
How Fair is Your Protocol?

A Utility-based Approach to Protocol Optimality

Juan Garay
Yahoo Labs

garay@yahoo-inc.com

Jonathan Katz
University of Maryland
jkatz@cs.umd.edu

Björn Tackmann
UC San Diego

btackmann@eng.ucsd.edu

Vassilis Zikas
ETH Zurich

vzikas@inf.ethz.ch

March 2, 2015

Abstract

In his seminal result, Cleve [STOC’86] established that secure distributed computation—
guaranteeing fairness—is impossible in the presence of dishonest majorities. A generous number
of proposals for relaxed notions of fairness ensued this seminal result, by weakening in various
ways the desired security guarantees. While these works also suggest completeness results (i.e.,
the ability to design protocols which achieve their fairness notion), their assessment is typically
of an all-or-nothing nature. That is, when presented with a protocol which is not designed to
be fair according to their respective notion, they most likely would render it unfair and make
no further statement about it.

In this work we put forth a comparative approach to fairness. We present new intuitive
notions that when presented with two arbitrary protocols, provide the means to answer the
question “Which of the protocols is fairer?” The basic idea is that we can use an appropriate
utility function to express the preferences of an adversary who wants to break fairness. Thus,
we can compare protocols with respect to how fair they are, placing them in a partial order
according to this relative-fairness relation.

After formulating such utility-based fairness notions, we turn to the question of finding
optimal protocols—i.e., maximal elements in the above partial order. We investigate—and
answer—this question for secure function evaluation, both in the two-party and multi-party
settings.

To our knowledge, the only other fairness notion providing some sort of comparative state-
ment is that of 1/p-security (aka “partial fairness”) by Gordon and Katz [Eurocrypt’10]. We
also show in this paper that for a special class of utilities our notion strictly implies 1/p-security.
In addition, we fix a shortcoming of the definition which is exposed by our comparison, thus
strengthening that result.

Key words: Cryptographic protocols, secure multi-party computation, fairness, rational protocol
design.

1 Introduction

Two parties p1 and p2 wishing to sign a contract are considering the following two protocols, Π1

and Π2, with communication over secure channels.

In Π1, p1 and p2 locally digitally sign the contract, compute commitments c0 and c1 on the
signed versions, and exchange these commitments. Subsequently, p1 opens its commitment to
p2, and then p2 opens his commitment to p1. If during any of the above steps pi, i ∈ {1, 2},
observes that p3−i sends him an inconsistent message, then he aborts.

Π2 starts off similarly to Π1, except that to determine who opens his commitment first, the
parties execute a coin tossing protocol [4]: p1 and p2 locally commit to random bits b1 and b2,
exchange the commitments, and then in a single round they open them. For each pi, if the
opening of b3−i is valid then pi computes b = b1⊕ b2; otherwise pi aborts. The parties then use
b to determine which party opens the committed signed contract first.

Which protocol should the parties use? Intuitively, and assuming a party is honest, the answer
should be clear: Π2, since the cheating capabilities of a corrupt party are reduced in comparison
to Π1. Indeed, the probability of a corrupted pi forcing an unfair abort (i.e., receiving the contract
signed by p3−i while preventing p3−i from also receiving it) in protocol Π2 is roughly half of the
probability in protocol Π1. In other words, one would simply say that protocol Π2 is “twice as fair
as” protocol Π1.

Yet, most existing cryptographic security definitions would render both protocols equally unfair
and make no further statement about their relative fairness. This even applies to definitions for
relaxed notions of fairness that circumvent Cleve’s impossibility result [10], which excludes the
existence of a fully fair protocol computing arbitrary functions in the presence of a dishonest
majority. For example, both above protocols would be equally unfair with respect to resource
fairness [15], which formalizes the intuition of the gradual release paradigm [4, 2, 11, 5, 23] in a
simulation-based framework. Indeed, a resource-fair protocol should ensure that, upon abort, the
amount of computation that the honest party needs for producing the output is comparable to the
adversary’s for the same task; this is clearly not the case for any of the protocols, as with probability
at least one-half the adversary might learn the output (i.e., receive the signed contract) when it is
infeasible for the other party to compute it. The same holds for fairness definitions in “rational”
cryptography (e.g., [1, 20]), which require the protocol to be an equilibrium strategy with respect
to a preference/utility function for curious-but-exclusive agents, where each agent prefers learning
the output to not learning it, but would rather be the only one that learns it. We point out that
some of these frameworks do offer completeness results, in the sense that they show that one can
construct protocols for contract signing that are fair in the respective notions; nevertheless, none of
them provides a comparative statement for protocols as the ones we consider in the example above.

Motivated by the above observation, in this paper we put forth intuitive quantitative definitions
of fairness for two-party and multi-party protocols. Our notions are based on the idea that we
can use an appropriate utility function to express the preferences of an adversary who wants to
break fairness. Our definitions allow for comparing protocols with respect to how fair they are,
placing them in a partial order according to a relative-fairness relation. We then investigate the
question of finding maximal elements in this partial order (which we refer to as optimally fair
protocols) for the case of two-party and multi-party secure function evaluation (SFE). Importantly,
our quantitative fairness and optimality approach is fully composable (cf. [8]) with respect to
standard secure protocols, in the sense that we can replace a “hybrid” in a fair/optimal protocol
with a protocol which securely implements it without affecting its fairness/optimality.

Our approach builds on machinery developed in the recently proposed Rational Protocol Design
(RPD) framework, by Garay et al. [14]. In more detail, [14] describes how to design protocols which
keep the utility of an attacker aiming at provoking certain security breaches as low as possible. At
a high level, we use RPD as follows: first, we specify the class of utility functions that naturally
capture an adversary attacking a protocol’s fairness, and then we interpret the actual utility that

2

the best attacker (i.e., the one maximizing its respective utility) obtains against a given protocol as
a measure of the protocol’s fairness. The more a protocol limits its best attacker with respect to our
fairness-specific utility function, the fairer the protocol is. Going back to the Π1 vs. Π2 example at
the beginning of the section, we can now readily use this utility function to formally express that
protocol Π2 is fairer than protocol Π1, because Π1 allows the adversary to always obtain maximum
utility, whereas Π2 reduces this utility by a factor of 1/2.

Related work. There is a considerable amount of work on protocol fairness. After Cleve’s
impossibility result [10], perhaps the most profuse line of work is on “gradual release” of informa-
tion [4, 2, 11, 5, 23, 15]. These works adopt the traditional all-or-nothing definitional approach. A
notable exception is the notion of 1/p-security by Gordon and Katz [18]. Roughly, their definition,
in the two-party case, guarantees fairness to hold with probability at least 1− 1/p, for some poly-
nomial p, instead of with overwhelming probability. These results were extended to the multi-party
case by Beimel et al. [3].

While Gordon and Katz considered the secure evaluation of specific classes of functions (with
polynomial input domains and/or output ranges) and with the goal of achieving, at the cost of
many rounds, arbitrarily large polynomials p, one can more generally adopt the parameter p as a
measure of the protocol’s quality, even for small values of p. Returning to the discussion about
protocols Π1 and Π2 above, for example, this would mean that Π1 is 0-secure (p = 1) and Π2 is 1/2-
secure (p = 2) with respect to the ideal functionality that receives the signing keys from the parties
and sends them the respective signed contracts. At a protocol level, the difference in our work
is that we design and prove protocols for evaluating arbitrary functions, at the cost of achieving
worse—but for this generality optimal—parameters. At a definitional level, we observe that our
definition always (except with negligible probability) guarantees privacy and correctness, which is
not the case for 1/p-security (as we show in Section 5). In fact, we prove that, for an appropriate
choice of the utility function, our utility-based fairness notion strictly implies 1/p-security.

A different line of work tries to capture relaxed notions of fairness by assuming that the protocol
participants are rational agents with a fairness-related utility function [1, 20]. Informally, every
party/rational agent prefers to learn the output and be the only one who learns it. We point out
that this approach is incomparable to ours—or to any other existing notion of fairness in the non-
rational setting—where the honest parties are not rational and follow whichever protocol is designed
for them. In particular, the optimal protocols suggested here (and in other fairness notions in the
non-rational setting) do not imply an equilibrium in the sense of [1, 20].1 We stress, however, that
similarly to other existing definitions of fairness, the definitions from [1, 20] also do not imply a
comparative notion of fairness, as a protocol either induces an equilibrium or it does not.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2 we
describe notation and the very basics of the RPD framework [14] that are needed for understanding
and evaluating our results. In Section 3 we define the utility function of attackers who aim to violate
fairness, which enables the relative assessment of protocols as well as the notions of “optimal”
fairness which we use in this work. In Section 4 we present optimally fair protocols for two-party
and multi-party (n > 2 parties) secure function evaluation (SFE) (Sections 4.1 and 4.2, resp.) Our
protocols are not only optimally fair but also optimal with respect to the number of reconstruction
rounds—a measure formalized here which has been implicit in the fairness literature. Furthermore,
for the case of multi-party SFE, we also provide an alternative (incomparable) notion of optimality

1We note in passing that our protocols do, in fact, imply an equilibrium, but in the attack “meta-game” defined
in [14]. Roughly speaking, an equilibrium in that attack game means that the corresponding protocol tames its
adversary in an optimal way. Interested readers are referred to [14] for more details.

3

that relates to how costly corruptions might be for the adversary.2 Finally, in Section 5 we compare
our utility-based fairness notion to 1/p-security (aka “partial fairness”) as developed by Gordon
and Katz [18]. Detailed constructions, proofs, and other complementary material are presented in
the appendix.

2 Preliminaries

We first establish some notational conventions. For an integer n ∈ N, the set of positive numbers
smaller or equal to n is [n] := {1, . . . , n}. In the context of two-party protocols, we will always refer
to the parties as p1 and p2, and for i ∈ {1, 2} the symbol ¬i refers to the value 3− i (so p¬i 6= pi).
Most statements in this paper are actually asymptotic with respect to an (often implicit) security
parameter k ∈ N. Hence, f ≤ g means that ∃k0 ∀k ≥ k0 : f(k) ≤ g(k), and a function µ : N → R
is negligible if for all polynomials p, µ ≤ 1/p, and noticeable if there exists a polynomial p with

µ ≥ 1/p. We further introduce the symbols f
negl

≈ g :⇔ ∃ negligible µ : |f − g| ≤ µ, and

f
negl

≥ g :⇔ ∃ negligible µ : f ≥ g − µ, with
negl

≤ defined analogously.
For the model of protocol composition, we follow Canetti’s adaptive simulation-based model

for multi-party computation [6]. The protocol execution is formalized by collections of interactive
Turing machines (ITMs); the set of all efficient ITMs is denoted by ITM. We generally denote our
protocols by Π and our (ideal) functionalities (which are also referred to as the trusted party [6])
by F both with descriptive super- or subscripts, the adversary by A, the simulator by S, and the
environment by Z. The random variable ensemble {execΠ,A,Z(k, z)}k∈N,z∈{0,1}∗ , which is more
compactly often written as execΠ,A,Z , describes the contents of Z’s output tape after an execution
with Π, F, and A, on auxiliary input z ∈ {0, 1}∗.

Rational Protocol Design. Our results utilize the Rational Protocol Design (RPD) frame-
work [14]. Here we review the basic elements that are needed to motivate and express our definitions
and results; we refer to the framework paper [14] for further details. In RPD, security is defined via
a two-party sequential zero-sum game with perfect information, called the attack game, between
a protocol designer D and an attacker A. The designer D plays first by specifying a protocol Π for
the (honest) participants to run; subsequently, the attacker A, who is informed about D’s move
(i.e., learns the protocol) plays by specifying a polynomial-time attack strategy A by which it may
corrupt parties and try to subvert the execution of the protocol (uncorrupted parties follow Π as
prescribed). Note that it suffices to define the utility uA of the adversary as the game is zero-sum.
(The utility uD of the designer is then −uA.)

The utility definition relies on the simulation paradigm3 in which a real-world execution of pro-
tocol Π in the presence of attack strategy (or adversary) A is compared to an ideal-world execution
involving an ideal-world attack strategy (that is, a simulator S) interacting with a functionality
F which models the task at hand. Roughly speaking, the requirement is that the two worlds be
indistinguishable to any environment Z which provides the inputs and obtains the outputs of all
parties, and interacts arbitrarily with the adversary A.

For defining the utilities in RPD, however, the real world is compared to an ideal world in which
S gets to interact with a relaxed version of the functionality which, in addition to implementing the
task as F would, also allows the simulator to perform the attacks we are interested in capturing.
For example, an attack to the protocol’s correctness is modeled by the functionality allowing the

2Secure multi-party computation with costly corruptions was first studied in [13].
3In RPD the statements are formalized in Canetti’s Universal Composition (UC) framework [7]; however, one

could in principle use any other simulation-based model such as Canetti’s MPC framework [6].

4

simulator to modify the outputs (even of honest parties). Given such a functionality, the utility
of any given adversary is defined as the expected utility of the best simulator for this adversary,
where the simulator’s utility is defined based on which weaknesses of the ideal functionality the
simulator is forced to exploit.

3 Utility-based Fairness and Protocol Optimality

In this section, we make use of the RPD framework to introduce a natural fairness relation (par-
tial order) to the space of efficient protocols. Specifically, we consider an instantiation of RPD
with an attacker who obtains utility for violating fairness. The RPD machinery can be applied to
most simulation-based security frameworks; however, for the sake of clarity we restrict ourselves
to the technically simpler framework of Canetti [6] (allowing sequential and modular composition),
which considers synchronous protocols with guaranteed termination. Our definitions can be ex-
tended to Universally Composable (UC) security [7] using the approach of Katz et al. [21] to model
terminating synchronous computation in UC.

Now to our approach. We follow the three-step process described in [14] for specifying an adver-
sary’s utility, instantiating this process with parameters that capture a fairness-targeted attacker:

Step 1: Relaxing the ideal experiment to allow attacks on fairness. First, we relax the
ideal world to allow the simulator to perform fairness-related attacks. In particular, we consider the
experiment corresponding to standard ideal SFE with abort experiment [6, 16] with the difference
that the simulator only receives the outputs of corrupted parties if he asks for them (we denote
the corresponding trusted-party/functionality as F⊥sfe). In a nutshell, F⊥sfe is similar to standard
SFE but allows the simulator to ask or not for corrupted parties’ outputs, and, subsequently, to
send F⊥sfe a special (abort)-message even after having received these outputs (but before some
honest parties receive the output). Upon receiving such an abort message, the functionality sets
the output of every (honest) party to ⊥. We refer to the above ideal world as the F⊥sfe-ideal world.
We point out that the functionality F⊥sfe is as usually parametrized by the actual function f to be
evaluated; when we want to make this function f explicit we will write Ff,⊥sfe .

Step 2: Events and payoffs. Next, we specify a set of events in the experiment corresponding
to the ideal evaluation of F⊥sfe which capture whether or not a fairness breach occurs, and assign
to each such event a “payoff” value capturing the severity of provoking the event. The relevant
questions to ask with respect to fairness are:

1. Does the adversary learn “noticeable” information about the output of the corrupted parties?

2. Do honest parties learn their output?

The events used to describe fairness correspond to the four possible combinations of answers to the
above questions. In particular, we define the events indexed by a string ij ∈ {0, 1}2, where i (resp.,
j) equals 1 if the answer to the first (resp., second) question is yes and 0 otherwise. The events are
then as follows:

E00: The simulator does not ask functionality F⊥sfe for any of the corrupted parties’ outputs and
instructs it to abort before all honest parties receive their output. (Thus, neither the simulator
nor the honest parties will receive their outputs.)

E01: The simulator does not ask F⊥sfe for any of the corrupted parties’ outputs and does not abort.
(When the protocol terminates, then only the honest parties will receive the output. This event
also accounts for cases where the adversary does not corrupt any party.)

E10: The simulator asks F⊥sfe for some corrupted party’s output and instructs it to abort before
any honest party receives the output.

5

E11: The simulator asks F⊥sfe for some corrupted party’s output and does not abort. (When the
protocol terminates, both the honest parties and the simulator will receive their outputs. This
event also accounts for cases where the adversary corrupts all parties.)

We remark that our definition does not give any advantage to an adversary corrupting all parties.
This is consistent with the intuitive notion of fairness, as when there is no honest party, the
adversary has nobody to gain an unfair advantage over.

To each of the events Eij we associate a real-valued payoff γij which captures the adversary’s
utility when provoking this event. Thus, the adversary’s payoff is specified by vector ~γ = (γ00, γ01,
γ10, γ11), corresponding to events ~E = (E00, E01, E10, E11).

Finally, we define the expected payoff of a given simulator S (for an environment Z) to be4:

U
F⊥sfe,~γ
I (S,Z) :=

∑
i,j∈{0,1}

γij Pr[Eij]. (1)

Step 3: Defining the attacker’s utility. Given U
F⊥sfe,~γ
I (S,Z), the utility uA(Π,A) for a pair

(Π,A) is defined following the methodology in [14] as the expected payoff of the best simulator5

that simulates A in the F⊥sfe-ideal world in presence of the least favorable environment—i.e., the
one that is most favorable to the attacker (cf. Remark 1). To make the payoff vector ~γ explicit, we

sometimes denote the above utility as ÛΠ,F⊥sfe,~γ(A) and refer to it as the payoff of strategy A (for
attacking Π).

More formally, for a protocol Π, denote by SIMA the class of simulators for A, i.e, SIMA = {S ∈
ITM | ∀Z : execΠ,A,Z ≈ execF⊥sfe,S,Z}. The payoff of strategy A (for attacking Π) is then defined
as:

uA(Π,A) := ÛΠ,F⊥sfe,~γ(A) := sup
Z∈ITM

inf
S∈SIMA

{UF
⊥
sfe,~γ

I (S,Z)}. (2)

To complete our formalization, we now describe a natural relation among the values in ~γ which
is both intuitive and consistent with existing approaches to fairness, and which we will assume to
hold for the remainder of the paper. Specifically, we will consider attackers whose least preferred
event is that the honest parties receive their output while the attacker does not, i.e., we assume
that γ01 = minγ∈~γ{γ}. Furthermore, we will assume that the attacker’s favorite choice is that he
receives the output and the honest parties do not, i.e., γ10 = maxij∈{0,1}2{γij}. Lastly, we point
out that for an arbitrary payoff vector ~γ, one can assume without loss of generality that any one
of its values equals zero, and, therefore, we can set γ01 = 0. This can be seen immediately by
setting γ′ij = γij − γ01. We denote the set of all payoff vectors adhering to the above restrictions

by Γfair ⊆ R4. Summarizing, our fairness-specific payoff (“preference”) vector ~γ satisfies

0 = γ01 ≤ min{γ00, γ11} and max{γ00, γ11} < γ10.

Optimally fair protocols. We are now ready to define our partial order relation for protocols
with respect to fairness. Informally, a protocol Π will be at least as fair as another protocol Π′ if
the utility of the best adversary A attacking Π (i.e, the adversary which maximizes uA(Π,A)) is no
larger than the utility of the best adversary attacking Π′ (except for some negligible quantity). Our
notion of fairness is with respect to the above natural class Γfair; for conciseness, we will abbreviate
and say that a protocol is “~γ-fair,” for ~γ ∈ Γfair. Formally:

4Refer to [14, Section 2] for the rationale behind this formulation.
5The best simulator is taken to be the one that minimizes his payoff [14].

6

Definition 1. Let Π and Π′ be protocols, and ~γ ∈ Γfair be a preference vector. We say that Π is

at least as fair as Π′ with respect to ~γ (i.e., it is at least as ~γ-fair), denoted Π
~γ
� Π′, if

sup
A∈ITM

uA(Π,A)
negl

≤ sup
A∈ITM

uA(Π
′,A). (3)

We will refer to a protocol which is a maximal element according to the above fairness relation
as an optimally fair protocol.

Definition 2. Let ~γ ∈ Γfair. A protocol Π is optimally ~γ-fair if it is at least as ~γ-fair as any other
protocol Π′.

Remark 1 (On using the worst-case adversary). The above definition renders a protocol optimal
if it defends against the worst adversary/environment that attacks it. This is essential for ob-
taining a composable security notion. (In fact, as shown in [14, Section 3] when instantiated in
Canetti’s powerful UC framework [7], our definition allows for replacing any functionality with a
corresponding UC-secure protocol.) One might be tempted to try to obtain stronger notions of
optimality by formulating a“per-adversary” definition, in which Equation (3) is required to hold
for the same adversary both for Π and Π′. Yet, such a definition would render most interesting
protocols incomparable, as one can design adversaries that are “tuned” to attack one protocol but
not the other.

Definition 2 presents our most basic notion of utility-based fairness. With foresight, one issue
that arises with this definition in the multi-party setting is that it is not sensitive to the number
of corrupted parties, so when an adversary is able to corrupt parties for free, he is better off
corrupting all n−1 parties. In Section 4.2 we also present an alternative notion of fairness suitable
for situations where the number of corrupted parties does matter, as, for example, when corrupting
parties carries some cost (cf. [13]).

4 Utility-based Fair SFE

In this section we investigate the question of finding optimally ~γ-fair protocols for secure two-
party and multi-party function evaluation, for any ~γ ∈ Γfair. (Recall that Γfair is a class of natural
preference vectors for fairness—cf. Section 3.) In addition, for the case of multi-party protocols,
we also suggest an alternative, incomparable notion of fairness that is sensitive to the number
of corrupted parties and is therefore relevant when this number is an issue. As we describe our
protocols in the model of [8], the protocols are synchronous and parties communicate with each
other via bilateral secure channels. We point out that the protocols described here are secure
against adaptive adversaries [9].

4.1 The Two-Party Setting

In this section we present an optimally ~γ-fair protocol, ΠOpt
2SFE, for computing any given function. Its

optimality is established by proving a general upper bound on the utility uA(Π,A) of an adversary
A attacking it, and then presenting a specific function f and an adversary who attacks the protocol
ΠOpt

2SFE for computing f that obtains an utility which matches the above upper bound.
Our protocol makes use of a well-known cryptographic primitive called authenticated secret

sharing. An authenticated additive (two-out-of-two) secret sharing scheme is an additive sharing
scheme augmented with a message authentication code (MAC) to ensure verifiability. (See Ap-
pendix A for a concrete instantiation.) Protocol ΠOpt

2SFE works in two phases as follows; f denotes
the function to be computed:

7

1. In the first phase, ΠOpt
2SFE invokes an adaptively secure unfair SFE protocol (e.g., the protocol

in [16]—call it ΠGMW)6 to compute the following function f ′: f ′ takes as input the inputs of
the parties to f , and outputs an authenticated sharing of the output of f along with an index
i ∈R {1, 2} chosen uniformly at random. In case the protocol aborts, the honest party takes a
default value as the input of the corrupted party and locally computes the function f .

2. In the second phase, if ΠGMW did not abort, the protocol continues in two more rounds. In
the first round, the output (sharing) is reconstructed towards pi, and in the second round it is
reconstructed towards p¬i. In case p¬i does not send a valid share to pi in the first round, pi
again takes a default value as the input of the (corrupted) party p¬i and computes the function f
locally (the second round is then omitted).

As we show in the following theorem, the adversary’s payoff in the above protocol is upper-
bounded by γ10+γ11

2 . The intuition of the proof (see Appendix A) is as follows: If the adversary
corrupts the party that first receives the output, then he can provoke his most preferred event E10

by aborting before sending his last message. However, because this party is chosen at random, this
happens only with probability 1/2; with the remaining 1/2 probability the honest party receives
the output first, in which case the best choice for the adversary is to allow the protocol to terminate
and provoke the event E11.

Theorem 3. Let ~γ ∈ Γfair and A be an adversary. Then uA(Π
Opt
2SFE,A)

negl

≤ γ10+γ11

2 .

Next, we show that the above bound is tight for protocols that evaluate arbitrary functions. We
remark that, for specific classes of functions—such as those with polynomial-size range or domain—
one is able to obtain fairer protocols. For example, it is easy to verify that for functions which
admit 1/p-secure solutions [18] for an arbitrary polynomial p, we can reduce the upper bound in
Theorem 3 to γ10+γ11

p . (Refer to Section 5 for a detailed comparison of our notion to 1/p-security).
Thus, an interesting future direction is to find optimally fair solutions for computing primitives
such as random selection [19] and set intersection [12] which could then be used in higher-level
constructions.

The general result shows that there are functions for which γ10+γ11

2 is also a lower bound on the
adversary’s utility for any protocol, independently of the number of rounds. Here we prove this
for the particular “swap” function fswp(x1, x2) = (x2, x1); the result carries over to a large class of
functions (essentially those where 1/p-security is proved impossible in [18]).

At a high level, the proof goes as follows: First, we observe that in any protocol execution there
must be one round (for each of the parties pi) in which pi “learns the output of the evaluation.”
An adversary corrupting one of the parties at random has probability 1/2 of corrupting the party
that receives the output first; in that case the adversary learns the output and can abort the
computation, forcing the other party to not receive it, which results in a payoff γ10. With the
remaining 1/2 probability, the adversary does not corrupt the correct party. In this case, finishing
the protocol and obtaining payoff γ11 is the best strategy.7

Theorem 4. Let ~γ ∈ Γfair, fswp be the swap function. There exists an adversary A such that

for every protocol Π which securely realizes functionality Ffswp,⊥sfe , it holds that uA(Π,A)
negl

≥
γ10+γ11

2 .

6Note that assuming ideally secure channels, the protocol ΠGMW is adaptively secure [9].
7The adversary could also obtain γ01 by aborting, but will not play this strategy as, by assumption, γ01 ≤

min{γ00, γ11}.

8

The above theorem establishes that ΠOpt
2SFE is optimally γ-fair. We also remark that the protocol

is optimal with respect to the number of reconstruction rounds. See Appendix A.1 for details. Next,
we consider multi-party SFE (i.e., n > 2).

4.2 The Multi-Party Setting

Throughout this section, we make the simplifying assumption that the attacker prefers learning the
output over not learning it, i.e., γ00 ≤ γ11. Although this assumption is natural and standard in
the rational fairness literature, it is not without loss of generality. It is, however, useful in proving
multi-party fairness statements, as it allows us to compute the utility of the attacker for a protocol
which is fully secure for Fsfe, including fairness. Indeed, while such a protocol might still allow the
attacker to abort and hence obtain utility γ00, in this case the optimal utility is γ11 as the event
E11 is the “best” event which A can provoke. Combined with the inequalities from Section 3, the
entries in vector ~γ satisfy 0 = γ01 ≤ γ00 ≤ γ11 < γ10. We denote by Γ+

fair ⊆ Γfair the class of payoff
vectors with the above restriction.

The intuition behind protocol ΠOpt
2SFE can be extended to also work in the multi-party (n > 2)

setting. The idea for the corresponding multi-party protocol, ΠOpt
nSFE, is as follows (see Appendix B for

a detailed description): In a first phase, ΠOpt
nSFE computes the private output function f ′(x1, . . . , xn) =

(y1, . . . , yn), where for some random i∗ ∈ [n], yi∗ equals the output of the function f we wish to
compute, whereas for all i ∈ [n] \ {i∗}, yi = ⊥; in addition to yi, every party pi receives an
authentication tag on yi.

8 If this phase aborts then the protocol also aborts. In phase 2, all parties
announce their output yi (by broadcasting them). If a validly authenticated message y 6= ⊥ is
broadcast, then the parties adopt it; otherwise, they abort.

As proven in Appendix B (Lemma 11), the utility that any adversary A accrues against ΠOpt
nSFE

is

uA(Π
Opt
nSFE,A)

negl

≤ (n− 1)γ10 + γ11

n
,

which is in fact optimal (Lemma 13).

Utility-balanced fairness. A closer look at the above results shows that an adversary who is able
to corrupt parties for free is always better off corrupting n− 1 parties. While this is natural in the
case of two parties, in the multi-party case one might be interested in more “fine-grain” optimality
notions, which are sensitive to the number of corrupted parties. One such natural notion, which
we now present, requires that the allocation of utility to adversaries corrupting different numbers
of parties be tight, in the sense that the utility of a best t-adversary—i.e., any adversary that
optimally attacks the protocol while corrupting up to t parties—cannot be decreased unless the
utility of a best t′-adversary increases, for t′ 6= t.9 This leads to the notion of utility-balanced
fairness.

Definition 5. Let ~γ ∈ Γ+
fair. A multi-party protocol Π is utility-balanced ~γ-fair (w.r.t. corruptions)

if for any protocol Π′, for every (A1, . . . ,An−1) and (A′1, . . . ,A′n−1) the following holds:

n−1∑
t=1

uA(Π,At)
negl

≤
n−1∑
t=1

uA(Π
′,A′t),

8In fact, we do not need to authenticate the default value.
9One can define an even more fine-grain notion of utility balancing, which explicitly puts a bound on the utility

of the best t-adversary At for every t (instead of bounding the sum). See next subsection and Appendix B.2.

9

where for t = 1, . . . , n−1, At and A′t are t-adversaries attacking protocols Π and Π′, respectively.10

In Appendix B we show that protocol ΠOpt
nSFE is in fact utility-balanced ~γ-fair. To this end, we

first prove (Lemma 14) that the sum of the expected utilities of the different t-adversaries is

n−1∑
t=1

uA(Π
Opt
nSFE,At)

negl

≤ (n− 1)

2
(γ10 + γ11), (4)

which we then show to be tight for certain functions (Lemma 16). In fact, our upper bound provides
a good criterion for checking whether or not a protocol is utility-based ~γ-fair: if for a protocol there
are t-adversaries, 1 ≤ t ≤ n − 1, such that the sum of their utilities non-negligibly exceeds this
bound, then the protocol is not utility-balanced ~γ-fair. We observe that protocols that are fair
according to the traditional fairness notion [16] are not necessarily utility-balanced ~γ-fair—the
reason is that they “give up” completely for n/2 parties if n is even. Furthermore, although the
protocol ΠOpt

nSFE presented above satisfies both utility-based notions (optimal and utility-balanced),
these two notions are in fact incomparable. We demonstrate this in Appendix B.1 by providing
separating examples.

Utility-balanced fairness as optimal fairness with corruption costs. As discussed above,
the notion of utility-balanced fairness connects the ability (or willingness) of the adversary to
corrupt parties with the utility he obtains. Thus, a natural interpretation of utility-balanced
~γ-fairness is as a desirable optimality notion when some information about the cost of corrupting
parties is known; for example, it is known that certain sets of parties might be easier to corrupt
than others. We now show that if we associate a cost to party corruption (as a negative utility for
the adversary) then there is a natural connection between utility-balanced ~γ-fairness and optimal
~γ-fairness. We first slightly modify the definition of an attacker’s utility to account for corruption
cost, along the lines of [14].

Specifically, in addition to the events Eij specified in Section 3, we also define, for each subset
I ⊆ [n] of parties, the event EI that occurs when the adversary corrupts exactly the parties in I.
The cost of corrupting each such set I is specified via a function C : 2P → R, where for any I ⊆ P,
C(I) describes the cost associated with corrupting the players in I. We generally let the corruption
costs C(I) be non-negative. Thus, the adversary’s payoff is specified by the events ~EC = (E00, E01,
E10, E11, {EI}I⊆P) and by the corresponding payoffs ~γC = (γ00, γ01, γ10, γ11, {−C(I)}I⊆P). The
expected payoff of a given simulator S (for an environment Z) is redefined as:

U
F⊥sfe,~γC
I (S,Z) :=

∑
i,j∈{0,1}

γij Pr[Eij]−
∑
I⊆P
C(I) Pr[EI]. (5)

We will write ~γC ∈ Γ+C
fair to denote the fact that for the sub-vector ~γ = (γ00, γ01, γ10, γ11) of ~γC ,

~γ ∈ Γ+
fair. Given that the adversary incurs a cost for corrupting parties, we can show that protocols

are ideally ~γC-fair which, roughly speaking, means that the protocol restricts its adversary as much
as a completely fair protocol—according to the standard notion of fairness—would. We show
that utility-balanced fairness implies an optimality (with respect to the cost function) on ideal
~γC-fairness. (See Definition 19.) For the following theorem, we consider cost functions that only
depend on the number of parties (i.e., C(I) = c(|I|) for c : [n]→ R). The proof is in Appendix B.2.

Theorem 6. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γ+
fair. For a protocol Π that is utility-balanced ~γ-fair, the

following two statements hold:

10Note that we exclude from the sum the utilities of adversaries that do not corrupt any party (t = 0) or corrupt
every party (t = n), since by definition for every protocol these utilities are γ01 and γ11, respectively.

10

1. Π is ideally ~γC-fair with ~γC = (γ00, γ01, γ10, γ11, {−C(I)}I⊆P) ∈ Γ+C
fair for the function C(I) =

c(|I|) = uA(Π,A|I|), where A|I| is the best adversary strategy corrupting up to |I| parties.

2. The cost function C above is optimal in the sense that there is no protocol which is ideally
~γC
′
-fair with a cost function C′ that is strictly dominated by C according to Definition 20.

5 Utility-based vs Partial Fairness

A notion that is closely related to our fairness notion is the concept of 1/p-security—also called
partial fairness—introduced by Gordon and Katz [18] for the two-party setting, and generalized
by Beimel et al. [3] to the multi-party setting. Roughly speaking, the notion allows a noticeable
error of at most 1/p (for a polynomial p) in the security statement for a protocol, in contrast to
the negligible gap allowed by standard definitions. For a more detailed description of 1/p-security,
we refer to Appendix C and to the original paper of Gordon and Katz [18].

At a high level, 1/p-security appears to correspond to bounding the adversary’s utility to p−1
p ·

γ11 + 1
p · γ10, since the protocol leads to a “fair” outcome with probability (p − 1)/p and to an

“unfair” outcome with probability 1/p. This is a better bound than proven in Theorem 3 for our
“optimal” protocol—which appears to be a contradiction to the optimality result. The protocols
of Gordon and Katz [18], however, only apply to functions for which the size of either (at least)
one party’s input domain or (at least) one party’s output range is bounded by a polynomial. Our
protocols do not share this restriction, and the impossibility result in Lemma 4 is shown based on
a function which has exponential input domains and output ranges.

A weakness of 1/p-security. The definition of partial fairness allows for an honest party’s
input to be leaked with non-negligible probability. Somewhat surprisingly, this even holds if one
additionally requires “full privacy,” as suggested by Gordon and Katz [18]. The reason is that
privacy and 1/p-security are formalized as two completely separate requirements. We analyze the
intuitively insecure protocol Π̃, which computes the logical “and” ∧ : {0, 1} × {0, 1} → {0, 1} as
follows. Denote the inputs as x1 and x2 for p1 and p2, respectively:

The first message is a 0-bit that is sent from p2 to p1.

Yet, if p2 sent a 1-bit instead of a 0-bit, then p1 tosses a biased coin C with Pr [C = 1] = 1
4 ,

and sends its input x1 to p2 if C = 1 (or otherwise an empty message).

Then, p1 and p2 engage in the standard 1
4 -secure protocol to compute x1 ∧ x2.

We show in Lemma 27 (Appendix C.5) that this protocol is both 1/2-secure and fully private
according to the notion defined in [18].

Analysis of the Gordon-Katz protocols based on our approach. Gordon and Katz [18]
propose two protocols: one for functions that have (at least) one domain of (at most) polynomial
size, and one for functions in which both domains might be large, but (at least) one range is at
most polynomial. The underlying idea of the protocols is to reconstruct the output in multiple
rounds and to provide the actual output starting from a round that was chosen at random. In all
previous rounds, a random output is given. We stress that the protocols are (proven) secure only
with respect to static corruptions; all the statements we make in this sections are in this setting.

The protocols described by Gordon and Katz do not realize the functionality Ff,⊥sfe as the
correctness of the honest party’s output is not guaranteed. In fact, it is inherent to the protocols
that if the adversary aborts early, then the honest party may output a random output instead
of the correct one. Hence, to formalize the guarantees achieved by those protocols, we weaken
our definition by modifying the functionality Ff,⊥sfe to allow for a correctness error; specifically, the
functionality Ff,$sfe we describe in Appendix C.2 allows the adversary to replace the honest party’s

11

output by a randomly chosen one, which intuitively corresponds to contradicting the full security
definition in the manner the protocols in [18] do. We show in Theorem 23 (Appendix C.3) that
the protocol with polynomial domain (see [18, Section 3.2]) achieves this functionality and bounds
the adversary’s payoff. The statements about the protocol for functions with polynomial size range
transfer analogously.

Comparing 1/p-security with our notion. Finally, we show that our definition as described in
the previous paragraph is strictly stronger than 1/p-security, even if the latter notion is strengthened
by additionally requiring “full privacy” as suggested in [18]. For the payoff vector ~γ = (0, 0, 1, 0), a
security statement in our model implies 1/p-security. (See Lemma 25.)

The protocol Π̃ described in the above paragraphs, which leaks honest inputs but can still be
proven to achieve both conditions of [18], serves as a separating example between the two notions.
In fact, Lemma 26 shows that the protocol is not sufficient for our security notion. Its proof
formalizes the intuition that in the functionality Ff,$sfe, privacy is guaranteed, while the protocol
easily allows to obtain the input of p1. This strengthens the result of [18]. (Refer to Appendix C
for further details.)

References

[1] Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure computation. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)

[2] Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: Proceedings of the 30th
Symposium on Foundations of Computer Science. pp. 468–473. IEEE (1989)

[3] Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty computation without honest majority
and the best of both worlds. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 277–296.
Springer, Heidelberg (2011)

[4] Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Science 1, 175–193 (1984)

[5] Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
236–254. Springer, Heidelberg (2000)

[6] Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13,
143–202 (April 2000), http://www.springerlink.com/content/cxxd0r683kgk4nya

[7] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science. pp. 136–145. IEEE (2001)

[8] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067 (December 2005), http://eprint.iacr.org/2000/067, a preliminary
version of this work appeared in [7].

[9] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Twenty-
Eighth Annual ACM Symposium on Theory of Computing. pp. 639–648. ACM, ACM Press (1995)

[10] Cleve, R.E.: Limits on the security of coin flips when half the processors are faulty. In: Proceedings of
the 18th Annual ACM Symposium on Theory of Computing. pp. 364–369. ACM, Berkeley (1986)

[11] Damg̊ard, I.: Practical and provably secure release of a secret and exchange of signatures. Journal of
Cryptology 8(4), 201–222 (1995)

[12] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin,
C., Camenisch, J. (eds.) Advances in Cryptology - EUROCRYPT 2004, International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3027, pp. 1–19. Springer (2004), http://dx.

doi.org/10.1007/978-3-540-24676-3_1

12

http://www.springerlink.com/content/cxxd0r683kgk4nya
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-540-24676-3_1

[13] Garay, J.A., Johnson, D.S., Kiayias, A., Yung, M.: Resource-based corruptions and the combinatorics
of hidden diversity. In: Kleinberg, R. (ed.) Innovations in Theoretical Computer Science, ITCS ’13,
Berkeley, CA, USA. pp. 415–428. ACM (2013)

[14] Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design: Cryptography
against incentive-driven adversaries. In: 54th Annual Symposium on Foundations of Computer Science.
IEEE (2013)

[15] Garay, J.A., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryp-
tographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer
(2006)

[16] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game—A completeness theorem for
protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing. pp. 218–229. ACM (1987)

[17] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput. 17(2), 281–308 (Apr 1988), http://dx.doi.org/10.1137/0217017

[18] Gordon, D., Katz, J.: Partial fairness in secure two-party computation. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer (2010)

[19] Gradwohl, R., Vadhan, S., Zuckerman, D.: Random selection with an adversarial majority. In: Proceed-
ings of the 26th Annual International Conference on Advances in Cryptology. pp. 409–426. CRYPTO’06,
Springer-Verlag, Berlin, Heidelberg (2006), http://dx.doi.org/10.1007/11818175_25

[20] Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer (2012)

[21] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013)

[22] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology 22(2), 161–188 (April 2009)

[23] Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 87–105. Springer, Heidelberg (2003)

A Utility-based Fair Two-Party SFE (cont’d)

This section contains material deferred from Section 4.1.

An authenticated secret sharing scheme. The sharing of a secret s (field element) is a
pair (s1, s2) of random field elements (in some larger field) with the property that s1 + s2 =
(s, tag(s, k1), tag(s, k2)), where k1 and k2 are MAC keys associated with the parties p1 and p2,
respectively, and tag(x, k) denotes a MAC tag for the value x computed with key k. We refer to the
values s1 and s2 as the summands. Each pi ∈ {p1, p2} holds his share (si, tag(si, k¬i)) along with
the MAC key ki which is used for the generation of the MAC tags he is supposed to verify. We
denote by 〈s〉 a sharing of s and by 〈s〉i party pi’s share. The above sharing can be reconstructed
towards any of the parties pi as follows: p¬i sends his share 〈s〉¬i = (s¬i, t¬i) to pi who, using ki,
verifies that t¬i is a valid MAC for s¬i. Subsequently, pi reconstructs the authenticated secret s by
computing s1 + s2 := (s, t′1, t

′
2) and verifying, using key ki, that t′i is a valid MAC for s. If any of

the MAC verifications fails then pi aborts and outputs ⊥.

Proof of the upper bound. The protocol ΠOpt
2SFE implements the functionality Ff,⊥sfe with the best

possible fairness in the two-party case. The “positive” part of this statement is formalized by the
following theorem. Without loss of generality, we assume that the function f has a single global

13

http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1007/11818175_25

output; indeed, a protocol that can compute any such function f can be easily extended to compute
functions with multiple, potentially private outputs by using standard techniques, e.g., see [22].

Theorem 3. Let ~γ ∈ Γfair and A be an adversary. Then,

uA(Π
Opt
2SFE,A)

negl

≤ γ10 + γ11

2
.

Proof (sketch). We prove the statement for ΠOpt
2SFE in the Ff

′,⊥
sfe -hybrid model. The theorem then

follows by applying the RPD composition theorem [14, Theorem 5], which extends to the case
where the framework is instantiated with the model of Canetti [6].

First we remark that if the adversary corrupts both parties or no party, then the theorem follows
directly from the definition of the payoff and the properties of Γfair, as in these cases the payoff
the adversary obtains equals γ11 or γ01, respectively. Assume for the remainder of the proof that
the adversary corrupts p1 (the case where the adversary corrupts p2 is dealt with symmetrically).
To complete the proof it suffices to provide a simulator SA for any adversary A, such that SA has
expected payoff at most γ10+γ11

2 . Such a (black-box straight-line) simulator SA for an adversary A
works as follows.

To emulate the output of Ff
′,⊥

sfe , SA does the following (recall that the output consists of a share
for p1 and a uniformly chosen index i ∈ {1, 2}): SA randomly picks an index î ∈R {1, 2} along with
the element ŝ1, k̂1 and a random MAC-tag t̂2; SA hands to the adversary the (simulated) share
(ŝ1, t̂2), the key k̂1, and the index î. Subsequently, SA simulates the opening stage of ΠOpt

2SFE:

If î = 1, then SA sends x̂1 (which it obtained because of the Ff
′,⊥

sfe -hybrid model) to Ff,⊥sfe and
asks for the output11; let y denote this output. SA computes a share for p2 which, together
with the simulated share of p1, results in a valid sharing of y, as follows: set t′1 := tag(y, k̂1)
and t′2 := tag(y, k̂2) for a uniformly chosen k2. Set ŝ2 := (y, t′1, t

′
2) − s1 and t̂1 := tag(ŝ2, k̂1).

Send (ŝ2, t̂1) to p1 for reconstructing the sharing of y. In the next round, receive from A p1’s

share; if SA receives a share other than (ŝ1, t̂2), then it sends abort to Ff,⊥sfe , before the honest
party is allowed to receive its output.

If î = 0 then SA receives from A p1’s share. If SA receives a share other than (ŝ1, t̂2), then it

sends a default value to Ff,⊥sfe (as p1’s input). Otherwise, it asks Ff,⊥sfe for p1’s output y, and
computes a share for p2 which, together with the simulated share of p1, results in a valid sharing
of y (as above). SA sends this share to A.

It is straightforward to verify that SA is a good simulator for A, as the simulated keys and
shares are distributed identically to the actual sharing in the protocol execution.

We now argue that for any adversary A corrupting p1, the payoff of SA is (at most) γ10+γ11

2 +µ
for some negligible function µ. If A makes the evaluation of the function f ′ in the first phase to
abort, the simulator sends Ff,⊥sfe a default input and delivers to the honest party, which provokes
the event E01; hence the payoff of this adversary will be γ01 <

γ10+γ11

2 . Otherwise, i.e., if A allows
the parties to receive their f ′-outputs/shares in the first phase, then we consider the following
two cases: (1) if î = 1 (i.e., the corrupted party gets the value first), then A can always provoke
his most preferred event by receiving the output in the first round of the opening stage and then
aborting, which will make SA provoke the event E10. (2) if î = 2 the adversary’s choices are to
provoke the events E01 or E11, out of which his more preferred one is E11. Because î is uniformly
chosen, each of the cases (1) and (2) occurs with probability 1/2; hence, the payoff of the adversary
is γ10+γ11

2 +µ (where the negligible quantity µ comes from the fact that there might be a negligible

11Recall that we assume wlog that f has one global output.

14

error in the simulation of SA). Therefore, in any case the utility of the attacker choosing adversary

A is uA(Π
Opt
2SFE,A)

negl

≤ γ10+γ11

2 which concludes the proof.

Proof of the lower bound. In the following we prove our general impossibility result. To this
direction, we first show an intermediate result, where we consider two specific adversarial strategies
A1 and A2, which are valid against any protocol. In strategy A1, the adversary (statically) corrupts
p1, and proceeds as follows: In each round `, receive all the messages from p2. Check whether p1

holds his actual output (A1 generates a copy of p1, simulates to this copy that p2 aborted the
protocol, obtains the output of p1 and checks whether the output of p1 is the default output—this
strategy works since the functionality is secure with abort); if so, record the output and abort
the execution before sending p1’s `-round message(s).12 Otherwise, let p1 correctly execute its
instructions for round `. The strategy A2 is defined analogously with roles for p1 and p2 exchanged.

Lemma 7. Let fswp be the swap function, A1 and A2 be the strategies defined above, and ~γ ∈ Γfair.

Every protocol Π which securely realizes functionality Ffswp,⊥sfe satisfies:

uA(Π,A1) + uA(Π,A2)
negl

≥ γ10 + γ11.

Proof (sketch). For i ∈ {1, 2} we consider the environment Zi that is executed together with Ai
corrupting pi. The environment Zi will choose a fixed value x¬i, which it provides as an input
to p¬i.

For compactness, we introduce the following two events in the protocol execution: We denote by
L the event that the adversary aborts in a round where the honest party holds the actual output (in
other words the honest party’s output is“locked”), and by L̄ the event that the adversary aborts at
a round where the honest party does not hold the actual output (i.e., if the corrupt party aborts, the
honest party outputs some value other than f(x1, x2)). Observe that, in cases corresponding to the
real-world event L̄, with overwhelming probability the simulator needs to send to the functionality
the “abort” messages, provoking γ10; indeed, because Π is secure with abort, in that case p¬i needs
to output ⊥ with overwhelming probability (otherwise, there is a noticeable probability that he
will output a wrong value, which contradicts security with abort of Π). On the other hand, in
cases corresponding to L, the simulator must (with overwhelming probability) allow p¬i to obtain

the output from Ff,⊥sfe , provoking the event γ11. Hence, except with negligible error, the adversary
obtains γ11 and γ10 for provoking the events L and L̄, respectively. Therefore, the payoff of these
adversaries is (at least) γ11 Pr[L] + γ10 Pr[L̄]− µ′′, where µ′′ is a negligible function (corresponding
to the difference in the payoff that is created due to the simulation error of the optimal simulator).

To complete the proof, we compute the probability of each of the events L and L̄ for A1 and A2.
One important observation for both strategies A1 and A2, the adversary instructs the corrupted
party to behave honestly until the round when it holds the actual output, hence all messages in
the protocol execution have exactly the same distribution as in an honest execution until that
round. For each party pi, the protocol implicitly defines the rounds in which the output of honest,
hence also of honestly behaving, parties are “locked.” In such an execution, let Ri denote the first
round where pi holds the actual output. There are two cases: (i) R1 = R2 and (ii) R1 6= R2. In
case (i), both A1 and A2 provoke the event L̄. In case (ii), if R1 < R2, then A1 always provokes the
event L̄, while for A2, with some probability (denoted as qL̄), the honest party does not hold the

12This attack is possible because the adversary is rushing.

15

actual output when the A2 aborts, and with probability 1− qL̄ it does.13 (Of course, the analogous
arguments with switched roles hold for R1 > R2.

For the particular adversaries A1 and A2, the considered values R1 and R2 are indeed relevant,
since the adversaries both use the honest protocol machine as a “black box” until it starts holding
the output. The probability of L̄ for A1 is Pr[R1 = R2] + Pr[R1 < R2] · (1 − qL), and the overall
probability of L is Pr[R1 < R2] · qL + Pr[R1 < R2], the probabilities for A2 are analogous. Hence,
we obtain

uA(Π,A1) + uA(Π,A2)

≥ PrA1 [L] · γ11 + PrA1 [L̄] · γ10 + PrA2 [L] · γ11 + PrA2 [L̄] · γ10

≥ (2 · Pr[R1 = R2] + (Pr[R1 < R2] + Pr[R1 > R2]) · (1 + qL̄)) · γ10

+ ((Pr[R1 < R2] + Pr[R1 > R2]) · (1− qL̄)) · γ11

≥ (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2]) · γ10

+ (Pr[R1 = R2] + Pr[R1 < R2] + Pr[R1 > R2]) · γ11

≥ γ10 + γ11 − µ,

which was exactly the statement we wanted to prove.

Lemma 7 provides a bound involving two adversaries. (It can be viewed as a statement that
“one of A1 and A2 must be good”). However, we can use it to prove our lower bound on the payoff
by considering the single adversarial strategy, call it Agen, that is the “mix” of the two strategies
A1 and A2 described above: The adversary corrupts one party chosen at random, checks (in each
round) whether the protocol would compute the correct output on abort, and stops the execution
as soon as it obtains the output. In the sequel, for a given function f we say that a protocol securely
realizes the functionality Ff,⊥sfe if it securely evaluates f in the Ff,⊥sfe -ideal world.

Theorem 4. Let ~γ ∈ Γfair, fswp be the swap function. There exists an adversary A such that for

every protocol Π which securely realizes functionality Ffswp,⊥sfe , it holds that

uA(Π,A)
negl

≥ γ10 + γ11

2
.

Proof. LetA be the adversaryAgen described above. As adversaryAgen chooses one of the strategies
A1 or A2 uniformly at random, it obtains the average of the utilities of A1 and A2. Indeed, using
Lemma 7, we obtain

uA(Π,Agen) =
1

2
· uA(Π,A2) +

1

2
· uA(Π,A2)

negl

≥ 1

2
· (γ10 + γ11 − µ),

which completes the proof.

A.1 Round complexity of the reconstruction phase

Most, if not all, protocols in the literature designed to achieve a (relaxed) notion of fairness have
a similar structure: They first invoke a general (unfair) SFE protocol for computing a sharing of
the output, and then proceed to a reconstruction phase where they attempt to obtain the output
by reconstructing this sharing. Since the first (unfair SFE) phase is common in all those protocols,

13The reason is that we don’t exclude protocols in which the output of a party which has been “locked” in some
round gets “unlocked” in a future round.

16

the number of rounds of the reconstruction phase is a reasonable complexity measure for such
protocols.

As we show below, protocol ΠOpt
2SFE is not only optimally ~γ-fair but is also optimal with respect

to the number of reconstruction rounds, i.e., the number of rounds it invokes after the sharing
of the output has been generated. To demonstrate this we first provide a formal definition of
reconstruction rounds. Note that also the notion of reconstruction rounds is implicit in many
works in the fairness literature, to our knowledge, a formal definition such as the one described
here has not been provided elsewhere.

Intuitively, a protocol has ` reconstruction rounds if up to ` rounds before the end, the adversary
has not gained any advantage in learning the output, but the next round is the one where the
reconstruction starts. Formally,

Definition 8. Let Π be an SFE protocol for evaluating the (multi-party) function f : ({0, 1}∗)n →
({0, 1}∗)n which terminates in m rounds. We say that Π has ` reconstruction-rounds if it implements

the (fair) functionality Ffsfe in the presence of any adversary who aborts in any of the rounds
1, . . . ,m− `, but does not implement it if the adversary aborts in round m− `+ 1.

Lemma 9. ΠOpt
2SFE has two reconstruction rounds.

Proof (sketch). The security of the protocol used in phase 1 of ΠOpt
2SFE and the privacy of the secret

sharing, ensures that the view of the adversary during this phase (including his output) can be
perfectly simulated without ever involving the functionality. Thus if the adversary corrupting, say,
p1 (the case of a corrupted p2 is symmetric) aborts during this phase, then p2 can simply locally
evaluate the function on his input and a default input by the adversary. To simulate this, the
simulator will simply hand the default input to the fair functionality. However, as implied by
the lower bound in Theorem 4, this is not the case if the adversary aborts in the first round of
phase 2.

Lemma 10. Assuming ~γ ∈ Γfair, there exists no optimally ~γ-fair protocol for computing the swap
function fswp (see Lemma 7) with a single reconstruction round.

Proof (sketch). Assume towards contradiction that a protocol Π with a single reconstruction round
exists. Clearly, before the last round the output should not be “locked” for neither of the parties.
Indeed, if this is the case the adversary corrupting this party can, as in the proof of Lemma 7,

force an unfair abort which cannot be simulated in the Ffswpsfe -ideal model. Now, in the (single)
reconstruction round, a rushing adversary receives the message from the honest party but does not
send anything, which can only be simulated by making the honest party abort. This adversary
obtains maximum payoff, γ10 (except with negligible probability). Thus Π is less ~γ-fair than ΠOpt

2SFE

and hence is not optimally ~γ-fair.

B Utility-based Fair Multi-Party SFE (cont’d)

Here we present the formal statements and proofs omitted from Section 4.2. We use the symbols
negl

<

and
negl

> as the opposite of
negl

≥ and
negl

≤ . We start with a detailed specification of our optimally ~γ-fair
protocol ΠOptf

nSFE. The protocol ΠOptf
nSFE and the functionality Ff,⊥priv-sfe which chooses one of the parties

at random and hands him the output of f in a private manner. Note that, as in the two-party
case [22], a private output functionality can be trivially computed by a public output protocol
but the following mechanism: Let f(x1, . . . , xn) = (y1, . . . , yn) be the function to be computed,

17

where each pi has input xi and receives private output yi. Instead of computing f with private
outputs, the parties can compute the public output function f ′((x1, k1), . . . , (xn, kn)) = (y, . . . , y),
where y = (y1 ⊕ k1, . . . , yn ⊕ kn) and each ki is a key randomly chosen by pi—i.e., each party pi
hands as input, in addition to its f -input xi, a one-time-pad key ki ∈ {0, 1}|xi| and every party
receives the entire vector of outputs of f , where each component is one-time pad encrypted (hence
perfectly blinded) with the key of the corresponding party. Clearly, each party pi can retrieve its
private output yi by decrypting the i-th component of y, but obtains no information of yj ’s with
j ∈ [n] \ {i} which are perfectly blinded with the corresponding keys.

In the description of protocol ΠOptf
nSFE we make use of an existentially unforgeable digital sig-

nature scheme [17], denoted as (Gen, Sign, Ver). Informally, such a scheme ensures that for a
signing/verification key-pair (sk, vk) generated by Gen, a signature on any message that is gener-
ated by using algorithm Sign with key sk will always verify using key vk; however, the probability
of the adversary generating a signature on a new message without knowing sk—i.e., forging a
signature—is negligible, even if the adversary has seen polynomially many signatures on different
messages (with this key sk).

Functionality 〈Ff,⊥
priv-sfe〉

1. Compute the function f on the given inputs and store the (public) output in variable y.

2. Chose (sk, vk)
$← Gen(1k) and compute a signature σ = Sign(y, sk).

3. Choose a uniformly random i∗ ∈ [n] and set yi∗ = (y, σ) and for each i ∈ [n] \ {i∗}, set yi to a
default value (e.g., yj = ⊥).

4. Each pj ∈ P receives as (private) output the value (yj , vk).

Protocol ΠOpt,f
nSFE

1. The parties use protocol Πgmw [16] to evaluate the functionality Ff,⊥
priv-sfe. If Πgmw aborts then

ΠOpt,f
nSFE also aborts’ otherwise every party pi denotes its output by (yj , vk).

2. Every party broadcasts yj . If no party broadcast a pair yj = (y, σ) where σ is a valid signature on
y for the key vk then every party aborts. Otherwise, every party output y.

Lemma 11. Let ~γ ∈ Γ+
fair and A be a t-adversary. Then,

uA(Π
Opt
nSFE,A)

negl

≤ t · γ10 + (n− t) · γ11

n
.

Proof (sketch). We prove the statement for ΠOpt
nSFE in the Ff,⊥priv-sfe-hybrid model. The theorem

then follows by applying the RPD composition theorem [14, Theorem 5], which extends to the case
where the framework is instantiated with the model of Canetti [6]. To prove the lemma it suffices to

provide a simulator SA for any adversary A, such that SA has expected payoff at most (n−1)γ10+γ11

n .
Such a simulator SA for an adversary A works as follows.

To emulate the execution of step 1, SA emulates towards A the functionality Ff,⊥priv-sfe as follows:
SA chooses i∗ ∈ [n] uniformly at random, generates the signature setup Ff,⊥priv-sfe would, and for
each i ∈ [n] \ {i∗}: SA sets yi = (⊥, vk). Note that as long as A has not corrupted pi∗ , SA does not

involve the functionality Ff,⊥priv-sfe in its simulation. If at any point the adversary requests to corrupt
pi∗ then, in order to compute the output yi∗ , SA invokes the SFE functionality Ff,⊥sfe , receives the
output y, and sets yi∗ = ((y, σ), vk). (But S does not deliver the outputs to honest parties yet.)

Finally, SA hands A his Ff,⊥priv-sfe outputs. If at any point A requests to corrupt all n parties,

18

SA corrupts all parties and, given their inputs, completes the simulation in the straightforward
manner.

For emulating the second step of the protocol, SA simply emulates the broadcasting of the
emulated outputs towards the adversary. Again, SA only invokes the functionality F when A
expects to see the message broadcast by pi∗ . From that point on, SA continues the simulation as
he did before, where if the protocol would abort, the simulator halts.

It is straightforward to verify that SA is a good simulator for A. Indeed, the fact that the
view of A in the first step of the simulation is indistinguishable from the protocol execution follows
immediately from the security of Πgmw.14 For the second step, the distribution of the simulated
view of A conditioned on the distribution of his view of the first step, is clearly identical to A’s
real protocol view. In the remainder of the proof we show that the expected payoff of the above
simulator is at most (n−1)γ10+γ11

n .
First, we show that an adversary maximizing his utility corrupts at most t < n parties, by

showing that for any adversary who corrupts all n parties at some point of the protocol execution,
there exists an adversary corrupting t < n parties which yields (at least) the same expected payoff:
Indeed, if at any point the adversary goes from having corrupted t < n parties to corrupting all n
parties, then his payoff can not be increased the simulator will not provoke any of the events Eij
other than what he provoked before the extra n − t corruption, because, as soon as every party
gets corrupted, the simulator learns all the internal state of Ff,⊥sfe and can continue the simulation
without it (by the definition of the model). For the remainder of the proof consider an adversary
who corrupts t < n parties by the end of the protocol.

We argue that that the probability of A provoking the event E10 is t/n: Indeed, the probability
that A provokes the event E10 equals the probability that A corrupts pi∗ before he broadcasts
the sharing (as this is the only way the adversary can learn the output before honest parties do).
However, because unlessA corrupts i∗ the simulated view givesA no information on i∗ or the output
y, the adversary’s best chance is to try to guess i∗ which, as t parties are corrupted, succeeds with
probability t/n. Now, clearly, unless A can provoke E10, which A recognizes as soon as he sees the
output, the above simulator will provoke either E11 (i.e., deliver) or E01. Because by assumption
γ01 < γ11. The expected utility of the adversary corrupting t < n with above simulation will be
≤ γ10t+(n−t)γ11

n .
Note that this does not assume a simultaneous broadcast channel, but merely the standard

ideal broadcast channel from the distributed computation literature in which once the message is
out—and an adversary who does not corrupt the sender can see it—it will be seen by all parties.

Lower bound (multi-party case). Consider the adversaries A1̄, . . . ,An̄ that behave as follows;
similarly to the ones described in Section 4.1. In the beginning, Aī corrupts all parties but pi.
Then, in each round, it obtains the received messages and computes the messages sent by each
of the pj with j 6= i following the honest strategy. Before sending the messages to pi, however,
Aī checks (by running the protocol machines hypothetically, but storing and later reverting to the
previous state) whether any one of the pj would provide output if the execution continued without
the participation of pi. If this is the case, Aī aborts the protocol before sending (and has obtained
the output), otherwise it simply proceeds in the same manner in the next round. For the described
adversaries, we prove the following lemma.

Lemma 12. Let f : {0, 1}∗n → {0, 1}∗ such that f(x1, . . . , xn) = x1 ‖ x2 ‖ ... ‖ xn, A1̄, . . . ,An̄ be
the strategies defined above, and ~γ ∈ Γfair. Every protocol Π which securely realizes functionality

14Recall that we are assuming ideal secure channels, thus [16] is secure even against an adaptive adversary.

19

Ff,⊥sfe satisfies:
n∑
i=1

uA(Π,Aī)
negl

≥ (n− 1) · γ10 + γ11.

Proof. For simplicity, we assume that the protocol is perfectly correct. This is used at two steps
below, where we assume that if the protocol outputs something at a preliminary stage, then this
output is correct. Also, we assume that the protocol will definitely lead to the correct output if it
is executed in full.

We define events Lir,j on the execution of the protocol with Aī as follows: Given the state ρr,j of

the protocol of pj after round r,15 the event Lir,j means that “if one executes the protocol on state
of pj after round r (given that no further messages are received), then the protocol will output (the
correct16) output, but not so for any pk with k 6= j.” Since up to the point where such an event
becomes active, the adversary simply executes the protocol on behalf of the corrupted parties, the
events L1

r,j , . . . , L
n
r,j all appear with the same probabilities and we will simply refer to them by the

same symbol Lr,j . Based on these events, we then also define the events Lj =
⋃#rounds
`=1 L`,j which

can intuitively be described as pj obtains the output first.
Now we have the following observations:

The Li are pairwise disjoint, i.e., Li ∩ Lj = ∅ for i 6= j;

this in particular implies that for all i 6= j, Li ⊆ L̄j ,
which in turn means that each element in

⋃n
i=1 Li is contained in the multiset L̄1] · · ·] L̄n

exactly n− 1 times.

Furthermore, each element in
⋃n
i=1 Li is contained in the multiset L̄1] · · ·] L̄n even n times.

Now all we have to see is that in case of the event L̄i, the adversary Aī gets payoff γ10, whereas
in case Li it gets payoff γ11.

As a result, the multiset L̄1]· · ·] L̄n contains all elements of the event space at least (n−1) times,
which by the assumption that γ10 ≥ γ11 means that the sum of the adversaries’ utilities is at least
(n − 1) · γ10 + γ11. Note that, as in Lemma 7, the events translate to the corresponding events in
the ideal execution (except for negligible probability differences) because otherwise an environment
could distinguish (i.e., the assumed simulator would not be good).

As in the two-party case, we can “mix” the above-described adversaries probabilistically and
obtain a bound for one specific adversary.

Lemma 13. Let f : {0, 1}∗n → {0, 1}∗ such that f(x1, . . . , xn) = x1 ‖ x2 ‖ ... ‖ xn and ~γ ∈ Γfair.

There exists an adversary A such that for every protocol Π which realizes functionality Ff,⊥sfe :

uA(Π,A)
negl

≥ (n− 1) · γ10 + γ11

n
.

B.1 Utility-Balanced Fairness (cont’d)

Lemma 14. Let ~γ ∈ Γ+
fair and A be an adversary. Then,

n−1∑
t=1

uA(Π
Opt
nSFE,At)

negl

≤ (n− 1)

2
(γ10 + γ11).

15Remember that adversary Aī runs the honest protocol on the behalf of the honest parties, so the states of all
protocol machines are well defined and so is the event.

16See assumption above.

20

Proof. As we prove Lemma 11 for the expected payoff of any t-adversary At with t < n it holds
that

uA(Π
Opt
nSFE,At)

negl

≤ γ10t+ (n− t)γ11

n
.

Therefore

n−1∑
t=1

uA(Π
Opt
nSFE,At)

negl

≤
n−1∑
t=0

tγ10 + (n− t)γ11

n
=

(n− 1)(γ10 + γ11)

2
.

Here, we show negative results. In the following lemma, we consider the two adversarial strate-
gies Ât and Ān−t, which corrupt the parties 1, . . . , t and t+ 1, . . . , n, respectively.

Lemma 15. Let ~γ = (γ00, γ01, γ10, γ11) ∈ R4 and let f : {0, 1}∗n → {0, 1}∗ such that f(x1, . . . , xn) =

x1 ‖ x2 ‖ ... ‖ xn. Let Π be an n-party protocol realizing functionality Ff,⊥sfe . Then,

uA(Π, Ât) + uA(Π, Ān−t)
negl

≥ γ10 + γ11,

The proof follows immediately from the two-party case, as we can consider the protocol emu-
lating 1, . . . , t for p1 and t+ 1, . . . , n for p2 as a two-party protocol to which Lemma 7 applies. This
simple lemma implies the following result.

Lemma 16. Let ~γ ∈ Γfair and f(x1, . . . , xn) = x1 ‖ x2 ‖ ... ‖ xn. Then there exists a vector
(A1, . . . ,An−1) where each At is a t-adversary such that for every protocol Π which securely realizes

functionality Ff,⊥sfe , it holds that

n−1∑
t=1

uA(Π,At)
negl

≥ (n− 1)

2
· (γ10 + γ11).

Proof. We first assume that the number n of parties is odd. Then, by setting Ai = Ât and
An−t = Ān−t for each 1 ≤ t ≤ n−1

2 and using Lemma 15, we immediately obtain that

n−1∑
t=1

uA(Π,At) ≥

n−1
2∑
i=1

(uA(Π, Âi) + uA(Π, Âi))
negl

≥ n− 1

2
· (γ10 + γ11),

which is exactly the bound we intended to show. For an even number n of parties, we additionally
use Lemma 15 with Ân/2 and Ān/2 to obtain the result.

Utility-balanced fairness vs. optimal fairness and the GMW protocol. In the following,

we denote by Π
1/2
GMW the version of the SFE protocol in [16] which is secure (and fair) for any

dishonest minority, i.e., as long as t < n/2.

Lemma 17. Protocol Π
1/2
GMW is not utility-balanced ~γ-fair.

21

Proof (sketch). Protocol Π
1/2
GMW [16] guarantees full security (including fairness) against any adver-

sary corrupting at most bn−1
2 c parties; but an adversary that corrupts more than bn−1

2 c parties
can trivially violate fairness with probability 1, i.e., can always obtain the output and prevent the
honest parties from receiving it. The reason is that the protocol computes an dn2 e-out-of-n verifi-
able secret sharing,17 which is then publicly reconstructed. Hence, any coalition of at most bn−1

2 c
parties has no chance of preventing the remaining ≥ dn2 e parties from reconstructing, whereas a
coalition of dn2 e can trivially block the reconstruction (and has already the shares it needs to learn
the secret.) This means that for an even number of parties n = 0 mod 2:

• For n− 1 ≥ t ≥ n
2 : uA(Π

1/2
GMW,At)

negl

≈ γ10, and

• for 1 < t < n
2 : uA(Π

1/2
GMW,At)

negl

≈ γ11

Thus,

n−1∑
t=1

uA(Π
1/2
GMW,At)

negl

≥ n− 1

2
· (γ10 + γ11) + (γ10 − γ11)

negl

>
n− 1

2
· (γ10 + γ11)

negl

≈
n−1∑
t=1

uA(Π
Opt
nSFE,At)

In the following we show that one can obtain a protocol which is utility-balanced ~γ-fair but not
optimally ~γ-fair, thereby establishing a separation between the two notions. To this direction, we

observe that if we restrict to an odd number of parties, then Π
1/2
GMW does achieve the bound proved

in Lemma 11 for protocol ΠOpt
nSFE, i.e., for n = 1 mod 2:

n−1∑
t=1

uA(Π
1/2
GMW,At) =

n− 1

2
· (γ10 + γ11)

Thus the protocol Π′ which invokes Π
1/2
GMW for n = 1 mod 2 and ΠOpt

nSFE for n = 0 mod 2 is
in fact utility-balanced ~γ-fair for every n. However, protocol Π′ is not optimally ~γ-fair since it is
less ~γ-fair than ΠOpt

nSFE. Indeed, an optimal attack against Π′ is by the adversary who corrupts dn2 e
parties (thereby learning the output from the sharing) and makes all corrupted parties abort after
learning the output. Because the honest parties have no information on the output (the have less
than dn2 e shares) for the function f from Lemma 15, this adversary obtains utility γ10 which is

bigger than the upper bound (n−1)γ10+γ11

2 on the utility that any attacker might obtain in attacking
ΠOpt

nSFE (Lemma 11).

Optimal fairness does not imply utility-balanced fairness. The above result showed that
utility-based fairness does not imply optimal fairness. Here, we show that the other direction also
does not hold, i.e., there exists a protocol which is optimally fair but does not achieve utility-
balanced fairness. The protocol works as follows:

1. The parties execute phase 1 of the protocol ΠOpt
nSFE, i.e., until all parties obtained their output

from the underlying (unfair) SFE-protocol. Assume that party pi received the value yi, while
yj = ⊥ for all j 6= i.

2. Each party sends the value “0” to all other parties.

17An t-out-of-n verifiable secret sharing ensures that the shares of any t − 1 parties (jointly) contain obtain no
information on the shared value, but if at least t honest parties announce their shares then the output will be
reconstructed (i.e, a (t− 1)-adversary cannot confuse the honest parties into accepting a wrong value).

22

3. If pi received only 0’s from the other parties, it broadcasts the value yi. Otherwise, pi tosses
a coin, and broadcasts the value only of the coin lands “heads.” Otherwise, it sends the value
only to those parties that did not send a 0.

4. All parties (including pi) that received the value yi output it.

The described protocol is artificial and does not achieve utility-balanced fairness; still, it is
optimally fair according to Definition 2. This is shown in the following lemma.

Lemma 18. Let Π be the protocol described above. The following two statements hold:

1. Π is optimally ~γ-fair.

2. Π is not utility-balanced fair.

Proof. We first show the first statement. Indeed, if the adversary corrupts n− 1 parties, the utility
is exactly as before, since the probability of the remaining party to receive the value is 1/n, and the
party will output the value in step 4. If the adversary sends only 0’s in step 2, then the protocol
is essentially the same as ΠOpt

nSFE and hence the adversary’s utility is also the same. Hence, we only

have to show that the adversary cannot achieve more utility
negl

> ((n−1) ·γ10 +γ11)/n by corrupting
t < n− 1 parties and sending other messages in step 2. In this case, however, the probability that
one of the remaining n − t honest parties receives the value in step 1 is (n − t)/n ≥ 2/n, and the
probability of a broadcast (after the coin-toss) in step 3 is hence still ≥ 1/n, so the adversary’s
utility is at most as large as when corrupting exactly n − 1 parties. Overall, this means that the
protocol is optimally ~γ-fair.

For the second statement, we only have to observe that if the adversary corrupts a single party,
say pj . If pj receives the output in step 1, the adversary aborts. Otherwise, pj and sends a 1 to
all parties in step 2, and obtains the correct value otherwise. This adversary will obtain utility
1/n ·γ10 + (n−1)/n · (γ10 +γ11)/2. Clearly, the utilities of this adversary and the “standard” An−1

add up to

(n− 1)γ10 + γ11

n
+
γ10

n
+

(n− 1)(γ10 + γ11)

2n
=

(3n− 1)γ10 + (n+ 1)γ11

2n
,

and we can then continue as in Lemma 16 to obtain the result.

B.2 Utility-Balanced Fairness and the Cost of Corruption (cont’d)

As shown in [14], for any choice of the payoff vector ~γ, there is a natural lower bound on the utility
of the best adversary attacking any protocol, which is the utility of the best adversary attacking
the “dummy” Fsfe-hybrid protocol ΦFsfe (i.e., the protocol that can invoke as a hybrid the trusted
party Fsfe for SFE from [6]).18 We refer to a protocol that performs at least as well as ΦFsfe as
ideally fair.

Definition 19. Let Π be a protocol and ~γC ∈ Γfair. We say that Π is ideally ~γC-fair if

sup
A∈ITM

uA(Π,A)
negl

≤ sup
A∈ITM

uA(Φ
Fsfe ,A).

where ΦFsfe is the “dummy” Fsfe-hybrid protocol.

18We note that, usually, dummy protocols are only defined in the UC framework. However, [6] also allows for
hybrid protocols, and it is natural to introduce it for the following definition.

23

Remark 2. We point out that depending on the actual values of the vector ~γ and the corruption-cost
function, there might not exist an ideally fair protocol for computing certain functions. Nonetheless,
as we show in Section 4.2, for a natural class of cost functions (which roughly require that the
cost increases linearly with the number of corrupted parties) we are able to provide ideally fair
multi-party protocols for computing an arbitrary function f (in the presence of an adversary who is
allowed to corrupt arbitrarily many parties). In contrast, the existence of an optimally fair protocol
is always guaranteed by the Minimax theorem, and the fact that such a protocol is a solution to
the zero-sum (attack) game as defined in the RPD framework.

Moreover, we introduce the following definition which allows to compare cost functions. In
Theorem 6, we show that utility-balanced fairness corresponds to security with the lowest-possible
cost function.

Definition 20. Let C, C′ : [n]→ R be arbitrary cost functions. We say that C (weakly) dominates

C′ if for every t ∈ [n], C(t)
negl

≥ C′(t). We say that C strictly dominates C′ if for every t ∈ [n],

C(t)
negl

> C′(t).

Most natural multi-party protocols are symmetric, such that the adversary’s payoff will depend
only on the number of corrupted parties (but not on the actual parties that are corrupted). Instead
of indirectly expressing this fact via the cost of corrupting parties, we can take a more direct
approach and measure the payoff for each number t of corrupted parties explicitly. Note that the
notion of optimality transfers, but the comparison induces only a partial order.

Definition 21. Let ~γ ∈ Rd ∈ Γfair be a payoff vector. For a function φ : [n− 1]→ R, we say that
a protocol Π is φ-fair with respect to ~γ if for all adversaries At corrupting t parties,

uA(Π,At)
negl

≤ φ(t).

Utility-balanced fairness can be defined in terms of the functions φ described in Definition 21:
for a utility-balanced fair protocol, the term

∑n−1
t=1 φ(t) is minimized. In the following, we describe

how the notion of being φ-fair corresponds to ideal ~γC-fairness with respect to a particular cost
function C. We generally write s(t) for the payoff of the best adversary corrupting t parties when
executing with the ideal functionality F, i.e., s(t) = maxAt uA(Φ

F ,At) where we maximize over all
adversaries At corrupting up to t parties.

Lemma 22. Let φ : [n−1]→ [0, 1] be a function and let Π be a protocol, and let ~γ = (γ1, . . . , γd) ∈
Γfair be a payoff vector. The following two statements are equivalent, with respect to static19 adver-
saries:

• Π is φ-fair with respect to ~γ.

• Π is ideally ~γC-fair, where ~γC = (γ1, . . . , γd, {−c(|I|)}I⊆P), i.e., we have the cost function
C(I) = c(|I|) = φ(|I|)− s(|I|).

19 The property of being φ-secure is defined only for adversaries which corrupt a predetermined number of parties;
hence, the result actually holds for all adversaries where this number is fixed (but the choice of parties may be
adaptive). Furthermore, one can define protocols in which the “optimal” number of parties to corrupt is determined
only during the protocol run and becomes known to the adversary; in that case a φ-secure protocol may not be
attack-payoff secure, with the described cost functions, against fully adaptive adversaries.

24

Proof. “=⇒”: If Π is φ-fair, then by Definition 21, uA(Π,At)
negl

≤ φ(t) for all adversaries At corrupt-
ing t parties. If we then consider the vector ~γC = (γ0, . . . , γd, {−c(|I|)}I⊆P),

ÛΠ,〈F〉,~γC(At) = ÛΠ,〈F〉,~γ(At)− c(t)
negl

≤ φ(t)− (φ(t)− s(t)) ≤ s(t)
negl

≈ max
At

ÛΦF ,〈F〉,~γ(At),

which means that the payoff that the adversary achieves against the protocol is at most the same
as against the ideal functionality, so Π is ideally ~γC-fair. Note that we used the notation from
equation (2) because the adversary’s utility is defined differently, which appears in the terms as ~γC

and ~γ, respectively.
“⇐=”: If Π is ideally ~γC-fair, then this means that ÛΠ,〈F〉,~γC(At) ≤ s(t), or

ÛΠ,〈F〉,~γ(At) = ÛΠ,〈F〉,~γC(At) + c(t)
negl

≤ s(t) + c(t) = φ(t),

which immediately means that Π is φ-fair.

We are now ready to prove Theorem 6 from the main body, which we restate here.

Theorem 6. Let ~γ = (γ00, γ01, γ10, γ11) ∈ Γ+
fair. For a protocol Π that is utility-balanced ~γ-fair, the

following two statements hold:

1. Π is ideally ~γC-fair with ~γC = (γ00, γ01, γ10, γ11,−{C(I)}I⊆P) ∈ Γ+C
fair for the function c(t) =

uA(Π,At), where At is the best adversary strategy corrupting up to t parties.

2. The cost function C is optimal in the sense that there is no protocol which is ideally ~γC
′
-fair

with a cost function C′ that is strictly dominated by C according to Definition 20.

Proof. The first statement actually holds for arbitrary protocols Π and is a direct consequence of
Lemma 22. The second statement can be seen as follows: Let Π′ be a protocol and C′ be a cost

function that is strictly dominated by C. Then, again by Lemma 22, we obtain that uA(Π
′,A′t)

negl

≤
uA(Π,At), where the inequality is strict for at least one t ∈ [n − 1]. But then, the sum of these
terms over all such t is strictly smaller for Π′, which contradicts the optimality of Π according to
Definition 5.

C Utility-based vs. Partial Fairness (cont’d)

A notion that is related to our fairness definition is the concept of 1/p-security introduced by
Gordon and Katz [18] for the two-party setting. Roughly speaking, the notion allows a noticeable
error of at most 1/p (for a polynomial p) in the security statement for a protocol.

In this section, we weaken our definition by modifying the functionality Ff,⊥sfe to allow for a
correctness error; specifically, functionality Ff,$sfe allows the adversary to replace the honest party’s
output by a randomly chosen one. Intuitively, the ability of the simulator to use this capability
with probability 1/p corresponds to contradicting the full security definition in the manner the
protocols described in [18] do.

We then show that even this weakened notion is strictly stronger than 1/p-security—even if
the latter notion is strengthened by additionally requiring “full privacy” as suggested in [18]—by
providing a protocol that leaks honest inputs, but can still be proven to achieve both conditions
of [18]. We show, however, that the protocols described in [18] do achieve the weakened notion of
security introduced in this section, which strengthens the result of [18].

25

C.1 Description of 1/p-Security

The fundamental idea underlying 1/p-security can be described easily: If the implemented function-
ality outputs a value to a (dishonest) party such that the set of all possible outputs is polynomial,
then a value chosen uniformly at random from that set will meet the actual output with notice-
able probability. Hence, if the party receives a long sequence of random values (this sequence will
contain the actual output by chance already several times), and have this sequence switch to be
constant with the actual output after a random number of steps, then the dishonest party will not
be able to recognize the switch at the exact point (but only later). This “delay” is exploited to also
provide the correct value to the other party.

The protocols described in [18] follow this intuition: The two parties compute a functionality
(using an unfair protocol) by which they obtain a sequence of commitments to the above described
values—for each round of the following protocol, there is one commitment per party, such that
always the other party has the opening information. One party is chosen to always go first and
send the opening information to the other party, which opens the commitment and responds with
the corresponding opening information. As soon as one party aborts, the other party outputs the
last value obtained by opening a commitment.

The actual security definition is two-fold:

• 1/p-secure computation, which means

∀A ∃S :
{
idealF,S(aux)(x, y, n)

}
(x,y)∈X×y,aux∈{0,1}∗,n∈N

1/p
≈
{
realΠ,A(aux)(x, y, n

}
(x,y)∈X×y,aux∈{0,1}∗,n∈N .

• privacy, which is defined as

∀A ∃S :
{
outSF,S(aux)

}
(x,y)∈X×Y,aux∈{0,1}∗,n∈N

≡
{
viewAΠ,A(aux)(x, y, n)

}
(x,y)∈X×y,aux∈{0,1}∗,n∈N

.

The two main differences with our definition show up in that the second condition does not include
correctness (so this is only guaranteed with noticeable error), and in that the simulators in the two
conditions can be chosen independently, which relaxes the privacy condition for certain classes of
functions.

C.2 The Functionality with Randomized Abort

The protocols introduced in [18] intuitively achieve the following guarantee: with probability (at
least) 1− 1/p, the protocol execution is fair in the sense that either both parties obtain the correct
output or both parties obtain a random output, and with the remaining probability, the honest
party obtains a random output while the corrupted party obtains the correct output. This is
formalized with the help of the functionality Ff,$sfe described in Figure 1.

C.3 Analyzing the Gordon-Katz Protocols

Gordon and Katz [18] propose two different protocols: One for functions that have (at least) one
domain of (at most) polynomial size, and one for functions in which both domains might be large,
but (at least) one range is at most polynomial. We first extend the proof of the protocol for

26

Functionality Ff,$
sfe (Computation with random abort, two-party case)

The functionality is parametrized by two families of distributions Yi(·) on Yi with parameter in Xi, for
i ∈ {1, 2}
• Obtain (input, xi) from pi (for i ∈ {1, 2}), and send (input, pi) to A.

• After both p1 and p2 have provided input, compute (y1, y2) ← f(x1, x2) and provide y1 as a
private delayed output to p1, and y2 as a private delayed output to p2.

• Upon receiving (corrupt, pi) from A, send xi to A.

• If pi is corrupted and A inputs (abort) while y¬i has not yet been delivered, set y¬i
$← Y¬i(x¬i).

Figure 1: The functionality with randomized abort

functions with polynomial domain (see [18, Section 3.2]) to our model. In particular, we prove that

the protocol realizes the functionality Ff,$sfe formally described in Figure 1 on page 27. Intuitively,
this functionality states that in case of an “unfair” adversarial abort, the adversary’s input is
replaced by a value chosen at random from some distribution that only depends on the honest
party’s input.

We prove the strengthened result for the protocols with polynomial domain. In that case, the
distribution Yi(xi) is defined via Y1(x1) := f(x1, X2) (resp. Y2(x2) := f(X1, x2)) with X2 (resp.
X1) uniformly random.

Theorem 23. Let f = {fn : Xn × Yn → Zn} be a (randomized) functionality where |Yn| = poly(n).

For any polynomial p there is an O(p · |Yn|)-round ShareGen-hybrid protocol implementing Ff,$sfe such

that ūA(Π,A)
negl

≤ 1/p.

Proof sketch. We begin by describing a simulator S such that realΠ,A,Z
negl

≈ idealFf,$
sfe ,S,Z

and

U
Ff,$

sfe ,~γ
I (S,Z) ≤ 1/p for all Z analogously to the simulator described in the proof of [18, Theorem 3].
S initially simulates the messages sent by the parties alternatingly: S starts by choosing the round
1 ≤ i∗ ≤ r and draws the MAC keys ka and kb uniformly at random, the simulated messages
are pairs of random shares and MAC tags. As soon as the adversary corrupts a party, S sends a
corresponding message to Ff,$sfe and obtains that party’s input. Given these values, S can easily
simulate the internal state of the corrupted party similarly to the messages, as described in [18,
Theorem 3].

If the adversary aborts in round i < i∗, then S sends (abort) to Ff,$sfe, essentially replacing
the dishonest party’s input with a randomly chosen one. Here, S does not retrieve the dishonest
party’s output. If the adversary aborts in round i > i∗, the adversary tells Ff,$sfe to deliver the
correct output (and also retrieves the correct output of the dishonest party). If, however, p1 is

corrupted and the adversary aborts in step i∗, then S sends (abort) to Ff,$sfe, thereby replacing
the dishonest party’s input with a randomly chosen one, and does retrieve the dishonest party’s
output. The distinguishing advantage between the real and the ideal setting is at most negligible
and comprises the probability of forging a MAC; all other values can be simulated perfectly.

By [18, Lemma 2], we can conclude U
Ff,$

sfe ,~γ
I (S,Z) ≤ 1/p exactly as in [18, Theorem 3]: S will

trigger the event E10 only if Z makes the protocol abort in round i∗ while p1 is corrupted, but an
environment Z that guesses this round correctly can be used as an adversary winning the game in
the lemma.

27

The protocol for functionalities with polynomial size range is different, we adapt the following
theorem from [18, Section 3.3]. The proof is adapted from the original one [18, Theorem 6] exactly
as in the case of Theorem 23.

Theorem 24. Let f :
{
fn : Xn × Yn → Z1

n × Z2
n

}
be a (randomized) functionality, where |Z1

n| =
poly(n). For any polynomial p there is an O(p2 · |Z1

n|)-round ShareGen-hybrid protocol implementing

Ff, sfe such that ūA(Π,A)
negl

≤ 1/p.

C.4 Utility-based Fairness Implies 1/p-Security (cont’d)

For an appropriately chosen vector ~γ, we can show that a security statement in our model implies
the notion of 1/p-security. In particular, we choose ~γ = (0, 0, 1, 0) to show the following lemma.

Lemma 25. If for a protocol Π it holds that for ~γ = (0, 0, 1, 0) and for any adversary A,

ūA(Π,A) ≤ 1/p,

then there is a polynomial p′ (such that 1/p′
negl

≤ 1/p) and Π is 1/p′-secure and private.

Proof. We show the two conditions independently.
We first use the assumption that ūA(Π,A) ≤ 1/p, which means that there is a simulator S

such that realΠ,A,Z
negl

≈ idealFf,$
sfe ,S,Z

and U
Ff,$

sfe ,~γ
I (S,Z) ≤ 1/p for all Z. From S, we obtain

a simulator S ′ for the fully fair functionality as follows: S ′ behaves exactly as S except for the
(abort)-queries and the potentially following ones to replace the output (at the functionality Ff,$sfe).

S ′ first ignores these queries, but stops once S both requested from Ff,$sfe the dishonest party’s output
and issued an (abort)-query. (The above condition makes sure that this happens with probability
at most 1/p, as it would imply the event E10.) We conclude idealFf,$

sfe ,S′,Z
≡ idealFf

sfe,S′,Z
since

S ′ never aborts Ff,$sfe and∣∣∣Pr
[
idealFf,$

sfe ,S′,Z
= 1
]
− Pr

[
idealFf,$

sfe ,S,Z
= 1
]∣∣∣ ≤ U

Ff,$
sfe ,~γ

I (S,Z)

since the behavior of S and S ′ only differs only if S both issues an (abort) query and requests the
dishonest party’s output, which corresponds to the event E10.

Assume (toward a contradiction) that for all p′ with 1/p′
negl

≤ 1/p it holds that Π is not 1/p′-
secure. In particular, there exist inputs x ∈ X and y ∈ Y , auxiliary inputs aux = (auxn)n≥1,
auxn ∈ {0, 1}∗, an adversary A, such that for all simulators S, the random variable ensembles{
idealF,S(aux)(x, y, n)

}
n∈N and

{
realΠ,A(aux)(x, y, n)

}
n∈N are distinguished by some distinguisher

D with advantage ε ≥ 1/p+ 1/qS for some polynomial qS .
We now use the environment Zx,y,aux,D that inputs x at the interface of p1, y at the interface of

p2, and then admits the execution following the instruction of A(aux) until it finishes, and records
the outputs of the party. Then it compiles the tuple of outputs as expected by D, runs D, and uses
its output. By the assumption on D,∣∣∣Pr

[
realΠ,A,Zx,y,aux,D = 1

]
− Pr

[
idealFf,$

sfe ,S′,Zx,y,aux,D
= 1
]∣∣∣ ≥ 1/p+ 1/qS′ .

But, on the other hand,∣∣∣Pr
[
idealFf,$

sfe ,S′,Zx,y,,aux,D
= 1
]
− Pr

[
idealFf,$

sfe ,S,Zx,y,aux,D
= 1
]∣∣∣ ≤ 1/p

28

by the assumption on S.
Using the triangle inequality and the above two bounds, we obtain∣∣∣Pr

[
realΠ,A,Zx,y,aux,D = 1

]
− Pr

[
idealFf,$

sfe ,S,Zx,y,aux,D
= 1
]∣∣∣ ≥ 1/p′ − 1/p ≥ 1/qS′ ,

in contradiction to S ∈ SIMA.
Secondly, we assume that Π does not achieve privacy which means that there is a pair of inputs

(x, y) ∈ X×Y , and auxiliary inputs aux = (auxn)n≥1, auxn ∈ {0, 1}∗, an adversary A, such that for

all simulators S the probability ensembles
{
outSF,S(aux)(x, y, n)

}
n∈N

and
{
viewAΠ,A(aux)(x, y, n)

}
n∈N

are distinguished by some distinguisher D with advantage ε ≥ 1/qS for some polynomial qS .
We use the environment Z ′x,y,aux,D constructed as above (with the only difference that the input

to D is constructed differently). Let A be an adversary. From a simulator S in the setting with

Ff,$sfe we define a simulator S ′′ that behaves exactly as S except for blocking all queries that either
abort the functionality or replace the honest party’s output. Note that we have

outS
Ff,$

sfe ,S(aux)
≡ outS

′

Ff,$
sfe ,S′(aux)

≡ outS
′

Ff
sfe,S′(aux)

,

which means that∣∣∣∣Pr
[
realΠ,A,Z′x,y,aux,D = 1

]
− Pr

[
idealFf,$

sfe ,S,Z′x,y,aux,D
= 1

]∣∣∣∣
=

∣∣∣Pr
[
D
(
viewAΠ,A(aux)(x, y)

)
= 1
]
− Pr

[
D
(
outSFf

sfe,S′(aux)
(x, y)

)
= 1
]∣∣∣ ≥ 1/qS′ ,

which in particular means CA = ∅ in contradiction to the assumption.

C.5 Separating Utility-based Fairness from 1/p-Security

In the opposite direction, we construct a “leaky” protocol Π̃ that is insecure with respect to the
definition based on Ff,$sfe, but still satisfies the definition of 1/p-security. We consider the particular
case of computing the logical “and”: ∧ : {0, 1} × {0, 1} → {0, 1}, and set p = 2. The protocol is
described as follows, with inputs x1 and x2 for p1 and p2, respectively:

The first message is a 0-bit that is sent from p2 to p1.

Yet, if p2 sent a 1-bit instead of a 0-bit, then p1 tosses a biased coin C with Pr [C = 1] = 1
4 ,

and sends its input x1 to p2 if C = 1 (or otherwise an empty message).

Then, p1 and p2 engage in the standard 1
4 -secure protocol to compute x1 ∧ x2.

In particular, we show that the protocol does not even realize the “relaxed” functionality.

Lemma 26. The protocol does not implement Ff,$sfe.

Proof sketch. We consider the straightforward environments Z1 and Z2 such that at least one
distinguishes with good probability as follows: Zi chooses the input x1 ∈ {0, 1} uniformly at
random, immediately corrupts p2 and sends a 1-bit. Afterward, Zi admits the complete protocol
execution (running the honest protocol with input x2 = 0 for p2) and obtains the output z1.
The output of Z1 is computed as follows:

• If (in the first round) p1 sends the correct input x1 to p2, and z1 = 0, then Z1 outputs 1.

• If p1 sends 1− x1, or does not send its input at all, or z1 = 1, then Z1 outputs 0.

The output of Z2 is computed as follows:

29

• If (in the first round) p1 sends some non-empty message x̃ ∈ {0, 1} to p2, then Z2 outputs 1.

• If p1 sends an empty message, then Z2 outputs 0.

It is easy to compute

Pr
[
realΠ̃,A,Z1

= 1
]

= Pr
[
realΠ̃,A,Z2

= 1
]

= 1/4,

and we also show

Pr
[
idealF∧,$sfe ,S,Z1

= 1
]
≤ 3

4
· Pr

[
idealF∧,$sfe ,S,Z2

= 1
]
.

This holds as S cannot observe the correct value x1 without potentially allowing for z1 = 1. For the
following arguments, we only consider those runs where S indeed simulates the “first round reply”
of p1 (which must happen in approximately a 1

4 -fraction of the cases, as otherwise Z2 distinguishes).

• For those cases where S inputs x2 = 0 (or does not obtain p2’s output before simulating the
“first round reply”), the message x̃ is statistically independent of the uniformly random input
x1, so Z2 would output 1 “about twice as often as” Z1 (which does so only if x̃ = x1).

• For those cases where S inputs x2 = 1, the output that S obtains would be y1 = y2 = 1 in
approximately half the cases (namely if x1 = 1). In that case, the best S can do is abort and
re-randomize y1, but as x1 = 1 this still means that y1 = 1 in a quarter of the cases where
S inputs x2 = 1. Overall, Z2 would output 1 “about 4

3 times as often as” Z1 (which does so
only of y1 = 0).

Since there is a non-negligible gap between the probabilities w.r.t Z1 and Z2 in the ideal case, while
the probabilities are the same in the real case, at least one of the environments Z1 and Z2 must be
successful.

In the following lemma, we show that the protocol is both 1
2 -secure and private in the sense of

[18, Definition 1] and [18, Definition 14].

Lemma 27. The protocol Π̃ is both 1
2 -secure and private.

Proof sketch. We first sketch that the protocol achieves 1
2 -security. (The only “interesting” case is

where p2 is corrupted and A sends as the first message a 1-bit; otherwise the protocol is even 1
4 -

secure.) For this, we describe a simulator S that first draws a biased random bit C with Pr [C = 1] =
1
4 , and simulates a uniformly random bit in the name of p1 if C = 1. Then, it uses the “standard”
1
4 -security simulator for the second stage of the protocol. The distinguishing advantage for the
second stage alone is bounded by 1

4 , and with probability at least 7
8 the simulator for the first stage

is perfect, which concludes the first part of the proof sketch.
Second, we show that the protocol is private. Again, the only interesting case is where p2 is

corrupted and A initiates the protocol with a 1-bit. In this case, the simulator can replace p2’s
input to be y′ = 1 and can obtain the input x of p1. Then, it can faithfully simulate the protocol
run using the input x of the honest party.

30

	Introduction
	Preliminaries
	Utility-based Fairness and Protocol Optimality
	Utility-based Fair SFE
	The Two-Party Setting
	The Multi-Party Setting

	Utility-based vs Partial Fairness
	Utility-based Fair Two-Party SFE (cont'd)
	Round complexity of the reconstruction phase

	Utility-based Fair Multi-Party SFE (cont'd)
	Utility-Balanced Fairness (cont'd)
	Utility-Balanced Fairness and the Cost of Corruption (cont'd)

	Utility-based vs. Partial Fairness (cont'd)
	Description of 1/p-Security
	The Functionality with Randomized Abort
	Analyzing the Gordon-Katz Protocols
	Utility-based Fairness Implies 1/p-Security (cont'd)
	Separating Utility-based Fairness from 1/p-Security

