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Abstract. Designing block ciphers and hash functions in a manner that resemble the AES in
many aspects has been very popular since Rijndael was adopted as the Advanced Encryption
Standard. However, in sharp contrast to the MixColumns operation, the security implications of
the way the state is permuted by the operation resembling ShiftRows has never been studied in
depth.
Here, we provide the first structured study of the influence of ShiftRows-like operations, or more
generally, word-wise permutations, in AES-like ciphers with respect to diffusion properties and
resistance towards differential- and linear attacks. After formalizing the concept of guaranteed
trail weights, we show a range of equivalence results for permutation layers in this context. We
prove that the trail weight analysis when using arbitrary word-wise permutations, with rotations
as a special case, reduces to a consideration of a specific normal form. Using a mixed-integer linear
programming approach, we obtain optimal parameters for a wide range of AES-like ciphers, and
show improvements on parameters for Rijndael-192, Rijndael-256, PRIMATEs-80 and Prøst-128.
As a separate result, we show for specific cases of the state geometry that a seemingly optimal
bound on the trail weight can be obtained using cyclic rotations only for the permutation layer,
i.e. in a very implementation friendly way.
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1 Introduction

Since 2000 with the standardization of Rijndael [11] as the Advanced Encryption Standard
(AES), an astonishing number of new primitives using components similar to the AES have
seen the light of day. Examples of such include, but are not limited to, block ciphers 3D [19],
ANUBIS [3], LED [16], mCrypton [21] and PRINCE [9], as well as hash functions like ECHO [5],
Grøstl [14], LANE [18], PHOTON [15], Twister [13] and components of CAESAR candidates
PAEQ [8], PRIMATEs [1], Prøst [20] and STRIBOB [25]. This can largely be attributed to
the seminal wide-trail design strategy [12] which was introduced along with Rijndael and its
predecessor SQUARE [10] for the first time.

The wide-trail strategy is an elegant way of ensuring good diffusion properties and at the
same time allow designers to easily give bounds on the resistance towards differential- and linear
cryptanalysis. Additionally, another advantage is that it decouples the choice of the non-linear
layer and the linear layer to a large extent. In a nutshell, any good S-box combined with any
good linear layer will result in a cipher resistant against linear- and differential attacks.

For AES-like ciphers, including all the above mentioned designs, the linear layer itself is
composed of two parts: one resembles the AES MixColumns operation and the other resembles
the AES ShiftRows operation. The MixColumns-like operation is a matrix multiplication of
the columns of the state and the ShiftRows-like operation is a permutation of the words of
the state.

? The work of Gregor Leander was funded by the BMBF UNIKOPS project



For the former, the criteria are well understood. All that is required here is that this
operation has a suitably high branch number. In short, the branch number corresponds to the
minimal sum of the number of active S-boxes in an input/output column, provided an active
input column (and the number of active S-boxes is the essential tool for bounding the success
probability of linear- and differential attacks). In stark contrast, for the operation resembling
ShiftRows, the situation is significantly less clear. Basically, the ShiftRows-like operation
highly influences the number of active S-boxes when considering more than two rounds only.
Understanding the bounds for more than two rounds is crucial for many good designs. With a
well-chosen ShiftRows-like operation it is usually possible to derive much stronger bounds for
more rounds than the trivial bound one gets by multiplying the two-round bound by half the
number of rounds.

In the case of the AES (and others including [5, 8, 9]) one uses a so-called superbox argument
to prove strong bounds on four rounds of the cipher. For others, the problem is modelled as a
mixed-integer linear programs like in [1, 20, 24] which allows the computation of bounds for an
(in principle) arbitrary number of rounds for a given choice of the ShiftRows-like operation.
However, no structured approach for analyzing the influence of the ShiftRows-like operation
on the security of the cipher has been undertaken previously. The results so far remain ad-
hoc and specific to a given choice of parameters. Considering the large number of designs
following this approach, this shortcoming is quite surprising and unsatisfactory from a scientific
perspective. In particular, the choices made are often not optimal and not based on an adequate
understanding of the implications.

Our Contribution. In this paper, we develop a structured approach to analyzing the permu-
tation layer, i.e. the generalized ShiftRows-like operation, for AES-like ciphers with respect
to diffusion and resistance towards differential- and linear cryptanalysis. For this, we start by
defining a general framework for AES-like ciphers. Note that we do not restrict to the case
where permutation is identical in all rounds but we allow for different choices of the permu-
tation in different rounds. Moreover, we first consider arbitrary word-wise permutations and
later restrict ourselves to word-wise rotations of the rows. The latter have the appeal of being
efficiently implementable on many modern CPUs. Our following analysis consists of two parts.

First, and as a core contribution to a structured approach, we simplify the problem by
introducing the notion of equivalent permutation parameters. It is intuitively clear that many
choices of the permutation will lead to the same behavior of the cipher. One such example
is changing the order of the rotation constants for the ShiftRows operation in the AES, i.e.
rotate the first row by 3, the second by 2, and so on. We will make this intuition precise and,
as will be shown below, discover more involved examples of the above.

The notion of equivalence will imply the same lower bound on the number of guaranteed
active S-boxes. This is interesting theoretically, as it allows to simplify the problem. For ex-
ample, we prove that a general permutation can never yield better results than a permutation
that operates on the rows individually. Furthermore, using this notion of equivalence, we derive
a normalized representation of any word-wise rotation of the rows. This allows to significantly
reduce the problem domain and thus the search space for a computational approach.

In the second part of our analysis, we use this normalized representation in a combination
with solving mixed-integer linear programs using the IBM ILOG CPLEX library [17]. The
source code for this part is available as [4]. This results in optimal parameter suggestions for a
wide range of AES-like ciphers. In particular, it allows us to suggest improved parameters for
Rijndael-192, Rijndael-256, PRIMATEs-80 and Prøst-128 on this front, see Table 1 for details.

Finally, given our extensive experimental results, we conjecture an optimal lower bound on
the number of active S-boxes possible for specific cases of the state geometry. Those parameters
are such that they allow for an iterative version of the superbox argument mentioned above.
We also provide a permutation which guarantees this conjectured optimal bound. In contrast



to prior work, e.g. ECHO and PAEQ, this permutation layer is generic and, more importantly,
realized with cyclic row rotations only. Thus, it allows for an easy and efficient implementation.

Outline. In Section 2 we give notation and define what we mean by AES-like ciphers. Then,
in Section 3, we introduce, besides diffusion, the concept of guaranteed active S-boxes as a
measure of the resistance against differential- and linear attacks. Section 4 provides reductions
in order to identify equivalent permutation parameters for AES-like ciphers. We thereby also
introduce the normal form of rotation matrices, considering only cyclic rotations of the state
rows. Section 5 copes with modelling the problem using a mixed-integer linear programming
approach in order to calculate optimal bounds for given state dimensions. In this context, some
practical examples for rotation parameters are provided. Finally, Section 6 continues with a
theoretic analysis of special cases of the state dimension and presents (conjectured) optimal
solutions to the main criteria. We conclude the paper in Section 7.

2 Preliminaries

We use Fqr to denote the finite field of size qr with q prime. We use Zn to interchangeably
denote the group of integers modulo n and the set {0, 1, . . . , n−1}. We refer to binary strings in
Fm2 as words. We refer to M ×N matrices with word entries as states. For a state X we use Xi

to denote the ith row of X, and Xi,j denotes word in the jth column of Xi. Let F be a function
operating on states and let ⊕ be bitwise addition. For words x, x′ we use the term difference
to denote x ⊕ x′, and let the notion extend to states where the differences are word-wise. For
input states x, x′ to F , we refer to x⊕ x′ and F (x)⊕ F (x′) as the input difference and output
difference, respectively. For an M ×N difference X, we use the symbol with a tilde on top, e.g.
X̃, to denote the activity pattern of X, an M × N matrix over F2 where X̃i,j = 1 if Xi,j 6= 0
and X̃i,j = 0 otherwise. For a, b ∈ Fm2 we let 〈a, b〉 =

⊕m−1
i=0 ai · bi denote the inner product of

a and b, where subscript i denotes the ith bit. We extend this inner product to states, s.t. for
X,Y ∈ (Fm2 )M×N we have 〈X,Y 〉 =

⊕
i∈ZM ,j∈ZN 〈Xi,j , Yi,j〉.

2.1 AES-like Ciphers

With the increasing popularity of the AES since its standardization, dozens of new ciphers that
follow what we refer to as an AES-like design have seen the light of day. We describe formally
our notion of AES-like ciphers in Definition 1.

Definition 1. An AES-like cipher is a block cipher EK which is parametrized by a fixed key
K, the state dimension M ×N , the word size m, the number of rounds T and a permutation
parameter π = (π0, . . . , πT−1), where each πt is a permutation on ZM × ZN . It is composed
of round functions Ri, s.t. EK = RT−1 ◦ · · · ◦ R0. Each round function is composed of the
following bijective transformations on states, s.t. ∀t ∈ ZT : Rt = AddRoundKeyt ◦ Permuteπt ◦
MixColumnst ◦ SubBytes:

1. SubBytes substitutes each word of the state according to one or several S-boxes S : Fm2 →
Fm2 .

2. MixColumnst applies, in round t, for all columns j ∈ ZN left-multiplication by an M ×M
matrix Mtj ∈ (Fm2 )M×M :

MixColumnst : (Fm2 )M×N → (Fm2 )M×N

∀j ∈ ZN : (X0,j , . . . , XM−1,j)
T 7→ Mtj ·(X0,j , . . . , XM−1,j)

T ,

where multiplication in Fm2 is defined by an arbitrary irreducible polynomial over F2 of degree
m.



3. Permuteπt permutes, in round t, the words within the state due to a given permutation πt.
We use the notation that for a position (i, j) ∈ ZM ×ZN in the state, πt(i, j) gives the new
position of that word under the permutation πt:

Permuteπt : (Fm2 )M×N → (Fm2 )M×N

∀i ∈ ZM ,∀j ∈ ZN : Xi,j 7→ Xπt(i,j).

4. AddRoundKeyt performs word-wise XOR to the state using the tth round key.

Subsequently, we omit the AddRoundKeyt operation of Definition 1 from consideration, as it
does not affect diffusion properties nor resistance towards differential- and linear cryptanalysis
of the AES-like cipher. Note also, that for generality we consider in Definition 1 an arbitrary
word permutation Permuteπt , while later we will, for efficiency reasons, resrict ourselves to
row-wise rotations of the words as in the ShiftRows operations of the AES.

3 Diffusion and Resistance to Differential/Linear Cryptanalysis

In this paper, we are concerned with two security aspects of an AES-like cipher, namely diffusion
on the one hand and resistance against differential- and linear attacks on the other hand. We
formally define our notations for both criteria in the following.

3.1 Diffusion

The first definition of diffusion is attributed to Shannon [26]. Informally, diffusion is about
complicating the relationship between the ciphertext bits and plaintext bits. When designing
a cipher, it is desirable to obtain what we call full diffusion after as few rounds as possible and
indeed the number of rounds chosen for the cipher is often determined by exactly this number.

Definition 2 (Diffusion degree). For a function F : F`2 → Fn2 , we define the diffusion degree
d(F ) for F as the fraction of bits in the image under F that depend on each bit of the pre-image,
i.e.

d(F ) =
1

n
· ]
{
j ∈ Zn | ∀i ∈ Z` : ∃x ∈ F`2 : F (x(i))j 6= F (x)j

}
,

where F (x)j denotes the jth bit of F (x) and x(i) denotes the element x with the ith bit flipped.
We say that F obtains full diffusion when d(F ) = 1.

Definition 3 (Diffusion-optimality). Fix the state dimensions M ×N . Consider a permu-
tation sequence π for an AES-like cipher which obtains full diffusion after t rounds. We say
that π is diffusion-optimal if there exists no π′ 6= π which obtains full diffusion after t′ < t
rounds.

3.2 Differential/Linear Cryptanalysis

Differential- and linear cryptanalysis were pioneered by Biham and Shamir [6, 7] and Mat-
sui [23], respectively, to attack the DES. In a differential attack an attacker tries to predict
the difference of the state after several rounds when plaintexts with a given difference are
processed. In linear cryptanalysis, the attacker tries to find biased linear Boolean equations
involving plaintext-, key- and ciphertext bits. Common to both attacks is that they are based
on trails (or characteristics). The probability (resp. correlation) of those trails can be upper
bounded by lower bounding the number of active S-boxes in any trail. Here, an S-box is active
in a given trail if it has a non-zero input difference (resp. mask). In general, if p is the largest
probability (resp. correlation) for the S-box to satisfy a differential- or linear property, and any



trail has at least k active S-boxes, then the trail property holds with probability (resp. corre-
lation) at most pk. This way of ensuring resistance against linear and differential attacks is the
basis of the wide-trail-strategy as introduced by Daemen and Rijmen in [12]. The second im-
portant merit of the wide-trail starategy is that it allows to treat the S-box and the linear-layer
as black boxes as long as they fulfill certain conditions. In our work, we follow both aspects
of this philosophy. The designer is interested in having the lightest trail as heavy as possible.
Indeed, knowing this probability is essential when determining the number of rounds for the
cipher in the design phase. We give definitions of trails and trail weights in the following.

Definition 4 (Trail and trail weight). For an AES-like cipher EK using m-bit words and

state dimension M × N , a T -round trail is a (T + 1)-tuple (X0, . . . , XT ) ∈
(

(Fm2 )M×N
)T+1

and the weight of the trail is defined as∑
t∈ZT

∑
i∈ZM

∑
j∈ZN

X̃t
i,j .

A pair of inputs x, x′ ∈ (Fm2 )M×N are said to follow the differential trail (X0, . . . , XT ) over T
rounds if and only if X0 = x⊕ x′ and

∀t ∈ {1, . . . , T} : Xt = (Rt−1 ◦ · · · ◦ R0)(x)⊕ (Rt−1 ◦ · · · ◦ R0)(x′).

If (α0, . . . , αT ) is a T -round linear trail, then an input x ∈ (Fm2 )M×N is said to follow the linear
trail (α0, . . . , αT ) if and only if

〈x, α0〉 = 〈R0(x), α1〉 = · · · = 〈(RT−1 ◦ · · · ◦ R0)(x), αT 〉.

We say that a trail is valid for EK if and only if there exists at least one input pair (respectively
input, for linear trails), which follows the trail.

Note from Definition 4 that the weight of a trail corresponds exactly to the number of active
S-boxes over those T rounds. In the remainder of this work, we concentrate on the differential
case. However, the results apply equally to linear trails as well.

Definition 5 (Branch number). For a linear automorphism θ : (Fm2 )M → (Fm2 )M , the
differential branch number Bθ is defined as

Bθ = min
x,x′∈(Fm2 )M

x 6=x′

∑
i∈ZM

X̃i + Ỹi

 , X = x⊕ x′, Y = θ(x)⊕ θ(x′).

In the context of an AES-like cipher EK , we say EK has branch number Bθ if and only if it is
the largest integer s.t. left multiplication by any of the M t

j used in the MixColumnst operation
has branch number at least Bθ.

In order to calculate a useful lower bound on the number of active S-boxes in an efficient
way, we focus on the Permuteπt part of the round function. The SubBytes operation will be
considered as using an arbitrary S-box S : Fm2 → Fm2 , and the analysis will be independent of
the specifc instance of S. Each of the Mtj matrices used in the MixColumns operation will be
considered as black-box linear operations, under the requirement that the AES-like cipher has
branch number Bθ. A formal definition of that idea is given in the following. For a T -round
permutation parameter π = (π0, . . . , πT−1), let ÃESM,N (π,Bθ) denote the set of all M × N
AES-like ciphers over T rounds with branch number Bθ using π0, . . . , πT−2 in the first T − 1
rounds. The reason for not including πT−1 is that our proofs in the following use the fact that
for different permutation sequences we can re-model one AES-like cipher into another, up to the
last round, and up to changing MixColumns operations (but maintaining the branch number).



Definition 6. We say that the sequence of permutations π = (π0, . . . , πT−1) tightly guarantees
k active S-boxes for branch number Bθ if and only if there is a valid trail of weight k for
some EK ∈ ÃESM,N (π,Bθ) and there is no valid trail of weight k′ < k, k′ > 0, for some

E′K ∈ ÃESM,N (π,Bθ). We denote this property by π
Bθ−−→ k.

Definition 7 (Trail-optimality). A sequence of permutations π = (π0, . . . , πT−1) with π
Bθ−−→

k is said to be trail-optimal if there exists no π′ = (π′0, . . . , π
′
T−1) s.t. π′

Bθ−−→ k′ where k′ > k.

Appendix A provides a proof that the number of tightly guaranteed active S-boxes is really
independent of the specific S-box instantiations. From Definition 6, it follows that the number
of guaranteed active S-boxes is always a lower bound for the actual minimum number of active
S-boxes in any concrete instantiation of an AES-like cipher.

4 Equivalent Permutations: Simplifying the Problem

In this section, we present a range of results which simplifies the problem of identifying good
permutation parameters π for AES-like ciphers by showing when different permutation param-
eters are equivalent w.r.t. resistance towards differential- and linear attacks. Obviously, for a
fixed branch number, many different π will tightly guarantee the same number of active S-
boxes. Thus, identifying conditions under which two different permutation sequences π 6= π′

tightly guarantee the same bound is significant: for a theoretical understanding, this approach
simplifies the problem while for a computer-aided search for a good π parameter, this signifi-
cantly reduces the search space. In Definition 8, we specify what it means for two permutation
sequences to be equivalent.

Definition 8 (Equivalence of permutation sequences). Two permutation sequences π, π′,
for a T -round cipher, are said to be equivalent, denoted π ∼ π′, if and only if for all possible
branch numbers Bθ, the equality ÃESM,N (π,Bθ) = ÃESM,N (π′, Bθ) holds. Intuitively, this
means that for all AES-like ciphers using π, there is an AES-like cipher using π′ which it is
functionally identical to, up until the last round.

We remark that, using this notion of equivalence, one can transform each cipher EK using π
into a cipher E′K using π′ such that EK = τ ◦E′K for a permutation τ on the state words. Thus,
equivalence will imply the same number of tightly guaranteed active S-boxes for all possible
fixed branch numbers Bθ.

4.1 Equivalences for Permutation Sequences π

In order to prove the reduction to a normalized form on the round permutations, we show a
range of observations in the following. Firstly, Lemma 9 is a combinatorial result on permuta-
tions on Cartesian products.

Lemma 9 (Representation of permutations on cartesian products). Every permuta-
tion πt on the words of an M ×N state can be represented as πt = γ′ ◦ φ ◦ γ where γ, γ′ are
permuting the words within the columns and φ is permuting the words within the rows.

Proof. Let TA, TB, TC , TD ∈ (ZM×ZN )M×N s.t. TAi,j = (i, j) and let TB, TC and TD be defined
by the following diagram:

TA TB TC TD.
γ φ γ′

To show the result, we let TD = πt(TA) and show how to construct the permutations such that
TD = (γ′ ◦ φ ◦ γ)(TA). We first observe the following two properties which must hold:



1. TB must be a matrix where, within each column j ∈ ZN , it holds that i) the second
coordinate of each point is equal to j, because γ only permutes within each column of
TA and ii) the set of first coordinates cover all of ZM , because TB is a permutation of
ZM × ZN .

2. TC must be a matrix where, for each column j ∈ ZN , the points in column j of TC are
the same as those in column j of TD. This is required because otherwise going between
TC and TD using a permutation operating in each column, is impossible.

If we can determine a matrix TB with property (1) and a row permutation φ s.t. TC = φ(TB)
has property (2), we are clearly done, because TA and TD can be obtained from TB respectively
TC by applying a permutation on the columns.

For a matrix A ∈ (ZM × ZN )M×N , let Q(A) be an N ×N matrix for which Q(A)i,j is the
number of occurences of j ∈ ZN in the second coordinate of the points in column i ∈ ZN of A.
As Q(TB) and Q(TC) are both magic squares of weight M , one can decompose Q(TC) into a
sum of M permutation matrices by the Birkhoff-von Neumann Theorem (see e.g. [2, p. 164]),
and thus

Q(TC) = P0 + · · ·+ PM−1.

Let φ be a permutation within each row, defined by applying Pi to row i ∈ ZM . Then
Q(φ(TB)) = Q(TC).

What is left to show is that there exists a column permutation TB of TA s.t. the first
coordinates in each column j of TC is correct, given the fixed permutation φ. To see this,
consider the case where TC requires a point (a, b) to be in column j. Clearly, (a, b) is in column
b of both TA and TB. Now, let Pi be such that it moves some point in position (a′, b) of TB
from column b to column j of TC . If (a′, b) = (a, b), then (a, b) does not need to be moved
within column b from TA to TB by γ, but if (a′, b) 6= (a, b), one can use γ to move (a, b) to
(a′, b) so it ends up in column j of TC . As each point (a, b) will only be present once in TC , it
can be moved once between TA and TB and never moved again. This procedure holds for all
points (a, b), and as such the result follows.1 ut

Lemma 10 (Equivalence under permutations within columns). Let π = (π0, . . . , πT−1)
be a permutation sequence for an AES-like cipher EK and let γ, γ′ be arbitrary permutations
on the words within the columns of a state. Then, ∀t ∈ ZT : π ∼ (π0, . . . , γ

′ ◦ πt ◦ γ, . . . , πT−1).
In particular, the number of tightly guaranteed active S-boxes is invariant under inserting per-
mutations, before and after any πt, which act on the columns of the state separately.

Proof. Fix the branch number Bθ and let EK ∈ ÃESM,N (π,Bθ). We consider any round t ∈ ZT .

We first show that π ∼ π′ = (π0, . . . , πt ◦ γ, . . . , πT−1). Let E′K be like EK but using

permutation sequence π′, with rounds denoted R′t, t ∈ ZT . Thus, E′K ∈ ÃESM,N (π′, Bθ). It
holds that

R′t = Permuteπt ◦ Permuteγ ◦ MixColumnst ◦ SubBytes.

Since γ operates on the columns separately, one can define

MixColumns′t = Permuteγ ◦ MixColumnst,

which in turn is a linear layer for an AES-like cipher with the same branch number, and we
have

R′t = Permuteπt ◦ MixColumns′t ◦ SubBytes.
1 Thanks to John Steinberger who had the idea for this proof.



Now, E′K is a cipher which uses the permutation sequence π and thus E′K ∈ ÃESM,N (π,Bθ).
The other inclusion follows the same way by applying γ−1. For showing the case of π′ =
(π0, . . . , γ

′ ◦ πt, . . . , πT−1), the argument is parallel. By combining the two, the result follows.
ut

As an easy result, one obtains Theorem 11, which we state without proof. Note that a permu-
tation sequence is called ρ-alternating, written π = (π0, . . . , πρ−1)T , if it repeats the same ρ
permutations alternatingly.

Theorem 11 (Reduction to permutations on the rows). Let π = (π0, . . . , πρ−1)T be a ρ-
alternating permutation sequence. Then one can construct a π′ = (π′0, . . . , π

′
ρ−1)T with π ∼ π′,

s.t. for each t ∈ Zρ, it holds that π′t permutes only the words in each row of the state.

4.2 Equivalences for Rotation Matrices σ

While we have, until this point, focused on AES-like ciphers with arbitrary word-wise permu-
tations Permuteπt as part of the round function, such general permutations are not suitable
for designs of cryptographic primitives. To that end, we limit ourselves from this point on to
AES-like ciphers where the permutation operation of the round function cyclically rotates each
row of the state from left-to-right using a rotation matrix as specified in Definition 12.

Definition 12 (Rotation matrix). Consider an AES-like cipher where the permutation op-
eration in the round function consists of cyclic word-wise rotations of each state row. For such
a cipher, we define a rotation matrix as a matrix σ ∈ Zρ×MN , where ρ is a positive integer, such
that

1. If ρ = T , then σt,i denotes the rotation amount for row i ∈ ZM in round t, and
2. If ρ < T , then we have the further requirement that the rotation constants alternate, such

that σk,i denotes the rotation amount for row i ∈ ZM in rounds t where t ≡ k mod ρ,

where, without loss of generality, we let the rotation direction be left-to-right.

As rotation matrices are a special case of arbitrary permutations, we remark that the notion
of equivalence includes these as well. We simplify our notion of an AES-like cipher to only
use row-wise rotations in the permutation part of each Rt. In particular, we substitue the
Permuteπt operation by

ShiftRowsσt : (Fm2 )M×N → (Fm2 )M×N

∀i ∈ ZM , ∀j ∈ ZN : Xi,j 7→ Xi,j+σt mod ρ,i mod N .

Lemma 13 (Equivalence under re-ordering of row entries). Let σ ∈ Zρ×MN be a rotation
matrix and let ϑ0, . . . , ϑρ−1 be arbitrary, independent permutations on the ρ rows of σ. Define
σ′ s.t. ∀t ∈ Zρ : σ′t = ϑt(σt). Then σ ∼ σ′.

Proof. This directly follows from Lemma 10, as using σ′t is equivalent to using γ′ ◦ σt ◦ γ for
appropriate permutations γ′ and γ on the state columns. ut

Lemma 14 (Equivalence under row-wise constant addition). Let σ ∈ Zρ×MN be a rota-
tion matrix and let c0, . . . , cρ−1 ∈ ZN . Define a rotation matrix σ′ where ∀t ∈ Zρ,∀i ∈ ZM :
σ′t,i = σt,i + ct mod N . Then σ ∼ σ′.

Proof. We split the proof into two cases: i) T ≤ ρ and ii) T > ρ. Consider first T ≤ ρ. If T < ρ,
one can add constants to σT , . . . , σρ−1, since these are never used anyway. Thus, let us consider
T = ρ. We give a proof by induction that one can add independent constants ct, . . . , cT−1 to
σt, . . . , σT−1 to obtain an equivalent rotation matrix σ′, and proceed by induction on t. Clearly,



one can add a constant to σT−1 to obtain an equivalent σ′, since the set ÃESM,N (σ,Bθ) does
not cover the use of σT−1. Assuming the statement holds for t, . . . , T − 1, we now prove that
it is possible to add a constant ct−1 to σt−1 as well. Using the notation that SR = ShiftRows,
MC = MixColumns, SB = SubBytes and RSk is a rotation of the whole state by k positions, we
have

Rt ◦ Rt−1 = (SRσt ◦ MCt ◦ SB) ◦ (RS−ct−1 ◦ RSct−1) ◦ (SRσt−1 ◦ MCt−1 ◦ SB)

= SRσt ◦ RS−ct−1 ◦ RSct−1 ◦ MCt ◦ RS−ct−1 ◦ SB ◦ (RSct−1 ◦ SRσt−1 ◦ MCt−1 ◦ SB),

since RS−ct−1 commutes with SB. Now, since RSct−1 ◦MCt ◦RS−ct−1 =: MC′t defines a (just rotated)
linear column mixing and since SRσt commutes with RS−ct−1 , we have

Rt ◦ Rt−1 = (RS−ct−1 ◦ SRσt ◦ MC′t ◦ SB) ◦ (RSct−1 ◦ SRσt−1 ◦ MCt−1 ◦ SB),

and we see that by adding ct−1 to σt−1 and −ct−1 to σt we obtain an equivalent σ′. The result
now follows by induction, since the addition of −ct−1 to σt can be undone by the induction
assumption.

For the case T > ρ, let H be a T ×M matrix where Ht = σk when t ≡ k mod ρ. For
a T -round AES-like cipher EK , H and σ are clearly equivalent rotation matrices. From the
above, it follows we can add ct to row t of H, t ∈ ZT , and obtain an equivalent H ′. In particular,
adding the same ck to all rows t where t ≡ k mod ρ, we obtain H ′ which is equivalent to σ, and
has the property that H ′i = H ′j if i ≡ j mod ρ, and in particular the first ρ rows of H ′ equals
σ′ and the result follows. ut

Theorem 15 (Equivalence for rotation matrices). Given a rotation matrix σ ∈ Zρ×MN ,

one can obtain an equivalent matrix σ′ ∈ Zρ×MN for which the following holds simultaneously

1. Each row σ′t, t ∈ Zρ, is lexicographically ordered,

2. For all t ∈ Zρ it holds that σ′t,0 = 0 and

3. For all t ∈ Zρ it holds that σ′t,1 ≤ N
2 .

Proof. Points (1) and (2) follow directly from Lemma 13 and 14, respectively. For point (3), let
us assume w.l.o.g that (1) and (2) hold and consider the case where M ≥ 2 and consider the
element σt,1 from some row σt. If σt,1 >

N
2 , we add −σt,1 mod N and the result follows from

Lemmas 13 and 14. ut

Besides Theorem 15, we heuristically suggest a search for optimal rotation matrices to restrict
itself to matrices where all entries in a row are different, i.e. ∀t ∈ Zρ : σt,j = σt,j′ ⇔ j = j′, as
equal entries in some σt are redundant w.r.t. the diffusion properties of the cipher. Moreover,
when N is even, we require that σ contains at least one odd entry, because otherwise even-
numbered columns never mix with odd-numbered columns. We refer to a rotation matrix which
satisfies these properties, plus properties (1) – (3) of Theorem 15, as the normal form of its
equivalence class of rotation matrices.

5 Mixed-Integer Linear Programming and Experimental Results

One advantage of modeling the S-boxes and linear layers as black boxes is that one easily can
compute useful lower bounds on the number of guaranteed active S-boxes using a mixed-integer
linear programming approach. We describe this approach next.



5.1 The Problem as a Mixed Integer Linear Program

In the following, we describe the mixed-integer linear program which models the problem of
determining the tightly guaranteed trail weight under a given rotation matrix σ ∈ Zρ×MN . We
give the parameters, decision variables, the constraints and the target optimization as Model 1.
This formulation is similar to that of Mouha et al. [24]. We note that Model 1 is specified for
the case where each Mtj used in the MixColumnst operation is an MDS matrix, as this is usually
what is applied in designs. If, on the other hand, non-MDS matrices are deployed, the model
can be easily modified to cover these cases as well, at the cost of a slightly more complicated
model. Theorem 16 formalizes how Model 1 provides us with the sought bound.

Theorem 16. The solution of Model 1 is always a lower bound on the number of tightly guar-
anteed active S-boxes for an AES-like cipher with branch number Bθ and rotation matrix σ.
If the branch number is optimal for the given dimensions and a linear mixing layer with this
branch number exists (and the word length m > log2(M + 2)), this provides a tight bound.

Proof. This follows from Corollary 27 in Appendix A. ut

Theorem 16 shows in particular that one can not hope to improve the bounds in a generic
way for the case of AES-like ciphers using MDS matrices. That is to say that any argument to
improve upon the bounds provided by the model will necessarily be a non-black box argument.
Thus, in the spirit of the wide-trail strategy, one cannot improve upon those bounds.

Model 1: MILP model for determining the guaranteed trail weight using a fixed rotation matrix

Parameters

Name Domain Description

M Z+ Number of rows in state
N Z+ Number of columns in state
T Z+ Number of rounds
ρ Z+ Number of rows in rotation paramter σ
Bθ Z+ Branch number of MixColumns

σ Zρ×MN Rotation parameter

Decision variables

Name Domain Index domain Description

X̃t
i,j F2 i ∈ ZM , j ∈ ZN , t ∈ ZT ∪ {T} X̃i,j = 1 if and only if the word in position

(i, j) is active before round Rt
atj F2 j ∈ ZN , t ∈ ZT Auxilliary variable; atj = 1 if and only if col-

umn j has an active word before round Rt

Minimize ∑
t∈ZT

∑
i∈ZM

∑
j∈ZN

X̃t
i,j

subject to ∑
i∈ZM

∑
j∈ZN

X̃0
i,j ≥ 1 (1)

∀j ∈ ZN ,∀t ∈ ZT :
∑
i∈ZM

X̃t
i,j + X̃t+1

i,(j+σt mod ρ,i) mod N
≥ Bθ · atj (2)

∀i ∈ ZM , ∀j ∈ ZN ,∀t ∈ ZT : atj ≥ X̃t
i,j (3)



5.2 Experimental Results

A part of our contribution is a wide range of optimal choices of rotation matrices for various
state geometries M ×N , ρ and number of rounds T . For all our experiments, we concentrated
on the case of MDS MixColumnst layers, i.e. AES-like ciphers with optimal branch number.
Using the heuristic approach from Section 4.2, i.e. by brute-forcing the normal form of each
equivalence class of rotation matrices, we provide optimal solutions for the analyzed cases as
per Theorem 16. The full table of results is given in Appendix B.

We highlight in Table 1 results which suggest improvements for some existing AES-like
primitives. We see that, in some cases, direct replacement of σ yields better bounds, while in
other cases, one must increase ρ to obtain better bounds.

Table 1. Improvements for existing AES-like primitives. An entry (ρP ,BP )/(ρM ,BM ) gives ρ and the number of tightly
guaranteed S-boxes B in a T -round trail for the primitive (subscript P ) and the modified primitive (subscript M),
respectively. The † symbol indicates results where only diffusion-optimal σ were tested, which means actual obtainable
bounds may be higher.

Primitive T = 5 T = 6 T = 7 T = 8 T = 10 T = 12

Rijndael-192 − (1, 42)/(1, 45) (1, 46)/(1, 48) (1, 50)/(1, 57) − (1, 87)/(1, 90)
Rijndael-256 − (1, 50)/(2, 55) − − (1, 85)/(2, 90) (1, 105)/(2, 111)
PRIMATEs-80 (1, 54)/(2, 56) − − − − −
Prøst-128 − (2, 85)/(2, 90)† (2, 96)/(2, 111)† − − −

Among our findings are tight bounds which are not a multiple of the branch number for
an even number of rounds. This implies that there exists some MDS linear mixing layers such
that the lightest valid trail contains a two-round subtrail of weight more than Bθ. Thus, some
optimal trails have non-optimal transitions locally.

6 Optimal Solutions

In this section we describe, for special cases of the state geometry, optimal solutions with
respect to both our main criteria, i.e. with respect to diffusion properties on one hand and
resistance towards differential/linear attacks on the other hand.

6.1 Diffusion-Optimal Rotation Matrices

Under the assumptions that each S-box S : Fm2 → Fm2 and each Mtj matrix has the property
that each output bit depends on each input bit, we describe in the following a way of tracking
the diffusion properties for an AES-like cipher EK . Let z be an arbitrary fixed bit of an input
to EK . When, in the beginning of a round, a single bit in a column depends on z, then each
bit in the column will depend on z after applying MixColumns ◦ SubBytes. Thus, with fixed
parameters M,N and σ, determining how many rounds t are required to obtain full diffusion
reduces to answering how many rounds are required to have at least one bit depending on z
in each column: if this is obtained after t′ rounds then full diffusion is obtained after t = t′ + 1
rounds. This is formalized in the following.

Definition 17 (Sumset). Let G be an additive group and let A,B ⊂ G. We define the sumset
written A+ B as A+ B = {a+ b | a ∈ A, b ∈ B}, where the sum is over G. We write kA for
the sumset A+A+ · · ·+A with k terms.

Theorem 18. Consider an AES-like cipher with fixed parameters M,N, ρ and σ. Let w.l.o.g.
z denote a bit in the word X0,0 for an input X. Let α(T ) = (α(T )0, . . . , α(T )ρ−1) be a vector
where αi, 0 ≤ i < ρ, equals the number of times σi is used in a ShiftRows operation during T



rounds of the cipher. Then, after T rounds, the indices of columns which contain bits depending
on z are given by the sumset α(T )0σ0 + α(T )1σ1 + · · · + α(T )ρ−1σρ−1, where addition is over
ZN .

Proof. Let S−1 = {0}. We recursively define St = {v + s | s ∈ St−1, v ∈ σt mod ρ} for t ≥ 0,
where addition is in ZN . Note that the set St corresponds exactly to the sumset α(t)0σ0 + · · ·+
α(t)ρ−1σρ−1. Clearly, S0 = {v | v ∈ σ0} is the set of indices of columns that contain words
depending on z after round R0. Now, assume that St are the column indices which contain
some word depending on z after Rt. Then, after applying MixColumnst+1, all words in columns
j ∈ St depend on z. Now, when we apply ShiftRowsσt+1 mod ρ

, the words depending on z are
moved exactly to the indices given in St+1, and thus the result is obtained by induction. ut

Corollary 19. Consider an AES-like cipher with fixed parameters M,N, ρ and σ. If t′ is the
smallest positive integer s.t. the sumset α(t′)0σ0 + · · ·+ α(t′)ρ−1σρ−1 over ZC generates all of
ZN , then the cipher obtains full diffusion after t = t′ + 1 rounds.

Proof. The proof follows from Theorem 18. Note that we chose the input bit z from the word
X0,0. If it would be chosen from an arbitrary word Xi,j , the corresponding sumset would be
just shifted by a constant c. However, these are the same sumsets for all possible c, since they
generate all of ZN . ut

Theorem 20. When N = Mρ, a diffusion-optimal rotation matrix is σ ∈ Zρ×MN s.t. σt,i =
i ·M t for (t, i) ∈ Zρ × ZM or any σ′ where the entries of σ are permuted. These obtain full
diffusion after ρ+ 1 rounds.

Proof. The set of indices of columns containing a word depending on z after ρ rounds is given
by the sumset σ0 + · · · + σρ−1 over ZN . This sumset has Mρ = N sums, and thus equals
ZN if and only if no two sums in the sumset are equal. To see why this is the case, consider
constructing M -adic numbers using the sums in the sumset. We pick exactly one element from
each row of σ and add them. As the elements in row t are σt =

(
0M t 1M t · · · (M − 1)M t

)
,

the choice for the sum from σt is the tth least significant digit in the M -adic representation of
that number. In other words, the rows of σ form a base for the M -adic number system, and we
can form any number up to

∑ρ−1
t=0 (M − 1)M t = N − 1 with it. Since Mρ elements cannot be

generated using less than ρ parameters in the sumset, the diffusion-optimaltiy of σ follows. ut

6.2 Trail-Optimal Solutions

In this section, we first state Theorem 21, which is of particular interest because of the large
number of AES-like ciphers with square geometry. Considering its statement, square states
can be understood quite well. We also give a conjecture on the optimality of guaranteed trail
weights for M ×Mn AES-like ciphers over 2n+1 rounds and give a construction which matches
the conjectured bound.

Theorem 21 (Optimality for square geometries). Let σ be a rotation matrix in normal
form operating on a square state of dimension M ×M . Then the number of tightly guaranteed
active S-boxes is invariant under increasing ρ. In particular, any σ has σ ∼

(
0 1 · · · M − 1

)
.

Furthermore, assuming the existence of at least one MDS linear layer and the word length

m > log2(M + 2), we have σ
M+1−−−→ k(M + 1)2 over 4k rounds for all k ∈ N.

Proof. As for any ρ > 1, each row σt of a rotation matrix σ in normal form will equal(
0 1 · · · M − 1

)
, or any permutation hereof, this is equivalent to having ρ = 1 by Lemma 13.

In order to prove the second statement, we first apply the Four-Round Propagation Theo-
rem [12, Theorem 3] of the AES in a repeated manner, which provides the stated k(M + 1)2

as a lower bound. It is left to argue that there is a valid 4k-round trail of weight k(M + 1)2



for some EK using the specific parameters. Therefore, we first define a four-round trail X of
weight (M + 1)2 as

X :=




1 0 · · · 0
0 0 · · · 0
...
... . .

. ...
0 0 · · · 0

 ,


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

 ,


1 1 · · · 1
1 1 · · · 1
...
...
. . .

...
1 1 · · · 1

 ,


1 0 · · · 0
0 0 · · · 1
...
... . .

. ...
0 1 · · · 0

 ,


1 0 · · · 0
0 0 · · · 0
...
... . .

. ...
0 0 · · · 0


 .

By repeating this structure k times, one can define a 4k-round trail of weight k(M + 1)2. For
the validity of this trail for some EK , one can see that it is obtainable by only using the identity
as the S-box and existing mixing steps, applying Corollary 27 in Appendix A. ut

Theorem 21 implies that a designer who wants to improve upon the bound for a square dimen-
sion necessarily has to choose a rotation parameter σ consisting of at least one σt which breaks
the normal form structure. Intuitively, this would not only provide a worse bound but also
worse diffusion properties. However, giving an argument for the trail-optimality considering all
possible rotation matrices (resp. permutations) seems to be quite difficult.

For the special case of a hypercubed geometry, we give Conjecture 22.

Conjecture 22. Given the state dimension M×Mn for an AES-like cipher, then a trail-optimal

choice of the permutation sequence π over 2n+1 rounds yields π
M+1−−−→ (M + 1)n+1.

The Superbox Argument. The superbox argument is a commonly used proof technique to
lower bound on the number of active S-boxes in an AES-like cipher over a certain number of
rounds. It has been used for the AES but also for ECHO [5] and PAEQ [8].

One uses the fact that for a clever choice of the rotation matrix, the round operations can be
commuted such that some part of the encryption first works locally, in parallel, on parts of the
state which we call superboxes. Next the superboxes are combined using state-wide operations
which effectively mix the superboxes together, only to split the state into superboxes again,
working with the localized operations. Such a large structure is referred to as a megabox, and
covers four rounds of the cipher.

One can show that if a superbox has active input, there are at least Bθ active S-boxes in
the first two rounds inside this superbox. Now, with the right choice of rotation matrix, the
operation that combines the superboxes again imply that for the next two rounds, the total
number of active superboxes is at least Bθ. From this, one obtains a four-round lower bound
of B2

θ .
This concept, which is the idea behind the Four-Round Propagation Theorem [12, Theorem

3], can be easily generalized by iteration for appropriate dimensions of state in the AES-like
cipher, and with an appropriately chosen rotation matrix. We stress, however, that choosing the
rotation matrix correctly for the given state dimension is of paramount importance to assuring
the argument that one has e.g. Bθ active superboxes in a megabox (or equivalently for higher
dimensions).

As mentioned, in Theorem 23, we give a construction which achieves the bound given in
the conjecture above. Note that (especially for a cubed state dimension) this approach is not
new in itself. Our main point here is that, in clear distinction to prior work such as [8], we
present an efficient way of implementing this idea by using cyclic rotations only. For a better
visualization, Example 24 illustrates this construction for M = 4 and n = 3.

Theorem 23 (2n+1-Round Propagation Theorem). There exists a rotation matrix σ ∈
Z2n×M
Mn , such that every (non-zero) valid 2n+1-round trail over all EK ∈ ÃESM,Mn(σ,Bθ) has

a weight of at least Bn+1
θ . The rotations can be described as

∀j ∈ Zn : σ2n−j−2 = σ2n−j−1 =
(
0 M j 2M j · · · (M − 1)M j

)
∀j ∈ Zn−1 : ∀i ∈ Z2n−(j+1) σi = σ2n−j−3−i.



Proof. For n = 1, the statement is precisely the Four-Round Propagation Theorem of the AES.
Therefore, we first prove the theorem for the eight-round case, thus for n = 2. We need to show
that

σ :=


0 M 2M · · · (M − 1)M
0 M 2M · · · (M − 1)M
0 1 2 · · · M − 1
0 1 2 · · · M − 1

 Bθ−−→ B

over eight rounds for a B ≥ B3
θ . For the proof, we rely on a straightforward generalization of

the Four-Round Propagation Theorem to the dimension one higher than the standard AES, as
described previously. In particular, if one can partition the M ×M2 state into M sub-states
of M columns each (i.e. consider them as M ×M sub-states), such that in four consecutive
rounds, the ShiftRows operating in the first and second rounds shifts each such sub-state as if
using the vector (0 1 · · · M −1), with respect to considering that particular M ×M sub-state,
then the number of guaranteed active S-boxes in each such sub-state over four rounds it at
least B2

θ (assuming a non-zero input difference). Note that the rotations of the third and fourth
round have no impact on the four-round trail weight.

Fig. 1. Positions of the 4 independent sets of columns in a 4× 16 state

Using the σ specified, the first four rounds of EK satisfies this property when the M sub-
states of size M ×M are taken to be every Mth column of the state, as indicated for a 4× 16
state in Figure 1. The same thing holds when considering the last four rounds separately.

Now, due to the way the row shifting of the third round combines with the column mixing
and row shifting of the fourth round, i.e. SRσ3 ◦ MC ◦ SB ◦ SRσ2 , each M ×M sub-state mixes
completely with each of the M ×M sub-states. As such, like in the Four-Round Propagation
Theorem, the sum of active M ×M sub-states from the third and fourth round is at least Bθ.
Combining this observation with the generalized Four-Round Propagation Theorem, the result
of Bθ ·B2

θ follows.
The general case is now obtained by induction. In order to do the iteration to 2(n+1)+1

rounds, one has to apply the 2n+1-round propagation. ut

Example 24. Let M = 4, n = 3 and Bθ = 5. Then the state has geometry 4×64. The guaranteed
trail weight of 625 over 16 rounds can be realized using the rotation matrix

σ =



0 16 32 48
0 16 32 48
0 4 8 12
0 4 8 12
0 16 32 48
0 16 32 48
0 1 2 3
0 1 2 3


.

We remark that especially for higher dimensions, a rotation matrix following this construc-
tion is not of much practical interest as the diffusion properties are far from optimal. One open
question is whether it is possible to obtain these bounds without using a rotation matrix which
allows a proof using a superbox-like argument for general M . For the special case of M = 2
and N = 4, we found that

σ =

(
0 0 0 0 0 0 0 0
1 1 1 1 1 2 1 1

)T
,

which contains no superbox structure, yields σ
3−→ 27 over eight rounds.



7 Conclusion

For AES-like ciphers, the linear mixing layer, often denoted MixColumns, is very well under-
stood: one typically chooses mixing layers defined by MDS matrices to obtain optimal branch
numbers. In sharp contrast to this, no systematic approach has been conducted to under-
stand how the word-wise permutation layer in such ciphers affects the diffusion properties and
resistance towards differential- and linear attacks. With this work, we close that gap.

Specifically, we consider arbitrary word-wise permutations, with special focus on rotations
due to their elegant implementation characteristics. We formalized the concept of AES-like
ciphers, guaranteed trail weights and equivalence of permutation parameters and, using these
formalizations, proved a range of results which reduces the consideration to a special normalized
form.

These results are employed in practice by connecting it with mixed-integer linear program-
ming models for determining the guaranteed trail weights. To that end, we give a range of
optimal word-wise rotations and improve on existing parameters for Rijndael-192, Rijndael-
256, PRIMATEs-80 and Prøst-128.

Using superbox-like arguments we are able, as a separate result, to show for specific state
geometries that a seemingly optimal bound on the trail weight can be obtained using cyclic
rotations only for the permutation layer, i.e. in a very implementation friendly way. Also coming
out of our analysis is the observation that square state geometries are, in some sense, ideal when
it comes to solving the problem of determining the best word-wise rotations, as there is just
one solution which is optimal.
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A Optimality of the Black-Box Model

One has to make sure that the definition of the tightly guaranteed active S-boxes is independent
of the concrete S-box functions within the AES-like ciphers. This is shown in Lemma 25.

Lemma 25. Let θ : (Fm2 )M → (Fm2 )M be a linear automorphism with branch number Bθ.
Let v = (v1, . . . , vM ) ∈ (Fm2 )M \ {0} such that θ(v) = w = (w1, . . . , wM ). Then for all
a1, . . . , a2M ∈ Fm2 \ {0}, one can construct a linear automorphism θ′ with branch number Bθ
such that θ′(a1v1, . . . , aMvM ) = (aM+1w1, . . . , a2MwM ).

Proof. Let G = [I | A] be the generator matrix in standard form of the linear [2M,M,Bθ]m-
code C corresponding to θ. Now one can construct an equivalent code C ′ with the same minimal
distance by multiplying every column of G by non-zero scalars a1, . . . , a2M [27, p. 54-55]. In
order to obtain a generator matrix G′ = [I | A′] of C ′ in standard form, one scales the rows



by the non-zero values a−1
1 , . . . , a−1

M . This does not change the generated code and defines the
new mixing θ′(x) = A′x.


a1 . . . aM aM+1 . . . a2M

a−1
1 1

...
. . . A′

a−1
M 1


If the matrix A was invertible, then A′ is invertible as well since A′ is obtained from A by
scaling the rows and the columns. ut

In order to prove Theorem 16, one will make use of the following two results.

Lemma 26. Let log2(M + 2) < m and let C be a linear [2M,M ]m-code which is MDS. For
every subset S ⊆ {1, . . . , 2M} with M+1 ≤ |S| ≤ 2M , there exists a vector v = (v1, . . . , v2M ) ∈
C such that vi 6= 0 if and only if i ∈ S.

Proof. Define two subsets S1, S2 ⊆ S such that |S1| = |S2| = M + 1 and S1 ∪ S2 = S. This
is possible since |S| ≥ M + 1. From [22, Theorem 4] it follows that there exists two vectors

v(1) = (v
(1)
1 , . . . , v

(1)
2M ) and v(2) = (v

(2)
1 , . . . , v

(2)
2M ) in C such that v

(j)
i 6= 0 if and only if i ∈ Sj .

Now, one can construct v as a linear combination v := v(1) + cv(2) with c ∈ Fm2 as follows.

Choose c 6= 0 such that for all non-zero components v
(1)
i in v(1) the identity

c · v(2)
i 6= −v

(1)
i

holds. This is possible because of the field property of Fm2 and since 2m > M + 2. ut

Thus, given a concrete MDS transformation (which has a sufficiently large dimension),
every activity pattern which fulfils the branch number property can be be realized. By applying
Lemma 25, one obtains as a corollary:

Corollary 27. Let log2(M + 2) < m and let A be an existing MDS matrix, A ∈ (Fm2 )M×M .
Then for all v, w ∈ (Fm2 )M with weight(v) + weight(w) ≥ M + 1, there exists an MDS matrix
A′ ∈ (Fm2 )M×M such that w = A′v.

B Search Results

Table 2 provides the results from our search for optimal rotation matrices. For ρ ∈ {1, 2, 3} and
a wide range of dimensions M ×N , number of rounds T and some trail-optimal choice of σ, we
give the number of active S-boxes it tightly guarantees, denoted B. Note that for ρ = 2 with the
4× 16 and 4× 32 geometries, entries marked with † are results restricted to diffusion-optimal
σ due to the complexity of the model. As such, the optimal bound w.r.t. trail weights may be
even higher.



Table 2. Results for M = 2, 3, 4, 5

ρ = 1 ρ = 2 ρ = 3 ρ = 1 ρ = 2 ρ = 3

T M N B σ B σ B σ M N B σ B σ B σ

2 2 2 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 4 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 10 (0, 1) 10 (0, 1), (0, 1) 10 (0, 1), (0, 1), (0, 1) 26 (0, 1, 2, 3) 26 (0, 1, 2, 3), (0, 1, 2, 3) 26 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
6 12 (0, 1) 12 (0, 1), (0, 1) 12 (0, 1), (0, 1), (0, 1) 30 (0, 1, 2, 3) 30 (0, 1, 2, 3), (0, 1, 2, 3) 30 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
7 14 (0, 1) 14 (0, 1), (0, 1) 14 (0, 1), (0, 1), (0, 1) 34 (0, 1, 2, 3) 34 (0, 1, 2, 3), (0, 1, 2, 3) 34 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
8 18 (0, 1) 18 (0, 1), (0, 1) 18 (0, 1), (0, 1), (0, 1) 50 (0, 1, 2, 3) 50 (0, 1, 2, 3), (0, 1, 2, 3) 50 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
10 21 (0, 1) 21 (0, 1), (0, 1) 21 (0, 1), (0, 1), (0, 1) 55 (0, 1, 2, 3) 55 (0, 1, 2, 3), (0, 1, 2, 3) 55 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
12 27 (0, 1) 27 (0, 1), (0, 1) 27 (0, 1), (0, 1), (0, 1) 75 (0, 1, 2, 3) 75 (0, 1, 2, 3), (0, 1, 2, 3) 75 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)

2 2 4 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 6 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 34 (0, 1, 2, 3) 36 (0, 1, 2, 4), (0, 1, 2, 3) 37 (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4)
6 18 (0, 1) 18 (0, 1), (0, 1) 18 (0, 1), (0, 1), (0, 1) 45 (0, 1, 3, 4) 45 (0, 1, 3, 4), (0, 1, 3, 4) 45 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)
7 21 (0, 1) 22 (0, 1), (0, 2) 21 (0, 1), (0, 1), (0, 1) 48 (0, 1, 3, 4) 48 (0, 1, 3, 4), (0, 1, 3, 4) 48 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 3, 4)
8 24 (0, 1) 24 (0, 1), (0, 1) 24 (0, 1), (0, 1), (0, 1) 57 (0, 1, 3, 4) 57 (0, 1, 3, 4), (0, 1, 3, 4) 57 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)
10 30 (0, 1) 30 (0, 1), (0, 1) 30 (0, 1), (0, 1), (0, 1) 72 (0, 1, 2, 3) 73 (0, 1, 2, 3), (0, 1, 2, 4) 74 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 3, 4)
12 36 (0, 1) 36 (0, 1), (0, 1) 36 (0, 1), (0, 1), (0, 1) 90 (0, 1, 3, 4) 90 (0, 1, 3, 4), (0, 1, 3, 4) 90 (0, 1, 3, 4), (0, 1, 3, 4), (0, 1, 3, 4)

2 2 6 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 8 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 41 (0, 1, 2, 4) 41 (0, 1, 2, 3), (0, 1, 3, 4)
6 18 (0, 1) 21 (0, 1), (0, 2) 21 (0, 1), (0, 2), (0, 2) 50 (0, 1, 2, 4) 55 (0, 1, 2, 3), (0, 1, 3, 5)
7 21 (0, 1) 30 (0, 3), (0, 3) 28 (0, 1), (0, 2), (0, 2) 58 (0, 1, 3, 4) 58 (0, 1, 2, 3), (0, 2, 3, 5)
8 24 (0, 1) 36 (0, 3), (0, 3) 36 (0, 3), (0, 3), (0, 3) 65 (0, 1, 2, 4) 65 (0, 1, 2, 3), (0, 1, 3, 4)
10 30 (0, 1) 39 (0, 1), (0, 2) 42 (0, 1), (0, 1), (0, 2) 85 (0, 1, 2, 4) 90 (0, 1, 2, 3), (0, 2, 3, 5)
12 36 (0, 1) 45 (0, 1), (0, 2) 48 (0, 1), (0, 1), (0, 3) 105 (0, 1, 2, 4) 111 (0, 1, 2, 3), (0, 2, 3, 5)
14 120 (0, 1, 2, 4)

2 2 8 3 (0, 1) 3 (0, 1), (0, 1) 3 (0, 1), (0, 1), (0, 1) 4 10 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 5 (0, 1) 5 (0, 1), (0, 1) 5 (0, 1), (0, 1), (0, 1) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3)
4 9 (0, 1) 9 (0, 1), (0, 1) 9 (0, 1), (0, 1), (0, 1) 25 (0, 1, 2, 3) 25 (0, 1, 2, 3), (0, 1, 2, 3)
5 13 (0, 1) 13 (0, 1), (0, 1) 13 (0, 1), (0, 1), (0, 1) 41 (0, 1, 2, 4) 41 (0, 1, 2, 3), (0, 1, 3, 4)
6 18 (0, 1) 21 (0, 1), (0, 2) 21 (0, 1), (0, 2), (0, 2) 60 (0, 1, 2, 4) 65 (0, 1, 2, 3), (0, 1, 4, 7)
7 21 (0, 1) 31 (0, 5), (0, 1) 34 (0, 2), (0, 1), (0, 3) 70 (0, 1, 3, 4) 72 (0, 1, 2, 3), (0, 1, 4, 7)
8 24 (0, 1) 39 (0, 1), (0, 3) 42 (0, 1), (0, 2), (0, 3) 80 (0, 1, 3, 4) 82 (0, 1, 5, 6), (0, 2, 5, 7)
10 30 (0, 1) 51 (0, 1), (0, 3) 54 (0, 1), (0, 3), (0, 2)
12 36 (0, 1) 56 (0, 1), (0, 3) 60 (0, 1), (0, 2), (0, 3)

2 3 3 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 12 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 4) 9 (0, 1, 2, 3), (0, 1, 2, 4)
4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3)
5 17 (0, 1, 2) 17 (0, 1, 2), (0, 1, 2) 17 (0, 1, 2), (0, 1, 2), (0, 1, 2) 41 (0, 1, 3, 4)
6 20 (0, 1, 2) 20 (0, 1, 2), (0, 1, 2) 20 (0, 1, 2), (0, 1, 2), (0, 1, 2) 65 (0, 1, 4, 5)
7 23 (0, 1, 2) 23 (0, 1, 2), (0, 1, 2) 23 (0, 1, 2), (0, 1, 2), (0, 1, 2) 76 (0, 1, 4, 5)
8 32 (0, 1, 2) 32 (0, 1, 2), (0, 1, 2) 32 (0, 1, 2), (0, 1, 2), (0, 1, 2) 92 (0, 1, 4, 5)
10 36 (0, 1, 2) 36 (0, 1, 2), (0, 1, 2) 36 (0, 1, 2), (0, 1, 2), (0, 1, 2)
12 48 (0, 1, 2) 48 (0, 1, 2), (0, 1, 2) 48 (0, 1, 2), (0, 1, 2), (0, 1, 2)

2 3 6 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 16 5 (0, 1, 2, 3) 5 (0, 1, 2, 3), (0, 1, 2, 3)
3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 3) 9 (0, 1, 2, 3), (0, 1, 2, 3)

4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3) 25† (0, 1, 2, 3), (0, 1, 2, 3)

5 20 (0, 1, 2) 25 (0, 1, 2), (0, 1, 3) 25 (0, 1, 2), (0, 1, 3), (0, 1, 2) 41 (0, 1, 2, 4) 41† (0, 1, 2, 3), (0, 1, 2, 3)

6 24 (0, 1, 2) 36 (0, 1, 2), (0, 1, 3) 36 (0, 1, 3), (0, 1, 2), (0, 2, 3) 75 (0, 1, 4, 6) 90† (0, 4, 10, 14), (0, 2, 11, 13)

7 28 (0, 1, 2) 38 (0, 1, 2), (0, 1, 3) 40 (0, 1, 3), (0, 2, 3), (0, 1, 2) 100 (0, 1, 4, 5) 111† (0, 1, 2, 3), (0, 3, 7, 11)
8 32 (0, 1, 2) 41 (0, 1, 2), (0, 1, 3) 44 (0, 1, 2), (0, 1, 3), (0, 2, 3) 120 (0, 1, 4, 6)
10 40 (0, 1, 2) 56 (0, 1, 2), (0, 1, 3) 56 (0, 1, 2), (0, 1, 3), (0, 2, 3)
12 48 (0, 1, 2) 72 (0, 1, 2), (0, 1, 3) 72 (0, 1, 2), (0, 1, 3), (0, 2, 3)

2 3 9 4 (0, 1, 2) 4 (0, 1, 2), (0, 1, 2) 4 (0, 1, 2), (0, 1, 2), (0, 1, 2) 4 32 5 (0, 1, 2, 3) 5† (0, 1, 2, 3), (0, 1, 2, 3)

3 7 (0, 1, 2) 7 (0, 1, 2), (0, 1, 2) 7 (0, 1, 2), (0, 1, 2), (0, 1, 2) 9 (0, 1, 2, 3) 9† (0, 1, 2, 3), (0, 1, 2, 3)

4 16 (0, 1, 2) 16 (0, 1, 2), (0, 1, 2) 16 (0, 1, 2), (0, 1, 2), (0, 1, 2) 25 (0, 1, 2, 3) 25† (0, 1, 2, 3), (0, 1, 2, 3)
5 25 (0, 1, 3) 25 (0, 1, 2), (0, 1, 3) 25 (0, 1, 2), (0, 1, 2), (0, 1, 2) 41 (0, 1, 2, 4)
6 36 (0, 1, 3) 44 (0, 1, 2), (0, 2, 5) 44 (0, 1, 2), (0, 2, 4), (0, 3, 6) 75 (0, 1, 4, 6)
7 42 (0, 1, 3) 53 (0, 1, 2), (0, 2, 5) 55 (0, 1, 2), (0, 2, 4), (0, 3, 6)
8 48 (0, 1, 3) 60 (0, 1, 2), (0, 1, 4) 60 (0, 1, 2), (0, 1, 2), (0, 2, 5)
10 60 (0, 1, 3) 69 (0, 1, 2), (0, 1, 4) 72 (0, 1, 2), (0, 1, 3), (0, 3, 6)
12 72 (0, 1, 3) 92 (0, 1, 2), (0, 2, 5) 93 (0, 1, 2), (0, 2, 4), (0, 3, 6)

2 5 8 6 (0, 1, 2, 3, 4) 6 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
3 11 (0, 1, 2, 3, 4) 11 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
4 36 (0, 1, 2, 3, 4) 36 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
5 54 (0, 1, 2, 3, 5) 56 (0, 1, 2, 3, 4), (0, 1, 3, 5, 6)
6 62 (0, 1, 2, 3, 5) 62 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
7 67 (0, 1, 2, 3, 5) 67 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
8 72 (0, 1, 2, 3, 4) 72 (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)
9 95 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5)
10 108 (0, 1, 2, 3, 7)


