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Abstract. By shrinking the technology and reducing the energy require-
ments of integrated circuits, producing ultra-low-power devices has prac-
tically become possible. Texas Instruments as a pioneer in developing
FRAM-based products announced a couple of different microcontroller
(MCU) families based on the low-power and fast Ferroelectric RAM tech-
nology. Such MCUs come with embedded cryptographic module(s) as
well as the assertion that – due to the underlying ultra-low-power tech-
nology – mounting successful side-channel analysis (SCA) attacks has
become very difficult. In this work we practically evaluate this claimed
hardness by means of state-of-the-art power analysis attacks. The leak-
age sources and corresponding attacks are presented in order to give
an overview on the potential risks of making use of such platforms in
security-related applications. In short, we partially confirm the given as-
sertion. Some modules, e.g., the embedded cryptographic accelerator, can
still be attacked but with slightly immoderate effort. On the contrary,
the other leakage sources are easily exploitable leading to straightforward
attacks being able to recover the secrets.

1 Introduction

Side-Channel Analysis (SCA) attacks have become a serious threat to cryp-
tographic implementations. Regardless of the theoretical robustness of a cryp-
tographic primitive, secret materials used by its implementation can easily be
recovered in case of absence of SCA-dedicated countermeasures. Case studies
like [1, 4, 11–13] confirmed the effectiveness of such attacks to overcome the se-
curity of commercial products. Hence, the producers of security-related appli-
cations have moved towards integrating SCA countermeasures. For example the
FPGA architecture UltraScale [18] – recently announced by Xilinx – offers many
security features including DPA-protected bitstream encryption. Along the same
lines, Microsemi has integrated many solutions to improve physical security of
Actel’s FPGA family SmartFusion2 [10].

Texas Instruments (TI) has introduced ultra-low power FRAM-based micro-
controllers (MCUs) with a couple of security features [15,16]. Ferroelectric RAM
(FRAM) technology enables large-scale non-volatile memories that offer faster
write operations, much larger tolerated number of write cycles, and a much lower
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power consumption compared to equivalent flash memories. The low power con-
sumption as well as the embedded cryptographic modules (e.g., an AES core)
are the key factors of the offered security. It is claimed that due to the ultra-
low-power feature of such MCUs and their low operating voltage (1.5 V) SCA
attacks become extremely difficult to mount.

This article deals with the aforementioned features and presents practical
investigation results with respect to the claimed hardnesses. The results of our
analyses on an MSP430FR5969 MCU are summarized as:

– A couple of different power analysis attacks are feasible on the embedded
AES module. We should highlight that such attacks are not as straight-
forward as those mounted on crypto engines of other MCUs e.g., Atmel’s
XMEGA [8]. That difference is mainly due to the low-power feature of the
integrated AES module.

– Regardless of the underlying low-power architecture, software implementa-
tions of cryptographic algorithms executed on the underlying MCU are vic-
tims of power analysis attacks. Unsurprisingly, the secrets of such implemen-
tations can be easily revealed by means of straightforward state-of-the-art
attacks.

– Due to the restricted speed of the FRAM technology, TI integrated a dedi-
cated cache to be used when the MCU operates at a higher frequency than
the access frequency of FRAM. As a known issue, the cache (miss/hit) can
be a source of SCA leakage. We report case studies, which make use of this
feature to launch effective SCA attacks.

– The internal architecture of MCUs is usually not known to end users. Such
architectures can turn an implementation of a sound masking scheme to
a vulnerable design. In order to examine such issues we consider an imple-
mentation of the masking with randomized look-up table countermeasure [14]
which has particularly been developed for FRAM-based MCUs [7]. Our anal-
ysis shows that the unknown internal architecture of the underlying MCU
causes the provably-secure masked design to have a first-order leakage, while
it is supposed to provide security at all orders.

2 Features

Here we shortly recall a couple of features of TI’s FRAM-based MCUs. We focus
on those specifications, which are related to our security analyses.

2.1 AES Accelerator

In many of TI’s FRAM-based MCUs – including the MSP430FR59xx family –
an AES accelerator module is embedded. It supports both encryption and de-
cryption for all key lengths (128, 192, and 256). Further, on-the-fly as well as
offline round key generation scenarios are supported, and it is facilitated to be
used in ECB, CBC, OFB, and CFB modes of operation. It should be highlighted
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Table 1. AES accelerator performance figures

Key length
Encryption Decryption

(clock cycles) (clock cycles)

128 bits 168 168
192 bits 204 206
256 bits 234 234

that the AES module has not been designed for speed-critical applications al-
though it can perform a complete encryption and decryption much faster than
corresponding software on the same MCU. Table 1 shows the number of clock
cycles the AES module requires to complete the respective operations.

As it is a stand-alone module, the MCU can perform other operations while
the AES module is busy. It is noteworthy that the numbers given in this table are
with respect to the on-the-fly computation of round keys while the decryption
module requires to receive the last round key. The interested reader is referred
to [17] for more detailed information including the performance of the other
modes.

2.2 FRAM Architecture

As a promising alternative to non-volatile storage such as flash, FRAM technol-
ogy offers many advantages. It avoids the long delays as well as the high current
supply required for programming (writing). The advantageous features of the
FRAM technology focus mainly on write operations. High speed (125 ns delay),
low power (82µA/MHz), and super high (1015) write cycles have been reported
for the 130 nm MSP430FR family of TI’s MCUs.

As a disadvantage we should refer to the fact that FRAM reads are destruc-
tive. That is, every read must be followed by a write operation (with the same
data). However, this is automatically handled by the FRAM controller, and the
end user does not need to pay any attention to this. Therefore, the frequency of
FRAM read operations are limited to the write speed. Due to this limit, TI has
integrated a read cache in front of the FRAM to accelerate the operations in case
the MCU operates at a higher frequency than the FRAM. In the MSP430FR
family, the FRAM can be operated at up to 8 MHz without use of this cache.
When the MCU operates at a frequency of 16 MHz (the maximum operation
frequency of the MSP430FR family), the cache is utilized.

The integrated cache is a two-way associative cache containing two cache
sets [17]. Each of these sets consists of two lines of four words (64 bits). The cache
controller selects one of the cache lines to preload FRAM data and preserves
recently-accessed data in the other cache line. If one of the four words stored in
one of the cache lines is requested (a cache hit), no FRAM access occurs, and
the requested data is read from the cache with full system speed. However, if
none of the words that are available in the cache is requested (a cache miss),
a wait state (one clock cycle at 16 MHz) controls the CPU to ensure proper



4 Amir Moradi and Gesine Hinterwälder
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Fig. 1. Structure of the two-way associative cache

FRAM access. Therefore, memory read accesses on consecutive addresses can be
executed without wait states when they are within the same cache line.

Each 64-bit location in FRAM can be cached in only one of the two sets in
the cache. As shown in Figure 1, the most common scheme is to use the least
significant bit of the FRAM location’s address as the indicator to the corre-
sponding cache set. We should emphasize that FRAM contains both program
code and data, e.g., look-up tables, which are to be stored in the non-volatile
memory. Hence, frequent jumps and frequent accesses to the pre-stored tables
in FRAM can negatively affect the cache performance.

3 Analyses

In this section we present various analyses that we performed on an FRAM-
based MCU. We first present the framework that we used, and then describe
each analysis in detail.

3.1 Setup

The practical analyses have been conducted on an MSP-EXP430FR5969 Launch-
pad Evaluation Kit, and we used IAR Embedded Workbench IDE as well as Code
Composer Studio to develop and compile the codes. This evaluation platform
has been developed to facilitate power measurements. As shown in Figure 2, we
could easily place a 1.8 Ω resistor at the VCC path of the MSP430FR5969 MCU
while no stabilizing capacitor was placed between the measurement point and
the MCU. We monitored the current passing through the MCU by means of a
LeCroy WaveRunner HRO 66Zi digital oscilloscope at a sampling rate of 1 GS/s.
We also used an I/O pin of the MSP-EXP430FR5969 Launchpad Evaluation
Kit as trigger signal to align the collected traces. We provided a 16 MHz crystal
oscillator as external clock source, and by clock source configurations drove the
MCU at our desired frequency (explained below for each target).

Due to the very low power consumption of the MCU, we employed a DC
blocker (BLK-89-S+ from Mini-Circuits) and an AC amplifier (ZFL-1000LN+
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from Mini-Circuits) to collect the power traces with a considerably high quality.
Further, we limited the oscilloscope bandwidth to 20 MHz to reduce the electrical
noise.

Metrics: For the side-channel analysis we mainly used correlation power analy-
sis (CPA) [3] to mount key-recovery attacks. However, in some cases we applied
a statistical t-test [5]. The goal of such a scheme is not to examine a key-recovery
attack, but rather it provides an overview of the existence of a leakage which
might be exploited by an attack. The concept of t-test is based on the classical
DPA attack of [9].

Following the concept of DPA, the traces t ∈ T are categorized into two
groups g1 and g2. Recall that Welch’s (two-tailed) t-test is computed as

t =
µ(t ∈ g1)− µ(t ∈ g2)√

δ2(t∈g1)
|g1| + δ2(t∈g2)

|g2|

,

where µ and δ2 denote the sample mean and the sample variance respectively,
and |.| stands for the cardinality. The t-test indeed examines the validity of the
null hypothesis as the samples in both groups (g1 and g2) were drawn from the
same population. If the null hypothesis is correct, it can be concluded with a
high level of confidence that a corresponding DPA attack cannot exploit the
leakage.

For such a conclusion the Student’s t-distribution density function in addition
to the degree of freedom is applied to determine the probability of rejecting the
aforementioned hypothesis (for more information see [5]). For typical evaluations,
a threshold for |t| as > 4.5 is defined to reject the null hypothesis and conclude
that the device exhibits a first-order leakage. This process is repeated at each
sample point independently.

The remaining point to mention is the way that the categorization of traces
into the groups g1 and g2 is performed. For a specific t-test this classification is
done based on a chosen intermediate value. During the measurements the input
(plaintext) is taken randomly while the key is kept constant for all the collected
traces. With respect to the corresponding DPA attack – for example – an Sbox
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output bit directs the classification. Many intermediate values should be con-
sidered in the evaluations to examine the feasibility of each corresponding DPA
attack. Instead, a non-specific t-test can be performed, which can examine the
existence of leakage without any required intermediate value. In such a test, a
fixed input (plaintext) is selected, and the measurements are randomly inter-
leaved between the fixed and random inputs. So the non-specific t-test is also
called fixed vs. random t-test. Hence, based on the given input (fixed or random)
the traces are categorized into g1 and g2. It is noteworthy that such a leakage
assessment scheme has been also used in [2].

3.2 AES Hardware Accelerator

As the first target we focus on the AES accelerator. As stated in Section 2.1, the
AES module can perform the encryption and decryption functions in a couple of
different settings. We evaluate only the AES-128 encryption function with on-
the-fly round key computation, which takes 168 clock cycles. Following the con-
figurations given in [17] we developed assembly code (in IAR Embedded Work-
bench IDE) to activate the aforementioned function. We intentionally wrote the
code in such a way that it waits in a loop till the operation of the requested
encryption is finished. It allows us to observe only the leakage of the AES ac-
celerator module. Further, we configured the MCU to operate at a frequency of
2 MHz.

Figure 3(a) shows an exemplary power trace confirming its ultra-low power
consumption. In order to examine the vulnerability of such a module to power
analysis attacks, we first performed a couple of specific t-tests with intermediate
values including i) the cipher round output bits (128 cases), ii) XOR between
the cipher input and output bits (128 cases), iii) the SubBytes output bits (128
cases), iv) XOR between the SubBytes input and output bits (128 cases), v) the
SubBytes output bytes (16 × 256 cases), and vi) XOR between different Sbox
output bits (

(
16
2

)
×8 cases). The best results have been achieved considering the

SubBytes output bits as well as the XOR between the SubBytes input and output
bits (cases iii and iv). As a proof of concept we performed CPA attacks with the
corresponding power models. For instance, Figure 3 presents the results of two
CPA attacks using 100 000 traces. The power models have been chosen as i) an
Sbox output bit and ii) a bit of the XOR result of an Sbox input and output. It
is noteworthy that the attacks with common power models like Hamming weight
(HW) models are also feasible, but not as efficient as those mentioned above.

We should stress here that although the AES accelerator is vulnerable to
these state-of-the-art attacks, the effort an attacker needs to put in to recover the
key is higher compared to e.g., the cases of Atmel’s XMEGA [8] and KeeLoq [4].
This hardness results mainly from the low-power feature of the underlying tech-
nology. Further, as stated, we kept the MCU in an idle state to be able to observe
the leakage of the AES module. The power consumption peaks related to the
normal operation of the MCU are actually much higher than that of the AES
module (see Figure 4(a)). Such high power peaks are due to the FRAM reads (as
stated followed automatically by a write) as the program code (instructions) has
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Fig. 3. AES in hardware: (a) a sample trace (full AES), (b) and (c) CPA attack results
using 100 000 traces

been stored in FRAM. In short, when the MCU operates simultaneously with
the AES accelerator, the above-presented attacks become harder.

3.3 AES in Software

As a case study to examine the leakage of the normal operation of the MCU, we
took the AES-128 implementation recommended by TI and publicly available at
http://www.ti.com/tool/AES-128. Both encryption and decryption functions
are written in C, and we used IAR Embedded Workbench IDE to compile the
encryption code and ran it on our evaluation kit at a frequency of 8 MHz. We first
realized that the length of the traces is not constant, and the implementation
needs different number of clock cycles depending on the plaintext. The source of
this issue was found in the way that multiply by 2 (used for MixColumns) has
been implemented:

1 unsigned char galois_mul2(unsigned char value)

{

3 if (value >>7)

{

5 return ((value << 1)^0x1b);

} else

7 return (value << 1);}
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attack results using 100 000 traces

As a result the implementation is vulnerable to a classical timing attack by
predicting whether the extra reduction (XOR by the polynomial) is required or
not. We have implemented such an attack and could easily recover the key using
less than 5000 timing measurements (of the full encryption). Further, such an
implementation is trivially vulnerable to a simple power analysis attack, where
by observing each power trace the adversary can conclude whether the extra
reduction was performed or not directly leading to a shrink in the key space.

Regardless of this issue we examined the efficiency of the start-of-the-art
power analysis attacks. A sample trace covering the first round of the encryption
is shown in Figure 4(a). In short, several attacks by different hypothetical power
models are feasible, as expected. The results of two CPA attacks predicting a bit
of an Sbox output as well as the HW of the Sbox output are shown in Figure 4.
It is noteworthy that compared to the AES accelerator, the leakages associated
with the execution of the MCU instructions are an order of magnitude easier
to exploit. In fact, the ultra-low-power feature of the underlying MCU does not
play an important role to harden the attacks.

3.4 Cache

As explained in Section 2, the FRAM is equipped with a cache to accelerate the
access to consecutive memory locations when the MCU runs at a higher speed
than the FRAM. In order to examine the effect of cache miss/hits we considered
the AES encryption function in software (the case study of Section 3.3). To
enable the cache we adjusted the clock source settings to operate the MCU at
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a frequency of 16 MHz. Figure 5 shows a couple of traces during the SubBytes
operation (one Sbox call). It can be seen that the traces belonging to cache hit
and cache miss are clearly distinguishable. Therefore, a trace-driven cache attack
is possible. In other words, by comparing a couple of traces the attacker would
be able to detect whether each Sbox call caused a cache miss or not.

For an attack scenario let us consider two consecutive Sbox calls S(p1 ⊕ k1)
and S(p2 ⊕ k2). If by observing the power traces the attacker detects a cache
hit during the second Sbox call, it can be directly concluded that the two Sbox
calls accessed nearby memory locations. Therefore, the attacker can gain certain
information about ∆k = k1 ⊕ k2 = p1 ⊕ p2. With respect to the underlying
cache architecture, i.e., 64-bit lines (8 bytes), the five most significant bits of
∆k can be recovered by the attacker. This is true, if the Sbox table starts at a
location in FRAM corresponding to the first byte of a cache line. In other words,
the first entry of the Sbox table needs to be stored in a location with address
xx...xx000. Otherwise, the recovered bits of ∆k is reduced to the four most
significant bits.

As a proof of concept we developed a scenario to perform such an attack.
In such a scenario we collected 256 power traces Ti∈{0,...,255} where the first
plaintext byte p1 is constantly set to an arbitrary value, e.g., 0, and the second
one p2 = i. The rest of the plaintext bytes can be arbitrarily selected. By
observing the power traces and detecting a cache hit with p2 = p′2, a part of
k1 ⊕ k2 = p′2 is recovered. Indeed, it is not required to collect all 256 traces;
once a cache hit is detected the process can be terminated. For the second phase
of the attack, again at most 256 traces are collected with plaintext bytes p1 = 0,
p2 = p′2, and p3 = i. The same process is repeated to find the colliding case
for p3 = p′3 and recovering a part of k1 ⊕ k3 = p′3. The selection of p2 = p′2 is
necessary to avoid replacing the part of the cache filled during the first Sbox call.
This process is repeated for the other plaintext bytes. At the end of the attack,
the key space is limited to 25 · 23×16 = 253 or to 24 · 24×16 = 268 depending on
the location the Sbox table is stored in. However, the attack can be extended to
the second round and recover more relations to again shrink the key space.

An important issue, which should be mentioned, is that since the program
code is also stored in FRAM, the execution of the instructions (fetching them
from FRAM) by the MCU also affects the cache misses/hits. In the above-given
example all 16 Sbox calls are trivially performed in a loop. If this is not the
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Fig. 6. (a) classical Boolean masking, (b) the scheme of [7]

case, the instructions performed between two consecutive Sbox calls can already
replace the interesting line of the cache and avoid any cache hit by the second
call. The presented attack scenario is only an example of a common scheme in
the presence of a cache. It should also be emphasized that since the cache is
shared between the program and data memory, exploiting the leakage by timing
attacks (as a time-driven cache attack) is not trivial. In general, we show the
leakage sources which should be taken into account when using such an MCU in
a security-related application.

3.5 Internal Architecture

As the last case study we considered a masking scheme, which has been developed
to provide security against side-channel attacks at any order. The scheme, which
is based on the work presented in [14] has been implemented on an FRAM-based
MCU as a proof of concept [7]. Therefore, we could easily integrate the same
program code on our platform and perform the evaluations.

With respect to Figure 6, we restate the underlying scheme. In a classical
first-order Boolean masking (Figure 6(a)), x and m (resp. input and random
mask) are given to the device, which generates two outputs as S(x ⊕ m ⊕ k)
and q : S(x⊕m⊕ k)⊕ S(x⊕ k) as a shared representation of S(x⊕ k). Such a
scheme is certainly vulnerable to a second-order attack combining the leakages
associated with the output shares. The concept followed in [14] and [7] is to
involve more random data in the computations in such a way that the look-
up tables g1, R, and RC are precomputed based on the predefined key k and
random data a1, a2, and a3 in a secure environment (see Figure 6(b)). During
the operation (similar to the classical Boolean masking) x and m are given to
the device, and all the operations are performed by the aforementioned look-up
tables. As each of the look-up tables involves a random ai which is independent
of the others, the adversary should not be able to recover any information by
combining the leakage of the look-up tables and/or the output shares.

After a random selection of a1, a2, and a3, the precomputations (Algorithm 1)
are supposed to be performed in a secure environment, i.e., no side-channel
measurement is permitted. After finishing all operations in the operational phase,
e.g., for an Sbox as shown in Algorithm 2, g2(·, ·) can be applied on (s1, s2) to
obtain the unmasked result (in this case S(x⊕ k)).
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Algorithm 1: Look-up Table Precomputation

input : k, a1, a2, and a3

output: g1(·, ·), R(·), RC(·, ·), and g2(·, ·)

∀i, j; g1(i, j) = i⊕ j ⊕ a1

∀i; R(i) = S(i⊕ k)⊕ a2

∀i, j; RC(i, j) = S(i⊕ k)⊕ a2 ⊕ S(i⊕ j ⊕ k ⊕ a1)⊕ a3

∀i, j; g2(i, j) = i⊕ j ⊕ a3

Algorithm 2: Operation

input : x, m, g1(·, ·), R(·), and RC(·, ·)
output: (s1, s2)

g = g1(x,m) ; /* :x⊕m⊕ a1 */

s1 = R(g) ; /* :S(x⊕m⊕ a1 ⊕ k)⊕ a2 */

s2 = RC(g,m) ; /* :S(x⊕m⊕ a1 ⊕ k)⊕ a2 ⊕ S(x⊕ k)⊕ a3 */

A simplified and reduced version of the LED cipher [6] has been considered
in [7] as an example to be implemented by the above-restated scheme. This
reduced LED consists of only four rounds (cf. Figure 7) and a 16-bit (4 × 4)
data width (i.e., it works only on the first column of the full LED state). We
integrated the corresponding code and ran the MCU at a frequency of 8 MHz.
It should be noted that before each encryption the look-up tables g1, g2, R, and
RC are recomputed, i.e., there is no mask reuse in the whole scheme. By means
of appropriate trigger signals as well as inserting a large enough gap between
the precomputation phase and the operational phase we made sure to measure
the power consumption of the MCU only during the operational phase. As we
planned to perform a non-specific t-test, we collected 150 000 traces while a fixed
value (as 0) or a random one – in a randomly interleaved fashion – was given
to the MCU as plaintext. The result of both first- and second-order univariate
t-tests are shown in Figure 8. Unexpectedly, the tests report both first- and
second-order leakages.

Fig. 6. Reduced version of the block cipher LED.

While such a cipher is naturally too small for being deployed in actual ap-
plications, we use it to refine our model for RLUT performance estimates. As
will be discussed in the next sections, scaling to larger number of rounds and
block size (e.g. the full 64-bit LED cipher) will be possible in soon available 128-
and 256-kilobyte versions of our FRAM microcontroller. In the figure, the 4-bit
S-boxes of LED are denoted as S, and its linear diffusion layer as MixColumns.

4.3 Implementation in FRAM microcontrollers

We now describe how to implement reduced (with up to 4 rounds) LED ciphers
within the 16 kilobytes of FRAM available in our MSP430FR microcontroller.

The first building block required in a RLUT-masked implementation is a
randomness generator (needed to produce the ai values of Algorithm 1). For
illustration, we used a LFSR with CRC-32 polynomial for this purpose (al-
ternative ways of generating randomness could of be considered, e.g. using a
leakage-resilient PRG if leaking pre-computations are considered [5, 17]).

Next, the part computing the randomized program can be implemented quite
straightforwardly, following the description in Section 4.1. The trickiest bit was
to efficiently arrange 4-bit outputs into memory bytes, without giving any un-
necessary information on the RLUT input values3. Using one byte to store two
consecutive RLUT outputs was rejected, since accessing one or the other value
in the byte would have led to different code behaviors, depending on the LSB bit
of the RLUT’s input. Instead, we stored the outputs coming from two different
RLUTs for the same input value in a single byte. This time, the LSB (resp.
MSB) part of one byte will be accessed when an odd (resp. even) word of the
state needs to be computed, giving no information on the word’s value itself.
Based on this strategy, the RLUTs R and RC can be generated efficiently from
the cipher key, the S-Box and the table map, that are all stored in memory.

3 This has no impact on the security in case of secure pre-computation, but may
increase the information leakage in case of online randomization of the tables.

Fig. 7. Reduced LED (taken from [7])
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Fig. 8. Reduced LED @ 8 MHz: (a) sample trace (operational phase), (b) and (c) t-test
results first- and second-order respectively using 150 000 traces

As stated, the scheme is supposed to provide resistance against the attacks at
any order. The exploitable leakage, that we presented, is not due to the under-
lying scheme. In other words, we do not report any flaws in the algorithm or in
the implementation of [7]. Instead, we show that even theoretically-sound coun-
termeasures can fall into failure because of the internal architecture of the un-
derlying platform. By slightly changing the program code and performing many
measurements and analyses, we found out that the instructions which perform
the table look-ups are the source of the observed leakages. More precisely, the
exemplary instruction

1 mov.b @pointer , m0

which implements the call to the look-up table RC(g,m) (see Figure 6(b) and
Algorithm 2) causes such a leakage. Since the details of the MCU architecture
are not publicly available, the reason of the observed leakage cannot be easily
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pinpointed. Further, although we showed an exploitable leakage, the evaluation
we performed (non-specific t-test) cannot give a clear assessment on the hardness
of an attack exploiting such leakage.

We give an example to show the strong effect of the MCU’s internal archi-
tecture on the side-channel vulnerability. We observed that if a random value is
written to a location in FRAM the leakage associated with this write operation
depends on the value which has been previously stored in that location. In other
words, suppose that x has been stored at location address. A write operation,
which stores a random value m at location address, leads to a leakage associ-
ated with the value of x as well. We observed such leakage during the evaluation
of the above-expressed reduced LED implementation. At one point in the code
(during the operational phase) a masked intermediate value is stored at a loca-
tion where the unmasked plaintext had been stored before (at lines 4 and 7 of
the below code):

1 mov #STATE , pointer

rlam #4, st0

3 add st1 , st0

mov.b st0 , 0( pointer)

5 rlam #4, st2

add st3 , st2

7 mov.b st2 , 1( pointer)

In order to avoid such a strong leakage (shown in Figure 9) we cleared the
contents of this location during the precomputation phase by:

1 mov #STATE , pointer

mov.b #0x00 ,0( pointer)

3 mov.b #0x00 ,1( pointer)

This indeed is an evidence to the statement given above. We believe that such
leakage is due to the FRAM architecture as well as the way a write operation is
performed.

0 50 100 150 200 
−25

0

60

t

Time [μs]

Fig. 9. Reduced LED (uncleared #STATE) @ 8 MHz: first-order t-test result using
35 000 traces
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4 Conclusions

In this work we have extensively examined the side-channel vulnerability of
FRAM-based MCUs of Texas Instruments as a platform for cryptographic ap-
plications. The motivation of this work is related to the relevant announcements
dealing with the ultra-low-power feature of such MCUs and the claims on the
hardness of power analysis attacks. Hence, we focused only on the power con-
sumption of the underlying device and presented the corresponding evaluation
results. The covered targets include the embedded AES accelerator (hardware),
ordinary instructions of the MCU (software), FRAM cache, and the MCU inter-
nal architecture. In short, by means of practical investigations we confirm the
hardness (but still feasibility) of the attacks on the embedded AES accelerator
compared to similar targets of such attacks, e.g., the embedded AES core of At-
mel’s XMEGA MCUs. Such a hardness is mainly due to its low-power technology
which leads to a high noise level in the measurements. However, when a cryp-
tographic algorithm is implemented by the general-purpose MCU instructions,
our practical results showed feasibility of straightforward and common DPA at-
tacks without any serious difficulties. The cache, which has been integrated to
accelerate the FRAM accesses, also comes with known security issues. Since an
FRAM read must be followed by an FRAM write with the same value due to
its destructive nature, an FRAM access consumes much more energy compared
to a cache access. Hence, cache hit/miss can be clearly distinguished by observ-
ing the power traces. Although the cache is shared between the program and
data memory (in MSP430FR5xxx family), we have shown that the trace-driven
cache attacks (which exploit the sequence of cache misses/hits) are expectedly
feasible. We also took a masking scheme into account, that has been developed
in particular for platforms with a large non-volatile memory, e.g., FRAM-based
MCUs. The scheme is based on precomputed randomized look-up tables and is
expected to provide security against side-channel attacks of any order. Although
there are no theoretical flaws in its developments, we have demonstrated that
its implementation cannot pass a general leakage assessment test. The reason
for such a failure lies in the details of the implementation platform (the MCU)
regardless of the soundness of the underlying masking scheme.

On the one hand, the results we presented here are more or less expected
as we targeted an unprotected platform where side-channel analysis should be
feasible. On the other hand, this work gives an overview about the feasibility
of exploiting various leakage sources of the underlying platform. Such informa-
tion spreads awareness of the available leakage sources, and is certainly useful
for cryptographic engineers, who deal with such a platform for security-related
applications.
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