
Memory-saving computation of the

pairing final exponentiation on BN

curves∗

Sylvain Duquesne and Loubna Ghammam

March 3, 2015

Abstract

In this paper, we describe and improve efficient methods for computing
the hard part of the final exponentiation of pairings on Barreto-Naehrig
curves.
Thanks to the variants of pairings which decrease the length of the Miller
loop, the final exponentiation has become a significant component of the
overall calculation. Here we exploit the structure of BN curves to improve
this computation.
We will first present the most famous methods in the literature that en-
sure the computing of the hard part of the final exponentiation. We are
particularly interested in the memory resources necessary for the imple-
mentation of these methods. Indeed, this is an important constraint in
restricted environments.
More precisely, we are studying Devegili et al. method, Scott et al. addi-
tion chain method and Fuentes et al. method. After recalling these meth-
ods and their complexities, we determine the number of required registers
to compute the final result, because this is not always given in the litera-
ture. Then, we will present new versions of these methods which require
less memory resources (up to 37%). Moreover, some of these variants are
providing algorithms which are also more efficient than the original ones.

Keywords: BN curves, Tate pairing, final exponentiation, memory re-
sources, addition chain.

1 Introduction

The most significant complexity parameter of a pairing-friendly elliptic curve is
the embedding degree k. It is defined as the smallest integer for which r|pk − 1,
where r is the prime order of a large group of points of an elliptic curve E and
p is the base field characteristic. The embedding degree changes from one curve
to another and it is usually chosen in pairing based cryptography in the form
k = 2i3j with i ≥ 1, j ≥ 0 [1]. In this paper we are interested in pairings on
Barreto-Naehrig curves defined over Fp for which k = 12.

∗This work was supported in part by French ANR projects PEACE and SIMPATIC, LIR-
IMA MACISA project and centre Henri Lebesgue.

1

Tate pairing and its derivates have two steps. After computing the Miller loop,
we must carry out an extra step to ensure a unique result for the pairing. This
second step is called the final exponentiation, where the Miller loop result f1
must be raised to the power pk−1

r .
This final exponentiation can be broken down into three components.
Let k′ = k/2, then

pk − 1

r
=
(
pk
′
− 1
)[(pk

′
+ 1)

φk(p)

] [
φk(p)

r

]
where φk(.) is the k-th cyclotomic polynomial. This decomposition is usually
used for the calculation of the final exponentiation.
In our case k = 12, so the final exponent becomes

p12 − 1

r
=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1

r

To compute the first part f = f
(p6−1)(p2+1)
1 we have to rise f1 to the power p6

and p2 which are just easy Frobenius operations. We also have an inversion to
perform. We are not interested here in this easy part of the computation of the
final exponentiation. However it has an important consequence for rest of the
computation. Indeed, powering f1 to the p6 − 1 makes the result unitary [2].
By this way, during the hard part of the final exponentiation (the computation

of f
p4−p2+1

r) all the elements involved are unitary. This simplifies computations,
for example any future inversion can be implemented as a Frobenius operator,
more precisely f−1 = fp

6

which is just a conjugation [2], [3]. So we assume in
the following that inversions are free.
Many methods allow to compute the hard part of the final exponentiation but
they are using many memory resources. This can be a significant drawback for
restricted environment. For example a single temporary variable in this com-
putation requires 256×12

8 = 384 bytes of (fast and easily available) memory at
the 128 bits security level. The most famous methods are Devegili’s method [4],
addition chain method [5] and Fuentes method [6].

The paper is organized as follows. The section 2 is devoted to a presenta-
tion of BN Curves. The section 3 is a state of the art for computing the hard
part of the final exponentiation, specially Devegilli, addition chain and Fuentes
et al. methods.
Then we present our new methods in section 4 namely a new development of
p4−p2+1

r , a new addition chain, a new development of Fuentes method and a
variant of Fuentes based on a new multiple of the final exponentiation. These
four new methods require less memory resources than the previous ones. In
some cases we have a gain of complexity and in others the losses are negligible
which makes these method very interesting for implementations in restricted
environments.
Finally, in section 5, we compare the complexities and the number of temporary
variables used between our algorithms and literature ones.

Notations and Assumptions:
In the rest of this paper we use the following notations.

2

• Mk is a multiplication in Fpk .

• Sk is a squaring in Fpk .

• Fk is a Frobenius map application in Fpk .

• Ik is an inversion in Fpk .

• we is the Hamming weight of an integer | e |.

• le is the length of | e | in base 2.

For simplicity, we use M,S and I instead of M1, S1 and I1.
Practically, when we compute the final exponentiation, we must perform the
operations one by one in each line. For that, we assume that all operations of
type a ← ab are possible in place. This hypothesis is reasonable because our
computations are in the field extensions. Anyway, our results would be similar
if such operations were not possible.

2 Barreto and Naehrig Curves

Barreto and Naherig presented in [7] a method to generate pairing friendly
elliptic curves over a prime field Fp with embedding degree k = 12 and a prime
order n.
These curves are called BN curves and are defined over Fp by the following
equation

E : y2 = x3 + b,

where b 6= 0 is nor a square neither a cube and by a parameter u such that

t = 6u2 + 1
n = 36u4 + 36u3 + 18u2 + 6u+ 1
p = 36u4 + 36u3 + 24u2 + 6u+ 1

where t is the trace of Frobenius map on the curve. The parameter u is chosen
such that E has prime order. It has been proved that it is not restrictive to
choose u sparse, for efficiency reasons. We assume this is the case in this paper,
and more precisely in our examples we will choose a special value for u given in
the following example.

Example 2.1 Nogami et al. [8] have suggested the nice choice of

u = −(4080000000000001)16.

The Hamming weight of −u is wu = 3 and the length of −u in base 2 is lu = 63.

From the given expressions of p and r, the hard part of the final exponentiation

can be written differently. After computing the fraction p4−p2+1
r as a function

of u [5], we obtain,

p4 − p2 + 1

r
= λ0 + λ1p+ λ2p

2 + λ3p
3

where

3


λ0 = −36u3 − 30u2 − 18u− 2
λ1 = −36u3 − 18u2 − 12u+ 1
λ2 = 6u2 + 1
λ3 = 1

3 State of the Art

Let f1 the result of Miller loop and f = f
(p6−1)(p2+1)
1 the result of the easy

part of the final exponentiation. This section is devoted to the methods used
in the literature to compute the hard part of the final exponentiation namely

f
p4−p2+1

r . We take advantage of this state of the art to determine the memory
resources needed for each method, because is not always given.

3.1 Naive method

A naive method is to compute directly f
p4−p2+1

r using classical fast exponenti-
ations algorithms [10], [9].

Algorithm 1: Square and Multiply algorithm
Input: f , d = (dn−1, dn−2,d1, d0)2
Output: fd

t0 ← f
for i = n− 2 down to 0 do
t0 ← t20
If di = 1, then
t0 ← t0f

return t0

The main advantage of this method in our context is that it uses only one tem-
porary variable t0. But we will see in the following that we can do much better
in term of efficiency.
It is not hard to prove that the Hamming weight of λ0 + λ1p + λ2p

2 + λ3p
3,

which is a function of u, is about 100wu (see remark 3.1), and that its length is
about 12 times the binary length of u.

So computing directly f
p4−p2+1

r using algorithm 1 requires about 100wu multi-
plications and 12lu squarings in Fp12 .

Remark 3.1 To estimate the Hamming weight of p4−p2+1
r , we use the fact that

if u is sparse then wu4 ' 4wu and w36u4 ' 4wu + 2. An easy computation then
yield to w

(
λ0 + λ1p+ λ2p

2 + λ3p
3
)
' 100wu. Moreover the last expression is

in degree 12 in u so that l
(
λ0 + λ1p+ λ2p

2 + λ3p
3
)
' 12lu.

Example 3.2 If we choose the value of u proposed by Nogami et al. as in
example 2.1, we have to perform 759 squarings and 306 multiplications in Fp12
to compute f

p4−p2+1
r .

We can do better than algorithm 1 by choosing advanced exponentiation meth-
ods such as sliding window. But we are not presenting them because they require
more temporary variables for precomputations and because these are useless in
case of sparse exponents.

4

Let us now present the most used methods in the literature.

3.2 Lucas Sequences Method

Lucas sequences is another method for implementing exponentiation in sub-
groups when we are working on extension fields of even degree. The exponen-
tiation is done via a ”laddering” algorithm [?, ?] similar to the Montgomery
ladder for elliptic curves [?]. As mentioned in [?], such an algorithm requires
very little memory, which is our goal in this work. Lucas sequences were first
used to compute the hard part of the final exponentiation in [2].

Let m ∈ N∗, p1, p2, . . . , pm ∈ R, a sequence {v0, v1, v2, . . . , vm−1, . . . } is called
a Lucas sequence of order m if and only if

∀i ≥ 0, vm+i = p1vm+i−1 + p2vm+i−2 + . . . pmvi

Example 3.3 We give a simple example that we will use later. Let M ∈ R, if
v0 = 2, v1 = M and p1 = M, p2 = −1, then

vn+2 = Mvn+1 − vn

is a Lucas sequence of order 2.

A Lucas Sequence has the propriety

vn+m = vnvm − v|n−m|

From this property we deduce two proprieties which are useful in our context.

• v2n = v2n − v0

• v2n+1 = vnvn+1 − v1

We have f ∈ Fp12 , let us write f = a+ zb where a, b ∈ Fp6 and Fp12 = Fp6 [z].
To compute fn, we use the fact that

fn = (a+ bz)
n

=
vn
2

+ zbun

where

• vn is a Lucas Sequence as the one given in example 3.3.

• un = 2vn+1−Mvn
M2−4 .

The main interest of this method is that we are performing Fp6 operations in-
stead of Fp12 ones. Algorithm 2 ensures the computation of the hard part of the
final exponentiation using Lucas sequences.

5

Algorithm 2: Lucas Sequence
Input: f = a+ bz, d = (dn−1, dn−2, . . . d1, d0)2
Output: fd

Temp. var.: t0,M, v0, v1
1: M ← 2a
v0 ← 2
v1 ←M

2: for i = n− 2 down to 0 do
if di = 0 then

3: v1 ← v0v1 −M
v0 ← v20 − 2

else
4: v0 ← v0v1 −M

v1 ← v21 − 2
end for

5: v0 ← v0v1 −M
v1 ← v21 − 2

v0 and v1 are carrying vn+1 and vn. Let us now compute un.
6: t0 ←Mv0
v1 ← 2v1 − t0
M ←M2 − 4
v1 ← v1/M
v1 ← bv1

7: v0 ← v0/2
8: return v0 + v1z

This algorithm requires four temporary variables in Fp6 . Concerning its cost,
we have at steps 3 and 4 about ld = 12lu multiplications and 12lu squarings in
Fp6 . At step 5 we have an extra multiplication and an extra squaring. The com-
putation of un at step 6 requires 3 multiplications, an inversion and a squaring
in Fp6 . So, the total cost of this algorithm is around 12lu + 4 multiplications,
12lu+2 squarings and an inversion in Fp6 . Note that this method does not take
any advantage of the sparsity of u.

Example 3.4 With the choice of u given in example 2.1, the cost of Lucas
Sequence method is 763 M6, 761 S6 and I6. Moreover, we need 4 temporary

variables in Fp6 to compute f
p4−p2+1

r .

3.3 Devegili & al. method

In 2000 Devegili and al. proposed a very efficient method for the computation

of f
p4−p2+1

r [4]. They developed the exponent p4−p2+1
r in a tricky way in order

to reuse some exponents (6u2 + 1 and 6u+ 5).

6

p4 − p2 + 1

r
= λ3p

3 + λ2p
2 + λ1p+ λ0

= p3 + (6u2 + 1)p2 + (−36u3 − 18u2 − 12u+ 1)p

+(−36u3 − 30u2 − 18u− 2)

= p3 + p2(6u2 + 1) + p
(
(−6u− 5)(6u2 + 1) + 2(6u2 + 1)

)
+p ((−6u− 5) + 9) + (−6u− 5)(6u2 + 1)

+(−6u− 5) + (−6u− 5) + 9 + 4

So they finally compute f
p4−p2+1

r as

f
p4−p2+1

r = fp
3
(
fp

2

(fpf)
−6u−5

(fp)
2
)6u2+1

(fpf)
−6u−5

f−6u−5 (fpf)
9
f4

Devegili and al. presented algorithm 3 to compute this expression.

Algorithm 3: Devegili et al. [4]
Input: f, u

Output: f
p4−p2+1

r

1: a← f−6u−5

2: b← ap

3: b← ab

4: Compute fp, fp
2

, and fp
3

5: f ← fp
3

[fp
2

b (fp)
2
]6u

2+1b (fpf)
9
af4

Note that the exponentiations to the power of p (steps 2 and 4) are efficiently
computed using Frobenius.
In step 1, we use algorithm 1 to rise f to the power −6u− 5 which is a (lu + 2)-
bit integer of Hamming weight wu + 2 (u is chosen sparse). So we need wu + 1
multiplications and lu + 1 squarings in Fp12 to compute a. In the same way
l6u2+1 = 2lu + 1 and w6u2+1 ' 2wu + 7, so for computing the exponentiation to
the power 6u2 + 1, we need 2lu squarings and 2wu + 6 multiplications.
The cost of step 2 is F12 and the cost of step 3 is M12. For step 5 we need 3F12

to compute fp, fp
2

and fp
3

, 2M12 +S12 to compute fp
2

b(fp)2, 3S12 + 2M12 for
the 9-th power and 2S12 to compute f4.
Finally, 5 extra M12 are needed to multiply the terms together. So the total
cost of this algorithm is approximately (3lu + 7)S12, (3wu + 17)M12 and 4F12.

The classical work of Devigili et al. was presented in algorithm 3, but they
do not take into account temporary variables used in their algorithm which
can cause a problem in restricted environments. So let us give a more detailed
version of algorithm 3 which take into account the temporary variables.

7

Algorithm 4: detailed Devegili et al. Term computed
and comments

Input: f, u
Temp. var.: t0, t1, t2, t3

Output: f
p4−p2+1

r

t0 ← f−6u−5 # using algorithm 1
t1 ← tp0
t1 ← t0t1 (fpf)−6u−5

t0 ← t0t1 (fpf)−6u−5f−6u−5

t2 ← fp

t3 ← t2f
t3 ← t3

9 # using algorithm 1
t0 ← t0t3
t3 ← f4

t0 ← t0t3
t2 ← t22
t2 ← t2t1
t1 ← fp

2

t1 ← t1t2 fp
2

(fpf)
−6u−5

(fp)
2

t2 ← t6u
2+1

1 # using algorithm 1
t0 ← t2t0
t1 ← fp

3

t1 ← t1t0 f
p4−p2+1

r

return t1

For this algorithm we need 4 temporary variables in Fp12 to compute f
p4−p2+1

r .

Example 3.5 If u is chosen as in example 2.1, −6u − 5 is a 65−bit integer
of Hamming weight 5 and 6u2 + 1 is a 127-bit integer of Hamming weight 13.
The first step costs 64S12 + 4M12 and we need 126S12 + 12M12 to compute the
6u2+1-th powering. So the total cost of the hard part of the final exponentiation,
using Devegili et al. method, is 196S12 + 26M12 + 4F12.

3.4 Addition chain

In 2009 Scott et al. presented a new approach based on addition chain for
computing the hard part of the final exponentiation [5]. For this they write

f
p4−p2+1

r as groups of terms having the same exponents.

f
p4−p2+1

r = fλ3p
3

fλ2p
2

fλ1pfλ0

= fp
3

f(6u2+1)p2f(−36u3−18u2−12u+1)pf(−36u3−30u2−18u−2)

= fp
3

fp
2
(
fp

2
)6u2

(fp)
−36u3

(fp)
−18u2

(fp)
−12u

fpf−36uf−30u
2

f−18uf−2

=
[
fpfp

2

fp
3
]

[1/f]
2

[(
fu

2
)p2]6

[1/ (fu)
p
]
12
[
1/fu

((
fu

2
)p)]18 [

1/
(
fu

2
)]30

[
1/fu

3
(
fu

3
)p]36

.

8

So

f
p4−p2+1

r = y0y
2
1y

6
2y

12
3 y

18
4 y

30
5 y

36
6 (1)

where 

y0 = fpfp
2

fp
3

y1 = 1/f

y2 =
(
fu

2
)p2

y3 = (fu)
p

y4 = 1/fu
((
fu

2
)p)

y5 = 1/
(
fu

2
)

y6 = 1/fu
3
(
fu

3
)p

Olivos algorithm allows to evaluate any expressions of this form, with a mini-
mum of multiplications ([11] and [12] chapter 9.2).
The first point is to find an addition chain which includes the exponents ap-
pearing in (1). In this case, an optimal addition chain is given by

{1, 2, 3, 6, 12, 18, 30, 36}

Note that 3 appears in the addition chain but is not an exponent in (1). As
mentioned by Scott, this is certainly an advantage, because it means that we
have less work to do in the evaluation of (1). Expression (1) can be then
computed thanks to the algorithm 5.

Algorithm 5: Addition Chain [11], [5]
Input: f, u
Temp. Var: t0, t1

Output: f
p4−p2+1

r

t0 ← y26
t0 ← t0y4
t0 ← t0y5
t1 ← y3y5
t1 ← t0t1
t0 ← t0y2
t1 ← t21
t1 ← t1t0
t1 ← t21
t0 ← t1y1
t1 ← t1y0
t0 ← t20
t0 ← t0t1
return t0

For this algorithm, Scott et al. used only 2 temporary variables t0 and t1, 9
multiplications and 4 squarings in Fp12 .
However they first have to compute y0, y1, y2, y3, y4, y5 and y6. For this, they
need 7 extra temporary variables and t0. So, 9 temporary variables are necessary
to compute the hard part of the final exponentiation using this method.

9

The cost of computing y0, y1, y2, y3, y4, y5 and y6 is 3(wu−1) multiplications and

3(lu − 1) squarings for computing f−u, fu
2

and f−u
3

, 7 Frobenius applications
and finally 4 multiplications to multiply terms together. Remember that, as
noticed in the introduction, inversions are free because f is unitary.
So, the total cost of the hard part of the final exponentiation using addition
chain method is 7F12, (3wu + 10)M12 and (3lu + 1)S12.

Example 3.6 If u is chosen as in example 2.1, the cost of algorithm 5 is
190S12 + 19M12 + 7F12. Scott et al. used 9 temporary variables to compute
this result.

Remark 3.7 Our calculation of the complexities of the two last methods allows
us to recover the result obtained by practical implementations in the literature
namely Scott et al. method is 5 percent faster than Devegili et al. method to
compute the final exponentiation.
However, we can see than it is much more memory consuming. At the 128 bits
security level the 9 temporary variables used in Scott method are representing
3.4 KB which can widely exceed the capacities of a device.

3.5 Fuentes et al. method

More recently, Fuentes et al. presented a new way for computing the hard part
of the final exponentiation [6].

The idea of their method is to use a multiple d′ of d = p4−p2+1
r , (with r not

dividing d′). Then they compute fd
′

instead of computing fd using the fact
that a fixed power of a pairing is also a pairing.
They presented a lattice-based method for determining d′ such that fd

′
can be

computed at least as efficiently as fd. Thanks to LLL algorithm [13], the best
vector d′ that they found is given by

d′(u) = α0 + α1p+ α2p
2 + α3p

3 = sd (u)

where 
s = 2u

(
6u2 + 3u+ 1

)
α0 = 1 + 6u+ 12u2 + 12u3

α1 = 4u+ 6u2 + 12u3

α2 = 6u+ 6u2 + 12u3

α3 = −1 + 4u+ 6u2 + 12u3

Then, they use Devegili method so they developed the power d′ as follow

fd
′

= fα0fα1pfα2p
2

fα3p
3

=
(
af6u

2

f
)

(b)
p

(a)
p2 (

bf−1
)p3

where a = f6uf6u
2

f12u
3

and b = af−2u.
As they do not give a detailed algorithm, we will present algorithm 6 for com-
puting fd

′
taking into account temporary variables.

10

Algorithm 6: Term computed Cost
Fuentes et al. [6] and comments
Input: f, u

Output: fs
p4−p2+1

r

Temp. var.: t0, t1, t2, t3, t4
t0 ← f−u (lu − 1)S12 + (wu − 1)M12

t0 ← t20 S12

t1 ← t20 S12

t1 ← t0t1 M12

t2 ← t−u1 f6u
2

(lu − 1)S12 + (wu − 1)M12

t3 ← t−11 f6u

t1 ← t2t3 M12

t3 ← t22 S12

t4 ← t−u3 (lu − 1)S12 + (wu − 1)M12

t4 ← t−14

t4 ← t4t1 f6uf6u
2

f12u
3

= fα2 M12

t3 ← t4t0 f4uf6u
2

f12u
3

= fα1 M12

t0 ← t2t4 M12

t0 ← t0f af6u
2

f = fα0 M12

t2 ← tp3 F12

t0 ← t2t0 M12

t2 ← tp
2

4 F12

t0 ← t2t0 M12

t2 ← f−1

t2 ← t2t3 fα3 M12

t2 ← tp
3

2 F12

t0 ← t2t0 fs
p4−p2+1

r M12

return t0

For this algorithm we used 5 temporary variables in Fp12 . The cost of this
algorithm is given step by step in algorithm 6.
The overall cost of computing fd

′
is then 3luS12 + (3wu + 7)M12 + 3F12.

Example 3.8 With the value of u chosen in example 2.1, the total cost of this
algorithm is 189S12 + 16M12 + 3F12.

Remark 3.9 Using this method we compute a power of a pairing. This is not
a problem because a fixed power of a pairing is also a pairing. But it can be a
disadvantage if we implement a standard pairing such as Optimal Ate pairing
[14]. In case of interoperability and compatibility requirements, this method
could be avoided.

4 Variants of previous methods

In this section, we will present our contribution to the computation of the hard
part of the final exponentiation. Our aim is to decrease the number of temporary
variables in Fp12 required for this operation to make it friendly with restricted
environments. We will present four new variants of the state of the art methods.

11

More precisely we first write a new development of p4−p2+1
r to obtain a variant

of Devegili’s method which is not only less memory consuming but also more
efficient. Then we give a new addition chain providing a variant of Scott’s
method requiring much less temporary variables. Finally we also write a new
way to compute fd

′
in Fuentes method and a new exponent d1 allowing to

decrease the number of temporary variables required for this method.

4.1 New Development of f
p4−p2+1

r

In this paragraph, we present a new way to develop p4−p2+1
r . This development

is chosen in order to bring out repeated expression in λ0, λ1, λ2 and λ3. So
that we will compute them just once. The best we can do is with the exponents
6u2 + 1, −6u− 1, and −6u− 5.

λ0 = −36u3 − 30u2 − 18u− 2

= (−6u− 5)(6u2 + 1) + 2(−6u− 1) + 5)

λ1 = −36u3 − 30u2 − 12u+ 1

= (−6u− 5)(6u2 + 1) + (−6u− 1) + (12u2 + 7)

λ2 = 6u2 + 1

λ3 = 1.

So,

f
p4−p2+1

r = fλ3fλ2fλ1fλ0

= fp
3
(
f6u

2+1
)p2 (

f−6u−1
)p((

f6u
2+1
)−6u−5)p (

f7
)p (

f12u
2
)p

×
(
f6u

2+1
)−6u−5 (

f−6u−1
)2
f5

Practically, to compute the hard part of the final exponentiation, we use the

algorithm 7 based on this new development of p4−p2+1
r .

In this algorithm, we compute all the terms one by one and we accumulate their
product in the temporary variable t1.

12

Algorithm 7: new Term computed Cost
variant of Devegili et al. and comments
Input: f, u

Output: f
p4−p2+1

r

Temp. var.: t0, t1, t2
t0 ← f−2u luS12 + (wu − 1)M12

t1 ← t20 S12

t0 ← t0t1 M12

t1 ← f−1

t1 ← t0t1 M12

t2 ← tp1
(
f−6u−1

)p
F12

t1 ← t21
(
f−6u−1

)2
S12

t1 ← t1t2 # accumulate M12

t2 ← (t0)
−u

(lu − 1)S12 + (wu − 1)M12

t0 ← t22 S12

t0 ← tp0

(
f12u

2
)p

F12

t1 ← t1t0 # accumulate M12

t2 ← t2f M12

t0 ← (t2)
p2

(
f6u

2+1
)
p2 F12

t1 ← t0t1 # accumulate M12

t0 ← (t2)
−6u−5

(
f6u

2+1
)−6u−5

(lu + 1)S12 + (wu + 1)M12

t1 ← t1t0 # accumulate M12

t0 ← tp0 F12

t1 ← t1t0 # accumulate M12

t0 ← f2 S12

t2 ← t20 S12

t2 ← ft2 f5 M12

t1 ← t2t1 # accumulate M12

t2 ← t2t0 M12

t2 ← tp2
(
f7
)p

F12

t1 ← t2t1 # accumulate M12

t2 ← fp
3

F12

t1 ← t2t1 f
p4−p2+1

r M12

return t1

For this algorithm we use only 3 temporary variables in Fp12 .
To compute any exponentiation, as mentioned in section 2, we use algorithm 1.
As −6u − 5 is a lu + 2-bit integer of Hamming weight wu + 2 (assuming u is
sparse), we need wu + 1 multiplications and lu + 1 squarings in Fp12 to compute
t−6u−50 . The cost of algorithm 7 is given step by step inside the algorithm.

The overall cost to compute f
p4−p2+1

r using our new development of p4−p2+1
r is

(3lu + 5)S12 + (3wu + 12)M12 + 6F12.

Example 4.1 With the value of u chosen in example 2.1, the total cost of this
algorithm is 194S12, 21M12 and 6F12.

This new development is a variant of Devegili et al. method, so we compare
them in table 1.

13

Method Complexity Temp. var.
S12 M12 F12

Devegili et al. 3lu + 7 3wu + 17 4 4
(algorithm 4)
New development 3lu + 5 3wu + 12 6 3
(algorithm 7)

Table 1: Comparison between Devegili and our new development

Example 4.2 To complete the comparison, we choose the particular value of u
given in example 2.1. We get the table 2.

The Method Complexity Temp. var.
Devegili et al. method 196 S12+ 26M12 + 4F12 4
New Development 194 S12+ 21M12 + 6F12 3

Table 2: Example of Table 1.

If we compare the complexity of our algorithm with Devegili et al. one [4], we
can easily remark that we save 5 multiplications and 2 squarings. We have two
extra Frobenius map applications but this is not a problem because the cost of
2 Frobenius is less than the cost of one multiplication. We also remark that our
new algorithm use only 3 temporary variables in Fp12 instead of 4 which was
our initial goal.

4.2 New Addition Chain

In this section, we are interested in improving the addition chain method pre-
sented by Scott et al. especially in term of memory usage. The idea of this

variant is to present f
p4−p2+1

r as a product of terms whose exponents are smaller
than the exponents appearing in the expression presented by Scott et al. in [5].
This allows to use less temporary variables for computing the hard part of the
final exponentiation.

f
p4−p2+1

r = fλ3p
3

fλ2p
2

fλ1pfλ0

= fp
3

f(6u2+1)p2f(−36u3−18u2−12u+1)pf−36u
3−30u2−18u−2

= fp
3

fp
2
(

(fu
2

)p
2
)6

(fp)
−36u3

(fp)
−18u2

(fp)
−12u

fpf−36u
3

f−30u
2

f−18uf−2

=
[
fpfp

2

fp
3
] [(

f3u
2
)p2

f−1f−6u
2

]2 [
(fpf)

−4u
f−2u

]3 [
(fpf)

−6u3

(fpf)
−3u2

]6
.(2)

Using the following precomputations

y0 = fpfp
2

fp
3

,

y1 =
(
f3u

2
)p2

f−1f−6u
2

,

y2 = (fpf)
−4u

f−2u,

y3 = (fpf)
−6u3

(fpf)
−3u2

,

14

expression (2) becomes

f
p4−p2+1

r = y0y
2
1y

3
2y

6
3 . (3)

To compute y0, y1, y2 and y3 we propose algorithm 8.

Algorithm 8: precomputations Term Cost
for new addition chain computed
Input: f, u
Temp. var.: y0, y1, y2, y3, t0
Output: y0, y1, y2, y3
t0 ← f−u (lu − 1)S12 + (wu − 1)M12

y3 ← t20 S12

y0 ← t0y3 f−3u M12

y2 ← yp3 F12

y2 ← y3y2 M12

y2 ← y22 S12

y2 ← y3y2 y2 M12

t0 ← y−u0 (lu − 1)S12 + (wu − 1)M12

y0 ← f−1

y1 ← tp
2

0 F12

y1 ← y0y1 (f3u
2

)p
2

f−1 M12

t0 ← t−10

y3 ← tp0 F12

y3 ← t0y3 (fpf)−3u
2

M12

t0 ← t20 S12

y1 ← t0y1 y1 M12

t0 ← y−u3 (lu − 1)S12 + (wu − 1)M12

t0 ← t20 S12

t0 ← t−10

y3 ← t0y3 y3 M12

t0 ← fp F12

y0 ← fp
2

F12

y0 ← t0y0 M12

t0 ← fp
3

F12

y0 ← t0y0 y0 M12

return y0, y1, y2, y3

For this algorithm we use only 5 temporary variables in Fp12 . The cost of these
precomputations is given step by step inside algorithm 8 and the overall cost is
(3lu + 1)S12 + (3wu + 6)M12 + 6F12.

Thanks to Olivos algorithm, we can now easily compute the expression (3).
The starting point is to find an addition chain where these exponents appear.
In our case, it is not hard to see that an optimal addition chain is given by

{1, 2, 3, 6}

Now we carry out Olivos algorithm and we obtain, as a result, the following
addition vectors,

15

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, 1, 0)
(0, 0, 0, 1)
(2, 0, 0, 0)
(2, 1, 0, 0)
(2, 1, 0, 1)
(2, 1, 1, 0)
(4, 2, 2, 0)
(6, 3, 2, 1)

This allows to evaluate the expression (3) thanks to algorithm 9, without using
any new temporary variable.

Algorithm 9: New addition chain
Input: f, y0, y1, y2, y3

Output: f
p4−p2+1

r

Temp. var.: t0
t0 ← y23
t0 ← t0y2
y3 ← t0y0
t0 ← t0y1
t0 ← t20
t0 ← t0y3
return t0

For this algorithm we have to perform 4 multiplications and 2 squarings to com-
pute the final result in Fp12 .
So the total cost of the hard part of the final exponentiation (which is the com-
bined cost of algorithms 8 and 9) using this new addition chain is 6 Frobenius,
3wu + 10 multiplications and 3lu + 3 squarings in Fp12 .

Example 4.3 With the value of u chosen in example 2.1, the cost of the new
addition chain method is 19M12 + 192S12 + 6F12. However we use only 5 tem-
porary variables.

In table 3, we compare Scott et al addition chain and our new addition chain.

Method Complexity Temp. var.
S12 M12 F12

Scott addition chain 3lu + 1 3wu + 10 7 9
(algorithm 5)
New addition chain 3lu + 3 3wu + 10 6 5
(algorithm 9)

Table 3: Comparison between addition chains

Example 4.4 To have a full comparison, we choose the particular value of u
given in example 2.1. We get the table 4.

16

Method Complexity Temp. var.
Scott addition Chain 190 S12+ 19M12 + 7F12 9
New addition Chain 192 S12+ 19M12 + 6F12 5

Table 4: Example of Table 3

In these tables we can easily remark that our new addition chain requires 2
extra squarings but we save one Frobenius. This means that our algorithm is
slightly less efficient than Scott’s one. However we save 4 temporary variables
in Fp12 which is an important improvement for implementations in restricted
environments.

4.3 Variant of Fuentes Method

In this paragraph we present a new way of developing the exponent d′ presented
in Fuentes et al. paper [6]. The main idea of this development is to make 6u2+1
appear in α2 and α0, and then to write α0, α1 and α3 in terms of α2.

α2 = 12u3 + 6u2 + 6u

=
(
6u2 + 1

)
(2u+ 1) + 4u− 1

α1 = α2 − 2u

α0 = α2 + 6u2 + 1

α3 = α1 − 1.

To evaluate fd
′

we apply algorithm 10.

17

Algorithm 10: new Term Computed Cost
variant of Fuentues et al. and comments
Input: f, u

Output: fs
p4−p2+1

r

Temp. var.: t0, t1, t2, t3
t0 ← f−u (lu − 1)S12 + (wu − 1)M12

t0 ← t20 S12

t2 ← t−u0 f2u
2

(lu − 1)S12 + (wu − 1)M12

t1 ← t22 S12

t2 ← t2t1 f6u
2

M12

t2 ← t2f f6u
2+1 M12

t1 ← t−2u−12

(
f6u

2+1
)−2u−1

luS12 + (wu − 1)M12

t3 ← t−11

t1 ← t20 f−4u

t1 ← t1f M12

t1 ← t−11 f4u−1

t1 ← t1t3 fα2 M12

t0 ← t0t1 fα1 = fα2−2u M12

t2 ← t2t1 fα0 = fα2+6u2+1 M12

t3 ← tp
2

1 F12

t2 ← t2t3 (fα2)
p2
fα0 M12

t3 ← f−1

t3 ← t0t3 fα3 = fα1−1 M12

t1 ← tp
3

3 (fα3)
p3

F12

t2 ← t2t1 M12

t1 ← tp0 (fα1)
p

F12

t1 ← t2t1 fd
′

M12

return t1

For this algorithm we used 4 temporary variables in Fp12 .
As −2u−1 is a lu+1-bit integer of Hamming weight wu (assuming u is sparse),
we need wu−1 multiplications and lu squarings in Fp12 to compute t−2u−12 . The

cost to compute fd
′

is given step by step inside algorithm 10. The overall cost
of this algorithm is then (3wu + 7)M12, 3luS12 and 3F12.

Example 4.5 With the value of u chosen in example 2.1, the cost of the new
development of Fuentes method is 16M12+189S12+3F12. We use only 4 tempo-
rary variables to compute a multiple of the hard part of the final exponentiation.

4.4 New Multiple of d

As described in Fuentes et al. paper, we can find many multiples d′ of the ex-
ponent d involved in the hard part of the final exponentiation.
In order to minimize the number of operations, Fuentes et al. imposed the con-
dition that the largest coefficient of d′ is 12. In our case we relax this constraint
but we impose a constant vector among the αi to use less temporary variables.

With this constraint, a brute force search of linear combinations of the LLL

18

basis [13] provides 4 non-zeros vectors. Among these vectors, we consider the
following one,

(0, 6, 0, 1, 0, 0, 0, 1, 36, 24, 18, 1, 36, 18, 12, −2)

which corresponds to the multiple

d1 = α0 + α1p+ α2p
2 + α3p

3 = s1d

where 
s1 = 36u3 + 18u2 + 6u+ 1
α0 = 6u2 + 1
α1 = 1
α2 = 36u3 + 24u2 + 18u+ 1
α3 = 36u3 + 18u2 + 12u− 2

So that,

fd1 = fα0fα0pfα0p
2

fα0p
3

Let us now write the αi in a simpler way. For this, we use the same technique as
in section 4.1 to compute fd1 efficiently. The following development is chosen
because the three exponents 6u2 + 1, 6u− 1 and 6u+ 4 are used several times
but we will compute them just once.

α2 = 36u3 + 24u2 + 18u+ 2

= (6u+ 4)
(
6u2 + 1

)
+ 2 (6u− 1)− 1

α3 = 36u3 + 18u2 + 12u− 2

= (6u+ 4)
(
6u2 + 1

)
−
(
6u2 + 1

)
+ (6u− 1)− 4

α0 = 6u2 + 1

α1 = 1.

So, fd1 becomes

fs1
p4−p2+1

r = fα0fα0pfα0p
2

fα0p
3

= f6u
2+1fp

(
f (6u

2+1)(6u+4)
)p2 (

f2(6u−1)f−1
)p2 (

f (6u
2+1)(6u+4)

)p3
(
f−(6u

2+1)
)p3 (

f6u−1f−4
)p3

. (4)

In algorithm 11, we compute all the terms of (4) one by one and we accumulate
their product in the temporary variable t1.

19

Algorithm 11: new Term computed Cost
multiple of d and comments
Input: f, u

Output: fs1
p4−p2+1

r

Temp. var.: t0, t1, t2
t0 ← f−u (lu − 1)S12 + (wu − 1)M12

t1 ← t20 S12

t1 ← t20 S12

t0 ← t0t1 f−6u M12

t1 ← ft1 M12

t2 ← f2 S12

t2 ← t22 S12

t2 ← t2t1 M12

t2 ← t−12 f6u−1f−4

t2 ← tp
3

2

(
f6u−1f−4

)p3
F12

t1 ← t21 S12

t1 ← t1f M12

t1 ← t−11 f2(6u−1)f−1

t1 ← tp
2

1

(
f2(6u−1)f−1

)p2
F12

t1 ← t1t2 # accumulate M12

t2 ← t−u0 (lu − 1)S12 + (wu − 1)M12

t2 ← ft2 f6u
2+1 M12

t1 ← t2t1 # accumulate M12

t0 ← t−12

t2 ← tp
3

0

(
f−(6u

2+1)
)p3

F12

t1 ← t1t2 # accumulate M12

t2 ← t−6u−40 (lu + 1)S12 + (wu + 1)M12

t0 ← (t2)
p2

(
f (6u

2+1)(6u+4)
)p2

F12

t1 ← t1t0 # accumulate M12

t2 ← tp0

(
f (6u

2+1)(6u+4)
)p3

F12

t1 ← t1t2 # accumulate M12

t0 ← fp F12

t1 ← t1t0 fd2 M12

return t1

For this algorithm we used only 3 temporary variables in Fp12 . The cost of
computing fd1 is detailed in algorithm 11.
As−6u−4 is a lu+2-bit integer of Hamming weight wu+2 (assuming u is sparse),
we need wu + 1 multiplications and lu + 1 squarings in Fp12 to compute t−6u−40 .
The cost of the computation of fd1 is given step by step inside algorithm 11. The
overall cost of this algorithm is then 3lu + 4 squarings, 3wu + 10 multiplications
and 6 Frobenius in Fp12 .

Example 4.6 With the value of u chosen in example 2.1, the cost of computing
our new multiple of the hard part of the final exponentiation is 19M12+193S12+
6F12 and we use only 3 temporary variables in Fp12 .

20

The last two methods are variants of Fuentes et al method, so we compare them
in the table 5.

Method Complexity Temp. var.
S12 M12 F12

Fuentes 3lu 3wu + 7 3 5
(algorithm 6)
New development of d′ 3lu 3wu + 7 3 4
(algorithm 10)
New multiple of d 3lu + 4 3wu + 10 6 3
(algorithm 11)

Table 5: Comparison of Fuentes method and our variants

Example 4.7 To have a full comparison, we choose the particular value of u
given in example 2.1. We get table 6.

Method Complexity Temp. var.
Fuentes Method 16M12 + 189S12 + 3F12 5
New development of d′ 16M12 + 189S12 + 3F12 4
New multiple of d 19M12 + 193S12 + 6F12 3

Table 6: Example of Table 5

Through these tables, we remark that using the new development of the multiple
d′, presented by Fuentes et al., we get the same complexity as Fuentes et al.
method but we save memory resources. We can save more memory resources

if we consider the new multiple of p4−p2+1
r presented in this section but at the

cost of some additional operations in Fp12 .

5 Comparison

In this section we will compare state of the art methods of computing the hard
part of the final exponentiation with our results in terms of efficiency but also
in terms of memory usage. We first recall the complexity results obtained in
this paper in table 7.

21

Complexity Temp.
Method Algo Complexity for u as in var.

S12 M12 F12 example 2.1 in Fp12
Naive 1 12lu 100wu 759S12 + 306M12 1
Lucas sequence 2 (12lu + 4)M6+ 761S6 + 763M6 2

(12lu + 2)S6 + I6 +I6

Devegili 4 3lu + 7 3wu + 17 4 196S12 + 26M12 4
+4F12

Our variant 7 3lu + 5 3wu + 12 6 194S12 + 21M12 3
+6F12

Addition chain 5 3lu + 1 3wu + 10 7 190S12 + 19M12 9
+7F12

Our variant 8+9 3lu + 3 3wu + 10 6 192S12 + 19M12 5
+6F12

Fuentes 6 3lu 3wu + 7 3 189S12 + 16M12 5
+3F12

Our variant 10 3lu 3wu + 7 3 189S12 + 16M12 4
+3F12

New multiple 11 3lu + 4 3wu + 10 6 193S12 + 19M12 3
+6F12

Table 7: Comparison of complexities to compute the hard part of the final
exponentiation.

To obtain a more precise comparison we need to choose an extension tower so
that we will be able to express all the complexities in term of Fp arithmetic. For
this we choose the curve and the extension tower usually used in the literature.
But another choice would certainly not change the final result. We choose the
u given in example 2.1 and E the elliptic curve defined over Fp by

E : y2 = x3 + 2.

In this case −1 is not a square and (1 + i) is neither a cube nor a square. So
Fp12 is build using the following extension tower.

• Fp2 = Fp[i]/(i2 + 1)

• Fp6 = Fp2 [v]/
(
v3 − (1 + i)

)
• Fp12 = Fp6 [z]/

(
z2 − v

)
In this case the cost of arithmetic operations in Fp, Fp2 , Fp6 and Fp12 are given
by table 8 [15] .

22

Operation Notation Cost in Fp
Multiplication in Fp M M
Squaring in Fp S S
Inversion in Fp I I
Multiplication in Fp2 M2 3M
Squaring in Fp2 S2 2M
Multiplication in Fp6 M6 18M
Squaring in Fp6 S6 12M
Inversion in Fp6 I6 37M + I
Multiplication in Fp12 M12 54M
Cyclotomic squaring in Fp12 S12 18M
Frobenius in Fp12 F12 15M

Table 8: Operations cost in the extension tower

In this paper, we are not only interested in complexity but also in memory
usage. Then we have to determine the number of Fp variables required for each
algorithm. Our estimation is based on the fact that a temporary variable in Fp12
requires 12 temporary variables in Fp. But this is not sufficient since additional
temporary variables are required during Fp12 operations. It is not difficult to see
that at least 10 of them are necessary for a multiplication and less than 10 for
other operations (squaring, Frobenius, inversion). Moreover the input element
f is an element of Fp12 and then requires 12 elements in Fp to be stored. This
means that 22 variables in Fp are necessary in addition to the Fp12 temporary
variables used in the algorithms presented in this paper. Note that depending
on the context the variables used for storing f could be reused for computations.
However, making such an assumption does not change the conclusions of our
study.

Assuming this particular (but wide-spread) context, Let us now give in table 9
the cost of the algorithms studied in this paper in terms of Fp arithmetic.

Method Algorithm Cost in Fp Cost Temp. Memory
saving var. in Fp saving

Naive 1 30186M 34
Lucas Sequence 2 I + 22903M 46
Devigili 4 4992M 70
Our variant 7 4716M 5.5% 58 17%
Addition chain 5 4551M 130
Our variant 8+9 4572M −0.4% 82 37%
Fuentes method 6 4311M 82
Our variant 10 4311M 0% 70 15%
New multiple 11 4590M −6.4% 58 29%

Table 9: Comparison and savings obtained by our variants in terms of Fp arith-
metic

23

6 Conclusion

In restricted environments we must find a balance between efficiency and mem-
ory resources. In this paper we suggested four new methods for the implemen-
tation of the hard part of the final exponentiation in the computing of the Tate
pairings and its derivates, which are faster or competitive, generally applicable
and which require less memory than previous methods in the literature.

We first presented a new development of the exponent p4−p2+1
r which is a vari-

ant of Devegili et al. method. This new development is certainly faster than the
method described in [4]. Moreover, the memory resources of this new method
are significantly less than the memory resources of Devegili et al. method.
Then, we presented a new addition chain which is a variant of Scott et al. ad-
dition chain [5]. By presenting this new addition chain we save an important
number of temporary variables but our algorithm is insignificantly slower.
We also presented a new way of writing the exponent d′ presented by Fuentes et
al. where we use less temporary variables to compute fd

′
. Finally we produced

a new multiple d1 of d such that the computation of fd
′

requires less memory re-
sources but, in this case, our algorithm is also slightly slower. We implemented
our new algorithms in Sage [?] to verify their correctness [?].
As a conclusion, our new methods for computing the hard part of the final ex-
ponentiation are in some cases more efficient and in others cases slightly slower
than previous methods in the literature but they are always less memory inten-
sive. For that our methods are an interesting alternative for pairing implemen-
tation in restricted environments.

Acknowledgements. The authors thank John Boxall for helpful discussions
and comments on this paper.

References

[1] Robert Granger and Michael Scott. Faster squaring in the cyclotomic sub-
group of sixth degree extensions. In Public Key Cryptography - PKC 2010,
13th International Conference on Practice and Theory in Public Key Cryp-
tography, Paris, France, May 26-28, 2010. Proceedings, pages 209–223,
2010.

[2] Michael Scott and Paulo S. L. M. Barreto. Compressed pairings. In Ad-
vances in cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in
Comput. Sci., pages 140–156. Springer, Berlin, 2004.

[3] Martijn Stam and Arjen K. Lenstra. Efficient subgroup exponentiation
in quadratic and sixth degree extensions. In Cryptographic Hardware and
Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 318–332,
2002.

[4] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Implementing
cryptographic pairings over barreto-naehrig curves. In Pairing-Based Cryp-
tography - Pairing 2007, First International Conference, Tokyo, Japan,
July 2-4, 2007, Proceedings, pages 197–207, 2007.

24

[5] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez
Perez, and Ezekiel J. Kachisa. On the final exponentiation for calculating
pairings on ordinary elliptic curves. In Pairing-Based Cryptography - Pair-
ing 2009, Third International Conference, Palo Alto, CA, USA, August
12-14, 2009, Proceedings, pages 78–88, 2009.

[6] Laura Fuentes Castaneda, Edward Knapp, and Francisco Rodrguez Hen-
rquez. Faster hashing to ${\mathbb G} 2$. In Selected Areas in Cryptog-
raphy - 18th International Workshop, 2011, Toronto, ON, Canada, August
11-12, 2011, Revised Selected Papers, pages 412–430, 2011.

[7] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves
of prime order. In Selected Areas in Cryptography, 12th International Work-
shop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Revised Se-
lected Papers, pages 319–331, 2005.

[8] Yasuyuki Nogami, Masataka Akane, Yumi Sakemi, Hidehiro Katou, and
Yoshitaka Morikawa. Integer variable chi-based ate pairing. In Pairing-
Based Cryptography - Pairing 2008, Second International Conference,
Egham, UK, September 1-3, 2008. Proceedings, pages 178–191, 2008.

[9] Robert Granger, Dan Page, and Nigel P. Smart. High security pairing-based
cryptography revisited. In Algorithmic Number Theory, 7th International
Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings,
pages 480–494, 2006.

[10] Lei Hu, Jun-Wu Dong, and Dingyi Pei. Implementation of cryptosystems
based on tate pairing. J. Comput. Sci. Technol., 20(2):264–269, 2005.

[11] M. Joye and J. J. Quisquater. Efficient computation of full lucas sequences.
Electronics Letters, 36(6):537–538, 1996.

[12] Marc Joye and Sung-Ming Yen. The montgomery powering ladder. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, volume 2523 of Lecture Notes in Computer Science, pages 291–
302. Springer, 2003.

[13] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Math. Comp., 48(177):243–264, 1987.

[14] Jorge Olivos. On vectorial addition chains. J. Algorithms, 2(1):13–21, 1981.

[15] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja
Lange, Kim Nguyen, and Frederik Vercauteren, editors. Handbook of el-
liptic and hyperelliptic curve cryptography. Discrete Mathematics and its
Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

[16] Ionica Smeets, Arjen K. Lenstra, Hendrik Lenstra, László Lovász, and Peter
van Emde Boas. The history of the lll-algorithm. In The LLL Algorithm -
Survey and Applications, pages 1–17. 2010.

25

[17] Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jefferson E.
Ricardini. The realm of the pairings. In Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August
14-16, 2013, Revised Selected Papers, pages 3–25, 2013.

[18] Jean-Luc Beuchat, Jorge Enrique González-Dı́az, Shigeo Mitsunari, Eiji
Okamoto, Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-
speed software implementation of the optimal ate pairing over barreto-
naehrig curves. In Pairing-Based Cryptography - Pairing 2010 - 4th Inter-
national Conference, Yamanaka Hot Spring, Japan, December 2010. Pro-
ceedings, pages 21–39, 2010.

[19] W. A. Stein et al. Sage Mathematics Software (Version 5.9). The Sage
Development Team, 2015. http://www.sagemath.org.

[20] S. Duquesne and L. Ghammam. http://sage.lacim.uqam.ca/home/pub/41/.

26

