, decompositions obtained using Proposition 1 have the property that no two
relations have a divisor in common.

An important point to note is that the possibility of obtaining a relation does not depend
on the extension degree n. We obtain a (2g + 1)-point relation whatever be the extension
degree.

In Proposition 1, the only control variable we have is t. Out of the q possible values of t,
about q/2 will result in A0 + t being a square in IFqn . So, the number of trials will be about
q/2. The degree of H(x) is 2g + 1 and so in about (2g + 1)! trials we will obtain a smooth
H(x). As a result, the number of relations that will be obtained by this technique will be about
q/(2(2g + 1)! ). Sieving can be used to speed up this computation.

The number of relations that are obtained is not sufficient to be able to perform the complete
linear algebra step. The obtained relations can be used to reduce the size of the factor basis.
This is a consequence of the fact that the sets of divisors in the relations are disjoint.

For example, when g = 1, i.e., in the case of elliptic curves, we will obtain about q/12
3-point relations. No two of these relations will have a common divisor. As a result, we can
remove about q/12 elements from the factor basis by choosing one divisor from each of the
q/12 relations. Whenever one of these removed divisors occur in a relation obtained using other
methods, it can be replaced by the negation of the sum of two other divisors in the factor basis.
Such a reduction in the size of the factor basis will reduce the time for the linear algebra step.
This reduction of the factor basis can be useful when combined with Semaev’s [16] summation
formula based discrete log alogrithm for elliptic curves proposed by Gaudry [7].

Example 1. Let q = 16781747 be a prime and let n = 7 with IFq7 realised as IFq[x]/〈w7 +
w + 8〉. Consider the elliptic curves E : y2 = x3 + 10805452x + (10262628w6 + 8483277w5 +
6794783w4 +10836145w3 +4047688w2 +5008212w+10168056), defined over IFq7 . Then #E =
2×p1, where p1 = 187426152609583203245776700781399275920191867781567 is a prime. Using
Proposition 1, we will get relations of following types.

(7986974, β1) + (6100752, β1) + (2694021, β1) ∼ 0; (10)

(14109678, β2) + (12931646, β2) + (6522170, β3) ∼ 0 (11)

where, β1 = 6096369w6 +15638567w5 +12407480w4 +5727199w3 +14632270w2 +11070711w+
6011652 and β2 = 1121656w6+13545884w5+1208363w4+8743129w3+12948727w2+4403294w+
16123844. It is possible to efficiently generate all such relations. We can see that the the y co-
ordinate of the points in the above relations are same and the relations are distinct. So they
can be used to reduce the size of factor basis.

5 Curves over Quadratic Extension Fields

Let IFq be a finite field of characterisitic greater than 2 and n ≥ 2 be a positive integer.

Let C : y2 = f(x) = x2g+1 +
∑2g
i=0Aix

i be a hyperelliptic curve with Ai ∈ IFqn . Suppose



that there are non-negative integers k and e with k + e ≤ 2g + 1 such that Ai is in IFq for
all i ∈ {0, . . . , 2g} \ {k, . . . , k + e − 1}. In other words, all coefficients of f(x) other than
Ak, . . . , Ak+e−1 are in the base field IFq. We will call such a curve C to be a (k, e)-curve. If
k = 0 and e = 2g + 1, then there is no restriction on f(x); on the other hand, if k = e = 0,
then all coefficients of f(x) are in IFq and C is a sub-field curve. Partial sub-field curves arise
with intermediate values of k and e. For example, with k = 0 and e = g, only the coefficients
A0, . . . , Ag−1 may be in IFqn while the coefficients Ag, . . . , A2g are necessarily in IFq.

Note that in a (k, e)-curve, the coefficients A0, . . . , Ak−1, Ak+e, . . . , A2g are necessarily re-
stricted to be in the base field IFq. On the other hand, there are no restrictions onAk, . . . , Ak+e−1.
It is possible that some of these coefficients are also in the base field. More particularly, a (k, e)-
curve has at most e coefficients (which are consecutive and start from k) to be in IFqn .

The next result provides a method for obtaining factor basis relations for partial sub-field
curves defined over quadratic extension fields.

Theorem 1. Let IFq2 be realised as IFq/(w
2−c) where w2−c is an irreducible polynomial over

IFq. Let C : y2 = f(x) = x2g+1 +
∑2g
i=0Aix

i be a (k, e)-curve with e ≥ g. Given any positive
integer m2 and a monic polynomial µ(x) = xm2 + µm2−1x

m2−1 + · · ·+ µ1x+ µ0 of degree m2

in IFq[x], it is possible to choose λ(x) =
∑m1
i=0 λix

i of degree m1 = e + 2m2 − 1 such that the
polynomial H(x) = λ2(x)− f(x)µ2(x) is in IFq[x]. Further, λk ∈ IFq2 while λi ∈ IFq for i 6= k
and the degree of H(x) is max(2e+ 4m2 − 2, 2m2 + 2g + 1).

1. Notation: For α ∈ IFq2 , write α = α1w + α0. The part α1w will be said to be the complex
part of α. If α1 = 0, then α is in IFq and we call such an α to be simple.

2. The theorem statement has the condition that e ≥ g. This, however, does not mean that
the result does not cover curves with f(x) having less than g complex coefficients. Note that
by the definition of (k, e)-curve, there are at most e complex coefficients. So, if f(x) has
less than g complex coefficients, then one needs to choose k and e such that the complex
coefficients of f(x) are among Ak, . . . , Ak+e−1.

Proof. For a (k, e)-curve, k + e ≤ 2g + 1. Since we have the condition e ≥ g, it follows that
k ≤ g+ 1. Since m1 = e+ 2m2− 1 and m2 ≥ 1, it follows that m1 ≥ e+ 1 ≥ g+ 1. So, k ≤ m1

and λ(x) indeed has the coefficient λk.
From the definition of a (k, e)-curve, only the coefficients Ak, . . . , Ak+e−1 are in IFq2 while

all the other A’s are in IFq. If it turns out that Ak, . . . , Ak+e−1 are also in IFq (i.e., the curve in
question is a subfield curve), then we choose λk to be any element of IFq and the result holds.
So, for the rest of the proof, we will assume that at least one of the coefficients Ak, . . . , Ak+e−1

is in IFq2\IFq. In such a situation, λk will also chosen to be in IFq2\IFq. Writing λk = λk,0+λk,1w
we will assume that λk,1 6= 0. For notational uniformity, we will write λi = wλi,1 + λi,0 where
λi,1 = 0 for i 6= k and λk,1 6= 0. Also, we write Ai = wAi,1 + Ai,0 where Ai,1 = 0 for i not in
{k, k + 1, . . . , k + e− 1}.

Note that µ(x) is given. Our aim is to show that it is possible to determine λ(x) such that
H(x) is in IFq[x]. More particularly, we will show the elements λ0, . . . , λk−1, λk,0, λk+1, . . . , λm1

are determined from λk,1, µ0, . . . , µm2−1.
Let

µ2(x)f(x) = (xm2 + µm2−1x
m2−1 + · · ·+ µ1x+ µ0)2(x2g+1 +A2gx

2g + · · ·+A1x+A0)

= x2m2+2g+1 +
2g+2m2∑
i=0

Bix
i (12)



We write Bi = Bi,0 + Bi,1w. For convenience of notation, we set B2m2+2g+1 = 1. Since C is
a (k, e)-curve, other than the coefficients Ak, . . . , Ak+e−1 all other coefficients Ai’s of f(x) are
simple. As a result, Bi is complex only for i = k, k + 1, . . . , k + e+ 2m2 − 1 and all other Bj ’s
are necessarily simple. In other words, Bi,1 = 0 if i is not one of k, k + 1, . . . , k + e+ 2m2 − 1.
Note that m1 = e+ 2m2 − 1. So, we can write

µ2(x)f(x) =
2g+2m2+1∑

i=0

Bi,0x
i + w ×

e+2m2−1∑
i=0

Bi+k,1x
i+k

=
2g+2m2+1∑

i=0

Bi,0x
i + w ×

m1∑
i=0

Bi+k,1x
i+k. (13)

We now consider λ2(x). Apart from λk, all other coefficients of λ(x) are simple. The complex
coefficients of λ2(x) arise only from λk. So, in λ2(x) = (λ0 + λ1x + · · · + λm1x

m1)2 only the
coefficients of xk, xk+1, . . . , xk+m1 are complex while all other coefficients are simple.

The way λk affects the coefficients of λ2(x) is as follows: The term λ2
k appears in the

coefficient of x2k and for i 6= k, the term 2λiλk appears in the coefficient of xi+k. Note that

λ2
k = (λk,0 + wλk,1)2 = λ2

k,0 + 2wλk,0λk,1 + w2λ2
k,1 = λ2

k,0 + cλ2
k,1 + w(2λk,0λk,1).

So, the complex part of λ2
k is 2wλk,0λk,1. For i 6= k, λi is simple and equal to λi,0 and so the

complex part of 2λiλk is 2wλi,0λk,1.
We now show that the λi’s can be computed so as to ensure H(x) ∈ IFq[x]. It is easy to see

that the numbers of complex coefficients in the two expressions λ2(x) and µ2(x)f(x) are same
and these coefficients correspond to the same powers of x. Given µ(x), the values of Bi’s are
fixed.

Recall that H(x) = λ2(x)−µ2(x)f(x). Equating the complex part of the coefficient of xi+k,
(i = 0, 1, . . . ,m1) in H(x) equal to 0, we obtain

2λk,1λi,0 −Bi+k,1 = 0.

From this it follows that for i = 0, 1, . . . ,m1

λi,0 =
Bk+i,1

2λk,1
. (14)

The above values of the λi’s ensure that the complex parts of the coefficients of H(x) are 0
and hence H(x) ∈ IFq[x]. ut

The exact expression for H(x) given by Theorem 1 is mentioned in the following corollary.

Corollary 1.

H(x) = cx2kλ2
k,1 +

1

4λ2
k,1

×
(
µ2(x)

k+e−1∑
i=k

Ai,1x
i−k
)2

− µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i

 . (15)

Proof. Write f(x) as f(x) = x2g+1+w
(∑2g

i=0Ai,1x
i
)
+
(∑2g

i=0Ai,0x
i
)

and then writing µ2(x)f(x)

once more we have:

µ2(x)f(x) = µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i + w

2g∑
i=1

Ai,1x
i





= µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i

+ wµ2(x)

 2g∑
i=1

Ai,1x
i


= µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i

+ wµ2(x)

(
k+e−1∑
i=k

Ai,1x
i

)
. (16)

Comparing (13) and (16) we get

m1∑
i=0

Bi+k,1x
i+k = µ2(x)

(
k+e−1∑
i=k

Ai,1x
i

)
.

Dividing both sides by xk gives the following relation.

m1∑
i=0

Bi+k,1x
i = µ2(x)

(
k+e−1∑
i=k

Ai,1x
i−k
)
. (17)

Note that λ(x) = wxkλk,1 +
∑m1
i=0 λi,0x

i.

H(x) = λ2(x)− µ2(x)f(x)

=

(
wxkλk,1 +

m1∑
i=0

λi,0x
i

)2

− µ2(x)

x2g+1 + w

 2g∑
i=0

Ai,1x
i

+
2g∑
i=0

Ai,0x
i


= cx2kλ2

k,1 +

(
m1∑
i=0

λi,0x
i

)2

− µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i


+w

2λk,1

(
m1∑
i=0

λi,0x
i

)
xk − µ2(x)

 2g∑
i=0

Ai,1x
i


= cx2kλ2

k,1 +
1

4λ2
k,1

×
(
m1∑
i=0

Bi+k,1x
i

)2

− µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i


= cx2kλ2

k,1 +
1

4λ2
k,1

×
(
µ2(x)

k+e−1∑
i=k

Ai,1x
i−k
)2

− µ2(x)

x2g+1 +
2g∑
i=0

Ai,0x
i

 .
The complex terms in the expression for H(x) cancel out by the choice of λi,0’s and recall that
we use the polynomial w2 − c to represent IFq2 . Further, (17) has been used. ut

Given Bk,1, . . . , Bk+m1,1 and a non-zero value for λk,1 the values of λi for i = 0, . . . ,m1

are completely determined by the relation (14) in the proof of Theorem 1. Further, the values
of Bi,1’s are determined completely by µ0, . . . , µm2−1 and the curve coefficients A0, . . . , A2g.
As a result, for any choice of µ0, . . . , µm2−1 and λk,1 the values of λi,0 for i = 0, . . . ,m1 are
completely determined.

The quantities µ0, . . . , µm2−1 can vary over IFq and λk,1 varies over IF∗q . So, by varying
µ0, . . . , µm2−1 and λk,1 over all possible choices, about qm2+1 different H(x)’s can be generated.
Note that the term λk,1 occurs in H(x) only as λ2

k,1 and so λk,1 and −λk,1 give rise to the same
H(x). So, effectively there are about q/2 choices of λk,1.



Let h be the degree of H(x) and so h = max(2e + 4m2 − 2, 2m2 + 2g + 1). By varying
λk,1, µ0, . . . , µm2−1 we obtain different possible choices for H(x). In about h! trials we will
obtain an H(x) which is smooth. This gives a relation among the factor basis elements. Since
the factor basis contains q elements, we will need about q relations to carry out the linear
algebra step. The condition for obtaining q relations is the following:

qm2+1

2
≥ h!×q = (max(2e+ 4m2 − 2, 2m2 + 2g + 1)) !×q. (18)

We note the following points.

1. The complexity of obtaining a smooth H(x) is independent of k and depends only on e.

2. To improve the speed of obtaining smooth H(x), the value of h should be as small as
possible. This is achieved by setting m2 = 1. In this case, the degree of H(x) is h =
max(2e+ 2, 2g + 3).

3. The minimum possible degree of H(x) is 2g + 3 and this is attained when e ≤ g. For
Theorem 1 we have the condition e ≥ g which combined with e ≤ g shows e = g. So, if C
is a (k, g)-curve, then a single relation can be obtained in about (2g + 3)! trials.

4. The most general case is when k = 0 and e = 2g + 1. In this case, the degree of H(x) is
h = max(4g+4m2, 2m2 +2g+1). For m2 = 1, h = 4g+4 and so a smooth H(x) is obtained
in about (4g + 4)! trials. While this gives a concrete complexity estimate for obtaining a
relation (unlike that of Nagao’s and Joux-Vitse methods which require solving a system of
non-linear equations), the number of trials is too high for the method to be practical for
g ≥ 4.

5.1 Sieving

The expression for H(x) given in Corollary 1 is determined by µ(x) and λk,1. As mentioned
earlier, for different choices of µ(x) and λk,1 we can construct different choices of H(x) and
test these for smoothness. Smoothness testing, however, is quite time consuming. Sieving can
be used to avoid such testing. We explain how this is done based on the sieving technique used
by Joux and Vitse in [9].

For simplicity of notation, let t1 = λk,1. Note that the expression for H(x) involves only
t21 and we let t2 = t21. Also, by µ denote (µ0, . . . , µm2−1). For a fixed value of µ, denote by
Hµ(x, t2) the expression for H(x) in (15) where we explicitly show the dependence of H(x) on
t2. Note that for a fixed α ∈ IFq, the numerator of the expression for Hµ(α, t2) is a quadratic
in t2.

Let ctr be an array of size q whose entries are initialised to 0. Choose a random µ. For
each α ∈ IFq, perform the following steps: construct the quadratic in t2 corresponding to the
numerator for Hµ(α, t2); if this quadratic is reducible over IFq, then determine its roots δ0

and δ1; if δi is a square, then increment ctr[δi] for i = 0, 1. After the loop over IFq has been
completed, step through the array ctr looking for a δ such that ctr[δ] = 2g+ 3. Note that such
a δ is necessarily a square. Choose λk,1 to be a square root of this δ. For this λk,1 and the
chosen value of µ, the corresponding H(x) given by (15) is necessarily smooth. This H(x) can
be factored to obtain the roots and hence a relation among the factor base elements.

It may turn out that for the particular µ there is no entry in ctr which provides a smooth
H(x). In such a situation, we choose another µ and repeat the sieving process. Note that at no
point is smoothness testing required. In practice, this leads to significantly improved efficiency.



Additional speed-up can be obtained by using a pre-computed table of square-roots of the
elements of IFq. There are two places where this will be used. The first use is in the solution
of the quadratic Hµ(α, t2). The discriminant is computed and the square root extracted using
the pre-computed table. The second use is in testing whether δi is a square. This is done by a
simple table look-up.

Example 2. (g = 5, k = 0, e = 5): Let q = 536870923 which is a prime. The polynomial
w2 + 487791668 is irreducible over IFq and let IFq2 be represented as IF[w]/〈w2 + 487791668〉.
Consider the curve C over IFq2 given by the following equation.

y2 = x11 + 72867692x10 + 266240208x9 + 189702338x8 + 403941598x7 + 243294425x6

+ 161364907x5 + (481611065w + 113938517)x4 + (302739899w + 218608566)x3

+(277004398w+100790511)x2 +(32516642w+523324966)x+(148834277w+444734696).

(19)

We have collected 24 relations among the factor basis elements. The average time per relation
was 15 hours. For illustrative purpose we provide one such relation below.

13∑
i=1

(
(Pi)− (∞)

)
∼ 0

where Pi are the following points on the curve C.

P1 = (461653145, 227963090w + 69237873)

P2 = (416967427, 404086065w + 524185991)

P3 = (395947819, 169482988w + 531757234)

P4 = (374926825, 302252595w + 497356260)

P5 = (366109950, 158087663w + 153008186)

P6 = (267888952, 210317996w + 472116172)

P7 = (241362678, 154484158w + 57775439)

P8 = (209173699, 332896640w + 209227835)

P9 = (132224988, 514472422w + 449592808)

P10 = (130531868, 390327959w + 74840939)

P11 = (30575684, 531315607w + 153861896)

P12 = (14940740, 216381479w + 216507315)

P13 = (14586917, 146027799w + 360620670)

Example 3. (g = 5, k = 5, e = 5): As in the previous example, let q = 536870923. Let IFq2 be
represented as IFq[x]/〈w2 + 315734631〉. Consider the curve C over IFq2 given by the following
equation.

(20)

y2 = x11 + 536070224x10 + (372000917w + 121411583)x9

+ (327360521w + 173943725)x8 + (58415006w + 484515562)x7

+ (202132854w + 174537446)x6 + (36125993w + 280775023)x5

+ 480682978x4 + 245423911x3 + 144246068x2 + 176472615x+ 485640527.



Note that in this example the complex coefficients in f(x) are not the first g terms. In this case
also, the average time per relation was about 15 hours. For illustrative purpose we provide one
relation below.

13∑
i=1

(
(Pi)− (∞)

)
∼ 0

where Pi are the following points on the curve C.

P1 = (488169155, 127507425w + 11619026)

P2 = (414967071, 411968940w + 526402989)

P3 = (367542253, 271345312w + 71563790)

P4 = (360417276, 146775404w + 529629782)

P5 = (327156809, 148898586w + 313658158)

P6 = (321069144, 401672122w + 516009885)

P7 = (297696598, 332164999w + 71083788)

P8 = (282773404, 165994134w + 128263175)

P9 = (153245666, 299447617w + 31791782)

P10 = (148847735, 131086868w + 526494330)

P11 = (122238345, 501760005w + 500393269)

P12 = (46402515, 207894339w + 345845407)

P13 = (3075334, 414551777w + 407607294)

Example 4. (g = 6, k = 7, e = 6): The prime q = 536870923 as before. The field IF2
q =

IFq[x]/〈w2 + 391407656〉. The curve C is given by the following equation.

y2 = x13 + (26724425w + 521111574)x12 + (108641052w + 409984592)x11

+ (24302877w + 201680702)x10 + (340698236w + 334614899)x9

+ (90984934w + 92561831)x8 + (279332373w + 378470239)x7 + 171216922x6

+ 303496296x5 + 144977430x4 + 252906250x3 + 276374600x2 + 508777162x+ 206709783

(21)

It took us 8 days to get a single relation by running on 15 parallel cores. The relation is the
following.

15∑
i=1

(
(Pi)− (∞)

)
∼ 0

where Pi are the following points on the curve C.

P1 = (529627927, 324604233w + 328370059)

P2 = (457161741, 324649665w + 308701675)

P3 = (318999554, 451438865w + 383125220)

P4 = (282246842, 41996416w + 31292053)

P5 = (280379434, 403412458w + 426683854)

P6 = (263884452, 32875161w + 244297866)



P7 = (259928285, 260498525w + 90308916)

P8 = (222312520, 408316107w + 330320218)

P9 = (200790649, 38478293w + 527202107)

P10 = (179779688, 352410950w + 516715413)

P11 = (119409638, 334594398w + 28958127)

P12 = (79561862, 510759460w + 518110662)

P13 = (62284590, 333545883w + 331763559)

P14 = (31745814, 453648987w + 25464942)

P15 = (29265458, 294026161w + 533582133)

5.2 Comparison with Nagao’s and Joux-Vitse Methods

In Nagao’s method, a relation is obtained by solving a system of ng(n−1) nonlinear equations
in as many variables. In the present case, n = 2 and so the system consists of 2g equations and
variables.

1. For g = 4, this leads to a system of 8 equations in 8 variables. Solving one such system
using Magma requires about a second. The solution only ensures that H(x) is in IFq[x].
The degree of H(x) is 2g = 8. To obtain an H(x) which is smooth over IFq[x], it is required
to consider about 8!≈ 215.3 divisors and so correspondingly solve about 8! systems of 8
non-linear equations in 8 variables. Practically we get a single decomposition in about 7
hours. In comparison, the new method provides a single relation in about 8 to 10 minutes.

2. For g = 5, Nagao’s method requires solving a system of 10 equations in 10 variables. We
were able to solve one such system using Magma in about one minute. As above, such a
solution only ensures that H(x) is in IFq[x]. In this case, the degree of H(x) is 10 and so to
obtain an H(x) which is smooth over IFq[x] we need to consider about (2g)! = 10! divisors.
This requires solving about 10!≈ 222 systems of 10 non-linear equations in 10 variables.
As a result, the time for obtaining a single relation will be about 10! minutes (which is
about 60000 hours). In comparison, the new method requires about 9 hours to find a single
relation.

3. For g = 6, Nagao’s method involves repeatedly solving systems consisting of 12 equations
in 12 variables. We were able to solve one such system in about 6000 seconds (which is
about 1.6 hours). Obtaining a single decomposition will require solving about 12!≈ 228.8

such systems which is infeasible. In comparison, the new method yielded a relation in about
8 days.

The method proposed in this paper raises the possibility of actually carrying out DLP
computations for g = 4 and g = 5. Relations between the elements of the factor basis are
to be generated using the new method. The linear algebra step is to be carried out as usual.
Suppose D1 is the generator of an appropriate subgroup of the Jacobian and D2 is a target
divisor and the requirement is to compute logD1

D2. Using the random walk technique from [6]
divisors D = a1D1 + a2D2 are to be generated. Nagao’s method is to be used to obtain the
decomposition of one such D over the factor basis. Such a decomposition in conjunction with
the discrete log of the factor basis elements will provide the desired discrete log of the target
element.

Note that Nagao’s method could also be used for generating relations. The speed improve-
ment arises from replacing Nagao’s method by the new method for the relation collection step.



Availability of multiple cores will speed up the computation of both relation collection by the
new method and the single decomposition to be obtained using Nagao’s method. Even though
we suggest that DLP computations for g = 4 and g = 5 are feasible, at the present time we do
not have sufficient computational resources to actually carry out one such computation.

The initial phase of the Joux-Vitse method involves solving a system of ng(n−1)+2(n−1)
equations in ng(n−1)+2n variables. Again, here n = 2 leading to a system of 2g+2 equations
in 2g+ 4 variables. For g = 4, this leads to a system of 10 equations in 12 variables; for g = 5,
this leads to a system of 12 equations in 14 variables; and for g = 6, this leads to a system of
14 equations in 16 variables. We were unable to solve even one such system using Magma on
our computers. That Magma could not solve the system arising for g = 4 is a bit surprising.
A system arising out of Nagao’s method for g = 6 consists of 12 equations in 12 variables and
Magma was able to solve one such system. So, one would expect that Magma should be able
to solve a system of 10 equations in 12 variables. That, however, did not happen.

The major bottleneck in the Joux-Vitse method is the requirement of solving the initial
non-linear system of equations. For the same g, the system is more complex than the system
generated by Nagao’s method. On the other hand, once the initial system is solved, the suc-
cessive iterations are much faster and a single relation is obtained in about (2g + 2)! trials. In
comparison, obtaining one relation by the new method requires about (2g + 3)! trials. Both
the Joux-Vitse method and the new method use sieving to obtain practical efficiency gains.
So, if the initial non-linear system in the Joux-Vitse method can be solved, then the rest of
the compuation will be faster than the new method. However, as mentioned above, for g ≥ 4,
on our computers, Magma was unable to solve the initial system arising in the Joux-Vitse
method.

In conclusion, for the special types of curves considered in this work, the new method
provides relations faster than either Nagao’s or the Joux-Vitse methods. We note the following
points.

1. The new method (as well as the Joux-Vitse method) only provides relations among fac-
tor basis elements. Decomposition of a target element (using the random walk technique
from [6]) over the factor basis still has to be done by Nagao’s method.

2. The new method works only for a sub-class of curves while Nagao’s and the Joux-Vitse
methods work for all curves.

6 Curves Over Characteristic Two Fields

We briefly consider how our techniques apply to characteristic two field. In this case, the form
of a hyperelliptic curve is y2 +xy = f(x). Let q be a power of 2 and for n ≥ 2, we consider IFqn-
rational points of C. As before, we consider polynomial maps of the form G(x, y) = λ(x)+yµ(x)
where λ(x) and µ(x) are polynomials of degrees m1 and m2 respectively in IFqn [x].

We are interested in the zeros of the polynomial λ(x) +yµ(x) on the curve C. For any such
point (α, β), β = λ(α)/µ(α) and (α, β) also satisfies the equation of the curve, i.e., β2 + βα =
f(α). Eliminating β between these two equations yields λ2(α) + αλ(α)µ(α) = µ2(α)f(α). So,
in this case, the form of the polynomial H(x) is the following.

H(x) = λ2(x) + xλ(x)µ(x) + µ2(x)f(x). (22)

Proposition 2. Let q be a power of 2 and n ≥ 2 be a positive integer. Consider the curve
C : y2+xy = f(x) = x3φ(x)+A2x

2+A1x+A0 where φ(x) ∈ IFq[x], A1, A0 ∈ IFq and A2 ∈ IFqn.



If for some t ∈ IFq, the polnomial z2 + z + A2 + t is reducible over IFqn, then for µ(x) = 1, it
is possible to choose the polynomial λ(x) such that H(x) = λ2(x) + xλ(x)µ(x) + µ2(x)f(x) is
in IFq[x].

Proof. Let λ(x) = λm1x
m1 + · · · + λ2x

2 + λ1x + λ0, where λ1 is a root of the polynomial
z2 + z +A2 + t and λ0, λ2, . . . , λm1 are in IFq. Then

H(x) = λ2(x) + xλ(x) + f(x)

= λ2(x) + xλ(x) + x3φ(x) +A2x
2 +A1x+A0

= (λ2
m1
x2m1 + · · ·+ λ2

2x
4 + λ2

1x
2 + λ2

0)

+(λm1x
m1+1 + · · ·+ λ2x

3 + λ1x
2 + λ0x)

+x3φ(x) +A2x
2 +A1x+A0

= x2(λ2
1 + λ1 +A2) + ψ(x)

= tx2 + ψ(x).

Here ψ(x) is in IFq[x], i.e., all its coefficients are in IFq. Also, t is in IFq and so H(x) is in
IFq[x]. ut

The degree of H(x) is h = max(2m1, 3) and we obtain an h-point decomposition. In the
choice of λ(x), the constant term λ0 is a control variable and can be varied freely over IFq. For
m1 = 1, the quantity t is the only other control variable which has the constraint that it has
to be varied so that the polynomial z2 + z + A2 + t is reducible over IFqn . For m1 ≥ 2, the
coefficients λ2, . . . , λm1 are m1 − 2 additional independent control variables over IFq.

Choosing m1 = 2, gives two independent control variables and possibly a partial control
variable t. In this case, there are more than q2 choices for H(x). The degree of H(x) is 2m1 = 4
and in about 4! trials we will obtain an H(x) which is smooth over IFq. Each such H(x) gives
rise to a 4-point decomposition and we obtain a total of more than q2/4! such relations. If
q2/4!> q, i.e., q > 4!, then we will obtain sufficiently many relations to carry out the linear
algebra step.

There is a condition in the statement of Proposition 2. For some t ∈ IFq, the polynomial
z2 + z +A2 + t has to be reducible over IFqn . Consider the case of elliptic curves. In this case,
we can take A1 = 0 and the form of the curve is y2 + xy = x3 +A2x

2 +A0. For elliptic curves,
when n is odd, then we have experimentally found that for the values of n we tested, it is
always possible to find a t such that the reducibility condition holds. On the other hand, if
n is even, then there are cases when z2 + z + A2 is irreducible over IFqn and for even n, this
implies that for every t ∈ IFq, the polynomial z2 + z + A2 + t is also irreducible over IFqn .
(This can be proved using elementary arguments involving the trace function.) So, for even n,
there are situations where the condition of Proposition 2 does not hold and hence, the stated
decompositions cannot be obtained.

Super-singular HEC: In this case, the equation of the curve is of the form y2 + y = f(x).
The above decomposition method works with a different condition on f(x).

Proposition 3. Let q be a power of 2 and n ≥ 2 be a positive integer. Consider the curve
C : y2 + y = f(x) = xφ(x) + A0 where φ(x) ∈ IFq[x] and A0 ∈ IFqn. If for some t ∈ IFq, the
polnomial z2 + z +A0 + t is reducible over IFqn, then for µ(x) = 1, it is possible to choose the
polynomial λ(x) such that H(x) = λ2(x) + xλ(x)µ(x) + µ2(x)f(x) is in IFq[x].



Proof. Let λ(x) = λm1x
m1 + · · · + λ2x

2 + λ1x + λ0, where λ0 is a root of the polynomial
z2 + z +A0 + t and λ1, λ2, . . . , λm1 are in IFq. Then

H(x) = λ2(x) + λ(x) + f(x)

= λ2(x) + λ(x) + xφ(x) +A0

= (λ2
m1
x2m1 + · · ·+ λ2

2x
4 + λ2

1x
2 + λ2

0)

+(λm1x
m1 + · · ·+ λ2x

2 + λ1x+ λ0) + xφ(x) +A0

= (λ2
0 + λ0 +A0) + ψ(x)

= t+ ψ(x).

Here ψ(x) is in IFq[x], i.e., all its coefficients are in IFq. Also, t is in IFq and so H(x) is in
IFq[x]. ut

7 Conclusion

Nagao had proposed a decomposition method for the Jacobian of a hyperelliptic curve defined
over IFqn . This involved solving a system of multi-variate non-linear equations. Later work by
Joux and Vitse had considered the problem of obtaining relations between elements of the
factor basis again by solving a system of non-linear equations.

In this work, we considered whether such relations can be obtained without requiring the
solution of non-linear system of equations. For special cases, we show that this can indeed be
done. For quadratic extension fields, i.e., for n = 2, for certain special curves we describe a
method for obtaining relations. This yields an algorithm which can be implemented in practice
and we are able to report the computation of a relation for genus six curves.

We also explore the applicability of our technique for fields with n > 2. In this case, the
curves that can be tackled are more restrictive and also we can obtain only one degree of
freedom. As a result, it is not possible to obtain sufficiently many relations for the linear
algebra step to go through.

For fields with characteristic two, it is possible to tackle n ≥ 2, but, the curves that are
tackled are also quite special. In this case, though, it is possible to obtain sufficiently many
relations so as to be able to complete the linear algebra step.

An interesting question that arises is whether the technique of Section 5 can be applied to
a subset of curves defined over IFqn for other small values of n such as 3 and 4. Our initial
efforts for doing this were not successful. The problem is that it becomes difficult to explicitly
write down the relations which ensure that the complex terms of H(x) cancel out. It remains
to be seen whether there is some way of managing the complexity of the equations.
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8. Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comput., 76(257):475–492, 2007.

9. Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on elliptic curves made practical
- application to a previously unreachable curve over Fp6 . In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237
of Lecture Notes in Computer Science, pages 9–26. Springer, 2012.

10. Neal Koblitz. Elliptic curve cryptosystesm. Math. Comp., 48(177):203–209, 1987.
11. Neal Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
12. Alfred Menezes, Yi-Hong Wu, and R. Zuccherato. An elementary introduction to hyperelliptic curves.

Appendix in ‘Algebraic Aspects of Cryptography’ by Neal Koblitz, 1998.
13. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances in Cryptology

- CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings, volume 218 of Lecture
Notes in Computer Science, pages 417–426. Springer, 1985.

14. Koh-ichi Nagao. Decomposition attack for the Jacobian of a hyperelliptic curve over an extension field. In
Algorithmic number theory, volume 6197 of Lecture Notes in Comput. Sci., pages 285–300. Springer, Berlin,
2010.

15. Palash Sarkar and Shashank Singh. A new method for decomposition in the jacobian of small genus
hyperelliptic curves. Cryptology ePrint Archive, Report 2014/815, 2014. http://eprint.iacr.org/.

16. Igor Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves. Cryptology
ePrint Archive, Report 2004/031, 2004. http://eprint.iacr.org/.

17. Nicolas Thériault. Index calculus attack for hyperelliptic curves of small genus. In Chi-Sung Laih, editor,
ASIACRYPT, volume 2894 of Lecture Notes in Computer Science, pages 75–92. Springer, 2003.

18. M. D. Velichka, Michael J. Jacobson Jr., and Andreas Stein. Computing discrete logarithms in the Jacobian
of high-genus hyperelliptic curves over even characteristic finite fields. Math. Comput., 83(286), 2014.


