
Achieving Side-Channel Protection with Dynamic
Logic Reconfiguration on Modern FPGAs

Pascal Sasdrich∗, Amir Moradi∗, Oliver Mischke∗†, Tim Güneysu∗
∗Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany
{pascal.sasdrich, amir.moradi, oliver.mischke, tim.gueneysu}@rub.de

†Infineon Technologies AG, Chip Card & Security Division, Munich, Germany
oliver.mischke@infineon.com

Abstract—Reconfigurability is a unique feature of modern
FPGA devices to load hardware circuits just on demand. This also
implies that a completely different set of circuits might operate
at the exact same location of the FPGA at different time slots,
making it difficult for an external observer or attacker to predict
what will happen at what time. In this work we present and
evaluate a novel hardware implementation of the lightweight
cipher PRESENT with built-in side-channel countermeasures
based on dynamic logic reconfiguration. In our design we
make use of Configurable Look-Up Tables (CFGLUT) integrated
in modern Xilinx FPGAs to nearly instantaneously change
hardware internals of our cipher implementation for improved
resistance against side-channel attacks. We provide evidence from
practical experiments based on a Spartan-6 platform that even
with 10 million recorded power traces we were unable to detect a
first-order leakage using the state-of-the-art leakage assessment.

I. INTRODUCTION

Side-channel analysis (SCA) exploits information leakage
related to device internals, for example, by inspecting its power
consumption [1]. This way, the theoretic security provided
by a cryptographic primitive can be easily overcome if the
device is not equipped with any SCA countermeasures. Many
different countermeasures against SCA attacks have been
already proposed that are typically classified as masking and
hiding [2]. The main concept behind masking is to randomize
the processed values by adding random masks so that it should
become impossible for an attacker to predict intermediate
values. With respect to signal-to-noise ratio other counter-
measures aim at either increasing the noise by introducing
noise generation resources [2], [3] or reducing the signal
by e.g., equalizing the power consumption [4]. Despite the
many proposals, only few of them are able to achieve the
claimed level of security due to the presence of glitches inside
the combinatorial masked circuits (for example see [5], [6]).
Instead of masking combinatorial circuits, critical elements
such as S-boxes can be realized as look-up tables that are
dynamically randomized in memory. Such an approach based
on scrambling block RAM (BRAM) contents of FPGAs has
been presented in [3].

Contribution. In this work we present a novel implementa-
tion approach to randomize look-up tables which makes use of
the dynamic reconfiguration feature of certain building blocks
of FPGAs. In particular, our approach employs special LUT el-

ements inside a Xilinx Spartan-6 FPGA as Configurable Look-
Up Tables (CFGLUT) [7] that can change their configuration
on the fly. This not only allows a more fine-grain but also
by far a more flexible randomization of look-up tables on
FPGAs compared to the previous approach using large and
static 18 kBit BRAMs. As a case study we applied the new
technique for dynamically randomized look-up tables on an
implementation of the PRESENT cipher [8]. In addition, we
decomposed the S-box into several stages and utilized register
precharge to increase the overall resistance against SCA at-
tacks. We tested the effectiveness of each countermeasure and
their different combinations by applying the test vector leakage
assessment (TVLA) methodology proposed by Goodwill et
al. [9]. With all countermeasures enabled, we are unable to
detect a first-order leakage on 10 million captured power traces
from an SCA evaluation platform populated with a Spartan-
6 FPGA. This significantly improves the results from [10]
which is the only previous work that deals with using dynamic
(partial) reconfiguration as SCA countermeasure.

Outline. The remainder of this article is organized as fol-
lows: Section II explains how CFGLUTs of modern FPGAs
can be used to create reconfigurable tables of any size. We also
briefly introduce the reference architecture of PRESENT used
for our experiments. Our portfolio of countermeasures, such as
Boolean masking on LUTs, S-box decomposition, and register
precharge, are presented in Section III. Evaluation results for
our countermeasure is given in Section IV before we conclude
our work in Section V.

II. PRELIMINARIES

In the following we briefly describe the structure and
function of Configurable Look-Up Tables (CFGLUT) and how
any generic n-input and m-output Boolean logic function can
be realized based on our Reconfigurable Function Table (RFT)
concept. Afterwards, we introduce our basic architecture of the
lightweight block cipher PRESENT.

A. Configurable Look-Up Table (CFGLUT)

Starting with the Virtex-5 device family, Xilinx devices are
equipped with elements named Configurable Look-Up Tables
that enable fast dynamic logic reconfiguration during runtime.
Instead of modifying the configuration by full or partial

P
er

m
u

ta
ti

o
n

Substitution

key
schedule

CFGoL1 CFGoL2DELAY

NEXToSTATE

RND

IN

RND

KEYMASKED

INPUT

KEY

MASKED

OUTPUT

...

SRL16 SRL16SRL16

xo⊕om1 L1bxlo⊕om2

Recon. Logic Recon. LogicDelay Stage

...

SRL16

I

O

CLK CE

A

SRL1

SRL2

SRL4

SRL3

SRL1

SRL2

SRL4

SRL3

SRL1 SRL2 SRL3 SRL4

IN

OUT0 OUT1 OUT2 OUT3

CFG0 CFG1 CFG2 CFG3R
e

c
o

n
fi
g

u
ra

b
le

oS
-B

o
x

...

C
F

G
L

U
T

CDI

O

CLK CE

ICDO

(a)

CFGLUT CFGLUT CFGLUT CFGLUT CFGLUT CFGLUT CFGLUT CFGLUT

CFGLUTCFGLUTCFGLUTCFGLUTCFGLUTCFGLUTCFGLUTCFGLUT

(b)

Fig. 1: (a) Configurable Look-Up Table as a basic module
for Reconfigurable Function Tables (b) Exemplary design
structure of a (6× 4) Reconfigurable Function Table

bitstream reconfiguration, the function of Configurable LUTs
can be loaded and replaced instantaneously without external
intervention. Internally, each CFGLUT consists of a distributed
memory block that can operate as a 16-bit Shift Register Look-
Up Table (SRL16). Hence, even for older devices that do not
provide dynamic logic reconfiguration, SRL16 instances can
be used with slight effort to achieve the same functionality.

Figure 1a outlines the internal structure of a Configurable
LUT that is composed of a 16-bit shift configuration memory
and a subsequent multiplexer stage. Due to the restricted
configuration memory size of 16 bits, each CFGLUT can
realize at most a 4-input and 1-output Boolean function. In
order to implement any (n × m) Boolean function, we now
introduce the general concept for Reconfigurable Function
Tables.

B. Reconfigurable Function Table (RFT)

In general, any (n×1)-output Boolean function can be real-
ized using multiple (Configurable) Look-Up Tables combined
by a multiplexer cascade. If this structure is instantiated m
times with shared inputs, we call this a (n × m) Reconfig-
urable Function Table (RFT). Internally, each RFT consists
of m · d2n−4e CFGLUT instances structured as shown in
Figure 1b.

Using the example of an AES S-box the structure of a
(8 × 8) RFT can be illustrated: an 8-input, 1-output Boolean
function can be realized using 16 Configurable Look-Up
Tables connected by cascading 15 multiplexers (each 2-to-1)1.
This structure is instantiated 8 times while sharing the input
signals. Thus, the entire AES S-box Reconfigurable Function
Table could be built of 128 CFGLUT.

1This overhead can be reduced by utilizing LUTs as multiplexer.

P
er
m
u
ta
ti
o
n

key
schedule

RND

KEYPlaintext

Key
Ciphertext

S-Box

S P

Ciphertext

Plaintext

Round Key

Fig. 2: Full-parallel round-based PRESENT encryption archi-
tecture

Obviously, for large RFTs this structure becomes inef-
ficient since e.g., (excluding the necessary multiplexers) a
non-reconfigurable AES S-box can be realized by 32 LUT6
compared to 128 CFGLUT which can be mounted into 64
LUT6. Therefore, we primarily propose RFTs for lightweight
ciphers or those employing (4×4) S-boxes that can be realized
more easily by an RFT of 4 CFGLUTs. In this work we have
chosen to implement the PRESENT cipher as a case study.

C. Basic Architecture
PRESENT is a symmetric lightweight block cipher with a

block size of 64 bits. The encryption scheme is based on a
Substitution-Permutation (S/P) network encrypting a plaintext
within 31 rounds using 32 sub-keys. Each sub-key is derived
from an initial 80-bit (or 128-bit) key. Figure 2 provides an
overview of our architecture design implemented on an FPGA.
We opted to implement the PRESENT encryption scheme in
a round-based architecture that requires two clock cycles per
round and derives sub-keys on the fly. The datapath has a
width of 64 bits and the substitution layer consists of 16
parallel S-boxes including the state registers. The permutation
is applied bitwise and can be realized in hardware by plain
routing resources. The total overhead of our protected design
compared to a simple round based architecture is shown in
Table I.

Unprotected Protected
Design Component Logic Memory Logic Memory

(LUT) (FF) (LUT) (FF)

Keyschedule 48 85 48 85

Round Function 128 64 224 128
Key Addition 64 - 64 -
Single S-box 4 4 10 8

Countermeasure Instance - - 1236 388
Decomp. + Masking - - 1172 260

Precharge - - 64 128

Latency Time Time
(Clock Cycles) (Clock Cycles)

S-box Decomposition - 16∗

Reconfiguration - 16
Encryption 31 62

∗This time can be avoided if a new decomposition is computed in parallel
to a previous encryption.

TABLE I: Comparison of Resource Utilization and Time
Overhead for Unprotected and Protected PRESENT Designs

III. COUNTERMEASURES

The evaluation of hardware countermeasures is a tricky
problem due to the many different reasons for side-channel
leakages in the design space, including the routing and place-
ment of resources. However, in order to fairly investigate and
compare the effectiveness of our proposed countermeasures,
we apply a modular approach. More precisely, each counter-
measure can be separately enabled for individual and joint
evaluation with others. We now delve into the details how
we integrated the countermeasures into the basic architecture
presented in Section II-C.

A. S-box Random Decomposition

Side-channel leakages can often be found in power traces
on critical transitions in the combinatorial circuit after a
change in a driving register. Since most side-channel attacks
on symmetric block ciphers target the output of the non-linear
substitution layer, it might be beneficial to avoid the storage of
the S-box outputs into such registers. Therefore, we introduce
the idea of a random S-box decomposition. By moving the
state register into the substitution layer, we split the standard
S-box up into two (random) mappings. Hence, we never store
a correct S-box output into a register but only (randomly)
mapped values.

The two mappings, surrounding the state register, are built
of two (4 × 4) RFTs in order to be able to update their
configuration for every encryption. The first RFT is configured
to realize a randomly selected bijection R1. Hence, the second
RFT should be configured to implement the bijection R2 in
such a way that ∀x, R2(R1(x)) = S(x). This means that only
the application of both mappings results in the correct S-box
output which, however, is never stored to a register. Instead,
the intermediate register only holds a value R1(x) which is
unpredictable for an attacker.

The configuration of both RFTs (of R1 and R2) is computed
randomly prior to every encryption within 16 clock cycles.
R1 is computed by swapping two random elements of the
identity configuration while R2 is computed using the equation
R2(R1(x)) = S(x). All 16 S-boxes of the round function
share the same configuration and before the encryption of a
plaintext can start, the derived configuration is loaded into the
RFTs within another 16 clock cycles. It is possible to compute
new configurations in parallel to an encryption, but to evaluate
our design in a worst-case scenario (i.e., the best an attacker
can achieve) we avoided such parallelism.

Note that if S-box decomposition is disabled, the configu-
ration of R1 is the standard PRESENT S-box, and hence R2

realizes the identity mapping.

B. Boolean Masking

Algorithmic Boolean masking is intended to randomize
the intermediate values of a cipher implementation by addi-
tively introducing random masks. Since the modification of
intermediate values affects the computation, Boolean masking
requires some adaptions for the implementation. In particular,
the non-linear substitution layer, i.e., the S-box configuration

of our cipher implementation, has to be updated depending
on the randomly selected mask. In order to keep the masking
countermeasure compatible to the S-box decomposition, we
mask both RFTs (R1 and R2) independently based on m1 and
m2 respectively. To keep the masked tables constant for every
round we update the masks only prior to each encryption. The
configuration of each table, i.e., R1 and R2, is then recomputed
as follows:

R′1(x) = R1(x⊕m1)⊕m2 (1)

R′2(x) = R2(x⊕m2)⊕ P−1(m1), (2)

where P denotes the PRESENT PLayer. This means that each
nibble of the round state is masked by a 4-bit mask m1. After
the computation of the first mapping R1 (regardless of whether
R1 is a random mapping or the standard S-box), the mask is
changed to m2 and the masked state is stored to the register
stage. Afterwards, the second mapping is applied, changing
the mask for every nibble from m2 to the inverse permutation
of m1. This means that after the linear permutation layer of
PRESENT, the round state is again masked with the initial
mask m1. Thus, the masking is kept constant for all rounds
of one encryption.

We need to emphasize that we do not reuse any masks at
each round. In other words, for each state nibble, two indepen-
dent 4-bit m1 and m2 are chosen from a uniform distribution.
In total, for the masking our design requires 128 random bits
prior to each encryption. The masking countermeasure can be
disabled easily by setting all m1 and m2 to zero.

C. Register Precharge

Since in our design the masks do not change during one
encryption, the round inputs (resp. outputs) are masked with
the same masks. Hence, the state register introduces a leakage
by storing the consecutive round inputs. Such a leakage can
be easily detected by a Hamming distance model as

HD(x⊕m, y ⊕m) = HW(x⊕ y).

Therefore, we expanded the single register stage into two
registers to avoid such a leakage.

Depending on the initial content of the registers, the en-
cryption rounds are always interleaved with another dummy
encryption round. This technique avoids the aforementioned
leakage but reduces the throughput by the factor of two. If
this feature is disabled, the loop multiplexer (see Figure 2)
passes the plaintext for two initial clock cycles, filling both
registers with the same value.

The final design of our S-box, including all proposed
countermeasures is shown in Figure 3. For our implementation,
this S-box is instantiated 16 times as depicted in Figure 2.

IV. PRACTICAL EVALUATION

We employed a SAKURA-G platform [11], i.e., a Spartan-6
FPGA, for practical SCA evaluations. The power consumption
traces have been measured by means of a pico Technology
digital oscilloscope (PicoScope 6402B) by monitoring the
voltage drop over a 1 Ω resistor in the Vdd path. We have used

...

RFT R1

CFG1

...

CFG2

RFT R2

S-BoxCLK CE CLK CE

SIN SOUT

Fig. 3: 4-bit PRESENT S-box using Reconfigurable Function
Tables

the embedded amplifier of the SAKURA-G and recorded the
traces at a sampling rate of 625 MS/s while the design was
running at a low clock frequency of 3 MHz to reduce noise
caused by the overlap of power traces.

A. Specific Statistical t-test

In order to evaluate the resistance/vulnerability of our
designs, we applied a specific statistical t-test [9]. The goal
of such a scheme is not to examine a key-recover attack,
rather – with respect to the underlying model – it provides an
overview of the existence of a leakage which can be extracted
by an attack. The concept of the specific t-test is based on the
classical DPA attack of [1]. During the measurements the input
(plaintext) is taken randomly while the key is fixed for all the
collected traces. The masks are also drawn from a uniform
distribution.

Following the concept of DPA, the traces T are categorized
into two groups G1 and G2 with respect to the taken inter-
mediate value. For such a categorization we considered three
groups of models (in sum 160 models): 1) S-box output bits
of one round (64 models), 2) XOR-result bits of the input of
two consecutive rounds (64 models), 3) the 4-bit value of two
S-Box outputs (each 16 models). For the sake of simplicity, we
consider only one point of the collected traces in the following
explanation.

Recall that Welch’s (two-tailed) t-test is computed as

t =
µ(T ∈ G1)− µ(T ∈ G2)√

δ2(T∈G1)
|G1| + δ2(T∈G2)

|G2|

,

where µ and δ2 denote the sample mean and sample variance
respectively, and |.| stands for the cardinality. The t-test indeed
examines the validity of the null hypothesis as the samples in
both groups were drawn from the same population. If the null
hypothesis is correct, it can be concluded with a high level of
confidence that a corresponding DPA attack cannot distinguish
the correct key.

For such a conclusion the Student’s t-distribution function
in addition to the degree of freedom is applied to determine the
probability to reject the aforementioned hypothesis (for more
information see [9]). For typical evaluations, a threshold as
|t| > 4.5 is defined to reject the null hypothesis and conclude

3.2 10.4
−43

0

32

Time [µs]

Fig. 4: Sample Power Trace

that a corresponding first-order attack is most likely feasible.
This process is repeated at each sample point independently.

B. No Countermeasure

For comparison purposes we start our evaluation with a
reference measurement, i.e., Profile 0, measuring one million
encryption runs with random plaintexts and a fixed key as input
and each of our proposed countermeasures disabled. Fig. 4
shows a sample power trace, where all 31 rounds, each taking
2 clock cycles, are clearly distinguishable. The results after the
application of the specific statistical t-test for all 144 models
are shown in Fig. 5a, 6a, 7a and 8a respectively. Obviously, for
these measurements, the |t| value exceeds the threshold of 4.5
for all models which means that all tests detect a first-order
leakage.

C. Single Countermeasure

In the next step, we investigate all countermeasures insu-
lated in order to assess the impact of each of them on the
first-order leakage of our design. Therefore, the following three
measurement profiles are evaluated:

1) Profile 1: S-box Random Decomposition
This countermeasure was introduced to avoid buffering
intermediate S-box values. The results of all applied
tests, i.e., all 144 models, can be seen in Fig. 5b, 6b, 7b
and 8b respectively. Although the S-box decomposition
avoids the S-box output to be stored in a register, it is
computed by the RFT of R2, and its associated leakage
is still detectable. According to the shown results, S-box
random decomposition reduces the first-order leakage
but is not sufficient to be solely applied.

2) Profile 2: Boolean Masking
Masking of intermediate values aims at decorrelating
power consumption and intermediate values using ran-
domization of the processed values. The evaluation of
this countermeasure based on 1 million power traces is
shown in Fig. 5c, 6c, 7c and 8c. Due to the reuse of
masks for all rounds, the Hamming distance between
two consecutive values does not depend on the masks but
only on the round outputs. Therefore, the evaluation re-
sults of Fig. 6c indicate a strong leakage for consecutive
round values although round outputs are randomized.

3) Profile 3: Register Precharge
An additional register stage and random initialization
counteracts Hamming distance leakage because buffered
data is not overwritten by consecutive results but random

values. The analysis results of this profile using 1 million
power measurements can be seen in Fig. 5d, 6d, 7d
and 8d. As expected, this countermeasure reduces the
leakage related to the XOR between consecutive rounds’
output (cf. Fig. 6d) but does not prevent the leakage
associated to the S-box computation neither for the 64
models of the output bits nor for the 16 models of the
output value.

D. Combination of Countermeasures

As a last step, we investigate all possible combinations of
two or more countermeasures in order to find the best solution.
This directly leads to the following four profiles:

1) Profile 4: Decomposition and Precharge
In such a setting, precharging only prevents Hamming
distance leakage, but the leakage of the S-box cannot
be compensated. Fig. 5e, 6e,7e and 8e show the t-test
results for all 144 models, but only for test group 2 the
leakage could be reduced almost to the thresholds. For
all other models still some leakage is detectable.

2) Profile 5: Masking and Precharge
The evaluation results of the combination of Boolean
masking and register precharge are shown in Fig. 5f,
6f, 7f and 8f. This combination already minimizes the
leakage but still, in particular in Fig. 5f, some leakage
is detectable using 1 million traces.

3) Profile 6: Decomposition and Masking
The t-test results of the combination of S-box decompo-
sition and Boolean masking can be seen in Fig. 5g, 6g,
7g and 8g. Apparently, this combination cannot com-
pensate the problems of both countermeasures (leakage
related to the XOR between consecutive rounds’ output)
and is not sufficient to prevent first-order leakage.

4) Profile 7: Decomposition, Masking and Precharge
This last profile combines all our proposed countermea-
sures in order to benefit from their advantages. Fig. 5h,
6h, 7h and 8h show the result of the corresponding eval-
uations. In this case, we even recorded 10 million power
traces, but could not detect any first-order leakage.

V. CONCLUSION

In this work we have presented a novel method to realize a
first-order masking scheme based on the process of dynamic
reconfiguration in modern FPGAs. Since the scheme uses
precomputed masked S-boxes realized by Configurable Look-
up Tables, its security is not affected by the known issues of
masked hardware, e.g., glitches. By using reconfiguration we
applied a dynamic decomposition of the S-boxes that includes
precharging of registers as well.

We have practically examined all countermeasures and their
combinations using the specific t-test leakage assessment
methodology. We can report that even after recording 10
million power traces, we were not able to detect any first-
order leakage when all countermeasures are active.

In short, we demonstrated an effective technique for FPGA-
based platforms to achieve first-order SCA resistance. Com-
pared to the known schemes, e.g., partial reconfiguration, our
proposed solution has still reasonable overheads.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology - CRYPTO ’99, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, ser. Lecture Notes in Computer
Science, M. J. Wiener, Ed., vol. 1666. Springer, 1999, pp. 388–397.

[2] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing
the secrets of smart cards. Springer, 2007.

[3] T. Güneysu and A. Moradi, “Generic Side-Channel Countermeasures for
Reconfigurable Devices,” in Cryptographic Hardware and Embedded
Systems - CHES 2011, Nara, Japan, September 28 - October 1, 2011.
Proceedings, ser. Lecture Notes in Computer Science, B. Preneel and
T. Takagi, Eds., vol. 6917. Springer, 2011, pp. 33–48.

[4] K. Tiri and I. Verbauwhede, “A Logic Level Design Methodology
for a Secure DPA Resistant ASIC or FPGA Implementation,” in
2004 Design, Automation and Test in Europe Conference and
Exposition (DATE 2004), 16-20 February 2004, Paris, France.
IEEE Computer Society, 2004, pp. 246–251. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/DATE.2004.1268856

[5] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully Attacking
Masked AES Hardware Implementations,” in Cryptographic Hardware
and Embedded Systems - CHES 2005, Edinburgh, UK, August 29
- September 1, 2005, Proceedings, ser. Lecture Notes in Computer
Science, J. R. Rao and B. Sunar, Eds., vol. 3659. Springer, 2005,
pp. 157–171.

[6] A. Moradi, O. Mischke, and T. Eisenbarth, “Correlation-Enhanced
Power Analysis Collision Attack,” in Cryptographic Hardware and
Embedded Systems, CHES 2010, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, ser. Lecture Notes in Computer Science,
S. Mangard and F. Standaert, Eds., vol. 6225. Springer, 2010, pp.
125–139.

[7] Xilinx, “Spartan-6 Libraries Guide for HDL Designs (UG615 v
14.1),” Available via http://www.xilinx.com/support/documentation/sw
manuals/xilinx14 1/spartan6 hdl.pdf, April 2012.

[8] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2007, Vienna, Austria, September 10-13, 2007,
Proceedings, ser. Lecture Notes in Computer Science, P. Paillier and
I. Verbauwhede, Eds., vol. 4727. Springer, 2007, pp. 450–466.

[9] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side-channel resistance validation,” in NIST Non-Invasive Attack Testing
Workshop, Nara, 2011. [Online]. Available: http://csrc.nist.gov/news
events/non-invasive-attack-testing-workshop/papers/08 Goodwill.pdf

[10] N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and Fault
Analysis Resistance in Hardware through Dynamic Reconfiguration,”
in Cryptographic Hardware and Embedded Systems - CHES 2008,
Washington, D.C., USA, August 10-13, 2008. Proceedings, ser. Lecture
Notes in Computer Science, E. Oswald and P. Rohatgi, Eds., vol. 5154.
Springer, 2008, pp. 346–362.

[11] H. Guntur, J. Ishii, and A. Satoh, “Side-channel AttacK User Reference
Architecture SAKURA-G,” in GCCE 2014. IEEE Computer Society,
2014, Further information are available via http://satoh.cs.uec.ac.jp/
SAKURA/index.html.

10.4 12
−56

0

28

Time [µs]

(a) Profile 0: No Countermeasure (1mio)
10.4 12

−42

0

12

Time [µs]

(b) Profile 1: S-box Decomposition (1mio)

10.4 12

−33

0

24

Time [µs]

(c) Profile 2: Boolean Masking (1mio)
10.4 12

−50

0

13

Time [µs]

(d) Profile 3: Register Precharge (1mio)

10.4 12

−24

0

7

Time [µs]

(e) Profile 4: Decomposition and Precharge (1mio)
10.4 12

−6

0

5

Time [µs]

(f) Profile 5: Masking and Precharge (1mio)

10.4 12

−21

0

14

Time [µs]

(g) Profile 6: Decomposition and Masking (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(h) Profile 7: Decomposition, Masking and Precharge

Fig. 5: Group 1 - S-box output bits (64 models)

10.4 12
−15

0

69

Time [µs]

(a) Profile 0: No Countermeasure (1mio)
10.4 12

−20

0

58

Time [µs]

(b) Profile 1: S-box Decomposition (1mio)

10.4 12
−22

0

92

Time [µs]

(c) Profile 2: Boolean Masking (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(d) Profile 3: Register Precharge (1mio)

10.4 12

−4.5

0

7

Time [µs]

(e) Profile 4: Decomposition and Precharge (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(f) Profile 5: Masking and Precharge (1mio)

10.4 12
−20

0

53

Time [µs]

(g) Profile 6: Decomposition and Masking (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(h) Profile 7: Decomposition, Masking and Precharge (10mio)

Fig. 6: Group 2 - XOR of round in and round out (64 models)

10.4 12

−20

0

19

Time [µs]

(a) Profile 0: No Countermeasure (1mio)
10.4 12

−23

0

20

Time [µs]

(b) Profile 1: S-box Decomposition (1mio)

10.4 12

−21

0

21

Time [µs]

(c) Profile 2: Boolean Masking (1mio)
10.4 12

−7

0

8

Time [µs]

(d) Profile 3: Register Precharge (1mio)

10.4 12

−8

0

8

Time [µs]

(e) Profile 4: Decomposition and Precharge (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(f) Profile 5: Masking and Precharge (1mio)

10.4 12

−12

0

13

Time [µs]

(g) Profile 6: Decomposition and Masking (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(h) Profile 7: Decomposition, Masking and Precharge (10mio)

Fig. 7: Group 3 - Output value of S-box S0 (16 models)

10.4 12

−14

0

13

Time [µs]

(a) Profile 0: No Countermeasure (1mio)
10.4 12

−12

0

15

Time [µs]

(b) Profile 1: S-box Decomposition (1mio)

10.4 12

−7

0

7

Time [µs]

(c) Profile 2: Boolean Masking (1mio)
10.4 12

−6

0

7

Time [µs]

(d) Profile 3: Register Precharge (1mio)

10.4 12

−5

0

7

Time [µs]

(e) Profile 4: Decomposition and Precharge (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(f) Profile 5: Masking and Precharge (1mio)

10.4 12

−4.5

0

4.5

Time [µs]

(g) Profile 6: Decomposition and Masking (1mio)
10.4 12

−4.5

0

4.5

Time [µs]

(h) Profile 7: Decomposition, Masking and Precharge (10mio)
Fig. 8: Group 4 - Output Value of S-box S1 (16 Models)

