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Abstract

A pseudorandom function F : K ×X → Y is said to be key homomorphic if given F (k1, x)
and F (k2, x) there is an efficient algorithm to compute F (k1 ⊕ k2, x), where ⊕ denotes a group
operation on k1 and k2 such as xor. Key homomorphic PRFs are natural objects to study and
have a number of interesting applications: they can simplify the process of rotating encryption
keys for encrypted data stored in the cloud, they give one round distributed PRFs, and they can
be the basis of a symmetric-key proxy re-encryption scheme. Until now all known constructions
for key homomorphic PRFs were only proven secure in the random oracle model. We construct
the first provably secure key homomorphic PRFs in the standard model. Our main construction
is based on the learning with errors (LWE) problem. In the proof of security we need a variant of
LWE where query points are non-uniform and we show that this variant is as hard as the standard
LWE. We also construct key homomorphic PRFs based on the decision linear assumption in
groups with an `-linear map. We leave as an open problem the question of constructing standard
model key homomorphic PRFs from more general assumptions.

Keywords. Pseudorandom functions, Key homomorphism, Non-uniform learning with errors.

1 Introduction

Let F : K × X → Y be a secure Pseudorandom Function (PRF) and suppose that the key space
K has a group structure where ⊕ denotes the group action. We say that F is key homomorphic if
given F (k1, x) and F (k2, x) there is an efficient procedure that outputs F

(
k1 ⊕ k2, x

)
. That is, the

PRF is homomorphic with respect to its key. We show below that key homomorphic PRFs have
several important applications that are practically motivated.

Constructing key homomorphic PRFs in the random oracle model is straightforward. Let G be
a finite cyclic group of prime order q and let H1 : X → G be a hash function modeled as a random
oracle. Define the function Fddh : Zq ×X → G as

Fddh(k, x)← H1(x)k,

and observe that Fddh(k1 + k2, x) = Fddh(k1, x) · Fddh(k2, x). Naor, Pinkas, and Reingold [NPR99]
showed that Fddh is a secure PRF in the random oracle model assuming the Decision Diffie-Hellman
assumption holds in G. This PRF is clearly key homomorphic.

∗This is the full version of a paper that appeared in Crypto 2013 [BLM+13].
†Stanford University. Email: {dabo,klewi,hartm,ananthr}@cs.stanford.edu
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Similarly, we can construct random oracle key homomorphic PRFs from hard lattice problems.
Let p < q be two primes and let H2 : X → Znq be a hash function modeled as a random oracle.
Define the function Flwr : Znq ×X → Zp as

Flwr(k, x)← b〈H2(x),k〉cp ,

where bxcp denotes rounding an element x ∈ Zq to Zp by multiplying it by (p/q) and rounding
the result (as defined in Section 2), and 〈·, ·〉 denotes inner product. The function Flwr can
be easily shown to be a secure PRF in the random oracle model whenever the Learning with
Rounding (LWR) assumption [BPR12] holds. Because rounding is not linear (i.e. it can happen
that ba+ bcp 6= bacp + bbcp) the function Flwr is not key homomorphic. However, it comes very
close and is sufficiently homomorphic for our applications. In particular, Flwr is “almost” key
homomorphic in the sense that

Flwr(k1 + k2, x) = Flwr(k1, x) + Flwr(k2, x) + e

where e is small; namely, e ∈ {0, 1, 2}.

1.1 Our Contributions

Key homomorphic PRFs in the standard model. We construct the first (almost) key ho-
momorphic PRFs without using random oracles. Our main construction, given in Section 5, is a
lattice-based almost key homomorphic PRF based on the Learning with Errors (LWE) assump-
tion [Reg05]. The PRF uses two public matrices A0,A1 ∈ Zm×mq where the entries of these matrices
are sampled uniformly at random from {0, 1}. The dimension m is derived from the security
parameter. The key for the PRF is a single vector k ∈ Zmq and its domain is {0, 1}`. The PRF at

the point x = x1 · · ·x` ∈ {0, 1}` is defined as

Flwe(k, x) =

⌊∏̀
i=1

Axi · k

⌋
p

∈ Zmp . (1.1)

This function satisfies Flwe(k1 + k2, x) = Flwe(k1, x) + Flwe(k2, x) + e where the error term
e ∈ {0, 1, 2}m. Furthermore, if we require that p | q, then e must lie in {0, 1}m. Therefore this
function is almost key homomorphic in the same sense as Flwr, which is sufficient for our applications.
We prove that Flwe is a secure PRF based on the LWE assumption in the standard model.

The construction in Eq. (1.1) is closely related to an elegant non-key homomorphic PRF due
to Banerjee, Peikert, and Rosen [BPR12], but is technically quite different from it. The secret key
in [BPR12] is a collection of ` matrices while our secret key is only a single vector k ∈ Zmq . The
public parameters in [BPR12] consist of one matrix while our public parameters consist of two
matrices. An important step in our proof of security requires that the two public matrices A0,A1

used in our PRF be low-norm matrices (e.g. binary) and this poses a challenge in proving security
from the standard LWE assumption.

To prove security we define a variant of LWE called the non-uniform LWE problem and show
that it is at least as hard as the standard LWE problem. Recall that the standard LWE assumption
states that for a random s ∈ Znq , the following two oracles are indistinguishable:

Olwe :
(
vi

R← Znq , 〈vi, s〉+ χi
)

and O$ :
(
vi

R← Znq , xi
R← Zq

)
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where χi is sampled from a suitable low-norm noise distribution. We show that the LWE assumption
implies that these two oracles are indistinguishable even when the vectors vi are sampled from
certain distributions of low norm vectors in Znq or even as binary vectors in {0, 1}n. However, the
dimension n must be increased—in general, the lower the norm of each vi, the larger n needs to be.
While this low norm version of the LWE assumption is precisely what we need to prove security of
the PRF Flwe, this assumption may be of independent interest and useful in other settings.

Key homomorphic PRFs from `-linear maps. In Section 6 we present an algebraic `-bit key
homomorphic PRF built from `-linear maps ê : G` → G`, where G` is the `th target group. PRF
security is based on the `-decision linear assumption [BBS04, Sha07b, HK07a] in G. For a generator
g ∈ G, the public parameters for the PRF are pp =

(
gA0 , gA1

)
where A0,A1 are two matrices in

Z`×`p generated at random (here, the notation gA0 denotes component-wise exponentiation). The

secret key for the PRF is a single vector k ∈ Z`p. The PRF at the point x = x1 . . . x` ∈ {0, 1}` is
defined as

Fdlin(k, x) = (g`)
w ∈ (G`)

` where w = Ax1 · · ·Ax` · k ∈ Z`p (1.2)

where g` is a generator of G`. Evaluating the PRF at the point x given the public parameters
pp =

(
gA0 , gA1

)
and key k can be done using a graded `-linear map as explained in Section 6. The

PRF Fdlin(k, x) is clearly homomorphic with respect to the secret key k.
This PRF is related to the Naor-Reingold DDH-based PRF [NR97], but since the DDH assump-

tion is false in groups with an `-linear map (` > 1), the relation is closer to the Lewko-Waters [LW09]
variant which is proven secure under the `-decision linear assumption in G. The secret key in the
Lewko-Waters PRF consists of ` secret matrices while in construction (1.2) the secret key is only
a single vector k ∈ Z`p and this enables the key homomorphic property. The proof that (1.2) is
a secure PRF is somewhat different from the Naor-Reingold and Lewko-Waters proofs and more
closely resembles the original proof of the GGM PRF [GGM86].

Instantiating construction (1.2) requires a graded `-linear map on a group G for which the
`-decision linear assumption holds. There are currently two candidate `-linear map schemes: one
due to Garg, Gentry, and Halevi [GGH13] and another due to Coron, Lepoint, Tibouchi [CLT13].
Garg, Gentry and Halevi [GGH13] observe that the `-decision linear problem is easy for their
candidate `-linear map which can make Construction (1.2) insecure. The `-linear map scheme of
Coron, Lepoint, Tibouchi [CLT13] appears to satisfy the `-decision linear assumption and gives a
possible instantiation for Construction (1.2).

We note, however, that both `-linear map candidates introduce noise and consequently instanti-
ating Construction (1.2) with either candidate will result in an almost key homomorphic PRF which
is no better than the LWE-based construction (1.1). We therefore view our LWE-based construction
as our primary key homomorphic PRF and await for other (noiseless) `-linear map candidates to
instantiate our second scheme.

Constructions (1.2) and (1.1) can be computed using a circuit whose depth depends only
logarithmically on `. Interestingly, both constructions are puncturable in the sense of [SW13].
Currently, these are the only known log-depth puncturable PRFs.

1.2 Key homomorphic PRFs: Applications

Our interest in key homomorphic PRFs stems from a number of applications for such functions. We
describe them briefly here and provide more details in Section 7.

3



Distributed PRFs. In a one-time password system [MMP+11] such as RSA SecurID, users are
given a small cryptographic token containing a PRF secret key. The token displays PRF outputs
that are used as one-time passwords. An authentication server verifies a given one-time password by
comparing it to its own evaluation of the PRF using the same PRF secret key. Since the server knows
the secret PRF keys for all users, these authentication servers are a prime target for attacks [Cov12].
In response to attacks RSA Inc. introduced Distributed Credential Protection where PRF keys are
split among two or more key servers and all (or most) servers have to be compromised to recover
the keys. Currently this design does not provide true key splitting since the PRF in use is AES for
which there is no known simple key splitting mechanism (although see [KSS12]).

More generally, distributed PRFs support splitting the secret key among n key servers so that at
least t servers are needed to evaluate the PRF. Evaluating the PRF is done without reconstructing
the key at a single location. Distributed PRFs have a long history [MS95, NR97, NPR99, Nie02,
DS02, Dod03], but all previous constructions either use the random oracle model, require multiple
rounds of interaction or interaction among the key servers, or scale badly with the threshold t. As a
simple example, we briefly mention a practical construction of Mical and Sidney [MS95] that works
well for either very small or very large thresholds t. For a standard secure PRF F : {0, 1}k×X → Y
define the xor-PRF as F⊕

(
(k1, k2, k3), x) = F (k1, x) ⊕ F (k2, x) ⊕ F (k3, x). A 2-out-of-3 key

distribution for F⊕ is quite simple: give one server the keys {k1, k2}, another server {k1, k3}, and the
third server {k2, k3}. Now, a client who sends x to all three servers and receives a response from any
two of them (the response is the evalution of F at x under the server’s keys) can easily compute F⊕
at x. Evaluation uses one-round of communication and no interaction among the key servers. While
this construction works well for a very small or a very large threshold t, communication increases
exponentially with min(t, n− t). As mentioned above, other distributed PRF constructions require
multiple rounds or use the random oracle model. Additional results on distributing symmetric keys
focus on distributing the key of a Pseduorandom Permutation (PRPs) [BCF00, MSNW+05, DYY06],
but these again need interaction among the key servers or multiple rounds.

Key homomorphic PRFs give a clean one-round solution to distributing PRF keys for any
threshold with no interaction among the key servers: a client who wants to evaluate the PRF at a
point x sends a single short message to each key server and receives a single response back from
each key server. No interaction between the key servers is needed. For example, for an n-out-of-n
sharing, key server i stores a random key ki and the overall PRF key is k = k1 ⊕ · · · ⊕ kn, where ⊕
is the group action over the key space. To evaluate F (k, x) the client sends x to all key servers and
each server responds with yi = F (ki, x). The client combines the results to obtain F (k, x) using
the key homomorphism property. To provide t-out-of-n sharing, the client first homomorphically
“multiplies” the responses from the key servers by the appropriate Lagrange coefficients and then
homomorphically “adds” the results using the key homomorphism property. We give the details in
Section 7.1. This application still works with an almost key homomorphic PRF as long as the PRF
range is sufficiently larger than the homomorphism error term. The output is then defined as the
high order bits of the computed value F (k, x) so as to eliminate the homomorphism error.

The single round distributed PRFs obtained from our key homomorphic PRFs provide a solution
to an old open problem of Canetti and Goldwasser [CG99] who needed them to construct a threshold
public-key encryption system secure against adaptive chosen ciphertext attack. Without one-round
distributed PRFs the system of [CG99] needs a large amout of pre-shared randomness among the
key servers. This can be eliminated using our distributed PRFs: the key servers simply share the
key for a one-round distributed PRF and derive the per-ciphertext randomness by applying the
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PRF to the ciphertext being decrypted.

Symmetric-key proxy re-encryption. Key homomorphic PRFs provide the symmetric-key
analogue of public-key proxy re-encryption [BBS98, AFG+06, CH07, ABH09, LV11]. Given a
message from a client encrypted under one symmetric key, a proxy can translate that ciphertext
to a different symmetric key (associated with another client) without knowledge of either key. To
do so, the proxy is provided with a short re-encryption token ∆ that enables it to transform the
symmetric encryption of the data m from key k to key k′ without knowing either key.

A key homomorphic PRF directly gives a symmetric-key proxy re-encryption scheme. To see
how, let F (k,m) be a key homomorphic PRF satisfying F (k ⊕ k′, x) = F (k, x) ⊗ F (k′, x) where
both ⊕ and ⊗ are group operations. Suppose the data m is encrypted using randomized counter
mode based on F—that is, the jth block of m is encrypted as cj ← mj ⊗F (k,N + j) where N is an
encryption nonce. Now, to re-encrypt from key k to key k′, the client sends the re-encryption token
∆ = −k ⊕ k′ to the proxy. The proxy computes the following on every ciphertext block:

c′j ← cj ⊗ F (∆, N + j).

By the key homomorphism property, c′j = mj⊗F (k,N +j)⊗F (∆, N +j) = mj⊗F (k⊕∆, N +j) =
mj ⊗ F (k′, N + j) and therefore c′j is the encryption of mj under key k′, as required. We discuss
the security of this construction in Section 7. This application works equally well with an almost
key homomorphic PRF except that we need to pad each message block mj with a constant number
of zeros on the right to ensure that the small additive homomorphic error term e does not affect the
encrypted plaintext after several re-encryptions.

Basic symmetric-key proxy re-encryption can also be done using a seed homomorphic pseudo-
random generator (PRG) — a PRG G : S → Y such that G(s2) can be efficiently computed from
G(s1) and ∆ = −s1 ⊕ s2. We give examples of such PRGs in Section 3.2 and explain how to use
them for symmetric proxy re-encryption in Section 7. However, encrypting with a key homomorphic
PRF using randomized counter-mode provides a simple proxy re-encryption scheme secure against
chosen-plaintext attacks, thereby enabling a single key to encrypt multiple messages.

We note that the encryption scheme can be made to provide integrity without disrupting the
key homomorphism property by using “MAC then encrypt with counter-mode,” which is known to
provide secure authenticated encryption (see e.g., [Kra01]).

Updatable encryption. Symmetric-key proxy re-encryption built from key homomorphic PRFs
elegantly solves a common problem facing companies who store encrypted data in the cloud. Let m
be some data and suppose the company stores the symmetric encryption of m under key k in the
cloud. Any employee who knows k has access to m. As employees leave the company there is a need
to rotate the encryption key (i.e. re-encrypt m under a new key k′) to ensure that ex-employees
lose access to the data. Often key rotation happens at fixed time intervals (e.g. once a month). We
define the security requirments for key rotation in Section 7.3. At a high level the rotated ciphertext
should be distributed as a fresh encryption of the data under the new key k′. In particular, the
encryption randomness should be independent of the original ciphertext. The cloud should learn
nothing about the plaintext.

One näıve approach is to download the entire ciphertext from the cloud, re-encrypt under a new
key, and upload the new ciphertext to the cloud. If the cloud provider is trusted to delete the old
ciphertext then this ensures that employees who leave the company lose access even if they are able
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to access the current data stored in the cloud. Unfortunately, downloading and re-uploading all the
data from the cloud just for the purpose of key rotation results in considerable wasted bandwidth
and cost.

A better solution is to encrypt the data m using a symmetric-key proxy re-encryption scheme
and use the cloud as the proxy holding the company’s encrypted data. Now, by simply sending to
the cloud the re-encryption token ∆ = −k ⊕ k′, the cloud can translate the ciphertext from key
k to key k′ in place without doing any large data transfers. As before, if the cloud is trusted to
delete the old re-encryption tokens ∆ and the old versions of the ciphertext, then employees who
leave the company lose access to m even if they can access the current data stored with the cloud.
Notice that to satisfy the security requirement for key rotation, the proxy in the proxy re-encryption
scheme must output ciphertexts distributed as a fresh encryption of the data independent of the
input ciphertext.

One may try to implement key rotation in the cloud using ad-hoc solutions such as nested
encryption, but these solutions do not satisfy our security requirements. Moreover, they result in
increased storage needs or increased decryption time or do not fully prevent a revoked employee
from decrypting cloud data. A fast key homomorphic PRF provides a clean solution that does not
increase storage requirements and has no impact on encryption or decryption time.

PRFs secure against related-key attacks. A related-key attack (RKA) on a PRF models a
situation where an adversary is able to manipulate the secret key used in the PRF. Bellare and
Cash [BC10] construct RKA-secure PRFs under the Decision Diffie-Hellman assumption and also
under the decision linear assumption. One important ingredient in their constructions is a PRF
that satisfies “key malleability”—informally, an adversary can transform an output of the PRF
on a secret key k ∈ K and input x ∈ X into an output of the PRF on a related key φ(k) (where
φ : K → K is a member of a class of functions Φ) and input x without having access to k. For PRFs,
key homomorphism implies key malleability with respect to the class Φ⊕ = {φ : φ(k) = k ⊕ k′}k′∈K,
where ⊕ represents the group action over K. However, the converse does not hold in general— key
malleability over Φ⊕ is not known to imply key homomorphism.

Bellare and Cash give several constructions of RKA-secure PRFs based on various standard
assumptions which are secure for certain restricted classes Φ of related-key deriving functions. We
show in Section 7.4 that any key homomorphic PRF that satisfies an additional syntactic property
can be used to construct an RKA-secure PRF for a larger class Φ than in [BC10].

1.3 Related work

Much recent work has focused on preventing related key attacks [BK03, BC10, BPT12]. Key
homomorphic PRFs are on the other end of the spectrum where key homomorphism is encouraged
in support of specific applications.

Key homomorphic PRFs give rise to one-round distributed PRFs. More generally, threshold
cryptosystems [DF89] have typically been constructed for public-key primitives such an public-key
encryption [SG02, CG99, DJ01, Ped91], digital signatures [DF91, FGM+97, GRJ+07, Sho00], key
generation [BF97, ACS02, GJK+99], and for general functionalities [SDF+94].

Syalim, Nishide, and Sakurai [SNS11] describe a symmetric proxy re-encryption scheme based
on the all or nothing transform (AONT) in the random oracle model. Cook and Keromytis [CK05]
propose to use double encryption to provide one-hop symmetric proxy re-encryption.
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1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we recollect a few preliminaries
required for the rest of the paper. In Section 3 we define key homomorphic and almost key
homomorphic PRFs. In Section 4, we introduce the problem of non-uniform learning with errors
and show a reduction from the standard learning with errors problem. In Section 5 we construct an
almost key homomorphic PRF under the LWE assumption. In Section 6 we construct a (fully) key
homomorphic PRF under the DLIN assumption. In Section 7 we show applications of (almost) key
homomorphic PRFs to constructing distributed PRFs and updatable encryption schemes. Finally,
we conclude the paper in Section 8.

2 Preliminaries

Notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform
distribution over the set {0, 1}n. For a random variable X we denote by x ← X the process of
sampling a value x according to the distribution of X. Similarly, for a finite set S we denote by
x← S the process of sampling a value x according to the uniform distribution over S. We denote
by x a vector (x1, . . . , x|x|). For two bit-strings x and y we denote by x‖y their concatenation.

For a bit string x ∈ {0, 1}`, for every j ∈ [`], let x|j denote the bit string comprising the bits j
through ` of x. A non-negative function f : N→ R is negligible if it vanishes faster than any inverse
polynomial. For a group G of order p, element g ∈ G and a matrix M ∈ Zn×mp (for any n and m in

N), we denote the matrix in Gn×m whose (i, j)th entry is gmi,j by gM. We denote by Rki(Za×bp ) the
set of all a× b matrices over Zp of rank i.

Rounding. We use b·c to denote rounding a real number to the largest integer which does not
exceed it. For integers q and p where q ≥ p ≥ 2, we define the function b·cp : Zq → Zp as bxcp = i,
where i · bq/pc is the largest multiple of bq/pc that does not exceed x. For a vector v ∈ Zmq , we
define bvcp as the vector in Zmp obtained by rounding each coordinate of the vector individually. A
probability distribution χ over R is said to be B-bounded if it holds that Prx←χ[|x| > B] is negligible
in the security parameter.

PRFs and PRGs. Recall that a pseudorandom generator (PRG) is an efficiently computable
function G : S → R such that for uniform s in S and uniform r in R, the distribution {G(s)} is com-
putationally indistinguishable from the distribution {r}. A pseudorandom function (PRF) [GGM86]
is an efficiently computable function F : K ×X → Y such that for a uniform k in K and a uniform
function f : X → Y, an oracle for F (k, ·) is computationally indistinguishable from an oracle for
f(·). We let AdvPRF[F,A] denote the advantage of adversary A in distinguishing the PRF F
from a random function f : X → Y. In this paper, we allow our PRFs and PRGs to be further
parameterized by a public parameter pp. When needed, this pp is generated by a Setup algorithm.
For completeness, a more detailed definition of secure PRFs is given in Appendix A.1.

2.1 Lattice Preliminaries

Learning with errors (LWE) assumption. The LWE problem was introduced by Regev
[Reg05] who showed that solving the LWE problem on average is as hard as (quantumly) solving
several standard lattice problems in the worst case.
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Definition 2.1 (Learning With Errors). For integers q = q(n) ≥ 2 and a noise distribution χ = χ(n)
over Zq, the learning with errors problem (Zq, n, χ)-LWE is to distinguish between the following
pairs of distributions:

{A,Aᵀs + χ} and {A,u},

where m = poly(n), A← Zn×mq , s← Znq , χ← χm, and u← Zmq . We refer to the m columns of the
matrix A as the LWE sample points.

Regev [Reg05] shows that for a certain noise distribution χ, for n polynomial in λ, and a
sufficiently large q, the LWE problem is as hard as the worst-case SIVP and GapSVP under a
quantum reduction (see also [Pei09, BLP+13]). These results have been extended to show that s
can be sampled from a low norm distribution (in particular, from the noise distribution χ) and the
resulting problem is as hard as the basic LWE problem [ACP+09]. Similarly, the noise distribution
χ can be a simple low-norm distribution [MP13].

2.2 The Decision Linear Assumption

We review the matrix form of the decision linear assumption, which is implied by the standard
decisional linear assumption (see, e.g., [BHH+08, NS12]). Recall that Rki

(
Zκ×κp

)
denotes the set of

κ× κ matrices over Zp of rank i.

Definition 2.2. The matrix form of the κ-linear (κ-DLIN) assumption states that the distributions{(
G, g, gX

)}
X←Rkκ−1(Zκ×κp ) and

{(
G, g, gY

)}
Y←Rkκ(Zκ×κp )

are computationally indistinguishable, where G is a group of prime order p, and g a generator for G.

The 2-linear assumption is identical to the standard Decision Diffie-Hellman (DDH) problem
in G. For κ = 3 we obtain the decision linear assumption defined in [BBS04]. For larger κ we obtain
the generalized linear assumption defined in [Sha07a, HK07b]. It is not difficult to show that if the
κ-linear assumption holds for G then so does the κ′-linear assumption for κ′ > κ. It is believed that
the larger κ is the weaker the assumption becomes. In particular, the 3-linear assumption may hold
in groups where the 2-linear assumption (a.k.a DDH) does not.

3 Key Homomorphic PRFs and Seed Homomorphic PRGs

In this section, we define key homomorphic PRFs and “almost” key homomorphic PRFs. We also
introduce the concept of seed homomorphic PRGs and give example instantiations from standard
assumptions.

3.1 Key Homomorphic Pseudorandom Functions

Definition 3.1 (Key homomorphic PRF). Consider an efficiently computable function F : K×X →
Y such that (K,⊕) and (Y,⊗) are both groups. We say that the tuple (F,⊕,⊗) is a key homomorphic
PRF (KHPRF) if the following two properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).
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In Section 1 we gave an example of a key homomorphic PRF in the random oracle model due to
Naor, Pinkas, and Reingold [NPR99]. While property 2 is very desirable, it is helpful to also modify
the homomorphic requirement to only being approximately correct when Y = Zmp . We call this
variant an almost key homomorphic PRF (AKHPRF). An AKHPRF has a parameter γ that reflects
the amount of error allowed in the homomorphism.

Definition 3.2 (γ-Almost key homomorphic PRF). Let F : K × X → Zmp be an efficiently
computable function such that (K,⊕) is a group. We say that the tuple (F,⊕) is a γ-almost key
homomorphic PRF (γ-AKHPRF) if the following two properties hold:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod p) .

For example, the function Flwr from Section 1 is 1-almost key homomorphic. Such γ-almost key
homomorphic functions for small γ are sufficient for the applications we have in mind.

3.2 Seed Homomorphic Pseudorandom Generators

To explain our PRF constructions it is instructive to first consider pseudorandom generators (PRGs)
that are homomorphic with respect to their seed.

Definition 3.3 (Seed homomorphic PRG). An efficiently computable function G : X → Y, where
(X ,⊕) and (Y,⊗) are groups, is is said to be seed homomorphic if the following two properties hold:

1. G is a secure PRG.
2. For every s1, s2 ∈ X we have that G(s1)⊗G(s2) = G(s1 ⊕ s2).

3.2.1 Examples of Seed Homomorphic PRGs

We give two example seed homomorphic PRGs, one based on the Decision Diffie-Hellman (DDH)
assumption and the other based on lattices.

Seed homomorphic PRGs from DDH and DLIN. Let G be a group of order p in which the
DDH assumption holds. Consider a PRG Gddh : Zp → G × G with public parameter pp = (g, h)
where g, h are chosen uniformly in G during setup. The generator Gddh with parameter pp is defined
as follows:

Gddh(s) = (gs, hs) .

Security of this PRG follows immediately from the DDH assumption: when s is uniform in Zp then
Gddh(s) is indistinguishable from a random sample in G×G. It should also be clear that this PRG
is seed homomorphic since for all s1, s2 ∈ Zp,

Gddh(s1 + s2) = Gddh(s1) ·Gddh(s2)

where · is component-wise multiplication.

More generally, for any ` > 0 we can generalize Gddh to obtain a seed homomorphic PRG with
seed space Z`p which is secure under the weaker `-DLIN assumption in G. Its public parameters
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pp are gA0 , gA1 ∈ G`×` where A0 and A1 are random matrices in Z`×`p (here gA0 refers to
component-wise exponentiation of entries in A0). The generator is defined as:

Gdlin(pp, s) =
(
gA0s, gA1s

)
∈ G` ×G`

Since s is given as the input to Gdlin it is straightforward to compute gA0s from gA0 with pp, and
the same holds for gA1s. Note that for ` = 1 the generator Gdlin is identical to Gddh.

Almost seed homomorphic PRGs from LWR. Let p < q and n < m be parameters. Then
the following PRG Glwr : Znq → Zmp , with public parameters pp being a random matrix A

R← Zn×mq ,
is secure assuming the Learning With Rounding (LWR) problem is hard for the given parameters
p, q, n,m:

Glwr(s) = bAᵀ · scp (3.1)

While this PRG is not seed homomorphic, it is close to seed homomorphic in the following sense:

Glwr(s1 + s2) = Glwr(s1) +Glwr(s2) + e

where e ∈ {0, 1, 2}m.

Key homomorphic PRFs from the GGM construction. Using seed homomorphic PRGs
we can give some high-level intuition for the constructions in the rest of the paper. Consider a seed
homomorphic PRG G : X → X ×X where (X ,⊕) is a group. Since the output of G(s) is in X ×X
let us write G0(s) for the left half of G(s) and write G1(s) for the right half. We can now construct
the GGM PRF [GGM86] with key space X and input space {0, 1}` as follows:

Fggm(k, x = x1 · · ·x`) = Gx`
(
Gx`−1

(
· · ·Gx2(Gx1(k)) · · ·

))
(3.2)

The standard GGM proof shows that if G is a secure PRG then F is a secure PRF. Now suppose
further that the input and output homomorphisms of G are compatible—that is, for all s1, s2 ∈ X
and b ∈ {0, 1} we have that

Gb(s1 ⊕ s2) = Gb(s1)⊕Gb(s2) .

Then it is not difficult to see that Fggm is key homomorphic.

Unfortunately, Gddh and Glwr defined in Section 3.2.1 above cannot be used directly in construc-
tion (3.2). The problem is that these generators do not compose as needed for construction (3.2).

• The output of Gddh(s) is in the group G which is not the seed space of Gddh.

• The output of Glwr(s) is not a properly distributed seed for Glwr.

In the next few sections we show how to overcome these difficulties while preserving the key
homomorphic or almost key homomorphic property of the resulting PRFs.

It is worth noting that seed homomorphic PRGs can be used for symmetric proxy re-encryption
and for updateable encryption, but the PRF-based schemes provide better security.
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4 Learning with Errors with Low-Norm Samples

Before we construct our lattice-based key homomorphic PRF, we first present a variant of the learning
with errors assumption needed to prove security. Recall that the basic LWE assumption [Reg05]
reviewed in Section 2 states that the distribution {A,Aᵀs + χ} is indistinguishable from the
distribution {A,u} where the columns of A are sampled uniformly in Znq and s is uniform in Znq .

In this section we introduce a variant of the learning with errors (LWE) problem in which the
the columns of A (i.e., the LWE sample points) are sampled from a non-uniform distribution η
over Znq . We call this variant Non-uniform Learning with Errors, or NLWE for short, and show that
for suitable parameters it is as hard as the basic LWE problem. In what follows we let k denote the
dimension of the NLWE problem and let n denote the dimension of the LWE problem. We also
write ηm to denote m independent samples from the distribution η.

Definition 4.1 (Non-uniform Learning with Errors). For an integer q = q(k) ≥ 2, a noise
distribution χ = χ(k) over Zq, and a distribution η over Zkq , the non-uniform learning with
errors problem (Zq, k, χ,η)-NLWE is to distinguish between the two distributions:

{A,Aᵀs + χ} and {A,u},

where m = poly(k), A← ηm (so that A ∈ Zk×mq ), s← Zkq , χ← χm, and u← Zmq .

We show that for certain choices of the distribution η there is a reduction from (Zq, n, χ)-LWE
to (Zq, k, χ,η)-NLWE for some k ≥ n. Consequently, the NLWE problem is at least as hard as the
LWE problem. In particular, we show that for suitable parameters, NLWE is as hard as LWE for
the following distributions η:

• ηBin(k): the uniform distribution on {0, 1}k for sufficiently large k,

• DZk,σ: a discrete Gaussian on Zk with a sufficiently large k and standard deviation σ,

• ηV : a uniform distribution over a sufficiently large linear subspace V of Zkq .

More generally, we show that NLWE is as hard as LWE for any distribution η which is coset
sampleable as defined next.

Definition 4.2 (Coset Sampleable Distributions). For integers q = q(k) and n = n(k) we say
that a distribution η = η(k) over Zkq is n-coset sampleable if there are two PPT algorithms
(MatrixGen,SamplePre) such that:

• MatrixGen(1k, n, q) outputs a matrix M ∈ Zn×kq and auxiliary data T,

• SamplePre(z ∈ Znq ,T) outputs a y ∈ Zkq satisfying My = z. Moreover, if z is distributed
uniformly in Znq then the output of SamplePre(z,T) is distributed statistically close to η.

The following theorem shows that (Zq, k, χ,η)-NLWE is as hard as (Zq, n, χ)-LWE for any n-coset
sampleable distribution η.

Theorem 4.3. Let η = η(k) be an n-coset sampleable distribution. Suppose there is a PPT
algorithm A that decides the (Zq, k, χ,η)-NLWE problem with advantage ε(k). Then there is a PPT
algorithm B that decides the (Zq, n, χ)-LWE problem with the same advantage ε(k).
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Proof. Algorithm B takes an LWE instance (A,v) as input and needs to decide whether this input
is sampled from {A,Aᵀs + χ} or from {A,u} where A is uniform in Zn×mq and u is uniform in
Zmq . Algorithm B translates (A,v) into an NLWE instance (B,v′) and then runs A on (B,v′).
Algorithm B takes (A,v) as input and wors as follows:

1. Choose a random r← Zkq and run MatrixGen(1k, n, q) to obtain a matrix M ∈ Zn×kq and T.

2. For each column a ∈ Znq of A run SamplePre(a,T) to obtain b ∈ Zkq such that Mb = a.

Assemble all such b into a matrix B ∈ Zk×mq . Then MB = A.

3. Set v′ ← v + Bᵀr ∈ Zmq .

4. Run A on input (B,v′) and output whatever A outputs.

It remains to show that (B,v′) is properly distributed as a (Zq, k, χ,η)-NLWE problem instance.
First, by the definition of SamplePre, since the columns of A are uniform in Znq , the columns of B
are statistically close to η. Second, if the input v is uniform in Zmq then clearly v′ = v + Bᵀr is
uniform in Zmq . Third, if the input v satisfies v = Aᵀs + χ then v′ satisfies v′ = Bᵀ(Mᵀs + r) + χ
because Aᵀ = BᵀMᵀ and

v′ = v + Bᵀr = Aᵀs + χ+ Bᵀr = BᵀMᵀs + χ+ Bᵀr = Bᵀ(Mᵀs + r) + χ.

Therefore (B,v′) is a proper NLWE instance where the secret vector is s′ = Mᵀs+ r which is clearly
uniform in Zkq . It follows that B decides NLWE with the same advantage as A decides LWE.

Remark 4.4. We note that while our definition of the NLWE problem requires that the secret
vector s ∈ Zkq be uniform in Zkq , the proof of Theorem 4.3 can be adapted to show that NLWE
problem is hard even when s is non-uniform and in particular distributed as {Mᵀs′} where s′ is
distributed as the secret vector in the LWE problem (e.g., uniform in Znq ). The proof is adapted to
a non-uniform s by eliminating the randomization vector r.

Next we show a few specific distributions η for which the corresponding NLWE problem is as hard
as LWE.

NLWE with uniform samples in {0, 1}k. Let ηBin(k) be the uniform distribution on {0, 1}k.
We show that if the (Zq, n, χ)-LWE problem is hard then so is the non-uniform LWE problem where
the columns of A are random binary vectors and the dimension is increased from n to ndlog2 qe.
The proof uses bit decomposition as in [BV11] and also in [AFV11, BLP+13].

Corollary 4.5. Let q = q(n) be an integer such that 2dlog qe−q
q is negligible (i.e., q is close to a

power of 2). Let k = ndlog2 qe. Then the (Zq, ndlog2 qe, χ,ηBin(k))-NLWE problem is at least as
hard as the (Zq, n, χ)-LWE problem.

Proof. By Theorem 4.3 it suffices to show that ηBin(k) is coset sampleable. Let m ∈ Zdlog qe
q be the

vector (1, 2, 22, . . . , 2dlog qe−1), and let M ∈ Zn×kq be the matrix M = m⊗ In, where ⊗ denotes the
tensor product. Algorithms MatrixGen and SamplePre are defined as follows:

• MatrixGen(1k, n, q) simply outputs M = m⊗ In ∈ Zn×kq and T = (n, q),
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• SamplePre(z ∈ Znq ,T) outputs a vector y in {0, 1}k by setting the entry in position (i+j dlog2 qe)
of y to the ith bit of the jth entry of the input vector z, for j = 0, . . . , n − 1 and i =
0, . . . , dlog2 qe − 1.

By construction My = z. Moreover, if z is uniformly distributed in Znq then a standard calculation
shows that the statistical distance between the distribution SamplePre(z,T) and ηBin(k) is bounded

from above by n2dlog qe−q
q , which is negligible for our choice of q and n, as required.

By Remark 4.4 the NLWE problem using ηBin(k) remains as hard as LWE when s ∈ Zkq is

distributed as {r⊗ (1, 2, 22, . . . , 2dlog qe−1)} where r is uniform in Znq .

NLWE with samples from a discrete Gaussian. Next, we show that when the columns of A
in LWE are sampled from a discrete Gaussian with a sufficiently large σ then the resulting problem
is as hard as LWE. Let DZk,σ denote the Gaussian distribution with standard deviation σ restricted

to Zk. We need the following two facts [AP09, GPV08]:

• There is an efficient randomized algorithm TrapGen(1n, k, q) that given integers n, q ≥ 2 and
k ≥ 6n log q, outputs a matrix M ∈ Zn×kq and a ‘trapdoor’ TM ∈ Zk×k such that M is
negl(n)-close to uniform.
• There is an efficient randomized algorithm SampleD(M,TM,u, σ) that given u ∈ Znq , suffi-

ciently large σ = Ω(
√
n log q), and the trapdoor TM outputs a vector e ∈ Zkq such that Me = u.

Moreover, when u is uniform in Znq , the output of SampleD(M,TM,u, σ) is distributed as
DZk,σ.

Corollary 4.6. Let q = q(n) be an integer, k ≥ 6n log q, and σ = Ω(
√
n log q). Then the problem

(Zq, k, χ,DZk,σ)-NLWE is at least as hard as (Zq, n, χ)-LWE.

Proof. By Theorem 4.3 it suffices to show that DZk,σ is coset sampleable. Algorithms MatrixGen
and SamplePre are defined as follows:

• MatrixGen(1k, n, q) runs TrapGen(1n, k, q) and outputs M and T = (M,TM).

• SamplePre(z ∈ Znq ,T) outputs SampleD(M,TM, z, σ).

By construction, these algorithms show that DZk,σ is coset sampleable.

NLWE with samples in a linear subspace. Our last example which was also studied by
Pietrzak [Pie12] shows that when the columns of A in LWE are sampled uniformly from a linear
subspace of sufficient dimension then the resulting problem is as hard as LWE.

Corollary 4.7. Let q = q(n) be an integer and k ≥ n. Let V be a linear subspace of Zkq of
dimension d where n ≤ d ≤ k. Let ηV be the uniform distribution on V . Then the problem
(Zq, k, χ,ηV )-NLWE is at least as hard as (Zq, n, χ)-LWE.

Proof. By Theorem 4.3 it suffices to show that ηV is coset sampleable. Algorithms MatrixGen and
SamplePre are defined as follows:
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• MatrixGen(1k, n, q) finds an arbitrary basis of V , which we denote BV ∈ Zk×dq . It then finds a

matrix M ∈ Zn×kq such that MBV =
(
In‖0d−n

)
. It outputs M and the pair T = (M,BV ).

• SamplePre(z ∈ Znq ,T) chooses a random vector x ∈ Zd−nq . It then outputs the vector

y = BV

[
z
x

]
∈ Zkq .

By construction My = z, proving correctness. Moreover, for a uniformly distributed z, since x is
randomly chosen, y is uniformly distributed over the subspace V as required.

5 An LWE-based Almost Key Homomorphic PRF

In this section we construct an (almost) key homomorphic PRF from the learning with errors problem.
We showed in Section 3.2.1 that applying the GGM construction to certain seed homomophic PRGs
leads to a key homomorphic PRF. Unfortunately, the lattice-based seed homomorphic PRG Glwr

defined in (3.1) cannot be directly used for this purpose. Nevertheless, we show how to adapt this
PRG to the GGM construction so as to obtain an 1-almost key homomorphic PRF from LWE
in the standard model. Despite being almost key homomorphic, our PRF is sufficient for all the
applications discussed in the introduction.

Our new PRF has performance and security parameters comparable to those of [BPR12], but the
contruction is quite different. Our key is only a single vector whereas the key in [BPR12] consists of
several matrices. The simple key is part of the reason why our PRF is key homomorphic.

Construction. Let q, p, n, and m be integers such that m = ndlog qe and p divides q. We will
be using the definition of the rounding function b·cp from Section 2, the definition of ηBin(m) from

Lemma 4.5, and the standard LWE noise distribution Ψα.1

Let the public parameter pp be a pair of matrices of the form A0,A1 ∈ Zm×mq where each row
of A0 and A1 is sampled from ηBin(m) such that both matrices are full rank2. The secret key k is a

vector in Zmq . Define Flwe : Zmq × {0, 1}` → Zmp as follows:

Flwe(k, x) =

⌊∏̀
i=1

Axi · k

⌋
p

. (5.1)

Theorem 5.1. The function Flwe is pseudorandom under the (Zq, n,Ψα)-LWE assumption for
parameter choices satisfying α ·m` · p ≤ 2−ω(logn).

Parameters. Before proving Theorem 5.1, we give example parameters for different levels of
security. For a given security parameter n and α > 0 we set q = O (

√
n/α) and m = dn log qe. The

choice of α determines the choice of the underlying lattice assumption and bounds the parameters `
and p (which in turn determine the size of the inputs and outputs of Flwe, respectively).

1 For an α ∈ (0, 1) and a prime q, the random variable Ψα over Zq is defined as dqXc (mod q) where X is a normal
random variable with mean 0 and standard deviation α/

√
2π. [Reg05]

2This can be done by sampling at most 5m uniform vectors from ηBin(m) (see Lemma A.3).
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• Assuming LWE is hard for α = 2−ω(logn) lets us set ` = O(1) and p = poly(n).

• A slightly stronger assumption on the hardness of LWE allows us to construct a PRF with
a much larger input length. For example, setting α = 2−ω(log1+c(n)) for some constant c > 0
allows ` = O(log n) with p = 2log1+c(n).

• And finally, assuming LWE is hard for α = 2−n
ε

for some 0 < ε < 1 allows us to set
` = nε/ log n and p = 2n

ε−ω(logn).

For a sufficiently large q, Regev [Reg05] (through a quantum reduction) and Peikert [Pei09] shows
that LWE is as hard as approximating the worst-case GapSVP to Õ(n/α) factors, which is believed
to be intractable even when α = 2−n

ε
for fixed 0 < ε < 1/2. Hence, all three examples above are

justified.

Proof Overview of Theorem 5.1. In proving the pseudorandomness of Flwe, we follow the
outline of the standard GGM construction [GGM86]. The proof uses ` + 1 hybrid experiments,
where in each experiment Expti for i ∈ [`+ 1], we successively ignore additional bits of the input in
computing the product of Axi ’s while replacing this product with consistent random values. As
usual, experiment Expt1 corresponds to the case where the adversary is given an oracle for a truely
random function. Experiment Expt`+1 honestly evaluates the PRF. Therefore, it suffices to show
the indistinguishability of Exptj and Exptj+1 for all j ∈ [`+ 1].

Consider the adversary’s queries to its PRF oracle. In particular, let x ∈ {0, 1}` be one such
query and set P =

∏j−1
i=1 Axi . The PRF evaluation given to the adversary in Exptj and Exptj+1

is bP · rcp and
⌊
PAxj · r

⌋
p

respectively. Here r is chosen uniformly in Zmq and is kept consistent

across the adversary’s queries using a lookup table indexed by the (` − j) low order bits of the
query x. An LWE challenge, either of the form (A,As + δ) or (A, r), cannot immediately be used
to simulate the above evaluations. Instead, we move to an intermediate hybrid between Exptj and
Exptj+1 where the evaluations given to the adversary are

⌊
PAxjs + Pδ

⌋
p

=
⌊
P(Axjs + δ)

⌋
p
, where

s and δ are kept consistent across the adversary’s queries as was done previously. Now, it remains
to show that

(a)
⌊
PAxj · r

⌋
p
≈
⌊
PAxjs + Pδ

⌋
p

and (b)
⌊
P(Axjs + δ)

⌋
p
≈ bP · rcp ,

Together these show that Exptj is indistinguishable from Exptj+1.
Statistical indistinguishability in (a) follows from a probabilistic argument by showing that for

appropriate choices of parameters, the additive term Pδ has no impact on the rounding. That is,⌊
PAxj · s + Pδ

⌋
p

is equal to
⌊
PAxj · s

⌋
p

with high probability. For this to hold we need P to be

a low-norm matrix so that Pδ is low norm. This is why we sample A0 and A1 from ηBin(m)—it

ensures that P =
∏j−1
i=1 Axi is a low norm matrix so that Pδ is a low norm vector.

The two terms in (b) are of the more familiar form of an LWE challenge, but with one important
distinction. In our setup the matrix Axj is low-norm, which is precisely the settings of the
non-uniform learning with errors problem introduced in Section 4. Using Theorem 4.3 we show
computational indistinguishability in (b) under the standard LWE assumption.

In what follows, the intermediate hybrid introduced above corresponds to the experiment Ẽxptj .
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Proof of Theorem 5.1. We denote by B a real number such that, for v ← Ψ
m
α , it holds that

Pr[‖v‖ ≥ B] ≤ 2−ω(logn). From [GPV08, Lemma 8.2], it suffices to consider B = q
√
mα·ω(

√
logm)+√

m/2 = m · ω(
√

logm) (from our choice of parameters). For a bit string x on ` bits, x|j denotes
the bit string comprising bits j through ` of x. For the rest of this section, we will consider a fixed
adversary A that performs Q queries when interacting with the PRF Flwe. We define a series of
experiments in the following manner:

Experiment Exptj. For every j ∈ [1, `+ 1], we define experiment Exptj as follows:

1. The challenger samples public parameters A0,A1 ∈ Zm×mq by selecting each row of both
matrices from ηBin(m) such that both matrices are full rank. Then the challenger sends pp to
the adversary.

2. The challenger creates a lookup table L of pairs (w, z) ∈ {0, 1}`−j+1 × Zmq , initialized to be
empty.

3. The adversary (adaptively) sends input queries x(1), . . . , x(Q) ∈ {0, 1}` to the challenger.
4. On input x(k), the challenger checks to see if there is a pair

(
x(k)|j , z

)
in L for some z ∈ Zmq . If

there is no such pair, then the challenger chooses a random y ∈ Zmq , adds the pair
(
x(k)|j ,y

)
to L, and sets z = y. The challenger returns

⌊∏j−1
i=1 A

x
(k)
i

· z
⌋
p

to the adversary.

5. Eventually the adversary outputs a bit b′ ∈ {0, 1}.
For j ∈ [1, `+ 1], let Wj denote the probability that A outputs 1 in Exptj . Note that Expt1 is

identical to ExptPRF1 , and Expt`+1 is identical to ExptPRF0 in Definition A.1 for Flwe. The following
lemma states that |Wj−1 −Wj | is negligible under the LWE assumption for our choice of parameters.
As Expt1 is identical to ExptPRF1 and Expt`+1 is identical to ExptPRF0 , ` applications of the following
lemma and a standard triangle inequality over all the terms |Wj−1 −Wj | concludes the proof of
Theorem 5.1.

For a decision problem P and adversary A, let AdvP [A] denote the advantage of A in deciding P .

Lemma 5.2. Given a probabilistic polynomial time PRF adversary A, there exists a probabilistic
polynomial time algorithm B (running in almost the same time as A) such that for all j ∈ [2, `+ 1],∣∣∣Wj−1 −Wj

∣∣∣ ≤ 2`(2Bm` + 1)mp

q
+Q ·Adv(Zq ,n,Ψα)-LWE[B].

Proof. Fix a j ∈ [2, `+ 1]. To prove Lemma 5.2, we introduce another experiment.

Experiment Ẽxptj. We define an experiment Ẽxptj that differs from Exptj in steps (2) and (4)
as follows:

2. The challenger creates a lookup table L of triples (w,y, z) ∈ {0, 1}`−j+1×Zmq ×Zmq , initialized
to be empty.

4. On input x(k), the challenger checks to see if there is a triple (x(k)|j−1, z, δ) in L for some
z ∈ Zmq and δ ← Ψ

m
α . If there is no such pair, then the challenger chooses a random y ∈ Zmq

and random v0,v1 ← Ψ
m
α , adds the triples

(
0‖
(
x(k)|j

)
,y,v0

)
and

(
1‖
(
x(k)|j

)
,y,v1

)
to L,

and sets z = y and δ = v
x
(k)
j−1

(i.e., v0 or v1 depending on the j − 1th bit of x(k)). The

challenger returns

⌊∏j−2
i=1 A

x
(k)
i

· (A
x
(k)
j−1

· z + δ)

⌋
p

to the adversary.
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For j ∈ [1, ` + 1], let W̃j denote the probability that A outputs 1 in Ẽxptj . The proof of
Lemma 5.2 follows from Claims 5.3 and 5.4 below.

Claim 5.3. For all j ∈ [2, `+ 1], it holds that∣∣∣Wj − W̃j

∣∣∣ ≤ 2`(2Bm` + 1)mp

q
.

Proof. In Exptj , let bycp denote the value returned when the adversary sends a query for a point

x ∈ {0, 1}`. Recall that y =
∏j−1
i=1 A

x
(k)
i

· z for some z. Let Badx denote the event that, there exists

a δ ∈ Zmq such that ‖δ‖ < B and for w =
∏j−2
i=1 A

x
(k)
i

· δ we have that bycp 6= by + wcp. When

Badx does not happen, the returned value for a query at x in Exptj is the same as in Ẽxptj .
Recall that the matrices A0 and A1 are drawn from ηBin. From Lemma A.2, we have that with

high probability, ‖w‖ ≤ m` · ‖δ‖ ≤ m` ·B. Observe that by + wcp 6= bycp only when there is some

coordinate in y that is within Bm` of the nearest multiple of q/p. Since A0 and A1 are full rank,
the product of these matrices is also full rank. Since z is drawn uniformly at random from Zmq , y is
distributed uniformly in Zmq by Lemma A.4. Thus, the probability that there is a coordinate of

y within Bm` of the nearest multiple of q/p is at most (2Bm` + 1)p/q. A straightforward union
bound over the m coordinates of y implies that Pr[Badx] ≤ (2Bm` + 1)mp/q.

If we let Bad denote the event that there exists some input x ∈ {0, 1}` such that Badx occurred,
a union bound implies Pr[Bad] ≤ 2` · Pr[Badx] which still remains negligible. Note that Exptj is

identical to Ẽxptj when conditioned on the event Bad not occurring.

Claim 5.4. Given a probabilistic polynomial time algorithm A interacting with experiments Exptj
and Ẽxptj, there exists a probabilistic polynomial time algorithm B (running in almost the same
time as A) such that for all j ∈ [2, `+ 1], it holds that∣∣∣Wj−1 − W̃j

∣∣∣ ≤ Q ·Adv(Zq ,n,Ψα)-LWE[B]. (5.2)

Proof. Applying Theorem 4.3 for parameter choices k = m and η = ηBin we obtain that for every
NLWE adversary B1 there exists an efficient LWE adversary B such that

Adv(Zq ,m,ηBin,Ψα)-NLWE[B1] = Adv(Zq ,n,Ψα)-LWE[B].

Thus, it suffices to build an adversary B1 for NLWE satisfying the bound in (5.2).
Let Q be the maximum number of queries made by adversary A. To prove the claim we use a

Q-iterated variant of NLWE, denoted NLWE(Q), that is equivalent to the standard NLWE problem.
In the problem NLWE(Q) the adversary’s goal is to distinguish the distributions:

{A, Aᵀs1 + χ1, . . . ,A
ᵀsQ + χQ} from {A, u1, . . . ,uQ}

where A ← ηm×2m
Bin , and for i ∈ [Q], si ← Zmq , χi ← χ2m, and ui ← Z2m

q . A standard hybrid
argument shows that NLWE and NLWE(Q) are equivalent where the distinguishing probabilities
differ by at most a factor of Q. In particular, for every polynomial time B2 there is a polynomial

time B1 such that Adv(Zq ,m,ηBin,Ψα)-NLWE(Q)[B2] is at most Q ·Adv(Zq ,m,ηBin,Ψα)-NLWE[B1].
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We construct an algorithm B2 for the NLWE(Q) problem that uses the PRF adversary A
and has advantage

∣∣∣Wj−1 − W̃j

∣∣∣. Algorithm B2 receives Q challenges of the form {A,v1, . . . ,vQ},
where A ← ηm×2m

Bin and vk ∈ Z2m
q for all k ∈ [Q]. For each k ∈ [Q], B2 creates two vectors

vk,0,vk,1 ∈ Zmq such that vk,0 consists of the first m entries of vk and vk,1 consists of the last
m entries of vk. Similarly, B2 sets the rows of A0 ∈ Zm×mq to be the first m columns of A, and
the rows of A1 ∈ Zm×mq to be the last m columns of A. B2 then creates a lookup table of pairs

L : {0, 1}`−j × Zmq , initialized to be empty. B2 also keeps a counter k ∈ Z, initialized to 1. B2 sends
pp = {A0,A1} to the adversary.

Now, when the adversary A makes a query x̂ ∈ {0, 1}`, algorithm B2 first checks if the pair
(x̂|j−1, z) exists in L, for some z. If not, it adds the pairs (0‖ (x̂|j) ,vk,0) and (1‖ (x̂|j) ,vk,1) to
the table L, and sets z = vk,x̂j−1

. Then, B2 responds to the adversary’s query by returning⌊∏j−2
i=1 Ax̂i · z

⌋
p

and increments k by 1. Finally, when A outputs a bit b′, B2 outputs b′ and

terminates. Note that the counter k will never exceed Q since A makes at most Q queries, and
therefore B2 is well-defined.

If the challenge {A,v1, . . . ,vQ} given to B2 is such that each vk is distributed uniformly and inde-
pendently in Z2m

q , then z is also distributed uniformly and independently for each query (consistently).

Therefore B2 responds to queries x ∈ {0, 1}` with
⌊∏j−2

i=1 Axi · z
⌋
p
, as in Exptj−1. If the Q challenges

{A,v1, . . . ,vQ} are such that each vk is of the form Aᵀsk +χk, then z is of the form Axj−1 · sk + δ

for each query. Therefore B2 responds to queries x ∈ {0, 1}` with
⌊∏j−2

i=1 Axi · (Axj−1 · sk + δ)
⌋
p
, as

in Ẽxptj . We therefore conclude that
∣∣∣Wj−1 − W̃j

∣∣∣ = Adv(Zq ,m,ηBin,Ψα)-NLWE(Q)[B2], as required.

By the triangle inequality we have
∣∣∣Wj−1 −Wj

∣∣∣ ≤ ∣∣∣Wj − W̃j

∣∣∣ +
∣∣∣Wj−1 − W̃j

∣∣∣ and therefore

applying Claims 5.3 and 5.4 concludes the proof of Lemma 5.2.

Key homomorphism. To conclude this section we briefly show that Flwe is indeed a 2-almost
key homomorphic PRF, as required.

Theorem 5.5. The tuple (Flwe,+) is a 2-almost key homomorphic PRF, where + denotes addition
over Zmq .

Proof. From Theorem 5.1, Flwe is a pseudorandom function. We now show that for any k1,k2 ∈ Zmq ,

for all inputs x ∈ {0, 1}`, there is some vector e ∈ {0, 1, 2}m such that

F (k1, x) + F (k2, x) = F (k1 + k2, x) + e.

Let v =
∏`
i=1 Axi · k1 and w =

∏`
i=1 Axi · k2, and let vectors v′,w′ ∈ [0, bq/pc − 1]m be such that

v = bq/pc bvcp + v′ and w = bq/pc bwcp + w′. It follows that

bv + wcp =
⌊
bq/pc bvcp + bq/pc bwcp + v′ + w′

⌋
p
.

Note that v′ + w′ ∈ [0, 2bq/pc − 2], and so the last quantity is equal to bvcp + bwcp + e for some
e ∈ {0, 1, 2}m, which concludes the proof.

we note that if p divides q, then (Flwe,+) is in fact a 1-almost key homomorphic PRF.
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6 A DLIN-based Key Homomorphic PRF

In this section we present a key homomorphic PRF based on the DLIN assumption. The construction
presented is fully key homomorphic (as opposed to the LWE-based construction in Section 5 which
was almost key homomorphic), but requires a group equipped with a multilinear map [BS03].

A construction of Garg, Gentry, and Halevi [GGH13] uses ideal lattices to approximate multilinear
maps. Unfortunately, they observe that the DLIN assumption does not hold for their general
construction. The `-linear map scheme of Coron, Lepoint, Tibouchi [CLT13] appears to satisfy the
`-decision linear assumption and may give a possible instantiation for Construction (1.2).

Groups with multilinear maps. We let MMGen be a probabilistic polynomial-time algorithm
that takes as input a security parameter 1λ and a positive integer `. MMGen(1λ, `) outputs a
sequence of groups ~G = (G1, . . . ,G`) each of prime order p (for a λ-bit prime p). Let gi denote a
canonical generator of Gi and g = g1. We assume the existence of a sequence of “graded” pairings
êi : G1 × Gi → Gi+1 for all i ≤ ` − 1 such that êi

(
ga, gbi

)
= gabi+1 for all a, b ∈ Zp. We consider a

composed pairing operation, the multilinear map ê : G`
1 → G`, defined as

ê (ga1 , . . . , ga`) = ê`−1 (ga1 , ê`−2 (ga2 , · · · , ê1 (ga`−1 , ga`))) ,

which satisfies the following property: for all a1, . . . , a` ∈ Zp, ê(ga1 , . . . , ga`) = ga1a2···a`` .

The DLIN assumption in multilinear groups. We define the equivalent of the decision linear
assumption from Section 2 in the presence of an `-linear map. Consider a sequence of groups ~G
with a set of bilinear maps êi output by MMGen(1λ, `).

Definition 6.1. The matrix form of the κ-linear (κ-DLIN) assumption in the presence of an `-linear
map states that for all ` ≤ j < κ the distributions{(

~G, p, g, {êi}i∈[`−1], g
X
)}

X←Rkj(Zκ×κp )
and

{(
~G, p, g, {êi}i∈[`−1], g

Y
)}

Y←Rkκ(Zκ×κp )

are computationally indistinguishable, where
(
~G, p, g, {êi}i∈[`−1]

)
← MMGen(1λ, `).

The distinguishing problem for a specific j ∈ [`, κ− 1] is no harder (up to polynomial factors)
than the distinguishing problem for any other j ∈ [`, κ− 1] (see e.g., [BHH+08, NS12]) and therefore
for all j ∈ [`, κ− 1] we obtain a class of equivalent assumptions. Consequently, we simply refer to
the κ-linear assumption. In our construction, we use the DLIN assumption with parameters κ = 2`
and j = ` in the presence of an `-linear map.

We note that the κ-DLIN assumption is only plausible in the presence of an `-linear map if κ > `.
To see this, note that an `-linear map allows for efficient evaluation of degree ` polynomials of xi in
the exponent, given only terms of the form gxi . In particular, this allows for efficient computation
of determinants of all matrices of dimension at most `, thereby distinguishing the two distributions
of the DLIN challenge.

PRF Construction. Our key homomorphic PRF is parameterized by `, the input length of

the PRF. Let
(
~G, p, g, {êi}i∈[`−1], ê

)
← MMGen(1λ, `) be a sequence of ` groups equipped with

a multilinear map. The key homomorphic PRF we construct, denoted Fdlin, consists of public
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parameters pp =
(
gA0 , gA1

)
, where A0,A1 ← Rk`

(
Z`×`p

)
. The secret key k is a vector in Z`p. Define

Fdlin : Z`p × {0, 1}` → (G`)
` as follows:

Fdlin(k, x) = (g`)
P where P =

∏̀
i=1

Axi · k ∈ Z`p . (6.1)

The PRF can be evaluated at a point x = x1 . . . x` ∈ {0, 1}` given the the public parameters pp and
secret key k ∈ Z`p using the graded bilinear maps êi : G1 × Gi → Gi+1. We simply carry out the
matrix multiplication one step at a time by nesting these bilinear maps as follows:

Fdlin(k, x) = ê`−1

(
gAx1 , ê`−2

(
gAx2 , . . . ê2

(
gAx`−2 , ê1

(
gAx`−1 ,

(
gAx`

)k))))
Here a pairing ê(gA0 , gA1) of matrices given in the exponent is done by computing the component-
wise dot products of rows of A0 with columns of A1 using the bilinear map ê.

Key Homomorphism. The pseudorandom function Fdlin satisfies the following homomorphism
property: for all x ∈ {0, 1}`, for all k1,k2 ∈ Z`p, it holds that F (k1, x) · F (k2, x) = F (k1 + k2, x),

where + is addition in Z`p, and · denotes component-wise multiplication in (G`)
`.

Security. The function Fdlin can be seen as a modified instantiation of the GGM construction
using the seed homomorphic PRG Gdlin (from Section 3). The modification uses a sequence of
pseudorandom generators

G(i) (pp, gsi ) =
(
êi
(
gA0 , gsi

)
, êi

(
gA1 , gsi

) )
∈ G2

i+1

for all i ∈ [` − 1]. Each generator G(i) takes as input a public parameter pp =
(
gA0 , gA1

)
and a

seed gsi and outputs a pair of seeds for the next level of the sequence. When A0,A1 ← Rk`
(
Z`×`p

)
and s ← Z`p these pseudorandom generators are secure under the 2`-DLIN assumption (with
j = `). The GGM PRF constructed from this sequence of pseudorandom generators is essentially
construction (6.1). A slight modification of the GGM security proof implies the pseudorandomness
of Fdlin. In what follows, we leverage the random self-reduction of DLIN to prove security of Fdlin

with a tighter reduction than GGM. This avoids the factor-Q loss in advantage in GGM, where Q
denotes the number of queries made by the adversary.

Theorem 6.2. Let
(
~G, p, g, {êi}i∈[`−1], ê

)
← MMGen(1λ, `) be a sequence of groups with an `-linear

map. Then, the function Fdlin is a pseudorandom function under the 2`-DLIN assumption.

Proof. For a bit string x on ` bits, let x|j denote the integer whose bit string consists of bits j
through ` of x. Let x|`+1 denote the empty string ε∗.

Let A be an efficient adversary that distinguishes function Fdlin from a random function making
at most Q queries. We consider the following series of experiments with the adversary A. For every
j ∈ [1, `+ 1], define Exptj as follows:

1. The challenger samples public parameters A0,A1 ← Rk`(Z`×`p ) and publishes pp =
(
gA0 , gA1

)
to the adversary.

2. The challenger creates a lookup table L of pairs (w, z) ∈ {0, 1}`−j+1 × Z`p, and initializes L to

contain only the pair (ε∗, r) for some random r ∈ Z`p.
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3. The adversary (adaptively) sends input queries x(1), . . . , x(Q) ∈ {0, 1}` to the challenger.
4. On input x(k), the challenger checks to see if there is a pair

(
x(k)|j , z

)
in L for some z ∈ Z`p. If

there is no such pair, then the challenger chooses a random y ∈ Zmp , adds the pair
(
x(k)|j ,y

)
to L, and sets z = y. The challenger computes P =

∏j−1
i=1 A

x
(k)
i

· z and returns gP` ∈ G` to the

adversary.
5. Eventually the adversary outputs a bit b′ ∈ {0, 1}.
For j ∈ [1, `+ 1], let Wj denote the probability that A outputs 1 in Exptj . Note that Expt1 is

identical to ExptPRF1 , and Expt`+1 is identical to ExptPRF0 in Definition A.1 for F .

Lemma 6.3. Under the 2`-DLIN assumption, for all j ∈ [1, `], |Wj+1 −Wj | is negligible.

Proof. Given an adversary A, we construct an efficient algorithm B that breaks the 2`-DLIN
assumption with advantage |Wj+1 −Wj |. The algorithm B is given a 2`-DLIN challenge that

comprises
(
~G, g, p, {êi}i∈[`−1], g

Z
)

for some Z ∈ Z2`×2`
p and must decide whether Z is of rank 2` or

rank ` (we consider the 2`-DLIN assumption with j = ` in Definition 6.1).
The algorithm B first random self-reduces the DLIN challenge as follows. It first parses gZ into

four `× ` matrices.

gZ =

(
gU0 gD0

gU1 gD1

)
. (6.2)

For each i ∈ [Q], and each bit b ∈ {0, 1}, the algorithm samples ti ← Z`p and sets

gri,b = gDb·ti ∈ Z`p .

Now, we state the following two claims about the vectors (gri,b)i∈[Q],b∈{0,1} that consider the cases
when Rk(Z) = ` and Rk(Z) = 2` respectively.

Claim 6.4. If Rk(Z) = `, then the vectors (ri,b)i∈[Q],b∈{0,1} are distributed as ri,b = Ub · vi where

for i ∈ [Q] the vectors vi ∈ Z`p are uniformly and independently distributed in Z`p (even given U0

and U1).

Proof. Since Z ∈ Z2`×2`
p is a random rank ` matrix, there exists a matrix W ∈ Z`×`p such that(

U0

U1

)
·W =

(
D0

D1

)
.

With high probability W is full rank. Setting vi = W · ti implies that ri,b = Ub · vi, as required.
Moreover, since W is full-rank it maps uniformly distributed vectors ti over Z`p to uniformly

distributed vectors vi over Z`p (since p is prime).

Claim 6.5. If Rk(Z) = 2`, then the vectors (ri,b)i∈[Q],b∈{0,1} are uniformly and independently

distributed in Z`p (even given U0 and U1).

Proof. If Rk(Z) = 2`, then the sub-matrix [D0 |D1] is independent of [U0 |U1]. Additionally, with
overwhelming probability D0 and D1 are full-rank matrices that map (independent of U0 and U1)
uniformly distributed vectors ti over Z`p to uniformly distributed vectors ri,0 and ri,1 respectively.
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Having self-reduced the DLIN challenge, algorithm B proceeds as follows. The algorithm embeds
the DLIN challenge by setting gAb = gUb for b ∈ {0, 1}. Algorithm B then creates a lookup table of
pairs L : {0, 1}`−j+1 ×Gm, initializing the table to contain the pair (ε∗, gr

∗
) for a randomly chosen

r∗ ← Zmp . B also keeps a counter k ∈ Z, initialized to 1. B sends pp =
(
gA0 , gA1

)
to the adversary.

To answer queries, B uses the random self-reduction to construct gri,b for i ∈ [Q] and b ∈ {0, 1}.
On query x, algorithm B first checks if the pair (x|j , z) exists in L, for some z. If not, the

algorithm adds the pairs (0‖ (x|j+1) , grk,0) and (1‖ (x|j+1) , grk,1) to the table L, sets gz = g
rk,xj , and

increments k by 1. Then, B responds to the adversary’s query with gP` where P =
∏j−1
i=1 Axi · z.

(We note that this can be computed only given matrices gA0 , gA1 , and g
rk,xj using the multilinear

map ê.) Finally, when A outputs a bit b′, B also outputs b′. Note that the counter k will never
exceed Q, since A makes at most Q queries, and therefore B successfully simulates the adversary.
Consider the following two cases:

• Case 1: If Rk(Z) = `, from Claim 6.4, even given the public parameters gA0 and gA1 , for
i ∈ [Q] and b ∈ {0, 1}, each ri,b is of the form Ab · vi. Therefore, in each query, P is of the

form
(∏j−1

i=1 Axi

)
Axj · v for uniform and independently distributed vectors v ∈ Z`p. From

this, it follows that the adversary’s view is identical to that of Exptj+1.

• Case 2: If Rk(Z) = 2`, from Claim 6.5, even given the public parameters gA0 and gA1 , for
i ∈ [Q] and b ∈ {0, 1}, each ri,b is independently and uniformly distributed over Z`p. Therefore,

in each query, P is of the form
∏j−1
i=1 Axi · r for uniform and independently distributed r ∈ Z`p.

From this, it follows that the adversary’s view is identical to that of Exptj .

The proof follows in a straightforward manner—adversary B perfectly simulates either Exptj+1

or Exptj and under the DLIN assumption, |Wj+1 −Wj | is negligible.

As Expt1 is identical to ExptPRF1 and Expt`+1 is identical to ExptPRF0 , ` applications of Lemma
6.3 and a standard triangle inequality over all the terms |Wj+1 −Wj | concludes the proof of the
theorem.

7 Applications of (Almost) Key Homomorphic PRFs

In this section, we construct one-round distributed PRFs, symmetric proxy re-encryption schemes,
and updatable encryption from γ-almost key homomorphic PRFs, and PRFs secure against related-
key attacks from (fully) key homomorphic PRFs.

7.1 Distributed PRFs

We show that key-homomorphic PRFs give rise to efficient one-round distributed PRFs.

Definition. To define distributed PRFs we follow the exposition of Naor, Pinkas, and Rein-
gold [NPR99]. The model comprises of N servers S1, . . . , SN and a client C that is connected to at
least t servers.

A distributed PRF is a tuple of algorithms Π = (Setup, Share,F,G, f) with the following properties.
Algorithm Setup takes the security parameter λ and outputs public parameters pp. The key-sharing
algorithm Share : K → KN takes as input a random master secret key k0 ∈ K and outputs a tuple
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(k1, . . . , kN ) ∈ KN , where k1, . . . , kN represent the key-shares of k0 from a (t,N)-threshold secret
sharing scheme. The partial evaluation function F : K×X → Y computes a partial evaluation of the
function f when given a key-share and an input point. The combine algorithm G : 2[N ] × Yt → Y
takes as input a subset W ⊂ [N ] of size t and the t partial evaluations on key-shares in the set W
and outputs a value in Y. The evaluation function f : K × X → Y maps a key and an input to the
space of outputs.

The distributed PRF is initialized by a trusted third party that runs Setup(1λ) to obtain the
public parameters pp, samples a master secret key k0 uniformly from K, and runs Share(k0) to
obtain a tuple (k1, . . . , kn). The key-share ki is distributed as the secret key for each server Si along
with public parameters pp3. A client C that wants to compute the evaluation function f under key
k0 on input x sends x to t servers Si1 , . . . , Sit . Each server Si responds to the client with F(ki, x).
Then, the client locally computes f(k0, x) by computing G (W,F(ki1 , x), . . . ,F(kit , x)).

Consistency. Let pp be the output of Setup(1λ), k0 be sampled uniformly from K, and (k1, . . . , kN )
be the key-shares output by Share(k0). For every subset W = {i1, . . . , it} ⊂ [N ] of size t, and for
every input x, a distributed PRF Π is consistent if f(k0, x) = G (W,F(ki1 , x), . . . ,F(kit , x)).

Pseudorandomness. Intuitively, the evaluation function f should remain pseudorandom even
when the adversary is given t− 1 key shares ki1 , . . . , kit−1 for indices {i1, . . . , it−1} of its choice. The
adversary is also given an oracle O that performs arbitrary partial evaluations: it takes (i, x) as
input and returns F(ki, x). The adversary should be unable to distinguish the function from random
at points x where it did not query the oracle O. We formalize this intuition through an experiment
between a challenger and an adversary A. For b ∈ {0, 1} the challenger in ExptdPRFb operates as
follows.

1. Given security parameter λ, the challenger runs Setup(1λ) and publishes public parameters pp
to the adversary. The challenger then samples a k0 uniformly from K and runs Share(k0) to
obtain the tuple (k1, . . . , kN ).

2. The adversary specifies a set S∗ = {i1, . . . , it−1}, and the challenger responds with the
corresponding secret keys ki1 , . . . , kit−1 .

3. The adversary (adaptively) sends secret-share queries x1, . . . , xQ ∈ X to the challenger, and
for each query xj the challenger responds with F(ki, xj) for each i 6∈ S∗.

4. The adversary submits a challenge query x∗ ∈ X \ {x1, . . . , xQ} to the challenger. If b = 0,
the challenger samples and returns a uniformly random y ∈ Y to the adversary. If b = 1, the
challenger responds with f(k0, x

∗).

5. The adversary can adaptively issue more secret-share queries (step 3) and challenge queries
(step 4), to which the challenger responds appropriately, so long as the set of all challenge
queries and the set of all secret-share queries are disjoint.

6. The adversary outputs a bit b′ ∈ {0, 1}.

Let Wb denote the probability that A outputs 1 in experiment ExptdPRFb .

3To avoid a trusted third party during setup time, Setup may be executed in a distributed manner such that no
coalition W ⊂ [N ] of t− 1 servers can learn any information about ki for i 6∈W .
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Definition 7.1 (Distributed Pseudorandom Function). A distributed PRF Π is secure if for all
efficient adversaries A the quantity

AdvdPRF[Π,A] := |W0 −W1|

is negligible.

7.1.1 Distributed PRFs from key homomorphic PRFs

Let F : F1 ×X → F2 be a key homomorphic PRF where F1,F2 are fields. We use it to construct a
one-round distributed PRF.

We consider a (t,N)-threshold secret sharing scheme [Sha79] over a secret k0 in F1, which
constructs key-shares by sampling a uniformly random polynomial p(z) ∈ F1[Z] of degree t − 1
such that p(0) = k0, and the remaining coefficients are sampled uniformly at random from F1. We
then define share ki = p(i) for i ∈ [1, N ]. For secret shares constructed in this manner, it holds
that for any W = {i1, . . . , it} ⊂ [N ] of size t we have that k0 = p(0) =

∑
i∈W Λi,W · ki, where

Λi,W ∈ F1 are the Lagrange coefficients that depend only on W . Let Λ′i,W ∈ F2 be such that for all
k ∈ F1 and x ∈ X , Λ′i,W · F (k, x) = F (Λi,W · k, x). Such Λ′i,W are ensured to be easily computable
from Λi,W by the key homomorphism property of F . We construct a distributed PRF scheme
ΠdPRF = (Setup, Share,F,G, f) as follows.

• Setup(1λ) outputs public parameters pp used by the key homomorphic PRF F .

• Share(k0) samples a uniformly random polynomial p(z) over F1 of degree t − 1 such that
p(0) = k0 and outputs (p(1), . . . , p(N)) in FN1 .

• F(ki, x) returns the output of the key homomorphic PRF F (ki, x).

• G(W, y1, . . . , yt) computes and returns
∑

i∈W Λ′i,W · yi.

• f(k0, x) returns the output of F (k0, x).

Let pp be the output of Setup(1λ), k0 be chosen uniformly from F1, (k1, . . . , kn) be the
output of Share(k0), W = {i1, . . . , it} ⊂ [N ], and x ∈ X . The combine algorithm computes
G (W,F(ki1 , x), . . . ,F(kit , x)) =

∑
i∈W Λ′i,W · F (ki, x) =

∑
i∈W F (Λi,W · ki, x) = F(k0, x) as required.

If F is a key homomorphic pseudorandom function, then the following theorem shows that ΠdPRF is
a secure distributed PRF.

Theorem 7.2. If F is a key homomorphic PRF, then ΠdPRF is a secure distributed PRF.

Proof. In this security proof, we consider a modified version of the standard PRF security definition
(see Definition A.1). Consider experiments ExptPRF

′
b for b ∈ {0, 1}, where ExptPRF

′
b differs from

ExptPRFb in the following way. An adversary interacts with a challenger that answers queries in a
“PRF query phase” with honest outputs of the PRF on a randomly chosen key k, and behaves like
either a PRF or a truly random function on “challenge queries.” As long as the two sets of queries
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are disjoint, we require adversaries have negligible advantage in distinguishing the experiments. Up
to a constant factor (of 2) in advantage, this definition is equivalent to Definition A.1.4

Given an adversary A against the distributed PRF, we construct an algorithm B that breaks the
pseudorandomness of the PRF F . Given access to a PRF challenger ExptPRF

′
b for a bit b ∈ {0, 1},

algorithm B simulates A in Exptproxyb . Algorithm B receives public parameters pp from the challenger
and publishes them to the adversary. A specifies a set S∗ = {i1, . . . , it−1} of t− 1 servers to B which
then samples key-shares ki1 , . . . , kit−1 uniformly from F1. It returns (ki1 , . . . , kit−1) to A. For each
secret-share query xj ∈ X made by the adversary for j ∈ [1, Q], the simulator forwards xj to the
PRF challenger and receives a response yj = F (k, xj) for some unknown key k. Let W = S∗ ∪ {0}.
For all ` ∈ [1, N ] \ S∗, algorithm B computes

u` =
∑
i∈S∗

F (Λi,W (`) · ki, x) + Λ′0,W (`) · yj (7.1)

and responds with u` as the purported value of F(k`, x) to A.
Eventually, A submits a challenge query x∗ ∈ X \ {x1, . . . , xQ} to B. We consider a single

challenge query and note that the proof generalizes to multiple adaptive queries in a straightforward
manner. On input x∗, B forwards x∗ to the PRF challenger as a challenge query and relays its
response y∗ back to A. Finally, A outputs a bit b′ which is also output by B.

For each bit b ∈ {0, 1}, the algorithm B simulates A’s interaction with ExptdPRFb identically
to a real scheme. Let k0 = k be the key used by the PRF F . For each query x by A, it
holds that u` =

∑
i∈S∗ F (Λi,W (`) · ki, x) + Λ′0,W (`) · F (k0, x) = F

(∑
i∈W Λi,W (`) · ki, x

)
by the key

homomorphism property of F . Therefore, we have that u` = F (k`, x) = F(k`, x) as desired.
If B is interacting with experiment ExptPRF

′
0 where it receives outputs of a random function

from X → F2, then the value y∗ received by A is uniform in F2 as in ExptdPRF0 . If B is interacting
with ExptPRF

′
1 where it forwards to A the value y∗ = F (k0, x

∗) = F(k0, x
∗), then A receives a

response to the challenge query as in ExptdPRF1 . We therefore conclude that AdvPRF[F,B] =
AdvdPRF[ΠdPRF,A].

Constructing distributed PRFs from almost key homomorphic PRFs. The construction
described above for a distributed PRF can be adapted to PRFs that are γ-almost key homomorphic
with output space Zp for some prime p (for example, our LWE-based PRF Flwe in Section 5 restricted
to a single coordinate). Recollect that for a scalar T ∈ Z, primes q > p in N, and a γ-almost key
homomorphic PRF F : Zq ×X → Zp, for every x ∈ X it holds that T · F (k0, x) = F (T · k0, x) + e
for an “error term” e ∈ {0, . . . , γT}. The main difficulty in using an almost key homomorphic PRF
to instantiate ΠdPRF is to ensure that when multiplying with Lagrange coefficients Λi,W (for i ∈ [N ]
and W ∈ 2[N ]) in the combine phase, the “error term” e ∈ {0, . . . , γΛi,W } does not become too
large.

Unfortunately, when Lagrange coefficients are interpreted as elements in Zp, they are no longer
low-norm and the error term becomes too large. To overcome this difficulty, we use the technique of
“clearing the denominator” [Sho00, ABV+12]. We use the fact that for every Lagrange coefficient

4To see this, consider an intermediate hybrid between ExptPRF
′

0 and ExptPRF
′

1 where even PRF-queries are answered

as outputs of a truly random function. This hybrid is indistinguishable from ExptPRF
′

0 in a straightforward manner

from F ’s pseudorandomness (as per Definition A.1). It is indistinguishable from ExptPRF
′

1 because in each of the
experiments, PRF-queries are identical to queries in ExptPRF1 or ExptPRF0 respectively and challenge queries are always
answered with a truly random function.
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Λi,W , it holds that the quantity N ! · Λi,W is an integer. The combine algorithm multiplies all
Lagrange coefficients by N ! to avoid interpreting them as elements in Zp. To show correctness,
it suffices to choose a rounding parameter u such that for every Lagrange coefficient Λi,W , the
error term introduced by the almost key homomorphic PRF (γ ·N ! · Λi,W ) can be eliminated by
suitably rounding down to elements in [0, u− 1]. As the numerator of Λi,W is upper-bounded by
N !, it suffices to set bp/uc > 2γ(N !)2 to ensure that the evaluation function is always correctly
reconstructed, with an output space of size u. The scheme ΠdPRF is modified as follows.

• Setup(1λ) samples and publishes public parameters pp used by the key homomorphic PRF F .

• Share(k0) samples a uniformly random polynomial p(z) of degree t− 1 such that p(0) = k0

and outputs (p(1), . . . , p(N)).

• F(ki, x) returns the output of F (ki, x).

• G(W, y1, . . . , yt) computes and returns
⌊∑

i∈W N ! · Λ′i,W · yi
⌋
u
.

• f(k0, x) returns the output of bN ! · F (k0, x)cu.

Pseudorandomness. The proof of pseudorandomness follows the outline of the proof of Theorem
7.2 closely. Queries in the adversary’s challenge phase can be simulated given access to an oracle
f(·) (that is either a truly random function or F (k, ·)) and returning to the adversary the outputs of
bN ! · f(·)cu. Queries corresponding to partial evaluations F(k`, x) for all ` ∈ [1, N ] \S∗ are answered
along the lines of Equation (7.1) taking into account the technique of clearing the denominator (by
simply multiplying throughout by N !). The rest of the arguments in the proof follow identically to
the ones presented in the proof of Theorem 7.2.

7.2 Symmetric Proxy Re-Encryption

Next we show that key homomorphic PRFs give rise to symmetric proxy re-encryption schemes. In
a proxy re-encryption scheme, a proxy is given re-encryption information that enables the proxy to
translate an encryption of any message from one key to an encryption of the same message under
another key without revealing the underlying message.

Proxy re-encryption has been studied extensively. We consider the setting of achieving symmetric
proxy re-encryption under semantic security. This notion has been considered before [SNS11], but
we provide a formal treatment of the security model here. We consider a security model inspired by
the work of Canetti and Hohenberger [CH07]. We adapt their definition to the symmetric-key setting
by additionally providing access to an encryption oracle. We do not consider chosen-ciphertext
security in this work. Thus, the extra restrictions placed on the re-encryption oracle from [CH07]
are not required in this model. A symmetric proxy re-encryption scheme is a tuple of algorithms
Π = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) with the following properties.

• Setup(1λ)→ pp. On input the security parameter λ, the setup algorithm Setup outputs the
public parameters pp used for the scheme.

• KeyGen(1λ)→ sk. On input the security parameter λ, the key generation algorithm KeyGen
outputs a secret key sk.
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• ReKeyGen(sk1, sk2) → rk1,2. On input two secret keys sk1 and sk2, the re-encryption key
generation algorithm ReKeyGen outputs a bidirectional re-encryption key rk1,2.

• Enc(sk,m) → C. On input a secret key sk and message m, the encryption algorithm Enc
outputs a ciphertext C.

• ReEnc(rk1,2, C1) → C2. On input a re-encryption key rk1,2 and a ciphertext C1, the re-
encryption algorithm ReEnc outputs a second ciphertext C2 or ⊥.

• Dec(sk, C)→ m. On input a secret key sk and a ciphertext C, the decryption algorithm Dec
outputs a message m or the error symbol ⊥.

Correctness. A symmetric proxy re-encryption scheme Π is T -time correct if, under public
parameters pp ← Setup(1λ), sk ← KeyGen(1λ) and for all mi ∈ M, Dec(sk,Enc(sk,m)) = m, and
for any sequence of secret keys sk1, . . . , skT output by KeyGen(1λ) and re-encryption keys rki,i+1

output by ReKeyGen(ski, ski+1) for i ∈ [1, T − 1], for all messages m ∈ M and all ciphertexts C
output by Enc(sk1,m), it holds that Dec(skT ,ReEnc(rkT−1,T , · · ·ReEnc(rk1,2, C) · · · )) = m.

Security. The experiment below is between a challenger and an adversary A, which can make
oracle queries of the following six different types: uncorrupted key generation, corrupted key
generation, re-encryption key generation, challenge, re-encryption, and encryption. A public counter
ctr (always visible A) is maintained by the challenger and initialized to 0. This counter keeps track
of the number of key generation queries (both uncorrupted and corrupted) made by A. First, the
challenger samples and publishes pp ← Setup(1λ) to A. For b ∈ {0, 1} the challenger in Exptproxyb

responds to each of the adversary’s types of oracle queries as follows.

• Uncorrupted key generation: The challenger samples KeyGen(1λ) to obtain a secret key which
is set to skctr but not given to A. The challenger then increments ctr.

• Corrupted key generation: The challenger samples KeyGen(1λ) to obtain a secret key which is
set to skctr, which is given to A. The challenger then increments ctr.

• Re-encryption key generation: On input (i, j) by A, where i, j < ctr, the challenger returns
ReKeyGen(ski, skj) to A. We require that either both ski and skj were generated from
uncorrupted key generation, or both ski and skj were generated from corrupted key generation.
We do not allow A to make a re-encryption key generation request when one secret key is
corrupted and the other is uncorrupted.

• Challenge: This oracle can be queried only once. On input (i∗,m∗0,m
∗
1), if ski∗ was generated

from a call to uncorrupted key generation, then the challenger returns the challenge ciphertext
C∗ := Enc(ski∗ ,m

∗
b) to A. Otherwise, the challenger returns ⊥.

• Re-encryption: On input (i, j, C), where i, j < ctr, if skj was generated from a call to
corrupted key generation, then return ⊥. Otherwise, return the re-encrypted ciphertext
C ′ := ReEnc(ReKeyGen(ski, skj), C).

• Encryption: On input (i,m), where i < ctr, the challenger returns Enc(ski,m) to A.

27



Eventually, the adversary outputs a bit b′ ∈ {0, 1}. Let Wb denote the probability that A outputs
1 in experiment Exptproxyb .

Definition 7.3 (Symmetric Proxy Re-Encryption). A symmetric proxy re-encryption scheme Π is
secure if for all efficient adversaries A the quantity

Advproxy[Π,A] := |W0 −W1|

is negligible.

For schemes which satisfy T -time correctness for some fixed T , we restrict the adversary to
re-encryption queries which form chains (of re-encrypted ciphertexts) of length at most T . We show
how to achieve a symmetric proxy re-encryption scheme with T -time correctness for all T > 1 under
this security model using key homomorphic PRFs.

Symmetric Proxy Re-encryption from key homomorphic PRFs. Let F : K × X → Y
be a key homomorphic PRF with superpolynomial input set size (|X | = ω(poly(λ))), and where
(X ,+) and (Y,+) are groups. Let Πproxy = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) be defined
as follows.

• Setup(1λ) samples and outputs the public parameters pp used by F .

• KeyGen(1λ) outputs a uniform secret key sk from the key space K.

• ReKeyGen(sk1, sk2) returns rk1,2 = sk2 − sk1.

• Enc(sk,m) chooses a random r ← X and outputs (r,m+ F (sk, r)).

• ReEnc(rk1,2, (r, C)) outputs (r, C + F (rk1,2, r)).

• Dec(sk, (r, C)) outputs C − F (sk, r).

Correctness. Let pp← Setup(1λ), sk← KeyGen(1λ), and m ∈ M. Then, Dec(sk,Enc(sk,m)) =
m+ F (sk, r)− F (sk, r) = m as desired for all r ∈ X . Also, for all T ≥ 1, for any sequence of secret
keys sk1, . . . , skT output by KeyGen(1λ) and re-encryption keys rki,i+1 ← ReKeyGen(ski, ski+1) along
with ciphertext C ← Enc(sk1,m), we have that Dec(skT ,ReEnc(rkT−1,T , · · ·ReEnc(rk1,2, C1) · · · )) =
m+ F (sk1, r) + F (sk2 − sk1, r) + . . .+ F (skT − skT−1, r)− F (skT , r) = m as desired.

If F is a key homomorphic pseudorandom function with superpolynomial input set size, then
the following theorem shows that Πproxy is a secure symmetric proxy re-encryption scheme.

Theorem 7.4. If F is a key homomorphic PRF, then Πproxy is a secure symmetric proxy re-
encryption scheme.

Proof. We use a hybrid argument to prove the security of this theorem. Consider the experiments
Expt0 and Expt2 interacting with an adversary A that are identical to Exptproxy0 and Exptproxy1

respectively. The intermediate experiment Expt1 is identical to Expt0 except in the response of the
challenge oracle: instead of outputting the ciphertext C∗ := Enc (ski∗ ,m

∗
0) (if ski∗ was generated

from a call to the uncorrupted key generation oracle), it samples a uniform u← C, the ciphertext
space, and outputs C∗ := u. Let Wn for n ∈ {0, 1, 2} denote the probability that A outputs 1
interacting with Exptn.
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Recollect the modified version of the standard PRF security definition (see Definition A.1 and
the proof of Theorem 7.2). In what follows, we show that for every adversary A making at most Q
queries to the encryption oracle when interacting with Expt0 and Expt1, there is a PRF adversary
B such that AdvPRF′ [F,B] ≥ (1−Q/|X |) · |W0 −W1|. Algorithm B receives public parameters pp
from the PRF challenger and sends pp to A. Algorithm B simulates the responses to each query
type made by A in the following manner.

• Uncorrupted key generation: B samples δctr uniformly at random in K without revealing it to
A, and then increments ctr.

• Corrupted key generation: B sets skctr ← KeyGen(1λ), returning skctr toA, and then increments
ctr.

• Re-encryption key generation: On input (i, j) where i, j < ctr, if both ski and skj were
generated from uncorrupted key generation, then B returns δj − δi. If both ski and skj were
generated from corrupted key generation, then B returns skj − ski. Otherwise, B returns ⊥.

• Challenge: On input (i∗,m0,m1), if ski∗ was generated from corrupted key generation, then B
returns ⊥. Otherwise, B samples r uniformly at random in X and sends r as the challenge
input to the PRF challenger, receiving challenge response f(r). B outputs C∗ = (r,mz +
F (δi∗ , r) + f(r)) to A.

• Re-encryption: On input (i, j, (r, C)), if skj was generated from corrupted key generation,
then B returns ⊥. Otherwise, if ski was generated from corrupted key generation, B makes
a query to the PRF challenger on input r and obtains response f(r), and then returns
(r, C + F (δj − ski, r) + f(r)) to A. If both ski and skj were generated from uncorrupted key
generation, then B returns (r, C + F (δj − δi, r)) to A.

• Encryption: On input (i,m), B samples r uniformly at random from X . B sends r as input to
the PRF challenger and obtains response f(r). B returns the ciphertext (r,m+F (δi, r) +f(r))
to A.

Eventually A outputs a bit b′ ∈ {0, 1}. Let r∗ denote the randomness used by B to answer the
adversary’s challenge oracle query and r1, . . . , rQ the randomness used to answer the remaining Q
queries. If r ∈ {r1, . . . , rQ}, B aborts and outputs a uniform bit. Otherwise, it outputs b′.

The randomness strings r∗, r1, . . . , rQ are sampled uniformly at random in X and independent
of the adversary’s view. Thus, the probability that B aborts is 1 −Q/|X | and is independent of
whether it simulates Expt0 or Expt1. From here on, it suffices to only consider the case when B does
not abort.

Consider the case B interacts with ExptPRF
′

0 (i.e., it interacts with a pseudorandom function
during challenge queries). We let K∗ denote the (implicit) key chosen by the PRF challenger.
Uncorrupted keys ski simulated by B are implicitly set to ski := δi +K∗. As δi is chosen uniformly
at random from K, uncorrupted keys are correctly generated. Corrupted keys are always generated
correctly. On input (i, j), for uncorrupted ski and skj , re-encryption keys returned by B are
δi− δj = (ski−K∗)− (skj −K∗) = ski− skj , as required. The key homomorphism of F implies that
on input m to the encryption oracle, B computes F (δi, r) + F (K∗, r) = F (δi +K∗, r) = F (ski, r).
Thus, C∗ = Enc(ski∗ ,m

∗
0) as required. Finally, through identical arguments, it holds that B honestly

simulates re-encryption queries from A. Thus, B simulates Expt0 correctly.
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Next, we consider the case B interacts with ExptPRF
′

1 . On queries x to the PRF-challenger,
B receives F (K∗, x) for some implicit K∗ and on input a challenge query x∗, receives a uniform
y∗ ∈ Y. As B does not abort, the query r∗ used to construct the challenge ciphertext C∗ is not
in the set of previously queried inputs. Observe that the output y∗ is used only in answering
the challenge ciphertext. The rest of the oracles simulated by B use the pseudorandom function
F evaluated honestly on inputs. Therefore, B simulates all the oracles honestly (as shown in
the case when B interacts with ExptPRF

′
0 above). The output of the challenge encryption query

C∗ := 〈r,m∗0 + F (δi∗ , r) + y∗〉 which is distributed uniformly in the ciphertext space. Thus, B
simulates Expt1.

Conditioned on B not aborting, it holds that it interacts with A in experiments Exptb when
interacting with ExptPRF

′
b for both b ∈ {0, 1}. This implies that AdvPRF′ [F,B] ≥ (1−Q/|X |) · |W0−

W1| as required.
To complete the proof, we consider an almost identical argument starting with Expt2 where

m∗1 is used in the challenge phase and all other oracles are simulated identically. Then, it holds
that AdvPRF′ [F,B] ≥ (1−Q/|Y|) · |W1 −W2|. Applying a triangle inequality, we conclude that
|W0−W2| ≤ (1−Q/|X |)−1 ·AdvPRF′ [F,B]. As Q is polynomial in the security parameter, and |X |
is at least superpolynomial, if F is a pseudorandom function, the adversary’s advantage against the
proxy re-encryption scheme is negligible. This completes the proof of Theorem 7.4.

Using almost key homomorphic PRFs. Let F : K×X → Zp be a γ-almost key homomorphic
PRF. Let T ≥ 1 be a fixed integer, and let u be an integer such that bp/uc > 2γT . We show how to
construct a symmetric proxy re-encryption scheme with T -time correctness, where Zu is the message
space. The scheme Πproxy is defined as follows, where Setup takes an additional parameter T .

• Setup(1λ, T ) samples and outputs the public parameters pp used by F .

• KeyGen(1λ) samples and outputs a secret key sk uniformly at random from the key space K.

• ReKeyGen(sk1, sk2) returns sk2 − sk1.

• Enc(sk,m) chooses a random r ← X and outputs (r, m̄ · bp/uc+F (sk, r)), where m̄ represents
the integer corresponding to m.

• ReEnc(rk1,2, (r, C)) outputs (r, C + F (rk1,2, r)).

• Dec(sk, (r, C)) outputs bC − F (sk, r) (mod p)cu.

To verify that Πproxy has T -time correctness, it suffices to observe that the error accumulated by
re-encryptions does not exceed γT , and hence will be rounded away upon decryption.

Correctness. Let pp← Setup(1λ), sk← KeyGen(1λ), and m ∈ M. Then, Dec(sk,Enc(sk,m)) =
bm̄ · bp/uc+ F (sk, r)− F (sk, r)cu = m as desired for all r ∈ X . Also, for any sequence of secret keys
sk1, . . . , skT output by KeyGen(1λ) and re-encryption keys rki,i+1 ← ReKeyGen(ski, ski+1) along with
ciphertext C ← Enc(sk1,m), let e = F (sk1, r) +F (sk2− sk1, r) + . . .+F (skT − skT−1, r)−F (skT , r).
Then, e ∈ {0, . . . , Tγ}. Hence, we have that Dec(skT ,ReEnc(rkT−1,T , · · ·ReEnc(rk1,2, C1) · · · )) =
bm̄ · bp/uc+ e (mod p)cu = m as desired.

30



Remark 7.5. For T -time correctness, the ciphertext size of the scheme Πproxy grows logarithmically
in γT . In other words, Πproxy is efficiently implementable even if T is superpolynomial in λ.

The proof of semantic security remains unchanged, noting that responses to re-encryption queries
can be simulated, so long as chains of re-encrypted ciphertexts do not exceed length T .

7.3 Updatable Encryption

We noted in the introduction that key homomorphic PRFs can be used to construct an efficient
key rotation scheme for encrypted data stored in the cloud. We call such a scheme an updatable
encryption scheme. They are closely related to proxy re-encryption systems, discussed in the previous
section, with two important differences.

First, an updatable encryption scheme Π is the same as a symmetric proxy re-encryption scheme,
except that the re-encryption key generation algorithm ReEnc takes as input two secret keys sk1

and sk2 along with a ciphertext C and outputs a short uni-directional re-encryption key rk1,2,C . The
length of this re-encryption key rk1,2,C must be independent of the size of the ciphertext to which it
will be used.

Second, the result of re-encrypting a ciphertext C should result in a re-encrypted ciphertext
C ′ that appears as a fresh encryption of the data that is independent from C. We formalize both
requirements below.

Correctness. An updatable encryption scheme Π is T -time correct if, under public parameters
pp ← Setup(1λ), sk ← KeyGen(1λ) and for all mi ∈ M, Dec(sk,Enc(sk,m)) = m, and for all
messages m ∈ M, for any sequence of secret keys sk1, . . . , skT output by KeyGen(1λ), ciphertexts
Ci and re-encryption keys rki,i+1,Ci given by C1 ← Enc(sk1,m) and Ci ← ReEnc(rki−1,i,Ci−1 , Ci−1)
and rki,i+1,Ci ← ReKeyGen(ski, ski+1, Ci) for i ∈ [2, T − 1], it holds that

Dec(skT ,ReEnc(rkT−1,T,CT−1
, · · ·ReEnc(rk1,2,C1 , C1) · · · )) = m .

Security. The following experiment Exptupdateb is identical to that of the experiment Exptproxyb

defined for a symmetric proxy re-encryption scheme, except for the following modifications to the
re-encryption key generation and re-encryption oracle. All other oracles remain unchanged.

• Re-encryption key generation: On input (i, j, C) by A, where i, j < ctr, the challenger returns
ReKeyGen(ski, skj , C) to A. We require that either both ski and skj were generated from
uncorrupted key generation, or both ski and skj were generated from corrupted key generation.
We do not allow A to make a re-encryption key generation request when one secret key is
corrupted and the other is uncorrupted.

• Re-encryption: On input (i, j, C), where i, j < ctr, if skj was generated from a call to
corrupted key generation, then return ⊥. Otherwise, return the re-encrypted ciphertext
C ′ := ReEnc(ReKeyGen(ski, skj , C), C).

Next, we formalize the requirement that a re-encrypted ciphertext C ′ should appear as a fresh
encryption of the data that is independent from the input ciphertext C.
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Definition 7.6 (Ciphertext Independence). Let pp ← Setup(1λ), sk1, sk2 ← KeyGen(1λ), and
m ∈ M. Let C ← Enc(sk1,m) and C ′ ← Enc(sk1,m), and let rk1,2,C ← ReKeyGen(sk1, sk2, C) and
rk1,2,C′ ← ReKeyGen(sk1, sk2, C

′). An updatable encryption scheme Π = (Setup,KeyGen,ReKeyGen,
Enc,ReEnc,Dec) is ciphertext independent if the two joint distributions (C,ReEnc(rk1,2,C , C)) and
(C,ReEnc(rk1,2,C′ , C

′)) are identical.

Let Wb denote the probability that an adversary A outputs 1 in experiment Exptupdateb .

Definition 7.7 (Updatable Encryption). An updatable encryption scheme Π is secure if it is
ciphertext independent and for all efficient adversaries A the quantity

Advupdate[Π,A] := |W0 −W1|

is negligible.

7.3.1 Updatable Encryption from seed homomorphic PRGs.

Let G : X → Y be a seed homomorphic PRG, and let (SymKeyGen,E,D) be a symmetric key
CPA-secure encryption scheme with key space K, where (X ,+) and (Y,+) are groups. We show
how to construct a secure updatable encryption scheme. The scheme Πupdate is defined as follows.

• Setup(1λ) samples and outputs the public parameters pp used by G.

• KeyGen(1λ) samples and outputs a secret key sk← SymKeyGen(1λ).

• Enc(sk,m) chooses a random x ∈ X and outputs C = (E(sk, x),m+G(x)).

• Dec(sk, C = (C1, C2)) outputs C2 −G(D(sk, C1)).

• ReKeyGen(sk1, sk2, C = (C1, C2)) chooses a random x2 ∈ X , sets x1 = D(sk1, C1), and returns
the tuple rk1,2,C ←

(
E(sk2, x2), x2 − x1

)
.

• ReEnc(rk1,2,C = (r, s), C = (C1, C2)) outputs (r, C2 +G(s)).

Correctness. Let pp← Setup(1λ), sk← KeyGen(1λ), and m ∈ M. Then, Dec(sk,Enc(sk,m)) =
m + G(x) − G(D(sk,E(sk, x))) = m. as desired for all x ∈ X . Also, for all messages m ∈
M, for any sequence of secret keys sk1, . . . , skT output by KeyGen(1λ), ciphertexts Ci and re-
encryption keys rki,i+1,Ci given by C1 ← Enc(sk1,m) and Ci ← ReEnc(rki−1,i,Ci−1 , Ci−1) and
rki,i+1,Ci ← ReKeyGen(ski, ski+1, Ci) for i ∈ [2, T − 1], it holds that Dec(skT ,ReEnc(rkT−1,T,CT−1

,
· · ·ReEnc(rk1,2,C1 , C1) · · · )) = m + G(x1) + G(x2 − D(sk1,E(sk1, x1))) + · · · + G(xT − D(skT−1,
E(skT−1, xT−1))) − G(D(skT ,E(skT , xT ))) = m as desired, where x1, . . . , xT ∈ X are the random
elements chosen by Enc and ReKeyGen.

Security. For semantic security, we note that for any given ciphertext C = (C1, C2) output by
Enc(sk,m) for some message m ∈ M and sk ← KeyGen(1λ), the first component C1 hides the
seed of the PRG used to construct C2, since C1 is simply an encryption of this seed under a
CPA-secure symmetric encryption scheme. Then, since the seed is computationally hidden from an
adversary, by the pseudorandomness of G, the second component C2 reveals no information to a
computationally bounded adversary about the message. For a re-encryption key rki,j,C = (r, s) of a
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ciphertext C, we note that again by the CPA security of the symmetric encryption scheme that
the component r reveals no information about the randomly chosen element x2 ∈ X , and since x1

is not revealed by C, the component s = x2 − x1 also does not reveal x2 nor x1, and so the the
generation of the re-encryption keys can be simulated without knowing any secret key information.
The remainder of the security proof for the indistinguishability between Exptupdate0 and Exptupdate1

follows straightforwardly in a manner similar to the proof of security for the symmetric proxy
re-encryption scheme from Section 7.2.

We now show that Πupdate is ciphertext independent. For a fixed message m ∈ M and
let sk1, sk2 be a pair of secret keys output by two calls to KeyGen(1λ). Let x, x′ ∈ X be such
that C = (E(sk, x),m + G(x)) and C ′ = (E(sk, x′),m + G(x′)). Also, let r, r′ ∈ X be such that
rk1,2,C = (E(sk2, r), r−x) and rk1,2,C′ = (E(sk2, r

′), r′−x′). Then, ReEnc(rk1,2,C , C) = (E(sk2, r),m+
G(x) +G(r − x)) = (E(sk2, r),m+G(r)), and is hence independent of x. Thus, ReEnc(rk1,2,C , C) is
distributed independently of C and hence identical to ReEnc(rk1,2,C′ , C

′) = (E(sk2, r
′),m+G(r′),

since r and r′ were drawn from the same distribution.

Using almost seed homomorphic PRGs. With a γ-almost seed homomorphic PRG instead
of a seed homomorphic PRG, the above construction Πupdate can be modified to yield a symmetric
proxy re-encryption scheme which satisfies T -time correctness for a pre-specified T ≥ 1. This is
done by padding the message in the encryption and then rounding away the accumulated error from
re-encryptions during the decryption phase, similar to the modification made to the encryption
and decryption algorithms of the symmetric proxy re-encryption scheme in Section 7.2. This new
updatable encryption scheme achieves T -time correctness for a pre-specified T in the setup algorithm,
and the ciphertext size of the scheme grows logarithmically in γT . We also note that the ciphertext
independence property still holds when G is γ-almost seed homomorphic.

7.3.2 A more efficient construction from key homomorphic PRFs.

Using a key homomorphic PRF, we can achieve a more efficient solution which enjoys parallelism. Let
F : X → Y be a key homomorphic PRF, and let (SymKeyGen,E,D) be a symmetric key CPA-secure
encryption scheme with key space K, where (X ,+), (Y,+), and (K,+) are groups. The following is
a secure updatable encryption scheme which can be used to encrypt message blocks. Let mi be the
ith message block of a message m.

• Setup(1λ) samples and outputs the public parameters pp used by F .

• KeyGen(1λ) samples and outputs a secret key sk← SymKeyGen(1λ).

• ReKeyGen(sk1, sk2, C = (C1, C2, i)) chooses a random x2 ∈ X , sets x1 = D(sk1, C1), and
returns the tuple (E(sk2, x2), x2 − x1).

• Enc(sk,mi) chooses a random x ∈ X and outputs C = (E(sk, x),mi + F (x, i), i).

• ReEnc(rk1,2,C = (r, s), C = (C1, C2, i)) outputs (r, C2 + F (s, i)).

• Dec(sk, C = (C1, C2, i)) outputs C2 −G(D(sk, C1), i).

Correctness and security follow straightforwardly as in the seed homomorphic PRG construction.
We also note that we can replace the instances of the key homomorphic PRF with a γ-almost key
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homomorphic PRF, and by modifying the scheme to round away accumulated error appropriately,
the construction achieves T -time correctness for a pre-specified T in the setup algorithm, and the
ciphertext size of the scheme grows logarithmically in γT , as before.

7.4 PRFs Secure Against Related-Key Attacks

Our last application shows that key-homomorphic PRFs can be used to construct PRFs secure
against related key attacks. The key homomorphism is primarily used in the proof of security.

A Φ-RKA-PRF is a pseudorandom function secure against related-key attacks from a class Φ of
related-key deriving (RKD) functions. Bellare and Cash [BC10] show how to obtain a Φ-RKA-PRF
from a key malleable PRF with respect to class of RKD functions Φ, a key fingerprint (defined
below), and a collision-resistant hash function. We paraphrase the definitions and the main theorem
from [BC10], using a simplified definition of key fingerprints which suffices for our construction.

Key Malleability. Let (K,⊕) and (Y,⊗) be groups. A PRF F : K × X → Y is key malleable
with respect to a class Φ if there exists an efficient algorithm T with black-box access to an oracle
O : X → Y such that:

• If O(x) = F (k, x), TO(·)(φ, x) = F (φ(k), x) for all φ ∈ Φ and x ∈ X , and

• If O(x) = f(x) where f : X → Y is a random function, for φ1, . . . , φq ∈ Φ and distinct
x1, . . . , xq ∈ X , the set of values {TO(·)(φ1, x1), . . . ,TO(·)(φq, xq)} is indistinguishable from a
set of q uniform and independently sampled elements of Y.

Key Fingerprints. A key fingerprint w ∈ X is such that F (φ(k), w) 6= F (φ′(k), w) for all k ∈ K
and all distinct φ, φ′ ∈ Φ.

Compatible (Collision-Resistant) Hash Function. A collision-resistant hash function H :
X × Y → X is compatible with F and a key fingerprint w if w 6∈ Im(H).

Theorem 7.8 (cf. [BC10, Theorem 3.1]). Let F : K × X → Y be a family of functions and Φ be
a class of RKD functions, where F is a key malleable PRF with respect to Φ. Let w ∈ X be a
key fingerprint for F and Φ and let H be a compatible collision resistant hash function. Define
Frka : K ×X → Y by

Frka(k, x) = F (k,H(x, F (k,w))).

Then, Frka is a Φ-RKA-PRF.

A Φ-RKA-PRF from the DLIN assumption. Let Φ⊕ = {φ : φ(k) = k ⊕ k′}k′∈K, where ⊕
represents the group action over K. In the case of Fdlin, ⊕ is vector addition.

Lemma 7.9. If F is key homomorphic, then F is key malleable with respect to Φ⊕.

Proof. Define TO(·)(φ, x) = O(x)⊗ F (k′, x), where φ is such that φ(k) = k ⊕ k′. Note that when
O(x) = f(x) for a truly random function f , the values f(x1), . . . , f(xq) are uniform and independent
so long as x1, . . . , xq are distinct. Hence, the values TO(·)(φ1, x1), . . . ,TO(·)(φq, xq) are also uniform
and independent. If F is key homomorphic, then TO(·)(φ, x) = F (φ(k), x) when O(x) = F (k, x).
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Lemma 7.10. For any x ∈ X , x is a key fingerprint for Fdlin and the class Φ⊕.

Proof. Fix some k ∈ K and consider two distinct related-key deriving functions φ, φ′ ∈ Φ. It follows
that φ(k) 6= φ′(k). Fix an input x = x1 · · ·x` ∈ X , and let M =

∏`
i=1 Axi . Recall from the definition

of Fdlin that A0 and A1 are full rank, and so M is also full rank. Therefore, M · φ(k) 6= M · φ′(k),
and so Fdlin(φ(k), x) = (g`)

M·φ(k) 6= (g`)
M·φ′(k) = Fdlin(φ′(k), x). Thus, x is a key fingerprint for

Fdlin and Φ⊕.

We consider the fingerprint w = 0 ∈ Z`p. For any collision resistant hash functionH : Z`p×(G`)
` →

Z`−1
p , the hash function H ′ : Z`p × (G`)

` → Z`p defined as

H ′(x, y) =

[
H(x, y)

1

]
is compatible with Fdlin and the key fingerprint w. This allows us to apply Theorem 7.8 with
Lemmas 7.9 and 7.10 to get the following theorem.

Theorem 7.11. Let H be a collision resistant hash function. Under the DLIN assumption, the
function F (k, x) = Fdlin(k, H ′(x, Fdlin(k,0))) is a Φ-RKA-PRF.

8 Conclusions and Open Problems

We explored the concept of key-homomorphic PRFs and discussed its application to key rotation,
one-round distributed PRFs, and symmetric-key proxy re-encryption. Our construction of lattice-
based key-homomorphic PRFs in the standard model relies on a non-uniform variant of the learning
with errors assumption that we show is equivalent to the standard LWE assumption.

We leave as an open problem the question of constructing key-homomorphic PRFs from other
standard assumptions and in particular constructions using bilinear maps. Another interesting area
of research is to construct key-homomorphic PRFs whose performance is comparable to real-world
block ciphers such as AES. It would also be interesting to improve the tightness of the analysis in
our lattice-based PRF, perhaps using techniques from [AKP+13].
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A Additional Preliminaries

A.1 Pseudorandom Functions

We briefly review the definition of pseudorandom functions [GGM86]. Informally, a pseudorandom
function is an efficiently computable function such that no efficient adversary can distinguish the
function from a truly random function given only black-box access.
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More precisely, a PRF is an efficiently computable function F : K ×X → Y where K is called
the key space, X is called the domain, and Y is called the range. In this paper, we allow the PRF
to take additionally public parameters pp and use Fpp : K ×X → Y to denote such a PRF.

Security for a PRF is defined using two experiments between a challenger and an adversary A.
For b ∈ {0, 1} define the following experiment ExptPRFb :

1. Given security parameter λ, the challenger samples and publishes public parameters pp to the
adversary. Next, if b = 0 the challenger chooses a random key k ∈ K and sets f(·) := Fpp(k, ·).
If b = 1 the challenger chooses a random function f : X → Y.

2. The adversary (adaptively) sends input queries x1, . . . , xQ in X and receives back f(x1), . . . , f(xQ).
3. Eventually the adversary outputs a bit b′ ∈ {0, 1}.

Let Wb denote the probability that A outputs 1 in experiment ExptPRFb .

Definition A.1 (Pseudorandom Function). A PRF Fpp : K × X → Y is secure if for all efficient
adversaries A the quantity

AdvPRF[F,A] := |W0 −W1|

is negligible.

A.2 Some Lemmas from Linear Algebra

Matrix norm. The norm of a matrix R ∈ Rk×m is defined as ‖R‖max := sup‖u‖=1 ‖R · u‖. We
derive the following lemma along the lines of [ABB10, Lemma 16] which shows that a random
matrix over {0, 1}m×m has a matrix norm roughly m.

Lemma A.2. Let u ∈ Zm be a vector and let R be a uniformly chosen matrix over {0, 1}m×m.
Then,

Pr

[
‖Ru‖ > 1

2
‖u‖ ·

(
m+

√
m · ω(

√
logm)

)]
< negl(m).

Proof. Observe that a uniformly chosen matrix R can be written as R = 1
2 · 1

m×m + 1
2 · R

′

where 1 is an all-ones matrix and R′ is a matrix chosen uniformly from {−1, 1}m×m. Therefore,
Ru = 1

2 · 1u + 1
2 · R

′u. A standard application of Hölder’s inequality for power means implies
that ‖1u‖ =

√
m ·

∑m
i=1 ui ≤

√
m · (

√
m‖u‖). From [ABB10, Lemma 16], ‖R′u‖ is within

√
m ·

ω(
√

logm) with overwhelming probability (in m). Thus, from the triangle inequality, ‖Ru‖ ≤
1
2 ·
(
m+

√
m · ω(

√
logm)

)
‖u‖, as required.

Lemma A.3. Let m, and q be integers such that q is prime. Then the probability that a uniformly
chosen matrix A← {0, 1}m×m has Zq-rank m is at least 0.288.

Proof. We start off with the following observation. For integer k ∈ [m], let v1, . . . ,vk denote k
linearly independent vectors in Zmq . Let V = spanZq(v1, . . . ,vk). We claim that

|V ∩ {0, 1}m| ≤ 2k. (A.1)

To see why, denote by V∗ the k×mmatrix over Zq where the i-th row is the vector vi. As Rk(V∗) = k,
without loss of generality, we may assume that columns 1 through k are linearly independent. This
implies that for any vector u ∈ {v1, . . . ,vk}, uk+1, . . . , um are uniquely determined by the values
u1, . . . , uk. This is also true of all vectors u ∈ spanZq (v1, . . . ,vk). The proof of Equation (A.1)
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follows in a straightforward manner now, by noting that there are at most 2k possible values assigned
to u1, . . . , uk for any u ∈ V ∩ {0, 1}m.

To prove the lemma, we look at A as m rows a1, . . . ,am sampled independently and uniformly
from {0, 1}m. For k ∈ [m − 1], having chosen vectors a1, . . . ,ak, the probability that ak+1 is
independent of a1, . . . ,ak is at least (2n − 2k)/2n from Equation (A.1). Therefore, the probability
that A has rank m is:

m−1∑
i=0

Pr[ai+1 6∈ span(a1, . . . ,ai)] ≥
m−1∑
i=0

(
1− 1

2m−i

)
> 0.288.

Lemma A.4. Let m, n, k, and q be integers such that m ≥ n and q is prime and let B ∈ Zn×mq be

a full-rank matrix. Then, for uniform S← Zm×kq , BS is distributed uniformly over Zn×kq .

Proof. Let B be viewed as B = [b1 · · · bm] for column vectors bi ∈ Znq . As Rk(B) = n, there are
n columns that are linearly independent. Let B∗ ∈ Zn×nq denote the submatrix of these n linearly
independent columns. Consider fixing m − n rows of S corresponding to the remaining m − n
columns and only consider a n×m submatrix S∗ that correspond to B∗. The matrix S∗ has column
vectors k∗1, . . . ,k

∗
k ∈ Znq .

Then BS = [B∗s∗1 + u1 · · · B∗s∗k + uk] where u1, . . . ,uk are arbitrary vectors that depend on
the values of the fixed rows. For any i ∈ [k], as B∗ is full-rank, there is a bijection between vectors
s∗i and B∗s∗i . As s∗i is distributed uniformly over Znq , so is B∗s∗i and B∗s∗i + ui. This in turn implies
that BS is distributed uniformly over all possible n× k matrices.

The above result holds true for every possible fixing of the m − n rows corresponding to the
columns not in B∗ and therefore holds true for the uniform distribution over these values as well.
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