
1

Remotely Managed Logic Built-In Self-Test for
Secure M2M Communications
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Abstract—A rapid growth of Machine-to-Machine (M2M) com-
munications is expected in the coming years. M2M applications
create new challenges for in-field testing since they typically
operate in environments where human supervision is difficult
or impossible. In addition, M2M networks may be significant in
size. We propose to automate Logic Built-In Self-Test (LBIST)
by using a centralized test management system which can test
all end-point M2M devices in the same network. Such a method
makes possible transferring some of the LBIST functionality from
the devices under test to the test management system. This is
important for M2M devices which have very limited computing
resources and commonly are battery-powered. In addition, the
presented method provides protection against both random and
malicious faults including some types of hardware Trojans.

I. INTRODUCTION

Over the last 30 years, the wireless communication indus-
try has gone through several stages of development. In the
first generation of wireless networks, communications were
performed using analog type of transmission. In the second
generation, the user’s voice was sampled and send using
digital signals, resulting in more reliable communications and
increased network capacity. In the third and fourth generations,
the wireless network users are able not only to exchange voice
messages, but also have data access to the Internet.

The number of wireless subscribers has grown to 7 billions
worldwide [1]. The next wave of growth is likely to come
from connecting more devices rather than more people. Home
appliances, cars, meters, sensors are expected to be wirelessly
connected, accessible, and controlled via local networks or
the Internet. Such Machine-to-Machine (M2M) type of com-
munications are expected to provide an entirely new range of
services that are appealing to the users [2]. It is forecasted
that 50 billions of devices will be connected worldwide by
year 2020 [3].

M2M communications create new challenges for security.
First, more products which we use in everyday life become
security-critical, e.g. connected baby monitor or smart fire
alarm. It is difficult to attack an appliance which is not
connected to anything but a power plug. Connectivity exposes
devices to the outside world, introducing new vulnerabilities
and risks. In addition, new applications whose malfunctioning
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can kill or injure people appear, e.g. implanted sensors that
monitor the heart rate and communicate the data to the cloud
for analysis. Such applications should be able to guarantee
security that withstands potential attacks for the lifetime of
the product, regardless of improvements in attacker’s compu-
tational capabilities.

M2M communications also create new challenges for in-
field testing since they typically operate in environments where
human supervision is difficult or impossible. In addition, M2M
networks may be significant in size. In this paper, we propose
to automate Logic Built-In Self-Test (LBIST) by using a
centralized test management system which can test all end-
point M2M devices in the same network. Such a method
makes possible transferring some of the LBIST functionality
from the devices under test to the test management system.
This is an advantage since M2M devices are characterized by
very limited computing resources and commonly are battery-
powered. In addition, the presented method provides protection
against both random and deliberate faults including some types
of malicious circuit modifications known as hardware Trojans.

Hardware Trojans (also known as sleeper cells [4]) have
been around for a while, but in the past it was quite difficult
to inject a Trojan into the supply chain. In today’s globalized
world where manufacturing is outsourced and the use of third-
party IP from new vendors is widespread, this is no longer
a problem. In modern chips it is nearly impossible to find
circuitry which is injected during chip’s tapeout and does
not belong to the original design. Functional validation is
further complicated by the fact that some redundant circuitry
is typically added to a chip during the manufacturing stage in
order to increase its yield [5].

The threat posed by hardware Trojans is widely recognized.
Over the last few years, reports have been published to
regulate suppliers of critical components [6]. The discovery
of counterfeit chips in safety and security critical industrial
and military products [7] made clear the importance of finding
efficient protective measures against hardware Trojans.

The method presented in this paper provides a simple but
efficient countermeasure against hardware Trojans described
in [8] which exploit non-zero aliasing probability of LBIST.
Our method executes LBIST using a different set of test
patterns at each test cycle. As a result, the expected LBIST
signature is unknown at the manufacturing stage. Therefore, it
is not possible to predict in advance which circuit modifica-
tions produce the same signature as a fault-free signature and
a Trojan of type described in [8] cannot be inserted.

The paper is organized as follows. Section II gives basic
notation used in the sequel. Section III describes the traditional
LBIST. Section IV reviews hardware Trojans. Section V gives
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details of the presented method. Section VI concludes the
paper and discusses open problems.

II. PRELIMINARIES

Throughout the paper, we use ”⊕” and ”·” to denote the
Boolean XOR and the Boolean AND, respectively.

The Boolean functions {0,1}n → {0,1} are represented
using the Algebraic Normal Form (ANF) (also called Reed-
Muller canonical form [9]) which is an expression of type

f (x0,x1, . . . ,xn−1) =
2n−1

∑
i=0

ci · xi0
0 · x

i1
1 · . . . · x

in−1
n−1,

where ”∑” is an XOR-sum, ci ∈ {0,1} and (i0i1 . . . in−1) is
the binary expansion of i [10]. ANF is the most common
representation for Boolean functions used in cryptographic
systems [11].

An n-bit Feedback Shift Register (FSR) consists of n binary
storage elements, called stages. Each stage i∈ {0,1, . . . ,n−1}
has an associated state variable xi which represents the current
value of the stage i and a feedback function which determines
how the value of i is updated.

A state of an FSR is a vector of values of its state variables.
At each clock cycle, the next state of an FSR is determined
from its current state by simultaneously updating the value
of each stage i to the value of the corresponding feedback
function fi, ∀i ∈ {0,1, . . . ,n−1}.

If all feedback functions of an FSR are linear, then it is
called a Linear Feedback Shift Register (LFSR). Otherwise, it
is called a Non-Linear Feedback Shift Register (NLFSR).

An FSR can be implemented either in the Fibonacci or
in the Galois configuration [12]. In the former, the feed-
back is applied to the input stage of the shift register only.
All remaining feedback functions are of type fi = xi+1, for
i ∈ {0,1, . . . ,n−2}. In the latter, the feedback can potentially
be applied to every stage.

III. TRADITIONAL LBIST

Logic Built-In-Self-Test (LBIST) [13] uses a Pseudo-
Random Pattern Generator (PRPG) to generate pseudo-random
test patterns that are applied to the circuit under test and
an output response compactor for obtaining the compacted
responses to these patterns, called signature (see Figure 1).
An incorrect signature indicates a fault.

The LBIST controller contains circuitry that controls the
testing process: generation of pseudo-random test patterns,
their application to the circuit under test and compaction of
output responses. The controller first initializes the PRPG to
a given initial state and then counts the required number of
test patters. The initial state and the number of test patterns
are defined by the test initialization parameters.

Pseudo-random patterns generated by the PRPG are fed
into a circuit under test and propagated through its compo-
nents. The resulting output signals are provided to the output
response compactor, typically implemented by a Multiple
Input Signature Register (MISR). MISR computes a signature
representing the cumulative value of the output responses and
forwards it to the decision logic.
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Fig. 1: Traditional LBIST module.

Since the output responses are compacted, a faulty circuit
can produce the same signature as a fault-free one. This is
known as an aliasing error. If an MISR with a primitive
connection polynomial is used1, then the aliasing probability
is bounded by 1/2n, where n is the size of the MISR [15].

Decision logic compares the signature computed by the
MISR to the expected ”good” signature. If the MISR signature
matches the expected signature, the circuit passes the test.
Otherwise the circuit fails the test.

The test initialization parameters and expected signature are
typically stored in a memory (e.g. Flash) or hard-wired into a
chip during the manufacturing stage [16].

The management of the traditional LBIST is performed
using a processor which either resides on a chip, or on the
same board as a chip [17]. The processor initiates LBIST
by sending a ”test mode” signal to the LBIST controller.
Typically, LBIST is initiated at power-up and/or restart, or
in response to some external trigger, e.g., if a hardware or
software supervising the chip indicates a fault.

IV. HARDWARE TROJANS

A hardware Trojan is a malicious modification of a design
intended to bypass or disable its security. There are two
different types of Trojans [18].

1) Functional Trojans add or remove transistors, gates,
wires, or other components to/from the original circuit.

2) Parametric Trojans reduce the reliability of a chip by
thinning its wires, weakening its transistors, or subject-
ing the chip to radiation.

Existing techniques for detecting hardware Trojans include:

1An irreducible polynomial of degree n is called primitive if the smallest
m for which it divides xm +1 is equal to 2n−1[14].
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Fig. 2: Presented method.

1) Physical inspection, consisting in grinding the layers of
a chip one-by-one and scanning the exposed circuitry
by various visual inspection methods, e.g. optical in-
spection [19];

2) Testing (functional or BIST), consisting in applying
test stimuli to a chip and comparing its output to the
specification [20];

3) Side-channel analysis, in which signals emitted by a
chip, e.g. leakage current, path delays, electromagnetic
radiation, etc. are measured and analyzed [21], [22].

Various countermeasures have been developed to protect
against activation of certain types Trojans, or to allow for
operating correctly in presence of unknown Trojans [23].
The former typically involves data guards such as scrambling
or obscurification, or hardening a design against specific
triggers. The latter is usually done by replication, fragmen-
tation and voting, as in the traditional fault-tolerant design
techniques [24].

Overall, existing methods for hardware Trojan detection are
still in their infancy. Typically, they focus on a specific type
of Trojans, with no single technique being able to provide
a complete coverage. For example, the recent attack on the
Random Number Generator (RNG) of Intel’s Ivy Bridge
processor [8] demonstrated that the traditional LBIST may
fail even the simple case of stuck-at fault type of hardware
Trojans. Such Trojans can be injected by changing the dopant
polarity of selected transistors. The modifications do not
change any metal or polysilicon layer of the chip and therefore
they are practically invisible to optical inspection. The points
of modifications are selected so that the LBIST signature
computed for the Trojan-injected circuit is the same as the
fault-free signature. Thus, the Trojan does cause LBIST to
fail.

It is possible to combat LBIST-based Trojans by introducing
a configurable key which determines the initial state of PRPG
and hence the expected LBIST signature. The key is pro-

grammed into the circuit by the user after the manufacturing
stage [25]. The method presented in this paper provides an
alternative way of making LBIST signature unknown at the
manufacturing stage without a need for extra programming.

V. PRESENTED METHOD

In this paper, we present an LBIST method which uses
a centralized remote test management system to test all de-
vices in the same network (see Figure 2). The remote test
management system contains a test scheduling program, test
initialization parameters, expected signatures, decision logic
and network interface. The expected signatures can be either
pre-computed for a given set of test initialization parameters
and stored in a database, or computed on-the-fly by simulation.

Upon deciding to initiate a test cycle for all or some devices,
the test scheduling program instructs the test initialization
parameters module which parameters to send. These param-
eters are transmitted through the network interface and the
communication network to the selected devices.

The diagram of a remotely managed LBIST module is
shown in Figure 3. It differs from the traditional LBIST in
Figure 1 in that the test initialization parameters, expected
signature and decision logic blocks are transferred to the test
management system. This is an additional benefit for the end-
point M2M devices in which computing and power resources
are typically very limited.

We assume that the board implementing an end-point M2M
device contains a communication module, e.g. a modem,
which performs the communication between the M2M device
and the remote test management system, an CPU which
runs processes related to the communication, and Basic In-
put/Output System (BIOS) which provides the functionality
and interface for communication during LBIST.

Then the test initialization parameters are received through
the communication module, the LBIST test cycle proceeds
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Fig. 3: Remotely managed LBIST module.

as normally and the signature is computed. This signature is
returned to the remote test management system for the analysis
on passing/not passing the test.

The test management system takes ”human-like” decisions
regarding which devices to test, when, and how. These de-
cisions are taken on the base of the information received
by monitoring global external factors such as environment,
the interaction between devices, abnormal responses, etc. For
example, meteorological sensors that register the wind in var-
ious locations within a given area may be tested immediately
after harsh weather conditions, e.g a thunderstorm. As another
example, a device may request the management system to
test another device if several attempts to communicate with
it failed. In both examples, faults might be detected earlier,
implying higher availability and safety. The idea of context-
aware automation and decision optimization is not new [26],
but to our best knowledge it has not been applied to LBIST.

Another advantage of the centralized management is that
testing can be carried out using different sets of test patterns. In
the traditional LBIST, the same set of pseudo-random patterns
is used at every test cycle. At each test cycle, the PRPG starts
from the same initial state and generates the same number
of test patterns which are defined by the test initialization
parameters stored on-chip/board. Accordingly, the same set
of input stimuli is applied to a circuit under test and hence the
same subset of faults can be detected. By changing the set of
test patterns for each test cycle, we can cover different subsets
of faults. Therefore, the presented method can potentially
provide a higher fault coverage compared to the traditional
LBIST. Furthermore, it can detect malicious and unanticipated
faults, including hardware Trojans. In the traditional LBIST,
an adversary who knows the set of test patterns generated
by the PRPG can made suitable circuit modifications which
result in the same signature as a fault-free circuit signature.
On average, the adversary has to do 2n−1 simulation trials in
order to inject a Trojan which does not trigger LBIST [8].

To show the reader how such an attack can be performed,
consider an RNG which generates numbers in the range
{1,2, . . . ,15}. Such an RNG can be implemented by a 4-
stage Non-Linear Feedback Shift Register (NLFSR) with the

3 2 1 0

Fig. 4: 4-bit NLFSR from the example.

Test Fault-free case With fault injected
pattern NLFSR MISR NLFSR MISR

from LFSR response signature response signature
(x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0)

1011 0011 0011 0001 0001
1010 1101 0101 1101 0100
0101 1010 0001 1000 1010
1101 1110 0111 1100 1001
1001 1100 0110 1100 0001
1011 0011 0000 0001 1000
1010 1101 1101 1101 1001
0101 1010 0101 0001 0101

TABLE I: Example of a hardware Trojan not detected by
LBIST.

following feedback functions (see Figure 4):

f0(x1) = x1
f1(x0,x1,x2) = x2⊕ x0x1
f2(x0,x1,x3) = x3⊕ x0x1
f3(x0,x1) = x0⊕ x1.

Suppose that the LBIST which protects such an RNG uses
4-bit LFSR with the connection polynomial 1⊕x⊕x2⊕x3⊕x4

as a PRNG and a 4-bit MISR with the connection polynomial
1⊕ x3⊕ x4 as an output compactor. We assume that, at each
clock cycle, the current 4-bit state vector of the LFSR is used
as a test pattern. The LFSR is initialized to some non-zero
state and the MISR is initialized to (0000). Both, LFSR and
MISR are implemented in the Galois configuration.

The probability that an attacker successfully guesses the
number generated by an n-bit NLFSR is 1/2n. However, by
setting k internal flip-flops of the NLFSR to a constant value
it is possible to reduce the complexity of the attack to 1/2n−k.

Suppose that the attacker knows that the initial state of
the LFSR is (1011) and that 8 tests patterns are applied to
compute the MISR signature. Then, the attacker can calculate
the expected ”good” MISR signature by simulation. From the
3rd column of Table I we can see that this signature is (0101).
The attacker can investigate which of the NLFSR’s flip-flops
should be set to constant-0 or constant-1 value in order to
get the same signature. In our example, the signature (0101)
can be obtained if the flip-flop corresponding to the bit 1 of
the NLFSR is set to 0 (see last column of Table I). So, the
attacker can inject such a fault into the NLFSR and reduce the
complexity of the attack by one half. Note that, in general,
detecting this type of Trojans in a large design by optical
inspection is very difficult since only the dopant polarity of
a few transistors has been changed. No metal or polysilicon
layers of the chip have been altered. Since optical inspection
is not feasible and the Trojan passes LBIST, an engineer who
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verifies the design cannot recognize a difference between a
Trojan-injected circuit and a Trojan-free one. Consequently,
he/she is not able to identify a trustworthy ”golden” chip
(which is known not to have any malicious modifications).
Without such a chip, the majority of post-manufacturing
Trojan detection techniques [18] cannot be used.

The presented method mitigates this problem because it
executes LBIST using a different set of test patterns at each
test cycle. Since the expected signature is unknown at the
manufacturing stage, an attack based on selecting suitable
values for the Trojan which result in the same signature as
a fault-free circuit signature cannot be performed.

In the scenario we described above, the remote test manage-
ment system sends to a device the test initialization parameters
and the device replies with a signature. Another scenario is
possible, in which the remote test management system sends
to a device both, the test initialization parameters and the
expected signature. Then, the device computes the signature,
compares it to the received expected signature and replies
with pass/not passed. While such a case would involve the
same volume of data transferred, it might be preferable for
applications in which the downlink bitrate of the receiving
device is higher than its uplink bitrate.

VI. CONCLUSION

We presented an LBIST method which uses a remote
management system which can test all end-point M2M devices
in the same network.
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