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Abstract. Homomorphic message authenticators allow the holder of a (public) evaluation key to
perform computations over previously authenticated data, in such a way that the produced tag σ can
be used to certify the authenticity of the computation. More precisely, a user knowing the secret key
sk used to authenticate the original data, can verify that σ authenticates the correct output of the
computation. This primitive has been recently formalized by Gennaro and Wichs, who also showed
how to realize it from fully homomorphic encryption. In this paper, we show new constructions of this
primitive that, while supporting a smaller set of functionalities (i.e., polynomially-bounded arithmetic
circuits as opposite to boolean ones), are much more efficient and easy to implement. Moreover, our
schemes can tolerate any number of (malicious) verification queries. Our first construction relies on
the sole assumption that one way functions exist, allows for arbitrary composition (i.e., outputs of
previously authenticated computations can be used as inputs for new ones) but has the drawback that
the size of the produced tags grows with the degree of the circuit. Our second solution, relying on the
D-Diffie-Hellman Inversion assumption, offers somewhat orthogonal features as it allows for very short
tags (one single group element!) but poses some restrictions on the composition side.

1 Introduction

Cloud Computing allows a user to outsource his data to remote service providers in such a way
that he can later access the data from multiple platforms (e.g., his desktop at work, his laptop,
his smartphone, etc.), and virtually from everywhere. Moreover, using this paradigm, even clients
with very limited storage capacity (e.g., smart phones) can have access “on demand” to very large
amounts of data. Having access to the outsourced data does not necessarily mean only to retrieve
such data. Indeed, a user may wish to perform a computation on (a subset of) the outsourced
data, and this too can be delegated to the service provider. These and other benefits are the key
success of Cloud Computing. The paradigm, however, raises security concerns essentially because
cloud providers cannot always be trusted. One problem is related to preserving the privacy of
the outsourced data. This question has been successfully addressed by the recent work on fully
homomorphic encryption [24]. The second question deals with enforcing the authenticity of the
computations performed on the outsourced data, and is the focus of this work. In a nutshell, this
problem can be described as follows. Assume that a client outsources a collection of data m1, . . . ,mn

to a server, and later asks the server to run a program P over (m1, . . . ,mn). The server computes
m←P(m1, . . . ,mn) and sends m to the client. The problem here is that the client wants to be
sure that m is the value obtained by running P on its own data. A trivial solution would be to
have the server send m1, . . . ,mn to the client, who can then compute/check m = P(m1, . . . ,mn)
by itself. This however vanishes the advantages of the outsourcing and is too costly in terms of
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bandwidth. Therefore, the main goal here is to find solutions in which the server can authenticate
the output of the computation by sending some value whose size is much shorter than m1, . . . ,mn.
Such property is also motivated by the fact that, in spite of the continuous progress in increasing
the computational power of small devices, bandwidth (especially in mobile data connections) seems
to remain the most serious and expensive bottleneck.

The research community has recently put a notable effort in developing new cryptographic tools
that can help in solving this and related problems. It is the case, for instance, for works on verifiable
computation [28,29,26,21,16,3] and memory delegation [17].

Another line of research has explored the idea of enabling computation on authenticated data
[2] by means of homomorphic authentication primitives.

In the public key setting Boneh and Freeman introduced the notion of (fully) homomorphic
signatures [9]. Roughly speaking, a homomorphic signature allows a user to generate signatures
σ1, . . . , σn on messages m1, . . . ,mn so that later anyone (without knowledge of the signing key) can
compute a signature σ that is valid for the value m = f(m1, . . . ,mn). Boneh and Freeman also
showed a realization of homomorphic signatures for bounded (constant) degree polynomials, from
ideal lattices.

Very recently, Gennaro and Wichs proposed, formally defined and constructed the secret-key
analogue of homomorphic signatures, that is homomorphic message authenticators (homomorphic
MACs, for short) [23]. Their construction makes use of fully homomorphic encryption and allows
to evaluate every circuit.

In this work, we continue the study of homomorphic MACs and propose new constructions
which, while less general than that given in [23], are much more efficient.

Homomorphic Message Authenticators. Informally, a homomorphic MAC scheme enables
a user to use his secret key for generating a tag σ which authenticates a message m so that
later, given a set of tags σ1, . . . , σn authenticating messages m1, . . . ,mn respectively, anyone can
homomorphically execute a program P over (σ1, . . . , σn) to generate a short tag σ that authenticates
m as the output of P(m1, . . . ,mn).

Given such a primitive, it is not hard to imagine how it can be employed to solve the problem of
verifying computations on outsourced data. However, the above description needs some refinements,
in particular to explain what means to authenticate a message as the output of a program. To do
this Gennaro and Wichs introduce the notion of labeled data and programs. The label τ of a data
m is some binary string τ chosen by the user to authenticate m, i.e., σ←Auth(sk, τ,m). One can
think of labels as some indexing of the data. For example, assume that a company outsources a
database with informations on its customers, in which each column contains a different attribute
(e.g., age, expended amount, etc.). Then, to authenticate the “age” column of the database the user
can define a label “(age, i)” for the age value in record i. On the other hand, a labeled program P is
defined by a circuit f and a set of labels τ1, . . . , τn, one for each input wire of f . This can be seen as
a way to specify on which inputs the circuit should be evaluated upon, without knowing the input
values themselves. So, given a labeled program P = (f, τ1, . . . , τn) and a set of tags σ1, . . . , σn that
authenticate messages mi under label τi, anyone can run the homomorphic evaluation algorithm
σ←Eval(P, σ1, . . . , σn) whose output σ will authenticate m = P(m1, . . . ,mn). Precisely, the secret-
key verification algorithm takes as input a triple (m,P, σ) and verifies that m is the output of
the program P run on some previously authenticated and labeled messages, without knowing such
messages themselves.
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Informally, homomorphic MACs are secure if any adversary who can adaptively query tags for
messages of its choice cannot produce a valid tag σ that authenticates m as the output of P unless
σ can be honestly computed by applying Eval on the queried tags.

Homomorphic MACs are also required to be succinct. Informally, succinctness requires that
the output of P run over (previously) authenticated data can be certified with significantly less
communication than that of sending the original inputs.

Another property one might want from homomorphic MACs is composability, which allows to
combine tags authenticating previous computations to create a tag that authenticates a composition
of such computations. More precisely, given tags σ1, . . . , σt that authenticate m1, . . . ,mt as the
outputs of P1, . . . ,Pt respectively, composability allows to further compute σ←Eval(P, σ1, . . . , σt)
which authenticates m = P(m1, . . . ,mt) as the output of P∗, the composed program obtained by
running P on the outputs of P1, . . . ,Pt.

1.1 Our Contribution

In this paper we propose the first practically efficient constructions of homomorphic MACs. The
most attractive feature of our schemes is that they are efficient, simple to implement and rely on
well studied assumptions. Moreover, they are secure against PPT adversaries that can make an
unbounded number of verification queries, as opposite to the construction in [23] that supports
only an a-priori bounded number of verification queries (see next section for more details about
this). On the negative side our solution works only for functionalities that can be expressed as
arithmetic circuits with certain additional restrictions that we describe below.

Our first construction is surprisingly simple and relies only on the existence of pseudorandom
functions. While it offers arbitrary composition, it does not achieve full succinctness. More precisely,
the size of the authentication tags grows with the degree d of the circuit3, and thus we are able to
guarantee succinct authenticators only when d is smaller than the input size n.

Our second construction enjoys succinct, constant-size tags (just one group element!) but only
supports a limited form of composition . More precisely, for a fixed bound D (polynomial in the
security parameter) the scheme allows to evaluate any arithmetic circuit of degree d ≤ D. In general,
the evaluation has to be done in a “single shot”, that is the authentication tags obtained from the
Eval algorithm cannot be used again to be composed with other tags. However, we interestingly
show that the scheme achieves what we call local composition. The idea is that one can keep locally
a non-succinct version of the tag that allows for arbitrary composition. Next, when it comes to send
an authentication tag to the verifier, one can securely compress such large tag in a very compact
one of constant-size. We prove the security of our second construction under the D-Diffie Hellman
Inversion assumption [11,30] (where D is the bound on the maximal circuit’s degree supported by
the scheme).

Succinct Tags and Composition. Even though our solutions do not achieve succinctness and
composition at the same time, we argue that these limitations might not be too relevant in many real
life scenarios. First, we notice that several interesting functions and statistics (e.g., the standard
deviation function) can be represented by constant-degree polynomials. In such a case, our first
construction perfectly fits the bill as it is efficient, simple to implement and produces constant-size
tags (and, of course, it only requires the existence of a PRF to be proved secure).

3 Informally, the degree of an arithmetic circuit is related to the degree of the polynomial computed by the circuit
(see next section for more details).
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For the case of polynomials of large degree d (i.e., d polynomial in the security parameter), our
scheme fits well in those applications where composition is not needed. Think for example of the ap-
plication described at the beginning of this section. There, if the server just runs m←P(m1, . . . ,mn)
on the client’s data, using our second construction it can produce a succinct tag that authenticates
m as P’s output, and this tag is only one group element.

Finally, in applications where composition is needed but does not involve different parties, the
notion of local composition achieved by our second scheme still allows to save in bandwidth and to
(locally) compose tags of partial computations.

Overview of Our Techniques. The main idea behind our construction is a “re-interpretation”
of some classical techniques for information-theoretic MACs. The authentication tag of a message
m ∈ Zp with label τ is a degree-1 polynomial y(z) ∈ Zp[z] that evaluates to m on the point 0, and
to rτ on a random point x (i.e., y(0) = m and y(x) = rτ ). Here rτ = FK(τ) is a pseudorandom
value, unique per each label, defined by the PRF, while x is the secret key. If we do not care
about the homomorphic property and we assume that each rτ is truly random, then this is a secure
information-theoretic MAC. Now, the basic observation that allows to show the homomorphic
property is the following. Let f be an arithmetic circuit and assume to evaluate the circuit over the
tags (i.e., over these polynomials y(z)) as follows: for every additive gate we compute the addition
of the two input polynomials, and for every multiplicative gate we compute the multiplication of
them (i.e., the convolution of their coefficients). Now, we observe that these operations are naturally
homomorphic with respect to the evaluation of the polynomial in every point. In particular, if we
have two tags y(1) and y(2) (i.e., we are given only the coefficients of these polynomials) such that
y(1)(0) = m1 and y(2)(0) = m2, then for y = y(1) + y(2) (resp. y = y(1) ∗ y(2)) we clearly obtain
y(0) = m1 +m2 (resp. y(0) = m1 ·m2). The same holds for its evaluation at the random point x,
i.e., y(x) = rτ1 + rτ2 (resp. y(x) = rτ1 · rτ2). By extending this argument to the evaluation of the
entire circuit f , this allows to verify a tag y for a labeled program P = (f, τ1, . . . , τn) and a message
m, by simply checking that m = y(0) and f(rτ1 , . . . , rτn) = y(x), where rτi = FK(τi).

A drawback of this construction is that the tag’s size grows linearly with the degree of the
evaluated circuit f . The reason is that the above homomorphic evaluation increases the degree of
the “tag polynomial” y at every multiplication gate. This is why this MAC fails in achieving the
succinctness property when the degree d becomes greater than the input size n of the circuit.

Our second construction overcomes this drawback as follows. First, the evaluation algorithm
computes a tag y = (y0, . . . , yd) as before, and then it “accumulates” these coefficients in a single
group element Λ =

∏d
i=1(g

xi)yi . Verification will check that gf(rτ1 ,...,rτn ) = gm ·Λ. If Λ is computed
correctly, then Λ = gy(x)−y(0), and thus one can easily see why correctness holds. The need to resort
to the (D− 1)-Diffie Hellman Inversion assumption4, comes from the fact that, in order to perform

the evaluation procedure correctly, the values gx, gx
2
, . . . , gx

D
need to be published as part of the

evaluation key ek. Once a tag of the Λ form is created, it can be composed with other tags of the
same form only for additions but not for multiplications. To satisfy partial composition, the idea
is that one can keep locally the large version of the tag consisting of the coefficients y0, . . . , yd, and
always send to the verifier its compact version Λ =

∏d
i=1(g

xi)yi . In Appendix A we also show an
extension of this scheme that, by using bilinear pairings, allows to further compute an additional
level of multiplications and unbounded additions on tags of the Λ form.

4 Very briefly, this assumption states that it is computationally infeasible to compute g1/x, given g, gx, gx
2

, . . . , gx
D−1
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1.2 Related Work

Homomorphic Message Authenticators and Signatures. Recently, many papers considered
the problem of realizing homomorphic (mostly linear) authenticators either in the symmetric setting
(MAC) or in the asymmetric one (signatures). This line of research has been initiated by the work of
Johnson et al. [27] and became very popular in recent years because of the important application to
linear network coding. Efficient solutions for this latter application have been proposed both in the
random oracle [8,22,10,13] and in the standard model [1,4,14,15,20]. Linearly-homomorphic message
authenticators have been considered also for proofs of retrievability for outsourced storage [33]. Only
two works, however, consider the problem of realizing solutions for more complex functionalities
(i.e., beyond linear).

Boneh and Freeman defined the notion of (fully) homomorphic signatures and showed a realiza-
tion for bounded (constant) degree polynomials, from ideal lattices [9]. With respect to our work
this solution has the obvious advantage of allowing for public verifiability. On the negative side it
is not truly practical and the bound on the degree of the supported polynomials is more stringent
than in our case (as they can support only polynomials of constant degree).

Closer to our setting is the recent work of Gennaro and Wichs [23] where fully homomorphic
MACs are introduced, formally defined and constructed. The solution given there supports a wider
class of functionalities with respect to ours, and it allows to achieve succinct tags and composability
at the same time. Their tags have size µ(λ) = poly(λ) where λ is the security parameter, and thus
they are asymptotically succinct as long as the circuit’s input size n is greater than µ(λ). Despite
its nice properties, the proposed construction seems unfortunately far from being truly practical
as it relies on fully homomorphic encryption. Moreover, it is proven secure only for a bounded and
a-priori fixed number of verification queries5, meaning with this that the scheme becomes insecure
if the verifier leaks information on whether it accepts/rejects tags.

Succinct Non-interactive Arguments of Knowledge. The problem of realizing homomor-
phic signatures can be solved in theory using Succinct Non-interactive Arguments of Knowledge
(SNARKs) [6]. In a nutshell, given any NP statement a SNARK allows to construct a succinct
argument that can be used to prove knowledge of the corresponding witness. The nice feature of
SNARKs is that the size of the argument is independent of the size of both the statement and the
witness. The bad thing about SNARKs is that they are not very efficient (or at least not nearly
as practical as we require) and require either the random oracle model [29] or non standard, non-
falsifiable assumptions [25]. Moreover, SNARK-based solutions seem to allow for only very limited
composability [35,7].

Other Related Work. The notion of homomorphic authenticators is also (somewhat) related
to the notion of verifiable computation [28,29,26,21,16,3,5,31,19]. There, one wants to delegate a
computationally heavy task to a remote server while keeping the ability to verify the result in a very
efficient way. While the two primitives might seem quite different at first, one can reinterpret some of
the results on verifiable computation in our setting. The resulting solutions however present several
limitations that make them of limited practical interest compared to homomorphic authenticators.
We refer the reader to [23] for a nice discussion about this.

Homomorphic authenticators are also related to memory delegation [17]. This primitive allows
a client to outsource large amounts of data to a server so that he can later verify computations

5 More precisely, their basic construction cannot support verification queries at all. This can be extended to allow
for some fixed a-priori number of queries q at the cost of increasing by O(q) the size of the tag.
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on the data. The advantage of this approach over ours is that it offers an efficient verification
procedure, and it supports a dynamic memory in which the client can update the outsourced data.
However, current (non-interactive) realizations of memory delegation, in the standard model, are
rather inefficient and require the user to keep a state. Moreover, in known constructions, efficient
verification comes at the price of an offline phase where the runtime of both the delegator and the
server depends polynomially on the size of the memory.

Organization. The paper is organized as follows. In Section 2 we provide a background and
relevant definitions of arithmetic circuits and homomorphic authenticators. Section 3 describes our
first construction from PRFs while our second compact construction is given in Section 4. Finally,
we defer to Appendix A an extension of the second construction that allows to further compute one
level of multiplication and unbounded additions on tags previously obtained from the homomorphic
evaluation.

2 Background and Definitions

Arithmetic Circuits. Here we provide a very brief overview of arithmetic circuits. The interested
reader is referred to [34] for a more detailed treatment of the subject.

An arithmetic circuit over a field F and a set of variables X = {τ1 . . . τn}, is a directed acyclic
graph with the following properties. Each node in the graph is called gate. Gates with in-degree 0
are called input gates (or input nodes) while gates with out-degree 0 are called output gates. Each
input gate is labeled by either a variable or a constant. Variable input nodes are labeled with binary
strings τ1, . . . , τn, and can take arbitrary values in F. A constant input node instead is labeled with
some constant c and it can take only some fixed value c ∈ F.

Gates with in-degree and out-degree greater than 0 are called internal gates. Each internal gate
is labeled with an arithmetic operation symbol. Gates labeled with × are called product gates,
while gates labeled with + are called sum gates. In this paper, we consider circuits with a single
output node and where the in-degree of each internal gate is 2. The size of the circuit is the number
of its gates. The depth of the circuit is the length of the longest path from input to output.

Arithmetic circuits evaluate polynomials in the following way. Input gates compute the polyno-
mial defined by their labels. Sum gates compute the polynomial obtained by the sum of the (two)
polynomials on their incoming wires. Product gates compute the product of the two polynomials
on their incoming wires. The output of the circuit is the value contained on the outgoing wire of
the output gate. The degree of a gate is defined as the total degree of the polynomial computed by
that gate. The degree of a circuit is defined as the maximal degree of the gates in the circuit.

We stress that arithmetic circuits should be seen as computing specific polynomials in F[X]
rather than functions from F|X| to F. In other words, when studying arithmetic circuits one is in-
terested in the formal computation of polynomials rather than the functions that these polynomials
define6.

In this paper we restrict our interest to families of polynomials {fn} over F which have polyno-
mially bounded degree, meaning with this that both the number of variables and the degree of fn
are bounded by some polynomial p(n). The class VP (also known as AlgP/poly) contains all such
polynomials. More precisely it contains all polynomially bounded degree families of polynomials
that are computable by arithmetic circuits of polynomial size and degree.

6 While, in general, every polynomial defines a unique function the converse is not true as a function may be expressed
as a polynomial in several ways.
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2.1 Homomorphic Message Authenticators

Labeled Programs. First, we recall the notion of labeled programs introduced by Gennaro and
Wichs in [23]. A labeled program P consists of a tuple (f, τ1, . . . , τn) where f : Fn → F is a circuit,
and the binary strings τ1, . . . , τn ∈ {0, 1}∗ are the labels of the input nodes of f . Given some
labeled programs P1, . . . ,Pt and a function g : Ft → F it is possible to define the composed program
P∗ = g(P1, . . . ,Pt) which consists in evaluating a circuit g on the outputs of P1, . . . ,Pt respectively.
The labeled inputs of P∗ are all distinct labeled inputs of P1, . . . ,Pt, i.e., all inputs with the same
label are put together in a single input of the new program. We denote with Iτ = (gid, τ) the identity
program with label τ where gid is the canonical identity function and τ ∈ {0, 1}∗ is some input label.
Finally, we notice that any program P = (f, τ1, . . . , τn) can be expressed as the composition of n
identity programs P = f(Iτ1 , . . . , Iτn).

While Gennaro and Wichs [23] defined labeled programs for Boolean circuits (i.e., f : {0, 1}n →
{0, 1}), here we consider its extension to the case of arithmetic circuits f : Fn → F where F is some
finite field, e.g., Zp for a prime p.

Homomorphic Authenticator Scheme. A homomorphic message authenticator scheme HomMAC
is a 4-tuple of algorithms working as follows:

KeyGen(1λ): on input the security parameter λ, the key generation algorithm outputs a secret key
sk and a public evaluation key ek.

Auth(sk, τ,m): given the secret key sk, an input-label τ and a message m ∈M, it outputs a tag σ.
Ver(sk,m,P, σ): given the secret key sk, a message m ∈ M, a program P = (f, τ1, . . . , τn) and a

tag σ, the verification algorithm outputs 0 (reject) or 1 (accept).
Eval(ek, f,σ): on input the evaluation key ek, a circuit f : Mn → M and a vector of tags

σ = (σ1, . . . , σn), the evaluation algorithm outputs a new tag σ.

Authentication Correctness. Intuitively, a homomorphic MAC satisfies this property if any
tag σ generated by the algorithm Auth(sk, τ,m) authenticates with respect to the identity program

Iτ . Formally, we require that for any message m ∈ M, all keys (sk, ek)
$← KeyGen(1λ), any label

τ ∈ {0, 1}∗, and any tag σ
$← Auth(sk, τ,m), it holds: Pr[Ver(sk,m, Iτ , σ) = 1] = 1.

Evaluation Correctness. Informally, this property states that if the evaluation algorithm is
given a vector of tags σ = (σ1, . . . , σn) such that each σi authenticates some message mi as the
output of a labeled program Pi, then the tag σ produced by Eval must authenticate f(m1, . . . ,mn)
as the output of the composed program f(P1, . . . ,Pn).

More formally, let us fix a pair of keys (sk, ek)
$← KeyGen(1λ), a function g : Mt → M

and any set of message/program/tag triples {(mi,Pi, σi)}ti=1 such that Ver(sk,mi,Pi, σi) = 1.
If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ = Eval(ek, g, (σ1, . . . , σt)), then it must hold:
Ver(sk,m∗,P∗, σ∗) = 1.

Succinctness. The size of a tag is bounded by some fixed polynomial in the security parameter,
that is independent of the number of inputs taken by the evaluated circuit.

Security. Let HomMAC be a homomorphic MAC scheme as defined above. Consider the following
experiment HomUF−CMAA,HomMAC(λ) between a challenger and an adversary A against HomMAC:

Setup The challenger generates (sk, ek)
$← KeyGen(1λ) and gives ek to A. It also initializes a list

T = ∅.
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Authentication queries The adversary can adaptively ask for tags on label-message pairs of its
choice. Given a query (τ,m), if there is some (τ, ·) ∈ T (i.e., the label was already queried),

then the challenger ignores the query. Otherwise, it computes σ
$← Auth(sk, τ,m), returns σ to

A and updates the list T = T ∪ (τ,m). If (τ,m) ∈ T (i.e., the query was previously made), then
the challenger replies with the same tag generated before.

Verification queries The adversary is also given access to a verification oracle. Namely, A can
submit a query (m,P, σ) and the challenger replies with the output of Ver(sk,m,P, σ).

Forgery At some point the adversary is supposed to output a forgery (m∗,P∗ = (f∗, τ∗1 , . . . , τ
∗
n),

σ∗). Notice that such tuple can be returned by A also as a verification query (m∗,P∗, σ∗).

Before describing the outcome of this experiment, we define the notion of well defined program
with respect to a list T . Informally, there are two ways for a program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) to be

well defined. Either all the τ∗i s are in T or, if there are labels τ∗i not in T , then the inputs associated
with such labels are somewhat “ignored” by f∗ when computing the output. In other words input
corresponding to labels not in T do not affect the behavior of f∗ in any way.

More formally, we say that a labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well defined on T if either

one of the following two cases occurs:

1. there exists i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T (i.e., A never asked an authentication query with
label τ∗i ), and f∗({mj}(τj ,mj)∈T ∪ {m̃j}(τj ,·)/∈T ) outputs the same value for all possible choices
of m̃j ∈M;

2. T contains tuples (τ∗1 ,m1), . . . , (τ
∗
n,mn), for some messages m1, . . . ,mn.

The experiment HomUF−CMA outputs 1 if and only if Ver(sk,m∗,P∗, σ∗) = 1 and one of the
following conditions holds:

– Type 1 Forgery: P∗ is not well-defined on T .

– Type 2 Forgery: P∗ is well defined on T and m∗ 6= f∗({mj}(τj ,mj)∈T ), i.e., m∗ is not the
correct output of the labeled program P∗ when executed on previously authenticated messages
(m1, . . . ,mn).

We say that a homomorphic MAC scheme HomMAC is secure if for every PPT adversary A we
have that Pr[HomUF−CMAA,HomMAC(λ) = 1] is negligible.

Remark 1 (Comments on our definition). First, we observe that our definition explicitly disallow
the possibility of re-using a label to authenticate more than one value. Essentially, this is a way to
uniquely keep track of the authenticated inputs. We notice that such restriction is implicitly present
in the Gennaro-Wichs construction as well as in all previous works on homomorphic signatures.

Second, the notion of well defined programs aims at capturing, in a formal way, which tuples
generated by the adversary should be considered as forgeries. The catch here is that, since we are
dealing with a homomorphic primitive, we should be able to differentiate MACs produced by Eval
from MACs generated in some other, possibly malicious, way. Notice, however, that even maliciously
generated MACs should not necessarily be considered as forgeries. This is because, in our setting,
the adversary can trivially modify a circuit C she is allowed to evaluate by adding dummy gates
and inputs that are simply ignored in the evaluation of the modified circuit (i.e., the new circuit
is semantically equivalent to C). This last case does not constitute an infringement of our security
requirements. Our notion of well defined program P captures exactly this: either P is run on legal
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(i.e. in T ) inputs only, or, if this is not the case, those inputs not in T do not affect the computation
in any way.

Finally, we observe that for arbitrary computations checking whether a program is well defined
may not be efficiently computable. In particular, the difficult task is to check the first condition, i.e.,
whether a program always outputs the same value for all possible choices of the inputs that are not
in T . However, for the case of arithmetic circuits in (exponentially) large fields and of polynomial
degree this check can be efficiently performed by using probabilistic polynomial identity testing
[18,36,32]. Below we state a simple proposition that shows how to do the testing for arithmetic
circuits of degree d, over a finite field of order p such that d/p < 1/2.7

Proposition 1. Let λ, n ∈ N and let F be the class of arithmetic circuits f : Fn → F over a
finite field F of order p and such that the degree of f is at most d, with d

p < 1
2 . Then, there

exists a probabilistic algorithm that for any given f ∈ F , decides if there exists y ∈ F such that
f(u) = y,∀u ∈ Fn (i.e., if f is constant) and is correct with probability at least 1− 2−λ.

Proof. The algorithm first samples λ+1 tuples {ui}λi=0 uniformly at random in Fn. Next, if f(u0) =
· · · = f(uλ) the algorithm says “constant”, otherwise it says “non-constant”. If f is really constant,
then it is easy to see that this algorithm is correct with probability 1. In the case when f is not
constant, then the probability that the algorithm is wrong is essentially Pr[f(u0) = · · · = f(uλ)]
over the random choices of all the ui’s. Since the samples are independent, this probability can be
upper bounded by (Pr

ui
$←Fn

[f(ui) = y0|y0 = f(u0)])
λ ≤ (dp)λ ≤ 2−λ, where the upper bound by

d/p follows from the Schwartz-Zippel Lemma [18,36,32]. ut

Remark 2 (Relations with previous definitions). Our definition is very similar to that proposed by
Gennaro and Wichs in [23] except for two modifications. First, we explicitly allow the adversary
to query the verification oracle. Second, we adopt a definition of forgery slightly weaker than that
in [23]. More precisely, Gennaro and Wichs define Type 1 forgeries as ones where at least one new
label is present. Type 2 forgeries, on the other hand, contain only labels that have been already
queried, but m∗ is not the correct output of the program when executed on the previously queried
inputs.

Notice that our notion becomes equivalent to that given in [23] by simply changing the definition
of “well defined program” so that P∗ = (f∗, τ∗1 , . . . , τ

∗
n) is said well defined on T if (τi,mi) ∈ T

∀i = 1, . . . n. The difference between the two definitions is that, as we explained above, we do not
consider forgeries all those tuples where ”fresh” labels (i.e. labels not in T ) do not contribute to
the output of the program.

Even though our security definition is weaker than the one in [23], we stress that it is perfectly
meaningful for the notion of homomorphic MAC. Indeed, we are still excluding from forgeries all
those MACs that can be trivially computed by the adversary from what it queried during the game.

On a technical level, our definition of forgery is inspired by the security definition recently
proposed by Freeman for homomorphic signatures [20], except that in our case we do not consider
the notion of data set.

3 Our Homomorphic MAC from OWFs

In this section we propose our first construction of homomorphic MACs whose security relies only
on a pseudo-random function (and thus on one-way functions). The scheme is simple and efficient

7 The same argument can be actually extended to d/p < 1/c for some constant c.
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and allows to homomorphically evaluate arithmetic circuits f : Znp → Zp for a prime p of roughly
λ bits, where λ is the security parameter.

Our Scheme. In our construction we restrict to circuits whose additive gates do not get inputs
labeled by constants. This can be done without loss of generality as, when needed, one can use
an equivalent circuit in which there is a special variable/label for the value 1, and can publish the
MAC of 1.

The description of our scheme follows.

KeyGen(1λ). Let p be a prime of roughly λ bits. Choose a seed K of a pseudorandom function

FK : {0, 1}∗ → Zp and a random value x
$← Zp. Output sk = (K,x), ek = p and let the message

space M be Zp.
Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ, compute rτ = FK(τ), set

y0 = m, y1 = (rτ −m)/x mod p and output σ = (y0, y1). Basically, y0, y1 are the coefficients
of a degree-1 polynomial y(z) with the special property that it evaluates to m on the point 0
(y(0) = m), and it evaluates to rτ on a hidden random point x (y(x) = rτ ).
In our construction we will interpret tags σ as polynomials y ∈ Zp[z] of degree d ≥ 1 in some
(unknown) variable z, i.e., y(z) =

∑
i yiz

i.
Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evaluation key ek = p, an

arithmetic circuit f : Znp → Zp, and a vector σ of tags (σ1, . . . , σn).
Intuitively, Eval consists in evaluating the circuit f on the tags σ1, . . . , σn instead of evaluating
it on messages. However, since the values σi’s are not messages in Zp, but rather are polynomials
y(i) ∈ Zp[z], we need to specify how this evaluation is carried through.
Eval proceeds gate-by-gate as follows. At each gate g, given two tags σ1, σ2 (or a tag σ1 and a
constant c ∈ Zp), it runs the algorithm σ←GateEval(ek, g, σ1, σ2) described below that returns
a new tag σ, which is in turn passed on as input to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs the tag vector σ
obtained by running GateEval on such last gate.
To complete the description of Eval we describe the subroutine GateEval.

– GateEval(ek, g, σ1, σ2). Let σi = y(i) = (y
(i)
0 , . . . , y

(i)
di

) for i = 1, 2 and di ≥ 1 (see below for
the special case when one of the two inputs is a constant c ∈ Zp).
If g = +, then:
• let d = max(d1, d2). Here we assume without loss of generality that d1 ≥ d2 (i.e., d = d1).
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z) + y(2)(z). This

can be efficiently done by adding the two vectors of coefficients, y = y(1) + y(2) (y(2) is
eventually padded with zeroes in positions d1...d2).

If g = ×, then:
• let d = d1 + d2.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z) ∗ y(2)(z) using the

convolution operator ∗, i.e., ∀k = 0, . . . , d, define yk =
∑k

i=0 y
(1)
i · y

(2)
k−i.

If g = × and one of the two inputs, say σ2, is a constant c ∈ Zp, then:
• let d = d1.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = c · y(1)(z).

Return σ = (y0, . . . , yd).
As one can notice, the size of a tag grows only after the evaluation of a multiplication gate (where
both inputs are not constants). It is not hard to see that after the homomorphic evaluation of
a circuit f , it holds |σ| = d+ 1, where d is the degree of f .
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Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ = (y0, . . . , yd) be a
tag for some d ≥ 1. Verification proceeds as follows:
– If y0 6= m, then output 0 (reject). Otherwise continue as follows.
– For every input wire of f with label τ compute rτ = FK(τ).
– Next, evaluate the circuit on rτ1 , . . . , rτn , i.e., compute ρ←f(rτ1 , . . . , rτn), and use x to check

whether the following equation holds:

ρ =
d∑

k=0

ykx
k (1)

If this is true, then output 1. Otherwise output 0.
Observe that the above applies also to identity programs Iτ , in which case the algorithm just
checks that rτ = y0 + y1 · x and y0 = m.

Efficiency. Our scheme is extremely efficient in generating a tag using the Auth algorithm: just
one PRF evaluation (e.g., one AES evaluation, in practice).

If we analyze the Eval algorithm, its complexity is dominated by the cost of evaluating the
circuit f with an additional overhead due to the modified gate evaluation and to that the tag’s size
grows with the degree of the circuit. If the circuit has degree d, in the worst case, this overhead is
going to be O(d) for addition gates, and O(d log d) for multiplication gates8.

The cost of verification is basically the cost of computing ρ = f(rτ1 , . . . , rτn), that is O(|f |),
plus the cost of computing

∑d
i=0 yix

i, that is O(d).

3.1 Correctness

In this section we prove that the scheme described above satisfies authentication and evaluation
correctness.

Theorem 1. The homomorphic MAC scheme described above satisfies authentication correctness.

Proof. Let sk = (K,x) and ek = p be honestly generated keys, and let σ
$← Auth(sk, τ,m). By

construction of Auth, the tag σ = (y0, y1) is a degree-1 polynomial y such that y(0) = m and
y(x) = y0 + y1x = rτ . Therefore it is trivial to verify that the checks made by the verification
algorithm are satisfied and it outputs 1. ut

Theorem 2. The homomorphic MAC scheme described above satisfies evaluation correctness.

Proof. Let sk = (K,x) and ek = p be honestly generated keys, and let {mi,Pi, σi}ni=1 be n triples
of message/program/tag such that Ver(sk,mi,Pi, σi) = 1, ∀i = 1, . . . , n. Then we want to show
that for the message m∗ = f∗(m1, . . . ,mn), the composed program P∗ = f∗(P1, . . . ,Pn) and the
tag σ∗ = Eval(ek, f∗, (σ1, . . . , σn)), it holds Ver(sk,m∗,P∗, σ∗) = 1.

Let us first recall that for any program P = (f, τ1, . . . , τn), any message m ∈ M and any tag
σ = (y0, . . . , yd) the algorithm Ver(sk,m,P, σ) outputs 1 only if the following two equations are
satisfied:

m = y(0)

ρ = y(x) =
d∑

k=0

ykx
k

8 This bound follows from that one can use optimized algorithms based on FFT to compute the convolution.
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where ρ is the value obtained by computing f on rτ1 , . . . , rτn .
Let ρ1, . . . , ρn be the values computed in the run of Ver(sk,mi,Pi, σi) = 1, for all i = 1 to

n. Since the verification algorithm outputs 1, it must hold mi = y(i)(0) and ρi = y(i)(x) (where
y(i) = σi). Our goal is to show that the above conditions imply m∗ = y∗(0) and ρ∗ = y∗(x) where
y∗ is the polynomial obtained by evaluating f∗ over the polynomials y(1), . . . , y(n) as described in
the algorithm Eval, m∗ = f∗(m1, . . . ,mn) and ρ∗ = f∗(ρ1, . . . , ρn).

To do this we simply show that this property holds for every gate g, and then we observe that
it easily extends by induction to the computation of f∗. Namely, if the above conditions hold before
and after the evaluation of every single gate, then they must hold even for the values generated at
the end of the computation of f∗, i.e., the output of the last gate of f∗.

The core of the proof is the following Lemma, which basically shows that our homomorphic
evaluation of a gate g using two polynomials y(1), y(2) preserves their nice structure.

Lemma 1. Let b1, b2 ∈ Zp, y(1), y(2) ∈ Zp[z] and z ∈ Zp be such that

bi = y(i)(z), ∀i = 1, 2 (2)

and let b = g(b1, b2), y = GateEval(ek, g, y(1), y(2)) for some gate g that is either × or +. Then, it
holds

b = y(z) (3)

Proof. If g is a multiplicative gate, then b = b1 ·b2 and y = y(1)∗y(2). By definition of the ∗ operator
we then have y(z) = y(1)(z) · y(2)(z) = b1 · b2.

If g is an additive gate, then b = b1 + b2, and y = y(1) + y(2). Hence, it is easy to see that
y(z) = y(1)(z) + y(2)(z) = b1 + b2. ut

Our Lemma does not consider the case of multiplicative gates in which one of the two inputs is a
constant c ∈ Zp. However, it is trivial to observe that it extends to this case as well.

To complete the proof of the Theorem we have to observe that by definition of composed program
the value ρ∗ = f∗(ρ1, . . . , ρn) is the same ρ∗ = f(rτ∗1 , . . . , rτ∗n) computed in Ver(sk,m∗,P∗, σ∗).

3.2 Proof of Security

The security of our scheme is established by the following theorem.

Theorem 3. If F is a PRF, then the homomorphic MAC scheme described in Section 3 is secure.

Towards proving the theorem we define the following hybrid games. We denote with Gi the event
that the experiment Game i, run with the adversary A, outputs 1.

Game 0: this is the same as the real HomUF−CMA experiment, except that in every verification
query (m,P, σ), in order to check whether P is well-defined or not, the challenger uses the
probabilistic test of Proposition 1.
Thus we have that for all adversaries A making at most Q verification queries we have

|Pr[HomUF−CMAA,HomMAC(λ)]− Pr[G0(A)]| ≤ Q · 2−λ (4)

Game 1: this is the same as Game 0, except that the PRF is replaced with a truly random function
R : {0, 1}∗ → Zp: basically, each value rτ is generated uniformly at random in Zp.
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Game 2: This is the same as Game 1 except for the following change in answering verification
queries. First, for every verification query (m,P, σ = (y0, . . . , yd)) such that y0 6= m output 0
(reject). Next, for all verification queries (m,P, σ) such that P is not well defined on T , the
challenger proceeds as follows.
First, for every τi such that (τi, ·) /∈ T it takes rτi←R(τi). Next, it computes ρ using the internal
procedure of Ver, and finally it computes Z = ρ −

∑d
k=0 ykx

k. If Z = 0 mod p, then it returns
1, otherwise it outputs 0.

Game 3: this is the same as Game 2 except for an additional change in answering verification
queries. For every verification query (m,P, σ) such that P = (f, τ1, . . . , τn) is well defined on
T , the challenger proceeds as follows.
For every index i ∈ {1, . . . , n} such that (τi, ·) /∈ T (i.e., P contains a new label) it chooses
a dummy tag σi (e.g., for a random message). Let σ1, . . . , σn be the tags associated to labels
τ1, . . . , τn respectively. The challenger homomorphically computes σ̂ = (ŷ0, . . . , ŷd)←Eval(ek, f,
(σ1, . . . , σn)), and proceeds as follows:
1. If (y0, . . . , yd) = (ŷ0, . . . , ŷd), then output 1.
2. If (y0, . . . , yd) 6= (ŷ0, . . . , ŷd), compute Z =

∑d
k=0(yk − ŷk)xk. If Z = 0 mod p, then output

1. Otherwise, output 0.
Game 4: This is the same as Game 3 except for the following additional code run by the chal-

lenger. Let bad be a flag value which is initially set to false. Once the challenger receives a
verification query (m,P, σ) such that
1. (m,P, σ) requires the computation of Z (see the games above),
2. Z = 0 (mod p),
then it answers with 0 (reject), instead of 1 (accept), and sets bad←true. Notice that the flag
bad is updated to true when the first bad (i.e. meeting the two requirements above) verification
query is received.
Let Bad4 be the event that bad←true is set in Game 4. Notice that any adversary has zero
probability of winning in Game 4, as all verification queries that may be Type 1 or Type 2
forgeries are answered with 0. Therefore, it clearly holds Pr[G4] = 0.

To prove Theorem 3 we first prove the following claims.

Claim 1 |Pr[G0]− Pr[G1]| ≤ AdvPRFB,F (λ).

The proof can be obtained via a straightforward reduction to the security of the PRF.

Claim 2 Pr[G1] ≡ Pr[G2].

This is only a syntactic change, and it is easy to see that the two games are basically the same.

Claim 3 Pr[G2] ≡ Pr[G3].

Proof. The only difference between Game 2 and Game 3 is in the way the challenger answers
verification queries (m,P, σ) for a program P that is well defined on T . We claim that the change
introduced in Game 3 is only syntactic, and thus the adversary has exactly the same view in both
games.

Let (m,P, σ) be a verification query with σ = (y0, . . . , yd) such that P = (f, τ1, . . . , τn) is well
defined on T , and let us first consider the case in which ∀i = 1, . . . , n it holds that (τi,mi) ∈ T and
a tag σi had already been computed. Recall that the challenger computes σ̂ = (ŷ0, . . . , ŷd) using the
Eval algorithm. If we consider the answer provided by the challenger in each case, then we have:
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1. (y0, . . . , yd) = (ŷ0, . . . , ŷd): the answer is correct by correctness of the scheme.
2. (y0, . . . , yd) 6= (ŷ0, . . . , ŷd). Let ρ be the value computed by the verification algorithm to

check equation (1), and observe that ρ is the same when running both Ver(sk,m,P, σ) and
Ver(sk,m,P, σ̂) as the same values rτ ’s are generated.
By correctness of σ̂ we have that ρ =

∑d
k=0 ŷk · xk. In order for Ver(sk,m,P, σ) to output 1,

it must hold y0 = m and ρ =
∑d

k=0 yk · xk. Notice also that, by definition of our verification

algorithm, the check y0 = m is performed first (i.e. the equality
∑d

k=0 yk ·xk = ρ is verified only

if y0 = m holds). So, returning 1 only if Z =
∑d

k=0(yk − ŷk)xk = 0 is the same as returning the
output of Ver(sk,m,P, σ).

To complete the proof, let us consider the case in which P is well defined on T but there exists
some i ∈ {1, . . . , n} such that (τi, ·) /∈ T . By definition of well defined program, this means that if
we fix the input values of all wires labeled with τ where (τ, ·) ∈ T , then the circuit f always returns
the same output whatever are the values taken by the input wires labeled with τ̃ for (τ̃ , ·) /∈ T .
In other words, the value corresponding to input wires τ̃ /∈ T are irrelevant when it comes to
evaluating f . Of course, this remains true even in the homomorphic evaluations of f : the one using
the polynomials y(i) in Eval and the other one using the values rτi ’s in Ver. This means that for all
wires labeled with τ̃ (for (τ̃ , ·) /∈ T ) the dummy tags chosen for such indices do not contribute to
the computation of (ŷ0, . . . , ŷd), and the same holds for the random values rτ̃ with respect to R.
Therefore the above argument for the case when (τi,mi) ∈ T, ∀i = 1, . . . , n applies here as well.

Claim 4 |Pr[G3]− Pr[G4]| ≤ Pr[Bad4].

Game 3 and Game 4 are identical unless the event Bad4 occurs in Game 4. Indeed, in this case the
challenger is providing a different answer to some verification queries. Hence, Pr[G4 ∧ ¬Bad4] =
Pr[G3], that is |Pr[G3]− Pr[G4]| ≤ Pr[Bad4].

To finalize the proof of our theorem we are left with bounding the probability of the event Bad4,
which is done below.

Claim 5 Pr[Bad4] ≤ 2dQ
p−d(Q−1) where p is the prime used in the construction and Q is an upper

bound on the number of verification queries made by A during the Game.

Proof. For j = 1 to Q, let Bj be the event that bad←true is set after the j-th verification query,
but not before. Hence, we have:

Pr[Bad4] = Pr

 Q∨
j=1

Bj

 ≤ Q∑
j=1

Pr [Bj ] (5)

The main part of this proof will consist in estimating the probability Pr [Bj ] taken over the random
choices of x and all values rτ sampled by the challenger, and for any possible values chosen by the
adversary.

For ease of exposition, we call “easy queries” those verification queries that do not “force” the
challenger to compute Z to be answered. In our analysis we only consider non-“easy” queries as,
by game definition, “easy” queries cannot cause the setting of bad←true, i.e., Bj never occurs when
the j-th query is “easy”.

Let (m,P, σ) be the j-th verification query, that is not easy. According to whether P is well
defined or not, we have only two possible cases for Bj to occur:
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1. Z =
∑d

k=0(yk − ŷk)xk = 0 (mod p), where there exists at least an index k̃ ∈ {0, . . . , d} such
that yk̃ 6= ŷk̃.

2. Z = ρ −
∑d

k=0 ykx
k = 0 (mod p), where P is not well defined and ρ is computed by using at

least one value rτ∗ ∈ Zp such that (τ∗, ·) /∈ T .

For j = 1, . . . , Q we denote with Zj the Z value computed in the j-th such query. By definition
of the event Bj , bad was not set true in the previous j − 1 queries, i.e., Z1, . . . , Zj−1 6= 0 (mod p).
Therefore we have:

Pr[Bj ] = Pr[Zj = 0|Z1 6= 0 ∧ · · · ∧ Zj−1 6= 0] (6)

Let us fix the value of x at the beginning of the game. Now, the crucial observation here is
that, before the adversary starts making verification queries there are exactly p tuples (x, {rτ}τ∈T )
that are consistent with her view. More precisely, conditioning on the tags σi seen by the adversary
there is exactly one valid rτi for each potential value of x ∈ Zp. Moreover, each “easy” query does
not reveal any additional information about x and the relevant rτ ’s. This is because our modified
verification algorithm run by the challenger (introduced in Games 2 and 3) does not even need such
values to answer “easy” verification queries. So, from now on we assume that all the Q queries in
our analysis are non-easy.

After the first query, if Z1 6= 0 (mod p), the number of possible values x, {rτ}τ∈T becomes at
least p− d, as the zeroes of a non-zero polynomial c(x) =

∑d
k=0 ckx

k of degree d are at most d. In
general, after the i-th query, if Z1 6= 0∧ · · · ∧Zi 6= 0, then the number of remaining possible values
x, {rτ}τ∈T is at least p− di.

Let (m,P, σ) be the j-th verification query. We define E1
j as the event that “P is well defined

and there exists an index k̃ ∈ {0, . . . , d} such that yk̃ 6= ŷk̃”. Similarly, we define the event E2
j as

“P is not well defined and ρ is computed by using some rτ∗ ∈ Zp such that (τ∗, ·) /∈ T”. Finally,
let NotZeroj be the event “Z1 6= 0 ∧ · · · ∧ Zj−1 6= 0”.

Clearly, Pr[Bj ] = Pr[Bj ∧ E1
j ] + Pr[Bj ∧ E2

j ] and thus

Pr[Bj ] = Pr[Zj = 0 | NotZeroj] =

= Pr[Zj = 0 ∧ E1
j | NotZeroj] + Pr[Zj = 0 ∧ E2

j | NotZeroj]
≤ Pr[Zj = 0 | E1

j ∧ NotZeroj] + Pr[Zj = 0 | E2
j ∧ NotZeroj] (7)

The first probability is

Pr[Zj = 0 | E1
j ∧ NotZeroj] ≤

d

p− d(j − 1)
(8)

as the zeroes of the polynomial
∑d

k=0(yk − ŷk)xk are at most d, and there are p− d(j − 1) possible
values of x.

To evaluate the second probability Pr[Zj = 0 | E2
j ∧ NotZeroj] we observe that one can

think of ρ as a univariate polynomial ρ = η(rτ∗) in the variable rτ∗ whose degree is at most d.
Moreover, being P not well defined, η must be a non-constant polynomial. The value rτ∗ was
sampled uniformly at random and it was never used before to produce a tag (since (τ∗, ·) 6∈ T )9.

9 However, this rτ∗ might have been implicitly used before. In particular the adversary might have already asked
some non easy verification query containing the input label τ∗.
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Initially, i.e. when no verification queries involving τ∗ have been made, rτ∗ is clearly perfectly
hidden to the adversary, and she cannot guess it with probability better than 1/p. The worst case
to consider is then the one where all queries, before the j-th we are considering, involve τ∗. In
such a case, we can use an argument very similar to that given before, so that, conditioned on
Z = η(rτ∗) 6= 0, one can exclude at most d possible values of rτ∗ . Therefore, if we condition on the
event NotZeroj, the probability of the adversary to guess rτ∗ at the j-th query cannot be better
than 1/(p− d(j − 1)).

Hence,

Pr[Zj = 0 | E2
j ∧ NotZeroj] ≤

d

p− d(j − 1)
(9)

Finally, if we apply the results of equations (8) and (9) to equation (7), then we obtain:

Pr[Bj ] ≤
2d

p− d(j − 1)
(10)

and thus we can upper bound:

Pr[Bad4] ≤
2dQ

p− d(Q− 1)
(11)

which proves the Claim. ut

The proof of the Theorem follows by putting together the results of the above claims:

AdvHomUF−CMA
A,HomMAC (λ) ≤ AdvPRFB,F (λ) +

2dQ

p− d(Q− 1)
+
Q

2λ
.

Since p ≈ 2λ and both d and Q are poly(λ), 2dQ
p−d(Q−1) = negl(λ). Therefore, if the PRF is secure (i.e.,

AdvPRFB,F (λ) = negl(λ)) then any PPT adversary A has at most negligible advantage of breaking
the unforgeability of our homomorphic MAC.

4 A Compact Homomorphic MAC for Circuits of Bounded Polynomial Degree

As we mentioned earlier, the homomorphic MAC of Section 3 has the drawback that the tags’
size grows linearly with the degree of the evaluated circuit. While this may be acceptable in some
cases, e.g., circuits evaluating constant-degree polynomials, it may become impractical in other
situations, e.g., when the degree is greater than the input size of the circuit. In this section, we
propose a second scheme that solves this issue and enjoys tags of constant size. The scheme keeps
almost the same efficiency of the previous one, even though constant-size tags come at the price
of a couple of restrictions. First, we have to fix an a-priori bound D on the degree of the circuits
that can be evaluated. Second, the homomorphic evaluation has to be done in a “single shot”, that
is the authentication tags obtained from the Eval algorithm cannot be used again to be composed
with other tags.

Nevertheless, we show that the scheme achieves an interesting property that we call local com-
position. The idea is that one can keep locally a non-succinct version of the tag that allows for
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arbitrary composition. Later, when it comes to send an authentication tag to the verifier, one can
securely compress such large tag in a very compact one of constant-size.

Before describing the scheme in details, we give a high level description of our technique. The
main idea is to use the same scheme of Section 3 with the following modifications. Tags on messages
are the same, i.e., a degree-1 polynomial with the special property that y(0) = m and y(x) = rτ . We

publish the values gx, . . . , gx
D

in the public evaluation key. Then, for the homomorphic evaluation
one first computes the coefficients (y0, . . . , yd) as before, and then “accumulates” such values into
a single group element Λ =

∏d
i=1(g

xi)yi . The verification is carried in the exponent as follows: the
verifier first computes ρ as before and next checks that gρ = gmΛ. If Λ is computed correctly, then
Λ = gy(x)−y(0) and thus correctness follows.

For security, in addition to a PRF we need to rely on a computational assumption that says that
one cannot compute g given values gx, . . . , gx

D
. This problem is basically a re-writing of a problem

already considered in the past: the `-Diffie-Hellman Inversion. We recall its definition below.

Definition 1 (`-DHI [11,30]). Let λ ∈ N be the security parameter, and G be a group of order

p > 2λ. For a generator g ∈ G and a randomly chosen x
$← Zp we define the advantage of an

adversary A in solving the `-DHI problem as

AdvDHIA (λ) = Pr[A(g, gx, . . . , gx
`
) = g1/x]

and we say that the `-DHI assumption holds in G if for every PPT A and for ` = poly(λ), the
advantage AdvDHIA (λ) is at most negligible in λ.

Our Construction. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter and D = poly(λ) be an upper bound so that
the scheme can support the homomorphic evaluation of circuits of degree at most D. The key
generation works as follows.

Generate a group G of order p where p is a prime of roughly λ bits, and choose a random

generator g
$← G. Choose a seed K of a pseudorandom function FK : {0, 1}∗ → Zp and a random

value x
$← Zp. For i = 1 to D compute hi = gx

i
. Output sk = (K, g, x), ek = (h1, . . . , hD) and

let the message space M be Zp.
Auth(sk, τ,m). The tagging algorithm is the same as the one of the construction in Section 3. To

authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ, compute rτ = FK(τ), set y0 = m ,
y1 = (rτ −m)/x mod p, and output σ = (y0, y1).

Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evaluation key ek, an
arithmetic circuit f : Znp → Zp, and a vector σ of tags (σ1, . . . , σn) so that σi ∈ Z2

p (i.e., it is a
tag for a degree-1 polynomial).

First, proceed exactly as in the construction of Section 3 to compute the coefficients (y0, . . . , yd).
If d = 1 (i.e., the circuit f computes a degree-1 polynomial), then return σ = (y0, y1). Otherwise,
compute

Λ =

d∏
i=1

hyii

and return σ = Λ.

17



Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be a tag of either the
form (y0, y1) ∈ Z2

p or Λ ∈ G.
First, proceed as in the construction of Section 3 to compute ρ = f(rτ1 , . . . , rτn).
If the program P computes a polynomial of degree 1, then proceed exactly as in the construction
of Section 3 and check that

ρ = y0 + y1 · x ∧ y0 = m.

Otherwise, use g to check whether the following equation holds:

gρ = gm · Λ (12)

If the checks are satisfied, then output 1. Otherwise output 0.

Correctness. The correctness easily follows from the correctness of the scheme described in
Section 3 and by observing that equation (12) is essentially equivalent to checking that

ρ =
d∑
i=0

yix
i

which is the verification equation (1) in the scheme of Section 3.

Local Composition. The above scheme satisfies an interesting property that we call local compo-
sition. The idea is that one can keep locally the large version of the tag, i.e., the polynomial y with
its d + 1 coefficients y0, . . . , yd, but still send its compact version Λ =

∏d
i=1(g

xi)yi to the verifier.
Keeping y allows for arbitrary composition as in the scheme of Section 3. In applications where
composition does not involve many parties, this property allows to achieve succinct tags and local
composition of partial computations at the same time.

Extension. In Appendix A we show an extension of this scheme that, by using pairings, allows
to further compute an additional level of multiplications and unbounded additions on tags of the
Λ form.

4.1 Proof of Security

Theorem 4. If F is a PRF and the (D − 1)-Diffie Hellman Inversion Assumption holds in G,
then the homomorphic MAC scheme described in Section 4 is secure.

To prove the security of our scheme we define the following hybrid games. We denote with Gi
the event that the experiment Game i, run with the adversary A, outputs 1.

Game 0: this is the same as the real HomUF−CMA experiment, except that in every verification
query (m,P, σ), in order to check whether P is well-defined or not, the challenger uses the
probabilistic test of Proposition 1.
Thus we have that for all adversaries A making at most Q verification queries we have

|Pr[HomUF−CMAA,HomMAC(λ)]− Pr[G0(A)]| ≤ Q · 2−λ (13)

Game 1: this is the same as Game 0, except that the PRF is replaced with a truly random function
R : {0, 1}∗ → Zp: basically, each value rτ is generated uniformly at random in Zp.
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Game 2: This is the same as Game 1 except for a change in answering verification queries. Let
bad be a flag value which is initially set to false. For all verification queries (m,P, σ) such that
P = (f, τ1, . . . , τn) is not well defined on T , the challenger answers 0 (reject) and proceeds as
follows.
First, for every τi such that (τi, ·) /∈ T it takes rτi←R(τi). Next, it computes ρ using the internal
procedure of Ver.
If σ = (y0, y1), compute z = ρ− y0 − x · y1. If z = 0 (mod p), then set bad←true.
If σ = Λ compute Z = gρ−mΛ−1. If Z = 1, then set bad←true.

Game 3: this is the same as Game 2 except for the following change in answering authentication
queries. Given a query (τ,m) such that (τ,m) /∈ T , if rτ = R(τ) was previously used to answer

a verification query, then resample a fresh r′τ
$← Zp to create the tag, and from now on use r′τ

in every verification query involving label τ .
Game 4: this is the same as Game 3 except for the following change in answering verification

queries. Let bad′ be a flag value which is initially set to false. For every verification query
(m,P, σ) such that P = (f, τ1, . . . , τn) is well defined on T , the challenger proceeds as follows.
For every index i ∈ {1, . . . , n} such that (τi, ·) /∈ T (i.e., P contains a new label) it chooses a
dummy tag σi (e.g., for a random message).
Let σ1, . . . , σn be the tags associated to labels τ1, . . . , τn respectively. The challenger homomor-
phically computes σ̂ (which is either (ŷ0, ŷ1) or Λ̂) and proceeds as follows.
If σ = σ̂, then output 1 (accept). Otherwise, output 0 (reject).
Moreover,

1. If (y0, y1) 6= (ŷ0, ŷ1), compute z = (y0−ŷ0)+x(y1−ŷ1). If z = 0 (mod p), then set bad′←true.
2. If Λ 6= Λ̂, compute Z = (Λ/Λ̂)g(m−m̂). If Z = 1, then set bad′←true.

To prove the theorem we prove the following claims.

Claim 6 |Pr[G0]− Pr[G1]| ≤ AdvPRFB,F (λ).

The proof can be obtained via a straightforward reduction to the security of the PRF.

Claim 7 |Pr[G1] − Pr[G2]| ≤ Q(d+1)
p−d(Q−1) where p is the order of the group used in the scheme and

Q is the number of verification queries made by the adversary A during the experiment.

Proof. Let Bad2 be the event that bad←true is set in Game 2. Game 1 and Game 2 are identical
unless the event Bad2 occurs. Indeed, in this case the challenger is providing a different answer to
some verification queries. It holds Pr[G2 ∧ ¬Bad2] = Pr[G1], that is |Pr[G1]− Pr[G2]| ≤ Pr[Bad2].
Hence, to prove the Claim, we estimate the probability Pr[Bad2]. The proof is very similar to that
of Claim 5. We provide it below for completeness.

For j = 1 to Q, let Bj be the event that bad←true is set after the j-th verification query, but
not before. Clearly, we have:

Pr[Bad2] = Pr

 Q∨
j=1

Bj

 ≤ Q∑
j=1

Pr [Bj ] (14)

Moreover, by definition of Bj , bad←true did not occur in the previous j − 1 queries, thus

Pr[Bj ] = Pr[Bj |¬B1 ∧ · · · ∧ ¬Bj−1]
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The main part of this proof will consist in estimating the probability Pr [Bj ] taken over the
random choices of the values rτ sampled by the challenger, and for any possible values chosen by
the adversary. In our analysis we will consider only verification queries (m,P, σ) such that P is not
well defined, as they are the only queries that may cause setting bad←true.

Let (m,P, σ) be the j-th verification query. According to whether σ = (y0, y1) or σ = Λ, we
have only two possible cases for Bj to occur:

1. z = ρ− y0 − xy1 = 0 (mod p).
2. Z = gρ−mΛ−1 = 1

where in both cases ρ is computed by using at least one value rτ∗ ∈ Zp such that (τ∗, ·) /∈ T .
For 1 ≤ j ≤ Q, let zj (resp. Zj) be the value computed in the j-th query. Let NotZeroj be the

event “¬B1∧· · ·∧¬Bj−1”, and notice that for 1 ≤ i ≤ j−1, ¬Bi may mean either zi 6= 0 or Zi 6= 1.
Therefore, we have:

Pr[Bj |¬B1 ∧ · · · ∧ ¬Bj−1] ≤ Pr[zj = 0 | NotZeroj] + Pr[Zj = 1 | NotZeroj] (15)

where the probability is taken over the random choice of rτ∗ .
Using an argument similar to that in the proof of Claim 5, it is possible to show that, information-

theoretically, the probability that any adversary guesses correctly the value rτ∗ at the j-th verifi-
cation query (conditioned on the event NotZeroj) cannot be better than 1/(p−D(j − 1)).

Moreover, the value ρ can be thought of as a univariate polynomial η(rτ∗) in the variable rτ∗

of degree at most D (where D = 1 if σ = (y0, y1)). Since P is not well defined, the polynomial η is
non-constant, and thus:

Pr[zj = 0 | NotZeroj] ≤
1

p−D(j − 1)
(16)

Pr[Zj = 1 | NotZeroj] ≤
D

p−D(j − 1)
(17)

Therefore, by applying equations (16) and (17) to equation (15), we obtain:

Pr[Bad2] ≤
Q(D + 1)

p−D(Q− 1)

which proves the Claim. ut

Claim 8 |Pr[G2]− Pr[G3]| ≤ DQ2

p where p is the order of the group used in the scheme and Q is
the number of verification queries made by the adversary A during the experiment.

Proof. Game 2 and Game 3 differ only in the sampling of the value rτ in authentication queries.
In particular, notice that there are at most Q of such queries. For each of these authentication
queries, say (τ,m), assume that there were Q prior verification queries involving label τ . Using
the argument in the previous lemma, the number of possible values of rτ is at least p −DQ, and
the games will differ only if sampling the fresh r′τ will hit one of the DQ values that are excluded
conditioning on NotZeroQ. However, this happens with probability DQ/p. Thus the Claim follows
by union bound. ut

Claim 9 Pr[G3] ≡ Pr[G4 ∧ ¬Bad4].
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Proof. Let Bad4 be the event that bad′ is set true in Game 4. If the event Bad4 does not occur,
then we claim that Game 4 is identical to Game 3. The only change is in the way the challenger
answers verification queries (m,P, σ) for a program P that is well defined on T .

Let (m,P, σ) be a verification query with σ = (y0, y1) or σ = Λ such that P = (f, τ1, . . . , τn) is
well defined on T , and let us first consider the case in which ∀i = 1, . . . , n it holds that (τi,mi) ∈ T
and a tag σi had already been computed. Recall that the challenger computes σ̂ using the Eval
algorithm. If we consider the answer provided by the challenger in this case, then we have:

1. σ = σ̂: the answer is correct by correctness of the scheme.
2. (y0, y1) 6= (ŷ0, ŷ1). Let ρ be the value computed by the verification algorithm to check equation

(12), and observe that ρmust be the same when running both Ver(sk,m,P, σ) and Ver(sk,m,P, σ̂)
as the same values rτ ’s are used.
By correctness of σ̂ we have that ρ = ŷ0 + ŷ1 · x. In order for Ver(sk,m,P, σ) to output 1, it
must hold ρ = y0 + y1 · x. So, returning 1 only if z = (y0 − ŷ0) + x(y1 − ŷ1) = 0 is the same as
returning the output of Ver(sk,m,P, σ).

3. Λ 6= Λ̂. Let ρ be the value computed by the verification algorithm to check equation (12), and
observe that ρ must be the same when running both Ver(sk,m,P, σ) and Ver(sk,m,P, σ̂) as the
same values rτ ’s are used.
By correctness of σ̂ we have that gρ = gm̂Λ̂. In order for Ver(sk,m,P, σ) to output 1, it must
hold gρ = gmΛ. So, returning 1 only if Z = gm−m̂(Λ/Λ̂) = 1 is the same as returning the output
of Ver(sk,m,P, σ).

Now, let us consider the case in which P is well defined on T but there exists some i ∈ {1, . . . , n}
such that (τi, ·) /∈ T . By definition of well defined program, this means that if we fix the input
values of all wires labeled with τ where (τ, ·) ∈ T , then the circuit f always returns the same
output whatever are the values of the input wires with label τ̃ such that (τ̃ , ·) /∈ T . In other
words, the value corresponding to the input wire τi is irrelevant when it comes to evaluating f . Of
course, this remains true even in the homomorphic evaluations of f : the one using y in Eval and
the other one using the rτ ’s in Ver. This means that for all wires labeled with τ̃ (for (τ̃ , ·) /∈ T )
the dummy tags chosen for such indices do not contribute to the computation of Λ̂, and the same
holds for the random values rτ̃ with respect to ρ. Therefore the above argument for the case when
(τi,mi) ∈ T, ∀i = 1, . . . , n applies here as well. ut

Claim 10 Pr[Bad4] ≤ Q ·AdvDHIB (λ) where Q is the number of verification queries made by the
adversary A in Game 4.

Proof. For sake of presentation, we prove the claim using a slightly different assumption: the ad-
versary A is given a tuple (gx, . . . , gx

`
) for randomly chosen g ∈ G and x ∈ Zp, and it is required to

compute g. It is not hard to see that this is only a rewriting of the (`− 1)-DHI assumption defined

above. Indeed a tuple (gx, . . . , gx
`
) can be rewritten as (h, hx, . . . , hx

`−1
) by letting h = gx.

Assume by contradiction that there exists an adversary A such that, when run in Game 4, we
have Pr[Bad4] ≥ ε(λ) for some non-negligible function ε. Then, we show how to build an efficient
simulator B that breaks the (D − 1)-DHI assumption with advantage AdvDHIB (λ) ≥ ε(λ)/Q.

If Bad4 occurs in Game 4, then there must exist an index 1 ≤ µ ≤ Q such that bad′←true is set
in the µ-th verification query.
B takes as input a tuple (gx, . . . , gx

D
). Let Q be an upper bound on the number of verification

queries made by the adversary. B chooses µ∗
$← {1, . . . , Q} uniformly at random as a guess for the
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index µ in which bad′ is updated to true. Next, it runs A on input ek = (gx, . . . , gx
D

) answering
queries as follows.

Authentication Queries. Given an authentication query (m, τ) it chooses y1
$← Zp at random,

sets y0 = m and returns σ = (y0, y1). Notice that this alternative generation of the tag without
using x generates the same distribution of tags as the one in Game 4, in which a fresh value r′τ is
used in every authentication query.

Verification Queries. On input the j-th verification query (m,P, σ), B proceeds as follows:

– If P is not well defined on T , output 0 (reject). Notice that this answer is correct by the change
introduced in Game 2.

– If P is well defined compute σ̂ using the Eval algorithm (exactly as the challenger in Game 4).
If σ = σ̂ output 1 (accept).

– If P is well defined, σ 6= σ̂ and j 6= µ∗, then output 0 (reject).
– If P is well defined, σ 6= σ̂ and j = µ∗, then output 0 (reject), and proceed as follows:
• If σ = (y0, y1) (and σ̂ = (ŷ0, ŷ1)), compute x′ = (y0 − ŷ0)/(ŷ1 − y1) (mod p), and g′ =

(gx)−1/x
′
.

• If σ = Λ (and σ̂ = Λ̂), compute g′ = (Λ̂/Λ)(m−m̂)−1
.

At the end of the simulation B outputs g′. If B correctly guessed the index µ∗ = µ in which the
adversary queries the forgery, then B clearly succeeds in finding the correct g′ = g with probability
at least ε(λ). Therefore, we have:

AdvDHIB (λ) = Pr[Bad4 ∧ µ∗ = µ] ≥ Pr[µ∗ = µ] Pr[Bad4] ≥
ε(λ)

Q

which concluded the proof of the Claim. ut

To conclude the proof of the Theorem, observe that Pr[G4] = 0 as all verification queries to
Type 1 and Type 2 forgeries are answered with 0. So, if we put together the results of the above
claims we obtain

AdvHomUF−CMA
A,HomMAC (λ) ≤ AdvPRFB,F (λ) +

Q

2λ
+

Q(D + 1)

p−D(Q− 1)
+
DQ2

p
+Q ·AdvDHIB (λ).

Since p ≈ 2λ and both D and Q are poly(λ), if the PRF is secure and the (D− 1)-DHI assumption
holds (i.e., AdvPRFB,F (λ) = negl(λ) and AdvDHIB (λ) = negl(λ)), then A has at most negligible
advantage of breaking the unforgeability of our construction.
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A A compact homomorphic MAC with an additional level of multiplication

Here we describe an extension of the scheme given in Section 4. The new scheme allows to further
apply homomorphic operations on the tags returned by Eval. In particular, the extended homo-
morphic evaluation allows for circuits of degree up to 2, i.e., at most one multiplication and an
unbounded number of additions.

The intuitive idea of this construction is based on the following facts. Given two tags Λ(1), Λ(2) ∈
G (as in the construction of Section 4) one could still apply homomorphic operations if these were
only additions: just compute Λ = Λ(1) · Λ(2). To compute a multiplication, we can use the bilinear
property of the pairing and compute Ω = e(Λ(1), Λ(2)). The way it is described here, the scheme is
not fully correct, however we show below that some appropriate modifications allow to turn this
basic idea into a scheme with the desired property.

The security of the new scheme relies on the Bilinear version of the Diffie-Hellman Inversion
assumption used in Section 4. We recall it below.

Definition 2 (`-BDHI). Let λ ∈ N be the security parameter, and G be a group of order p > 2λ.
Let G,GT be groups with an efficient bilinear map e : G×G→ GT . For randomly chosen generators

g, γ ∈ G and a randomly chosen x
$← Zp we define the advantage of an adversary A in solving the

`-Parallel Diffie-Hellman Inversion problem as

AdvBDHIA (λ) = Pr[A(g, gx, . . . , gx
`
) = e(g, g)1/x]

and we say that the `-BDHI assumption holds in G,GT if for every PPT A and for ` = poly(λ),
the advantage AdvBDHIA (λ) is at most negligible in λ.

Our Construction. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter and D = poly(λ) be an upper bound so that
the scheme can support the homomorphic evaluation of circuits of degree at most D. The key
generation works as follows.
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Generate bilinear groups G,GT of order p such that p is a prime of roughly λ bits and there exists

an efficient and non-degenerate bilinear map e : G×G→ GT . Choose a random generator g
$← G,

a random value α ∈ {0, 1}λ, two random values a, x
$← Zp, and a seed K of a pseudorandom

function FK : {0, 1}∗ → Zp. For i = 1 to D compute hi = gx
i
, γi = gax

i
, and set γ = ga. Set

σU = (1, (rα − 1)/x) for rα = FK(α) (σU is essentially the MAC of 1 under this special and
secret label α).
Output sk = (K, g, h, x, α), ek = (γ, h1, γ1, . . . , hD, γD, σU ) and let the message space M be Zp.

Auth(sk, τ,m). The tagging algorithm is the same as the one of the construction in Section 3. To
authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ, compute rτ = FK(τ), set y0 = m ,
y1 = (rτ −m)/x mod p, and output σ = (y0, y1).

Eval1(ek, f,σ). The homomorphic evaluation algorithm Eval1 allows to compute a MAC for a circuit
f of degree at most D starting from MACs obtained by evaluating circuits of degree 1. The
algorithm is almost the same as the Eval algorithm in the construction of Section 4 and works
as follows. It takes as input the evaluation key ek, an arithmetic circuit f : Znp → Zp, and a
vector σ of tags (σ1, . . . , σn) such that σi ∈ Z2

p (i.e., it is a tag for a degree-1 polynomial).
First, proceed exactly as in the construction of Section 3 to compute the coefficients (y0, . . . , yd).
If d = 1 (i.e., the circuit f computes a degree-1 polynomial), then return σ = (y0, y1). Otherwise,
compute

Λ =
d∏
i=1

hyii , Γ =
d∏
i=1

γyii

and return σ = (y0, Λ, Γ ).
Eval2(ek, φ,σ). The homomorphic evaluation algorithm Eval2 allows to further applies homomor-

phic operations on tags that were already obtained by using the algorithm Eval1, namely tags
for circuits of degree at most D. Precisely, Eval2 allows to evaluate any circuit of degree at most
2. Thus, having Eval1 and Eval2 enables us to obtain a scheme that supports the evaluation of
circuits of degree up to 2D, and whose tags have constant size.
The algorithm takes as input the evaluation key ek, an arithmetic circuit φ : Znp → Zp of degree
≤ 2 and a vector σ of tags (σ1, . . . , σn) so that σi ∈ Z2

p (i.e., it is a tag for a degree-1 polynomial),
or σi ∈ Zp ×G2 (i.e., it is a tag obtained by Eval1). In particular, we assume that at least one
of the σi’s is in Zp ×G2 (otherwise, one can use Eval1).

First, for any tag σi = (y
(i)
0 , y

(i)
1 ) ∈ Z2

p the algorithm transforms σi into a tag σ̃i = (y
(i)
0 , Λ(i), Γ (i)) ∈

Zp ×G2 as follows:

Λ(i) = h
y
(i)
1

1 , Γ (i) = γ
y
(i)
1

1

Next, Eval2 proceeds on the circuit φ gate-by-gate as follows. At each gate g, given two tags
σ1, σ2 (or a tag σ1 and a constant c ∈ Zp), it runs one of the procedures described below
(according to the case). It obtains a new tag σ and passes this on as input to the next gate in
the circuit.
When the computation reaches the last gate of the circuit φ, Eval2 outputs the tag σ obtained
by evaluating such last gate.

– Add1(ek, σ1, σ2). This takes as input two tags σ1 = (y
(1)
0 , Λ(1), Γ (1)) and σ2 = (y

(2)
0 , Λ(2), Γ (2))

and outputs a tag σ = (y0, Λ, Γ ) which is computed as follows:

y0 = y
(1)
0 + y

(2)
0 , Λ = Λ(1) · Λ(2), Γ = Γ (1) · Γ (2)
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– ConstMult1(ek, σ1, c). This takes as input a tag σ1 = (y
(1)
0 , Λ(1), Γ (1)) and a constant c ∈ Zp

and outputs the tag σ = (y0, Λ, Γ ) which is computed as follows:

y0 = c · y(1)0 , Λ = (Λ(1))c, Γ = (Γ (1))c

– Mult1(ek, σ1, σ2). This takes as input two tags σ1 = (y
(1)
0 , Λ(1), Γ (1)) and σ2 = (y

(2)
0 , Λ(2), Γ (2))

and outputs a tag σ = Ω for the multiplication, computed as follows:

Ω = e(Λ(1), Γ (2)) · e(Λ(1), γy
(2)
0 ) · e(Λ(2), γy

(1)
0 )

– Shift1→2(ek, σ1). This takes as input a tag σ1 = (y
(1)
0 , Λ(1), Γ (1)) and outputs σ = Ω com-

puted as σ←Mult1(ek, σ1, σU ). Here we are using multiplication by 1 to obtain a tag that
is valid for the same message, but that it is of the GT form. The only case in which this
algorithm is needed is before running the following algorithm Add2 (i.e., when one needs to
compute an addition after the last multiplication) and one of the two input tags σ1, σ2 is
not of the GT form.

– Add2(ek, σ1, σ2). This takes as input two tags σ1 = Ω(1) ∈ GT and σ2 = Ω(2) ∈ GT and
outputs σ = Ω which is computed as:

Ω = Ω(1) ·Ω(2)

– ConstMult2(ek, σ1, c). This takes as input a tag σ1 = Ω(1) and a constant c ∈ Zp and outputs
σ = Ω which is computed as:

Ω = (Ω(1))c

Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be a tag of either the
form (y0, y1) ∈ Z2

p, or (y0, Λ, Γ ) ∈ Zp ×G2, or σ = Ω.
First, proceed as in the construction of Section 3 to compute ρ = f(rτ1 , . . . , rτn).
Next, according to the form of σ make the following checks:
1. If σ = (y0, y1), then output 1 only if

ρ = y0 + y1 · x ∧ y0 = m.

2. If σ = (y0, Λ, Γ ), then output 1 only if

gρ = gy0 · Λ ∧ y0 = m ∧ e(Λ, γ) = e(Γ, g)

3. If σ = Ω, then output 1 only if
e(g, γ)ρ−m = Ω

Correctness. The correctness basically follows from the correctness of the scheme described
in Section 4. The only less trivial fact to observe is what happens in the procedure Mult1 which

computes the multiplication of two tags σ1 = (y
(1)
0 , Λ(1), Γ (1)), σ2 = (y

(2)
0 , Λ(2), Γ (2)) (that we

assume to be valid for messages m1 and m2 respectively).

By definition we have that Λ(i) = g(y
(i)(x)−y(i)(0)) while Γ (i) = (Λ(i))a.

Ω = e(Λ(1), Γ (2)) · e(Λ(1), γy
(2)
0 ) · e(Λ(2), γy

(1)
0 )

= e(g, γ)(y
(1)(x)−y(1)(0))(y(2)(x)−y(2)(0))+y(2)(x)y(1)(0)+y(1)(x)y(2)(0)+y(1)(0)y(2)(0)

= e(g, γ)y
(1)(x)y(2)(x)−y(1)(0)y(2)(0)

= e(g, γ)ρ1ρ2−m1m2

where the last equality follows from the correctness of the tags σ1, σ2.
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A.1 Proof of Security

Theorem 5. If F is a PRF and the D-Bilinear Diffie Hellman Inversion Assumption holds in
G,GT , then the homomorphic MAC scheme described in Section A is secure.

To prove the security of our scheme we define the following hybrid games. We denote with Gi
the event that the experiment Game i, run with the adversary A, outputs 1.

Game 0: this is the same as the real HomUF−CMA experiment, except that in every verification
query (m,P, σ), in order to check whether P is well-defined or not, the challenger uses the
probabilistic test of Proposition 1.
Thus we have that for all adversaries A making at most Q verification queries we have

|Pr[HomUF−CMAA,HomMAC(λ)]− Pr[G0(A)]| ≤ Q · 2−λ (18)

Game 1: this is the same as Game 0, except that the PRF is replaced with a truly random function
R : {0, 1}∗ → Zp: basically, each value rτ is generated uniformly at random in Zp.

Game 2 : This is the same as Game 1, except for the following changes. Let bad2 be a flag value
which is initially set to false. Here we set bad2 to true if we ever receive a query (either a
verification query or an authentication one) containing the label α.

Game 3: This is the same as Game 2 except for a change in answering verification queries. Let
bad3 be a flag value which is initially set to false. For all verification queries (m,P, σ) such that
P = (f, τ1, . . . , τn) is not well defined on T , the challenger answers 0 (reject) and proceeds as
follows.
First, for every τi such that (τi, ·) /∈ T it takes rτi←R(τi). Next, it computes ρ using the internal
procedure of Ver.
If σ = (y0, y1), compute z = ρ− y0 − x · y1. If z = 0 (mod p), then set bad3←true.
If σ = (y0, Λ, Γ ) compute Z = gρ−mΛ−1. If Z = 1, then set bad3←true.
If σ = Ω compute Z = e(g, γ)ρ+mΩ−1. If Z = 1, then set bad3←true.

Game 4: this is the same as Game 3 except for the following change in answering authentication
queries. Given a query (τ,m) such that (τ,m) /∈ T , if rτ = R(τ) was previously used to answer

a verification query, then resample a fresh r′τ
$← Zp to create the tag, and from now on use r′τ

in every verification query involving label τ .
Game 5: this is the same as Game 4 except for the following change in answering verification

queries. Let bad5 be a flag value which is initially set to false. For every verification query
(m,P, σ) such that P = (f, τ1, . . . , τn) is well defined on T , the challenger proceeds as follows.
For every index i ∈ {1, . . . , n} such that (τi, ·) /∈ T (i.e., P contains a new label) it chooses a
dummy tag σi (e.g., for a random message).
Let σ1, . . . , σn be the tags associated to labels τ1, . . . , τn respectively. If σ = (y0, y1) or σ =
(y0, Λ, Γ ), then the challenger uses Eval1(ek, f, (σ1, . . . , σn)) to homomorphically compute σ̂
(which is either (ŷ0, ŷ1), or Λ̂ respectively). If σ̂ = Ω̂, instead it computes σ̂ as follows. First,
it computes y0, . . . , yd as in Eval1. Next, it goes back to the last multiplication level before the
end of the evaluation of f . Let y(1), . . . , y(t) be the tags that were obtained immediately before
reaching the last multiplication level. The challenger first “transforms” such tags into tags of

the form (y
(i)
0 , Λ(i), Γ (i)) and then it runs Eval2 on such tags to obtain σ̂ = Ω̂.

Let σ̂ be the tag obtained by the honest homomorphic evaluation as described before. If σ = σ̂,
then the challenger outputs 1 (accept). Otherwise, it outputs 0 (reject).
Moreover,
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1. If (y0, y1) 6= (ŷ0, ŷ1), compute z = (y0−ŷ0)+x(y1−ŷ1). If z = 0 (mod p), then set bad5←true.

2. If Λ 6= Λ̂, compute Z = (Λ/Λ̂)g(m−m̂). If Z = 1, then set bad5←true.

3. If Ω 6= Ω̂, compute Z = e(g, γ)m−m̂(Ω̂/Ω). If Z = 1, then set bad5←true.

To prove the theorem we prove the following claims. Most of them have proofs similar to those
used in the proof of Theorem 4.

Claim 11 |Pr[G0]− Pr[G1]| ≤ AdvPRFB,F (λ).

The proof can be obtained via a straightforward reduction to the security of the PRF.

Claim 12 |Pr[G1] − Pr[G2]| ≤ nQ
2λ

where n is the maximum number of allowed input labels per
labeled program and Q is the number of queries made by the adversary A during the experiment.

Proof. First notice that the first change introduced in this game is merely syntactical and does not
affect the quality of the verification procedure. As for the second modification the stated bound
can be easily be obtained by simply counting the number of maximum different labels that A can
use in its queries. This is at most a polynomial number n for each of the Q queries. Also, notice
that even tough the value R(α) = rα is only computationally hidden by the values contained in
ek, the label α remains information theoretically hidden even given rα (as described in Game 2, we
are now using a truly random function to generate rα from α). ut

Claim 13 |Pr[G2]− Pr[G3]| ≤ Q(d+1)
p−d(Q−1) where p is the order of the group used in the scheme and

Q is the number of verification queries made by the adversary A during the experiment.

The proof is essentially the same as the proof of Claim 7.

Claim 14 |Pr[G3]−Pr[G4]| ≤ DQ2

p where p is the order of the group used in the scheme and Q is
the number of verification queries made by the adversary A during the experiment.

The proof is essentially the same as the proof of Claim 8.

Claim 15 Pr[G4] ≡ Pr[G5 ∧ ¬Bad5].

Proof. Let Bad5 be the event that bad5 is set true in Game 5. If the event Bad4 does not occur,
then we claim that Game 4 is identical to Game 3. The only change is in the way the challenger
answers verification queries (m,P, σ) for a program P that is well defined on T , and we claim that
such change is only syntactic, and thus it does not change the adversary’s view of the game.

Let (m,P, σ) be a verification query. If σ = (y0, y1) then by the same argument in the proof of
Claim 10 the answer is correct. If σ = (y0, Λ, Γ ) 6= (ŷ0, Λ̂, Γ̂ ) = σ̂, then observe that:

– if (y0, Λ) 6= (ŷ0, Λ̂), then the answer is correct by the same argument in Claim 9;

– if (y0, Λ) = (ŷ0, Λ̂) and Γ 6= Γ̂ , then Ver(sk,m,P, σ) would output 1 only if e(Γ, g) = e(Λ, γ).
Since Λ = Λ̂, we have that e(Λ, γ) = e(Λ̂, γ) = e(Γ̂ , g). Hence, returning 1 only if Γ = Γ̂ (i.e.,
e(Γ, g) = e(Γ̂ , g)) is the same as the output of Ver(sk,m,P, σ).
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We consider the remaining case in which the queried tag σ is of the form σ = Ω ∈ GT . Similarly
to the proof of Claim 9 we only consider the case when P = (f, τ1, . . . , τn) is well defined on T and
∀i = 1, . . . , n, (τi,mi) ∈ T . Indeed, as we have shown, the case in which P is well defined and there
is some (τi, ·) /∈ T is essentially the same.

Now, if we analyze how the challenger computes σ̂ = Ω̂ (which is also the way B does), then this
is basically a way to compute a valid tag (of the GT form) for the circuit f . By correctness, it must
be e(g, γ)ρ+m̂ = Ω̂ where ρ is the value computed by the verification algorithm as f(rτ1 , . . . , rτn).
ρ is the same when running both Ver(sk,m,P, σ) and Ver(sk,m,P, σ̂) as the very same rτ ’s are
used. In order for Ver(sk,m,P, σ) to output 1, it must hold e(g, γ)ρ+m = Ω. So, returning 1 only if
Z = e(g, γ)m−m̂(Ω̂/Ω) = 1 is the same as returning the output of Ver(sk,m,P, σ). ut

Claim 16 Pr[Bad5] ≤ Q ·AdvBDHIB (λ) where Q is the number of verification queries made by the
adversary A in Game 5.

Proof. Assume by contradiction that there exists an adversary A such that, when run in Game 4,
we have Pr[Bad5] ≥ ε(λ) for some non-negligible function ε. Then, we show how to build an efficient
simulator B that breaks the D-BDHI assumption with advantage AdvBDHIB (λ) ≥ ε(λ)/Q.

If Bad5 occurs in Game 5, then there must exist an index 1 ≤ µ ≤ Q such that bad5←true is
set in the µ-th verification query.

B takes as input a tuple (η, ηx, . . . , ηx
`
) and its goal is to compute e(η, η)1/x. B picks a random

β
$← Zp and defines γ = ηβ. Next, for i = 1 to D, it sets γi = (ηx

i
)β and hi = ηx

i−1
. It also

simulates the tag σU for the value 1 using “1” as label. This is done by using the same procedure
described below for the simulation of authentication queries. Let Q be an upper bound on the

number of verification queries made by the adversary. B chooses µ∗
$← {1, . . . , Q} uniformly at

random as a guess for the index µ in which bad5 is updated to true. Finally, B runs A on input
ek = (γ, h1, γ1, . . . , hD, γD, σU ) and it answers queries as follows.

Authentication Queries. Given an authentication query (m, τ) it chooses y1
$← Zp at random,

sets y0 = m and returns σ = (y0, y1). Notice that this alternative generation of the tag without
using x generates the same distribution of tags as the one in Game 5, in which a fresh value r′τ is
used in every authentication query.

Verification Queries. On input the j-th verification query (m,P, σ), B proceeds as follows:

– If P is not well defined on T , output 0 (reject). Notice that this answer is correct by the change
introduced in Game 2.

– If P is well defined compute σ̂ as the challenger in Game 5, i.e., by using either Eval1 or the
modified version of Eval2. If σ = σ̂ B outputs 1 (accept).

– If P is well defined, σ 6= σ̂ and j 6= µ∗, then output 0 (reject).

– If P is well defined, σ 6= σ̂ and j = µ∗, then output 0 (reject), and proceed as follows:

• If σ = (y0, y1) (and σ̂ = (ŷ0, ŷ1)), compute x′ = (y0 − ŷ0)/(ŷ1 − y1) (mod p), and U =
e(η, η)1/x

′

• If σ = (y0, Λ, Γ ) (and σ̂ = (ŷ0, Λ̂, Γ̂ )), compute η′ = (Λ̂/Λ)(y0−ŷ0)
−1

and U = e(η′, η).

• If σ = Ω (and σ̂ = Ω̂), compute U = (Ω/Ω̂)(β(m−m̂))−1

At the end of the simulation B outputs U . If B correctly guessed the index µ∗ = µ in which
the adversary queries the forgery, then it is not hard to verify that B is correctly computing
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U = e(η, η)1/x with probability at least ε(λ) (i.e., A’s success probability). Therefore, we have:

AdvBDHIB (λ) = Pr[Bad5 ∧ µ∗ = µ] ≥ Pr[µ∗ = µ] Pr[Bad5] ≥
ε(λ)

Q

which concludes the proof of the Claim. ut

To conclude the proof of the Theorem, observe that Pr[G5] = 0 as all verification queries to
Type 1 and Type 2 forgeries are answered with 0. So, if we put together the results of the above
claims we obtain

AdvHomUF−CMA
A,HomMAC (λ) ≤ AdvPRFB,F (λ) +

(n+ 1)Q

2λ
+

Q(D + 1)

p−D(Q− 1)
+
DQ2

p
+Q ·AdvBDHIB (λ).

Since p ≈ 2λ and D,n and Q are poly(λ), if the PRF is secure and the D-BDHI assumption holds
then A has at most negligible advantage of breaking the unforgeability of our construction.
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